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Abstract

Recovering a function from its integrals over circular cones recently gained signifi-

cance because of its relevance to novel medical imaging technologies such emission

tomography using Compton cameras. In this paper we investigate the case where the

vertices of the cones of integration are restricted to a sphere in n-dimensional space and

symmetry axes are orthogonal to the sphere. We show invertibility of the considered

transform and develop an inversion method based on series expansion and reduction

to a system of one-dimensional integral equations of generalized Abel type. Because

the arising kernels do not satisfy standard assumptions, we also develop a uniqueness

result for generalized Abel equations where the kernel has zeros on the diagonal. Fi-

nally, we demonstrate how to numerically implement our inversion method and present

numerical results.
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1 Introduction

Many tomographic imaging modalities are based on the inversion of Radon transforms, which
map a function onto its integrals over certain surfaces in Rn (see, for example, [23, 31]). The
most basic example is the classical Radon transform which maps the function onto its in-
tegrals over hyperplanes and which is the mathematical basis of X-ray CT. Another well
investigated example is the spherical Radon transform, which maps a function onto its inte-
grals over hyper-spheres and which finds application in the recently developed photoacoustic
tomography [13, 14, 24]. In this article we consider the conical Radon transform that maps
a function to its integrals over circular half cones. The conical Radon transform recently
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gained increased interest, mainly due to its relevance for SPECT using Compton cameras
(see, for example, [1, 6, 8, 19, 21, 28, 29, 33, 38, 42]).
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Figure 1: (a) Standard gamma cameras use collimators which only observe photons propa-
gating orthogonal to the detector plane. The location of emitted photons can be traced back
to a straight line. (b) A Compton camera consists of two detector arrays and any observed
photon can be traced back to the surface of a cone.

1.1 SPECT using Compton cameras

Single-photon emission computed tomography (SPECT) is a well established medical imag-
ing technology for functional imaging. In SPECT, weakly radioactive tracers are given to
patient and participate in the physiological processes. The radioactive tracers can be de-
tected through the emission of gamma ray photons which provide information about the
interior of patient. In order to obtain location information on the emitted photons, the
standard approach in SPECT uses collimators which only record photons that enter the
detector vertically. As illustrated in Figure 1(a), such data provide values of line integrals
of the tracer distribution.

A major drawback of using collimators is that they remove most photons. Therefore
the number of recorded photons is low and the noise level high. Typically, only one out of
10 000 photons emitted from the patient is actually detected with this standard approach.
In order to increase the number of recorded photons, the concept of Compton cameras has
been developed in [11, 37, 41]. As illustrated in Figure 1(b), a Compton camera consists
of a scatter detector array D1 and an absorption detector array D2. A photon emitted
in the direction of the camera undergoes Compton scattering in D1, and is absorbed in
D2. The required distinction of individual photons is obtained by coincidence detection.
Both detectors are position and energy sensitive, and the measured energies can be used to
determine the scattering angle [37]. Using such information, one concludes that the detected
photon must have been emitted on the surface of a circular cone, where the vertex is given
by the position at D1, the central axis points from the position on D2 to the position on D1,
and the opening angle equals the Compton scattering angle. Consequently, for a distribution

2



of tracers, the Compton camera approximately provides integrals of the marker distribution
over conical surfaces.

1.2 Inversion of the conical Radon transform

As outlined above, SPECT with Compton cameras yields to the conical Radon transform
that maps a function f : R3 → R modeling the marker distribution to the surface integrals
∫

C(z,β,ψ)
f dS over right circular half cones

C(z, β, ψ) = {z + rω | r ≥ 0 and ω ∈ S
2 with ω • β = cosψ} .

Here z ∈ R3 is the vertex of the cone, β ∈ S2 the direction of the central axis, and ψ ∈
(0, π/2) the half opening angle. Variants of the conical Radon transform in R2 are known
as V-line or broken-ray transforms. These transforms appear in emission tomography with
one-dimensional Compton cameras [5, 22], or in the recently developed single scattering
optical tomography [16]. In this paper, we consider the conical Radon transform in general
dimension and further include a radial weight, that can be adjusted to a particular application
at hand. In previous work on Compton camera imaging [38], models with and without radial
weight have been proposed and used.

The conical Radon transform depends on six parameters (z, β, ψ) ∈ R3 × S2 × (0, π/2),
whereas the function f only depends on three spatial coordinates. Therefore the problem of
reconstructing f from its integrals over all circular cones is highly overdetermined. Several
authors have studied the problem of inverting the function from integrals over particular
subsets of all cones. In SPECT with Compton cameras, the vertex is naturally fixed to
the scattering surface D1. In the case where D1 is a plane and the axis is fixed to β =
(1, 0, 0), Fourier reconstruction formulas have been derived in [8, 32]. Formulas of the filtered
backprojection type have been derived in [19, 28]. The case of variable axis and vertices
restricted to a surface has been considered in [6, 21, 27, 33, 38, 39, 42]. See also [1, 3, 15, 17]
for related results on different conical transforms.

