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A TUTTE-TYPE CHARACTERIZATION FOR GRAPH FACTORS

HONGLIANG LU AND DAVID G.L. WANG†‡

Abstract. Let G be a connected general graph. Let f : V (G) → Z
+ be a function.

We show that G satisfies the Tutte-type condition

o(G− S) ≤ f(S) for all vertex subsets S,

if and only if it contains a colored J∗
f -factor for any 2-end-coloring, where J∗

f (v) is

the union of all odd integers smaller than f(v) and the integer f(v) itself. This is a

generalization of the (1, f)-odd factor characterization theorem, and answers a problem

of Cui and Kano. We also derive an analogous characterization for graphs of odd orders,

which addresses a problem of Akiyama and Kano.

1. Introduction

This paper concerns Tutte type conditions and the existence of factors in general

graphs. A considerable large number of literatures on graph factors can be found from

Akiyama and Kano’s book [1], and from Liu and Yu’s book [12].

Tutte’s theorem [11] states that a graph G has a perfect matching if and only if

(1.1) o(G− S) ≤ |S| for any vertex subset S,

where o(G − S) denotes the number of odd components of the subgraph G − S. Let

H : V (G) → 2N be a set-valued function. A spanning subgraph F of G is said to

be an H-factor if degF (v) ∈ H(v). Let f : V (G) → Z
+ be an odd-integer-valued

function. The factor F is said to be a (1, f)-odd factor if it is an H-factor where

H(v) = {1, 3, 5, . . . , f(v)}. In particular, a perfect matching is called a 1-factor.

Lovász [6] proposed the degree prescribed subgraph problem of determining the distance

of a factor from a given integer set function. He [7] considered it with the restriction

that the given set function H is allowed, i.e., that every gap of the set H(v) for each

vertex v is at most two. He also showed that the problem is NP-complete when the

function H is not allowed. Cornuéjols [3] provided a polynomial Edmonds-Johnson type

alternating forest algorithm for the degree prescribed subgraph problem with H allowed,

which implies a Gallai-Edmonds type structure theorem.
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For convenience, we denote

Jn =







{1, 3, 5, . . . , n}, if n is odd;

{1, 3, 5, . . . , n − 1, n}, if n is even.

Define Jf (v) = Jf(v) for all vertices v. Under this notation, Jf -factors are exactly

(1, f)-odd factors when f(v) is odd for each vertex v. Amahashi [2] gave a Tutte-type

characterization for graphs having a “global odd factor”.

Theorem 1.1 (Amahashi). Let n ≥ 2 be an integer. A general graph G has a J2n−1-

factor if and only if

(1.2) o(G− S) ≤ (2n − 1)|S| for all vertex subsets S.

By “global odd factor” we mean that the coefficient (2n − 1) in Condition (1.2) is

an odd integer independent of the vertices. By generalizing the constant 2n − 1 to an

odd-valued function f(v), Cui and Kano [4] obtained Theorem 1.1 as follows. We denote

f(S) =
∑

v∈S f(v) for any vertex subset S.

Theorem 1.2 (Cui and Kano). Let G be a general graph of even order. Let f : V (G) →

Z
+ be a function such that f(v) is odd for each vertex v. The graph G has a Jf -factor

if and only if

(1.3) o(G− S) ≤ f(S) for all vertex subsets S.

They [4] also proposed the characterization problem for the existence of a “global even

factor”.

Problem 1.3 (Cui and Kano). Is it possible to characterize graphs that satisfy the

condition

(1.4) o(G− S) ≤ 2n |S| for all vertex subsets S,

in terms of factors?

In analog with Theorem 1.1, the present authors [8] obtained the following partial

answer to Problem 1.3.

Theorem 1.4 (Lu and Wang). Let n ≥ 2. Let G be a simple connected graph satisfying

Condition (1.4). Then G contains a J2n-factor.

In the spirit of Cui and Kano’s generalizing Theorem 1.1, Egawa Kano, and Yan [5]

generalized Theorem 1.4 by allowing the constant 2n to vary as a function.

Theorem 1.5 (Egawa et al.). Let G be a simple connected graph. Let f : V (G) → Z
+

be a function. If G satisfies Condition (1.3), then G has a Jf -factor.
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By setting S = ∅, we see that Problem 1.3 involves only graphs of even order. Taking

account of graphs of odd order, Akiyama and Kano [1, Problem 6.14 (2)] presented the

following problem in the same manner.

Problem 1.6 (Akiyama and Kano). Let G be a connected simple graph. Let f : V (G) →

Z
+ be a function such that f(v) is even for each vertex v. If

(1.5) o(G− S) ≤ f(S) for all nonempty vertex subsets S,

then what factor or property does G have?

We will characterize graphs of both even and odd orders satisfying the aforementioned

Tutte-type conditions, in terms of the so-called colored factors. In fact, characterization

results for the degree prescribed subgraph problem are rather scanty. Examples include

Theorem 1.2, and those on parity interval factors [7], on the general antifactor problem

[9], and on prescriptions whose gaps have the same parity [10]. In this paper, we provide

one more member to the family of characterization results on graph factors, i.e., a graph

of even order satisfies the Tutte-type condition (1.3) if and only if it contains a colored J∗
f -

factor for any 2-end-coloring; see Theorem 3.1. It reduces to Theorem 1.2 by restricting

the function f to be odd-integer-valued, and to Theorem 1.5 by coloring all ends in red.

It is also an answer to Problem 1.3. Together with Theorem 3.2, which deals with graphs

of odd orders, we obtain an answer to Problem 1.6.

2. Preliminary

Let G be a general graph allowing both loops and parallel edges, with vertex set V (G)

and edge set E(G). The idea of coloring each end of every edge is due to Lovász [7].

In this section, we give an overview of his idea that help interprets negative degrees of

vertices, based on which his structural description works for general graphs.

2.1. Interpreting negative degrees of vertices. We say that a general graph is 2-

end-colored (or with a 2-end-coloring) if every end of every its edge is colored in red

or in green, and if the loop ends receive the same color for each loop. We call a loop

with two red ends a red loop, and a loop with two green ends a green loop. Let G

be a general graph with a 2-end-coloring. One associates every edge e a characteristic

function e : V (G) → {0, ±1, ±2}, defined by

(2.1) e(v) =







































2, if e is a red loop and v is the center of e;

−2, if e is a green loop and v is the center of e;

1, if e is not a loop and v is a red end of e;

−1, if e is not a loop and v is a green end