To the best of our knowledge, if the set of vertices is different from a plane and any
vertex is associated with a single symmetry axis, no results are known for reconstructing a
function from its integrals over such cones. In this paper we develop an inversion approach
for the case when D1 is a sphere and the symmetry axes of the cones are orthogonal to the
sphere. We derive a reconstruction procedure based on spherical harmonics decomposition
and show invertibility of the considered transform. Spherical harmonics decompositions have
been previously used for studying other Radon transforms. See, for example, [7, 9, 26, 31]
for the classical Radon transform, [35] for a weighted Radon transform over planes, [2] for
the circular Radon transform, or [3, 4] for a broken ray transform with vertices in a disc.
In these works, the arising generalized Abel equations satisfy all conditions needed in order
to apply standard well-posedness results. For the transform we study, one basic assumption
of these results is violated, namely the kernels turn out to have zeros on the diagonal (see
Theorem 3.2). Nevertheless, we are able to show solution uniqueness; see Theorem 3.5.
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1.3 Outline

The paper is organized as follows. In Section 2 we define the conical Radon transform
with vertices on the sphere and orthogonal axis, and derive some elementary results for
that transform. Our main results are stated in Section 3. By using expansions in spherical
harmonics, we are able the reduce the conical Radon transform to a set of explicitly given
one-dimensional integral equations of the Abel type (see Theorem 3.2). The invertibility of
the one dimensional integral operators will be given in Theorem 3.5. For that purpose, in
Appendix A we derive uniqueness results for first kind Volterra equations (Theorem A.2)
and generalized Abel equations with kernels having zeros on the diagonal (Theorem 3.4).
Theorem 3.5 in particular implies injectivity of the considered transform and additionally
yields an efficient inversion method. In Section 4, we develop such a reconstruction procedure
based on our theoretical findings and present some numerical results. Finally, in Section 5
we present a short summary and discuss possible lines of future research.

2 The conical Radon transform

We start this section with defining the conical Radon transform that integrates a function
over cones with vertices on the unit sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1} and central axis
orthogonal to S

n−1. For z ∈ S
n−1 and ψ ∈ (0, π/2), we denote by

C(z, ψ) = {z + rω | r ≥ 0 and ω ∈ S
n−1 with − ω • z = cosψ} ,

the surface of a right circular half cone in Rn with vertex z, central axis −z and half opening
angle ψ. We denote by C∞

0 (B1(0)) the set of all infinitely times differentiable functions
f : Rn → R with supp(f) ⊆ B1(0), where B1(0) := {x ∈ Rn | ‖x‖ < 1} denotes the unit ball
in Rn. Further, we denote by O(n) ⊆ Rn×n the set of all orthogonal n× n matrices and set
e1 := (1, 0, . . . , 0).

Definition 2.1 (The conical Radon transform Rmf). Let m ∈ Z. We define the conical
Radon transform (with vertices on the sphere, orthogonal axis and weighting factor m) of
f ∈ C∞

0 (B1(0)) by

Rmf : S
n−1 × (0, π/2) → R : (z, ψ) 7→

∫

C(z,ψ)

f(x) ‖x− z‖m dS(x) . (2.1)

The problem under study is recovering the function f from its conical Radon transform
Rmf . We start by deriving explicit expressions for Rmf .

Lemma 2.2. Let m ∈ Z and f ∈ C∞
0 (B1(0)).

(a) If Q ∈ O(n) and z ∈ S
n−1, then (Rmf)(Qz, · ) = Rm(f ◦Q)(z, · ).

(b) For every (z, ψ) ∈ Sn−1 × (0, π/2), we have

(Rmf)(e1, ψ) =

∫ 2

0

rm(r sin(ψ))n−2 (2.2)

4



×
∫

Sn−2

f(1− r cos(ψ), r sin(ψ)η) dS(η) dr ,

(Rmf)(e1, ψ) =

∫ π−ψ

0

(sin(ψ))n−1(sin(α))m+n−2

(sin(α+ ψ))m+n
(2.3)

×
∫

Sn−2

f

(

sin(ψ)

sin(α+ ψ)
(cos(α), sin(α)η)

)

dS(η) dα .

Proof. (a) For every Q ∈ O(n) and every (z, ψ) ∈ Sn−1 × (0, π/2), we have

(Rmf)(Qz, ψ) =

∫

C(Qz,ψ)

f(x)‖x−Qz‖m dS(x)

=

∫

Q(C(z,ψ))

f(x)‖x−Qz‖m dS(x)

=

∫

C(z,ψ)

f(Qx)‖Qx−Qz‖m dS(x)

=

∫

C(z,ψ)

(f ◦Q)(x)‖x− z‖m dS(x)

= Rm(f ◦Q)(z, ψ).

(b) Let Φ: D → R
n−1 be any parametrization of Sn−2, where D ⊆ R

n−2 is an open subset
of Rn−2. Then

Ψ: D × (0,∞) → R
n : (r, β) 7→ (1− r cos(ψ), r sin(ψ)Φ(β))

is a parametrization of C(e1, ψ). Elementary computation shows that the Gramian determi-
nant of Ψ is given by det(Ψ′(r, β)TΨ′(r, β)) = (r sinψ)2(n−2) det(Φ′(β)TΦ′(β)). Consequently,

(Rmf)(e1, ψ) =

∫

C(e1,ψ)

f(x) ‖x− e1‖m dS(x)

=

∫ ∞

0

rm(r sin(ψ))n−2

∫

D

f (1− r cos(ψ), r sin(ψ)Φ(β))

×
√

det(Φ′(β)TΦ′(β)) dβ dr

=

∫ ∞

0

rm(r sin(ψ))n−2

∫

Sn−2

f (1− r cos(ψ), r sin(ψ)η) dS(η) dr ,

which is (2.2). Substituting r = sin(α)/ sin(α + ψ), we have dr/ dα = sin(ψ)(sin(α + ψ))−2

and 1− r cos(ψ) = cos(α) sin(ψ)/ sin(α + ψ); this yields (2.3).

Next we state the continuity of f 7→ Rmf with respect to the Lp-norms for p ∈ {1, 2}.
Similar results could of course be obtained for any p ∈ [1,∞).

Lemma 2.3 (Continuity of Rm). Let m ∈ Z, f ∈ C∞
0 (B1(0)) and ǫ ∈ (0, 1).

(a) If 2m+ n− 2 > 0, then ‖Rmf‖L2 ≤ |Sn−1||Sn−2| 22m+n−2

2m+n−2
‖f‖L2.
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(b) If m ≥ 1, then ‖Rmf‖L1 ≤ 2m‖f‖L1.

(c) If supp(f) ⊆ B1−ǫ(0), then ‖Rmf‖L1 ≤ C
(1)
ǫ,m‖f‖L1, ‖Rmf‖L2 ≤ C

(2)
ǫ,m‖f‖L2 for con-

stants C
(1)
ǫ,m and C

(2)
ǫ,m independent of f .

Proof. (a) Let z ∈ Sn−2 and Q ∈ O(n) satisfy Qe1 = z. By Lemma 2.2, we have

‖(Rmf)(z, · )‖2L2 =

∫ π/2

0

|Rm(f ◦Q)(e1, ψ)|2 dψ =

∫ π/2

0

(sin(ψ))2(n−2)

×
∣

∣

∣

∣

∫ 2

0

rm+n−2

∫

Sn−2

(f ◦Q) (1− r cos(ψ), r sin(ψ)η) dS(η) dr

∣

∣

∣

∣

2

dψ .

Using the Cauchy-Schwarz inequality, we obtain

‖(Rmf)(z, · )‖2L2 ≤ |Sn−2|
(
∫ 2

0

r2m+n−3 dr

)(
∫ π/2

0

(sin(ψ))2(n−2)

×
∫ 2

0

∫

Sn−2

rn−1|(f ◦Q) (1− r cos(ψ), r sin(ψ)η)|2 dS(η) dr dψ
)

.

The first integral equals
∫ 2

0
r2m+n−3 dr = 22m+n−2/(2m + n − 2), and the second can be

bounded by ‖f‖2L2. Consequently, ‖(Rmf)(z, · )‖2L2 ≤ |Sn−2| 22m+n−2/(2m + n − 2)‖f‖2L2.
Integration over z ∈ S

n−1 yields the claimed estimate.
(b), (c): Analogous to (a).

3 Analytic inversion of Rm

In this section, first we derive an explicit decomposition of the conical Radon transform
in one-dimensional integral operators (see Theorem 3.2). Second, we show the solution
uniqueness of the corresponding generalized Abel equations (see Theorem 3.5), which implies
the invertibility of Rm. For these results we will use the spherical harmonic decompositions

f(rθ) =
∞
∑

ℓ=0

N(n,ℓ)
∑

k=1

fℓ,k(r) Yℓ,k(θ) , (3.1)

(Rmf)(z, ψ) =
∞
∑

ℓ=0

N(n,ℓ)
∑

k=1

(Rmf)ℓ,k(ψ)Yℓ,k(z) . (3.2)

Here Yℓ,k, for ℓ ∈ N and k ∈ {1, . . . , N(n, ℓ)}, denote spherical harmonics [30, 36] of degree
ℓ forming a complete orthonormal system in S

n−1. The set of all (ℓ, k) with ℓ ∈ N and
k ∈ {1, . . . , N(n, ℓ)} will be denoted by I(n).
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3.1 Integral equations for fℓ,k

Let Cµ
ℓ denote the Gegenbauer polynomials normalized in such a way that Cµ

ℓ (1) = 1. We
derive three different relations between fℓ,k and (Rmf)ℓ,k. The first one is as follows.

Lemma 3.1. Let f ∈ C∞
0 (B1(0)), and let fℓ,k and (Rmf)ℓ,k for (ℓ, k) ∈ I(n) be as in (3.1)

and (3.2). Then

∀ψ ∈ (0, π/2) : (Rmf)ℓ,k(ψ) = |Sn−2|
∫ π−ψ

0

fℓ,k

(

sin(ψ)

sin(α + ψ)

)

× (sin(ψ))n−1(sin(α))m+n−2

(sin(α+ ψ))m+n
C

(n−2)/2
ℓ (cos(α)) dα . (3.3)

Proof. Fix z ∈ Sn−1 and let Q ∈ O(n) be any rotation with Qe1 = z. Using the delta
distribution δ and applying the Funk-Hecke theorem, for any α ∈ (0, π) we have
∫

Sn−2

Yℓ,k(Q(cos(α), sin(α)η)) dS(η)

=

∫

Sn−1

Yℓ,k (Qη) δ(e1 • η − cos(α)) (1− (e1 • η)2)−(n−3)/2 dS(η)

=

∫

Sn−1

Yℓ,k(η) δ(z • η − cos(α)) (1− (z • η)2)−(n−3)/2 dS(η)

= |Sn−2| Yℓ,k(z)
∫ 1

−1

δ(t− cos(α))C
(n−2)/2
ℓ (t) dt

= |Sn−2| Yℓ,k(z)C(n−2)/2
ℓ (cos(α)) .

(3.4)

Together with Lemma 2.2, this yields

Rm[x 7→ fℓ,k(|x|) Yℓ,k(x/|x|)](z, ψ) = |Sn−2|
(

∫ π−ψ

0

fℓ,k

(

sin(ψ)

sin(α+ ψ)

)

× (sin(ψ))n−1(sin(α))m+n−2

(sin(α + ψ))m+n
C

(n−2)/2
ℓ (cos(α)) dα

)

Yℓ,k(z) .

The linearity of Rm gives (3.3).

Theorem 3.2 (Generalized Abel equation for fℓ,k). Let f ∈ C∞
0 (B1(0)) and let fℓ,k and

(Rmf)ℓ,k be as (3.1) and (3.2) for (ℓ, k) ∈ I(n). Then, for ψ ∈ (0, π/2),

(Rmf)ℓ,k(ψ) = |Sn−2| sin(ψ)−m
∫ 1

sin(ψ)

fℓ,k(ρ)
ρKℓ(ψ, ρ)

√

ρ2 − (sin(ψ))2
dρ , (3.5)

with the kernel functions

Kℓ(ψ, ρ) := ρm+n−2
∑

σ=±1

σℓ sin (arcsin (sin(ψ)/ρ)− σψ)m+n−2

× C
(n−2)/2
ℓ (cos (arcsin (sin(ψ)/ρ)− σψ)) . (3.6)
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Proof. We split the integral in Lemma 3.1 in one integral over α < π/2 − ψ and one over
α ≥ π/2− ψ. For α < π/2− ψ we substitute α = arcsin(sin(ψ)/ρ)− ψ. We have dα/dρ =
− sin(ψ) ρ−1(ρ2 − sin(ψ)2)−1/2 and therefore

∫ π/2−ψ

0

fℓ,k

(

sin(ψ)

sin(α + ψ)

)

(sin(ψ))n−1(sin(α))m+n−2

(sin(α + ψ))m+n
C

(n−2)/2
ℓ (cos(α)) dα

= (sin(ψ))n−1

∫ 1

sinψ

fℓ,k(ρ)C
(n−2)/2
ℓ (cos (arcsin (sin(ψ)/ρ)− ψ))

× (sin (arcsin (sin(ψ)/ρ)− ψ))m+n−2 ρm+n

sin(ψ)m+n

sin(ψ) dρ

ρ
√

ρ2 − (sin(ψ))2

= (sin(ψ))−m
∫ 1

sinψ

fℓ,k(ρ)C
(n−2)/2
ℓ (cos (arcsin (sin(ψ)/ρ)− ψ))

× (sin (arcsin (sin(ψ)/ρ)− ψ))m+n−2 ρm+n−1 dρ
√

ρ2 − (sin(ψ))2
.

In the case α > π/2− ψ, we substitute α = π − arcsin (sin(ψ)/ρ)− ψ. Repeating the above
computations and using Cµ

ℓ (−x) = (−1)ℓCµ
ℓ (x) shows

∫ π−ψ

π/2−ψ
fℓ,k

(

sin(ψ)

sin(α + ψ)

)

(sin(ψ))n−1(sin(α))m+n−2

(sin(α + ψ))m+n
C

(n−2)/2
ℓ (cos(α)) dα

= (−1)ℓ(sin(ψ))−m
∫ 1

sinψ

fℓ,k(ρ)C
(n−2)/2
ℓ (cos (arcsin (sin(ψ)/ρ) + ψ))

× (sin (arcsin (sin(ψ)/ρ) + ψ))m+n−2 ρm+n−1 dρ
√

ρ2 − (sin(ψ))2
.

Together with (3.3), this yields the claim.

The relation between fℓ,k and (Rmf)ℓ,k given in Theorem 3.2 is well suited for the nu-
merical implementation, see Section 4. For showing uniqueness of a solution, the following
equivalent form will be more appropriate.

Lemma 3.3. Let f ∈ C∞
0 (B1(0)) and let fℓ,k and (Rmf)ℓ,k be as (3.1) and (3.2). Further,

for every (ℓ, k) ∈ I(n) denote

(a) ĝℓ,k(t) := |Sn−2|−1(1− t)−(n−2)/2(Rmf)ℓ,k(arccos
√
t);

(b) f̂ℓ,k(s) := fℓ,k
(√

1− s
)

/2;

(c) Fℓ(t, s) :=
∑

σ=±1 σ
ℓ
(√

t− σ
√
t− s

)m+n−2
C

(n−2)/2
ℓ

(√
t
√
t−s+σ(1−t)√

1−s

)

.

Then f̂ℓ,k and ĝℓ,k are related via:

∀t ∈ [0, 1] : ĝℓ,k(t) =

∫ t

0

f̂ℓ,k (s)
Fℓ(t, s)√
t− s

ds . (3.7)
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Proof. Substituting w := sin(ψ) in (3.5) and using the trigonometric sum and difference
identities shows

1

|Sn−2|(Rmf)ℓ,k(arcsin(w))

= w−m
∫ 1

w

fℓ,k(ρ)ρ
m+n−2

∑

σ=±1

σℓ sin (arcsin (w/ρ)− σ arcsin(w))m+n−2

× C
(n−2)/2
ℓ (cos (arcsin (w/ρ)− σ arcsin(w)))

ρ dρ
√

ρ2 − w2

= w−m
∫ 1

w

fℓ,k(ρ)ρ
m+n−2

∑

σ=±1

σℓ
(

w/ρ
√
1− w2 − σw

√

1− w2/ρ2
)m+n−2

× C
(n−2)/2
ℓ

(

√

1− w2/ρ2
√
1− w2 + σ w2/ρ

) ρ dρ
√

ρ2 − w2

= wn−2

∫ 1

w

fℓ,k(ρ)
∑

σ=±1

σℓ
(√

1− w2 − σ
√

ρ2 − w2
)m+n−2

× C
(n−2)/2
ℓ

(

√

ρ2 − w2
√
1− w2 + σw2

ρ

)

ρ dρ
√

ρ2 − w2

Next we set w =
√
1− t and make the substitution ρ =

√
1− s. Then we have 1 − w2 = t,

ρ2 − w2 = t− s and arcsin(w) = arccos(
√
t), which shows

(1− t)−(n−2)/2

|Sn−2| (Rmf)ℓ,k(arccos(
√
t)) =

1

2

∫ t

0

fℓ,k(
√
1− s)

×
∑

σ=±1

σℓ
(√

t− σ
√
t− s

)m+n−2

C
(n−2)/2
ℓ

(
√
t
√
t− s+ σ(1− t)√

1− s

)

ds√
t− s

.

This together with (a)-(c) yields (3.7).

3.2 Solution uniqueness

Any of the integral equations (3.7) is of generalized Abel type. Using the symmetry of the

Gegenbauer polynomials, we see that Fℓ(s, s) = 2 s(m+n−2)/2 C
(n−2)/2
ℓ

(√
1− s

)

. Since the
Gegenbauer polynomials have zeros in [0, 1], so has the function s 7→ Fℓ(s, s). Consequently,
standard theorems on well-posedness do not apply to (3.7), because such results require a
non-vanishing diagonal.

To investigate unique solvability of (3.7) (and, as consequence, of (3.5)), we derive a
uniqueness result for generalized Abel equations of the form

∀t ∈ [a, b] :

∫ t

a

F (t, s)√
t− s

f(s) ds = g(t) , (3.8)

where g ∈ C([a, b]) corresponds to given data and F ∈ C(∆(a, b)), with ∆(a, b) := {(t, s) ∈
R

2 | a ≤ s ≤ t ≤ b}, is a continuous kernel.
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Theorem 3.4 (Solution uniqueness of Abel equations with kernel having zeros on the diag-
onal). Suppose that F : ∆(a, b) → R, where a < b, satisfies the following:

(F1) F ∈ C3(∆(a, b)).

(F2) NF := {s ∈ [a, b) | F (s, s) = 0} is finite and consists of simple roots.

(F3) For every s ∈ NF , the gradient (β1, β2) := ∇F (s, s) satisfies

1 +
1

2

β1
β1 + β2

> 0 . (3.9)

Then, for any g ∈ C([a, b]), equation (3.8) has at most one solution f ∈ C([a, b]).

Proof. See Appendix A.

To the best of our knowledge, Theorem 3.4 is new; we are not aware of similar results
for generalized Abel equations with zeros in the diagonal of the kernel. We derive this result
by exploiting a well-posedness theorem due to Volterra and Pérès for first kind Volterra
equations (see Lemma A.1) together with a standard procedure of reducing generalized Abel
equations to Volterra integral equations of the first kind. We now apply Theorem 3.4 to the
integral equation (3.7):

Theorem 3.5 (Uniqueness of recovering fℓ,k). Suppose m > −(n + 1)/2. For any f ∈
C∞

0 (B1(0)) and any (ℓ, k) ∈ I(n), the spherical harmonic coefficient fℓ,k of f can be recovered
as the unique solution of

∀ψ ∈ (0, π/2) : (Rmf)ℓ,k(ψ) = |Sn−2| sin(ψ)−m
∫ 1

sin(ψ)

fℓ,k(ρ)
ρKℓ(ψ, ρ) dρ
√

ρ2 − (sin(ψ))2
,

with the kernel functions Kℓ defined by (3.6).

Proof. Let f ∈ C∞
0 (B1(0)) vanish outside a ball of Radius 1− a2. According to Lemma 3.3,

it is sufficient to show that (3.7) has a unique solution. To show that this is indeed the case,
we apply Theorem 3.4 by verifying that Fℓ : ∆(a, 1) → R satisfies conditions (F1)-(F3).

Ad (F1): Using the abbreviations q := m + n − 2 and C := C
(n−2)/2
ℓ , the kernel Fℓ can

be written in the form

∀(t, s) ∈ ∆(a, 1) : Fℓ(t, s) =
∑

σ=±1

σℓ
(√

t− σ
√
t− s

)q

C

(
√
t
√
t− s+ σ(1− t)√

1− s

)

.

From this expression it is clear that Fℓ is smooth on {(t, s) ∈ ∆(a, 1) | t 6= s}. Further, by
using C(−x) = (−1)ℓC(x) one sees that Fℓ is an even polynomial in

√
t− s. This shows

that Fℓ is also smooth on the diagonal {(t, s) ∈ ∆(a, 1) | t = s}.
Ad (F2): Next, consider the restriction v(s) := Fℓ(s, s) = 2 sq/2C(

√
1− s) of the kernel

to the diagonal. As an orthogonal polynomial, C has a finite number of isolated and simple
roots. We conclude that the same holds true for v.
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Ad (F3): Let s0 ∈ [a, 1) be a zero of v and set (β1, β2) := ∇Fℓ(s0, s0). Then

β1 + β2 = v′(s0) = − s
q/2
0√

1− s0
C ′ (√1− s0

)

. (3.10)

Next we compute β1 = (β1 + β2)− β2. We have

Fℓ(s0, s0 − ǫ) =
∑

σ=±1

σℓ
(√

s0 − σ
√
ǫ
)q
C

(√
s0
√
ǫ+ σ(1− s0)√
1− s0 + ǫ

)

=
∑

σ=±1

σℓ
(

s
q/2
0 − σqs

(q−1)/2
0

√
ǫ+

q(q − 1)

2
s
(q−2)/2
0 ǫ

)

×
(

C ′(σ
√
1− s0)

√
s0√

1− s0

√
ǫ+

(

C ′′(σ
√
1− s0)

s0
2(1− s0)

− σ√
1− s0

C ′(σ
√
1− s0)

)

ǫ

)

+O(ǫ2)

=
s
q/2
0√

1− s0

(

−(2q + 1)C ′(
√
1− s0) +

s0C
′′(
√
1− s0)√

1− s0

)

ǫ+O(ǫ2) .

Here for the last equality we used the symmetry properties C ′(−x) = (−1)ℓ+1C ′(x) and
C ′′(−x) = (−1)ℓC ′′(x) for the first and second derivatives of the Gegenbauer polynomials.
Because C is a solution of the differential equation

(1− x2)C ′′(x)− (n− 1) xC ′(x) + ℓ (ℓ+ n− 2)C(x) = 0

and s0 is a zero of t 7→ C(
√
1− t), we have the identity s0C

′′(
√
1− s0)/

√
1− s0 = (n −

1)C ′(
√
1− s0). We conclude that −β2 = (−2q + n− 2) s

q/2
0 C ′(

√
1− s0)/

√
1− s0. Together

with (3.10) we obtain

β1 = (−2q + n− 3)
s
q/2
0√

1− s0
C ′(

√
1− s0) . (3.11)

From (3.10) and (3.11) it follows that

1 +
β1

2(β1 + β2)
= 1 +

2q − n + 3

2
= m+

n+ 1

2
> 0 .

This shows (F3). Consequently, Theorem 3.4 implies that f̂ℓ,k is the unique solution of the
integral equation (3.3).

Theorem 3.5 immediately implies the following uniqueness result for the conical Radon
transform Rm.

Corollary 3.6 (Invertibility of Rm). Suppose m > −(n + 1)/2. If f1, f2 ∈ C∞
0 (B1(0)) are

such that Rmf1 = Rmf2, then f1 = f2.

Proof. Let f ∈ C∞
0 (B1(0)) satisfy (Rmf)ℓ,k = 0 for all (ℓ, k) ∈ I(n). According to Theo-

rem 3.5, the integral equation (3.5) has the unique solution fℓ,k = 0, which implies f = 0.
The linearity of Rm gives the claim.
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4 Numerical implementation

Theorems 3.2 and 3.5 are the basis of the following inversion method for the conical Radon
transform Rm:

(a) Compute the expansion coefficients (Rmf)ℓ,k in (3.2).

(b) Recover fℓ,k from (Rmf)ℓ,k by solving (3.5).

(c) Compute f(rθ) =
∑

(ℓ,k)∈I(n) fℓ,k(r)Yℓ,k(θ).

In this section, we show how to implement this reconstruction procedure. We restrict our-
selves to two spatial dimensions (n = 2) and the case m = 0; extensions to general cases are
straightforward.

4.1 Basic procedure for numerically inverting the conical Radon

transform

In two spatial dimensions, the conical Radon transform with m = 0 can be written in the
form

(Rf)(ϕ, ψ) :=
∑

σ=±1

∫ ∞

0

f((cos(ϕ), sin(ϕ))− r(cos(ϕ− σψ), sin(ϕ− σψ))) dr . (4.1)

Because Rf consists of integrals of f over V-shaped lines, the 2D version is also known as
the V-line Radon transform. In the 2D situation, the spherical harmonics expansion equals
the common Fourier series expansion, and we obtain the following reconstruction procedure:

Algorithm 1 (Series expansion for inverting the V-line transform).
Goal: Recover f : R2 → R from the V-line transform Rf : [0, 2π]× (0, π/2) → R.

(S1) Compute gℓ(s) :=
∫ 2π

0
(Rf)(α, arcsin(s))e−iαℓ dα.

(S2) For all ℓ ∈ Z, recover fℓ by solving the Abel equation

∀s ∈ [0, 1] : gℓ(s) =

∫ 1

s

fℓ(ρ)
ρKℓ(s, ρ)
√

ρ2 − s2
dρ, (4.2)

with Kℓ(s, ρ) :=
∑

σ=±1 σ
ℓ cos (ℓ (arcsin(s/ρ)− σ arcsin(s))).

(S3) Evaluate f(r(cosα, sinα)) = 1
2π

∑

ℓ∈Z fℓ(ρ)e
iℓα.

In order to implement Algorithm 1, we suppose that we have given discrete data

g[k, i] := Rmf(ϕk, arcsin(si)) for (k, i) ∈ {M/2, . . . ,M/2− 1} × {0, . . . N} .
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Here ϕk := 2π(k − 1)/M describe the discrete vertex positions and si := i/N for i ∈
{0, . . . , N} corresponds to the discretization of the half opening angles. In our implementa-
tion, we discretize any step in Algorithm 1. For computing the Fourier coefficients in Step
(S1) and for evaluating the Fourier series in Step (S3), we use the standard FFT algorithm.
In Step (S1), the FFT algorithm outputs approximations to gℓ for ℓ ∈ {−M/2,−M/2 +
1, . . . ,M/2 − 1}, which are used as inputs for the second step. The main issue in the re-
construction procedure is implementing Step (S2), which consists in solving the integral
equation (4.2). For that purpose we use product integration method using the mid-point
rule [25, 34, 44], as outlined in the following subsection.

4.2 The mid-point method for numerically solving (4.2)

To apply the mid-point method to (4.2) for any ℓ ∈ Z, one starts with the uniform dis-
cretization si = i/N of the interval [0, 1]. Evaluating (4.2) at the discretization points yields

∀i ∈ {0, . . . , N} : gℓ(si) =
n−1
∑

j=i

∫ sj+1

sj

fℓ (ρ)
ρKℓ(si, ρ)
√

ρ2 − s2i
dρ . (4.3)

One approximately evaluates the right hand side in (4.3) by replacing the restriction of
ρ 7→ fℓ(ρ)Kℓ(si, ρ) to [sj , sj+1] by the function value at the mid-point of the interval and
computing the resulting integral exactly. By setting ρj := (j + 1/2)/N , this yields

∀i ∈ {0, . . . , N} : gℓ(si) ≃
N−1
∑

j=i

wi,jKℓ(si, ρj)fℓ(ρj) , (4.4)

wi,j :=

∫ sj+1

sj

ρ
√

ρ2 − s2i
dρ =

√

(j + 1)2 − i2 −
√

j2 − i2

n
.

The mid-point rule defines numerical approximations fℓ[j] ≃ fℓ(ρj) by requiring (4.4) to be
exactly satisfied with fℓ[j] instead of fℓ(ρj).

Next we define

(a) the discrete kernels Kℓ = (wi,jKℓ(si, ρj))i,j=0,...,N−1 ∈ RN×N ;

(b) the discrete data gℓ = (gℓ(s0), . . . , gℓ(sN−1))
T ∈ RN ;

(c) the discrete unknowns fℓ = (fℓ[0], . . . , fℓ[N − 1])T ∈ RN .

The product integration method using the composite mid-point rule consists in the end in
solving the following system of linear equations:

Find fℓ ∈ R
N such that gℓ = Kℓ fℓ . (4.5)

The matrix Kℓ is triangular. Therefore, in the case that Kℓ is non-singular and well condi-
tioned, equation (4.5) can efficiently be solved by forward substitution.
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4.3 Regularization of the mid-point method

Because the kernel function Kℓ has zeros in the diagonal, the matrix Kℓ may have diagonal
entries being exactly or at least close to zero. As a consequence, solving the system (4.5)
of linear equations is ill-conditioned. In order to obtain a stable solution, regularization
methods have to be applied. We use the method of Tikhonov regularization for that pur-
pose [10, 18, 20, 40]. In this approach, regularized solutions are defined as solutions of the
regularized normal equation

(

KT

ℓ Kℓ+λ IN
)

fℓ = KT

ℓ gℓ . (4.6)

Here IN ∈ RN×N is the identity matrix and λ > 0 is a regularization parameter.
The regularization parameter in (4.6) could be chosen in dependence on the index ℓ ∈

{−M/2,−M/2 + 1, . . . ,M/2 − 1}, in combination with a data driven parameter selection
rule. However, the development of such strategies is outside the scope of this paper. In our
initial simulation presented below, we take the regularization parameter λ simply as a user
selected constant. Nevertheless, we emphasize that λ has to be taken carefully as a trade
of between stability of inverting KT

ℓ Kℓ+λ IN and accuracy of approximating the pseudo-
inverse of Kℓ. Tikhonov regularization can be interpreted as one member of filter based
regularization methods based on singular value decomposition [10]. Instead of Tikhonov
regularization, one could also use any other filter based regularization method for stabilizing
the product integration method. For comparison purpose we also implemented truncated
singular value decomposition (SVD) for regularizing (4.5).

For the case that the kernel is non-vanishing on the diagonal, the product integration
method (4.5) using the mid-point rule is known to be convergent of order 3/2; see [44,
Theorem 3.5]. Due to the zeros of the kernels, such results cannot be applied to the conical
Radon transform. We are currently not aware of any results for the (regularized) product
integration method in that direction. Such investigations is an interesting line of future
research.

4.4 Numerical example

The reconstruction procedure outlined above has been implemented in Matlab and tested
on a discretized version of a Smiley phantom shown in Figure 2(a) sampled on a Cartesian
301×301 grid. For implementing the conical Radon transform, we numerically compute the
integrals over V-lines using the composite trapezoidal rule. The numerically computed V-
line transform g ∈ R256×301 usingM = 256 vertex positions and 301 opening angles is shown
in Figure 2(b). The numerical reconstruction from such simulated data using Algorithm 1
is shown in Figure 2(c). The regularization parameter has been taken as λ = 0.015. We
also tested our algorithm applied to noisy data g + z, where z ∈ R

256×301 is a realization
of Gaussian white noise with ‖z‖ℓ2/‖g‖ℓ2 ≃ 0.04. For noisy data, λ = 0.05 turned out to
be a suitable regularization parameter. In the resulting reconstruction, the structure of the
phantom is still clearly visible, although the noise has been amplified. Strategies for further
improving the reconstruction quality will be investigated in future work. Our numerical
experiments using truncated SVD led to results very similar to Tikhonov regularization (not
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Figure 2: Reconstruction results: (a) Smiley phantom f . (b) Simulated conical Radon
transform Rf . (c) Numerical reconstruction from simulated data using the derived al-
gorithm. (d) Numerical reconstruction after adding Gaussian white noise with a relative
ℓ2-error of 4%.

displayed). We remark that Tikhonov regularization is numerically more efficient because it
only requires solving one linear equation for a symmetric positive definite matrix.

5 Conclusion

In this paper we studied the conical Radon transform Rm that integrates a function in R
n

over circular cones having vertices on a sphere and axis orthogonal to the sphere including a
radial weight rm. By exploiting the spherical symmetry of the problem, we have been able
to decompose Rm in a product of explicitly computed one-dimensional integral equations of
generalized Abel type. By analyzing the zeros on the diagonal of the kernels and exploiting
a general uniqueness result developed in this paper, we have been able to show that any of

15



these integral equations has a unique solution (provided m > −(n+1)/2). This in particular
implies the invertibility of Rm.

Based on our analytic results, we developed a discrete reconstruction algorithm where
the main step is the numerical solution of the Abel type equations involving the kernels Kℓ.
For that purpose, we applied the product integration method that yields to a linear matrix
equation (4.5). Because of the zeros of s 7→ Kℓ(s, s), equation (4.5) is ill-conditioned and has
to be regularized, which has been done by Tikhonov regularization. In future work we intend
to investigate this issue by theoretically analyzing the degree of ill-posedness of the Abel
integral equations with kernels Kℓ and the stability of inverting Rm. We thereby also will
consider convergence properties of the (regularized) product integration method. Further,
it would be interesting to characterize the range of the involved Abel integral operators
which finally might lead to a characterization of the range of Rm. Other interesting lines of
research are considering the conical Radon transform with non-orthogonal axis or deriving
similar results for the case where the vertices are restricted to a cylindrical surface.

A Uniqueness of Abel and first kind Volterra integral

equations with kernels having zeros on the diagonal

In this appendix we prove Theorem 3.4, a uniqueness result for generalized Abel equation.
For that purpose we first develop a uniqueness result for Volterra integral equations of the
first kind (see Theorem A.2), that will subsequently be used to derive Theorem 3.4.

A.1 First kind Volterra integral equations

For kernel V ∈ C(∆(a, b)) and data g : [a, b] → R, we consider the Volterra integral equation
of first kind,

∀u ∈ [a, b] :

∫ u

a

V (u, s) f(s) ds = g(u) . (A.1)

Standard results guaranteeing existence and uniqueness of a solution of (A.1) require V (s, s) 6=
0 for all s ∈ [a, b]. Instead, we make use of the following non-standard result that yields
solution uniqueness in the case that the kernel has zeros on the diagonal.

Lemma A.1 (Theorem of Volterra and Pérès). Equation (A.1) has exactly one solution
f ∈ C([a, b]) if V and g satisfy the following:

(a) s 7→ V (s, s) has a simple root at a.

(b) V (s, s) 6= 0 for all s ∈ (a, b].

(c) There exist pk ∈ C(∆(a, b)) with ∂1pk ∈ C(∆(a, b)) for k ∈ {0, 1, 2}, and α1, α2 ∈ R

with α1 + α2 6= 0 and 1 + α1/(α1 + α2) > 0, such that

V (u, s) = α1(u− a) + α2(s− a) +

2
∑

k=0

pk(u, s)(s− a)k(u− a)2−k .
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(d) g(s) = (s− a)2h(s) for some h ∈ C1([a, b]).

Proof. See [12, 43].

In the case that the kernel V has several zeros on the diagonal, we apply Lemma A.1
to derive the following Theorem A.2. There we only investigate uniqueness of solution,
because in the exact data case the existence of a solution is always guaranteed. Attempting
to characterizing the range of the forward operators is an important aspect, that will be
addressed in future work.

Theorem A.2 (Uniqueness result for first kind Volterra integral equations having several
zeros in the diagonal). Suppose that V : ∆(a, b) → R satisfies the following:

(V1) V ∈ C3(∆(a, b)).

(V2) NV := {s ∈ [a, b) | V (s, s) = 0} is finite and consists of simple roots.

(V3) For every s ∈ NV , (α1, α2) := ∇V (s, s) satisfies 1 + α1/(α1 + α2) > 0.

Then, for every g ∈ C([a, b]), (A.1) has at most one solution f ∈ C([a, b]).

Proof. Write NV = {s0, s1, . . . , sN} with s0 < s1 < · · · < sN and assume that s0 = a.
The case s0 > a can be treated in a similar manner after showing solution uniqueness on
[a, s0] using the standard well-posedness result for non-vanishing diagonal. We will show
recursively that f is uniquely determined on [a, si+1] by (A.1) for i = 0, . . . , N − 1. For
i = 0, consider the first kind Volterra equation

∀u ∈ [a, s1] :

∫ u

a

V (u, s)f(s) ds = g1(u) , (A.2)

where g1 := g|[a, s1]. The assumptions made on V imply that V |∆(a, b1) satisfies the con-
ditions (a)-(c) in Lemma A.1 for every b1 < s1. Consequently, Lemma A.1 implies that
(A.2) uniquely determines f |[a, b1]. Taking the limit b1 → s1 and using the continuity
of a possible solution shows that f |[a, s1] is uniquely defined. Now suppose that f |[a, si]
has already been shown to be uniquely determined and consider the integral equation
∫ u

si
V (u, s)f(s) ds = gi(u) for u ∈ [si, si+1], where gi(u) := g(u)−

∫ si
a
V (u, s)f(s) ds. Lemma

A.1 applied to the kernel V |∆(si, bi+1) for bi ∈ (si, si+1) and taking the limit bi+1 → si+1

afterwards shows that f |[a, si+1] is uniquely determined.

A.2 Proof of Theorem 3.4

We now derive Theorem 3.4 as a consequence of Theorem A.2. For that purpose, suppose that
f ∈ C([a, b]) is a solution of (3.8) with right hand side g ∈ C([a, b]) and kernel F : ∆(a, b) →
R satisfying the assumptions (F1)-(F3) in Theorem 3.4. By multiplying (3.8) with 1/

√
u− t,

integrating over t and changing the order of integration, we obtain

∀u ∈ [a, b] :

∫ u

a

(
∫ u

s

F (t, s)√
t− s

√
u− t

dt

)

f(s) ds =

∫ u

a

g(t)√
u− t

dt . (A.3)
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The integral equation (A.3) is a particular case of(A.1) with continuous right hand side
u 7→

∫ u

a
g(t)/

√
u− tdt and kernel V defined by

V (u, s) :=

∫ u

s

F (t, s)√
t− s

√
u− t

dt =

∫ 1

0

F (s+ (u− s)r, s)√
r
√
1− r

dr .

Consequently, (3.8) has a unique solution if the kernel V : ∆(a, b) → R : (u, s) 7→ V (u, s)
satisfies Items (V1)-(V3) in Lemma (A.1).

◆ Ad (V1): Because F ∈ C3(∆(a, b)), we have V ∈ C3(∆(a, b)).

◆ Ad (V2): For any t ∈ [a, b] we have V (s, s) = F (s, s)
∫ 1

0
1/
√

r(1− r) dr = πF (s, s).
Consequently, NV = NF is finite and only consists of simple roots.

◆ Ad (V3): Let s0 be a root of s 7→ F (s, s) and let (β1, β2) := ∇F (s0, s0) and (α1, α2) :=
∇V (s0, s0). Then α1 + α2 = π(β1 + β2), and

α1 = ∂1V (s0, s0) =

∫ 1

0

[∂1F (s+ (u− s)r, s)]u=s=s0√
r
√
1− r

dr =

= β1

∫ 1

0

r√
r
√
1− r

dr =
π

2
β1.

We conclude that 1 + α1/(α1 + α2) = 1 + β1/(2β1 + 2β2), which is positive according
to the assumptions made on the kernel F .

Consequently, Lemma A.1 implies that (A.3) has a unique solution, which implies the unique-
ness of a solution of (3.8).
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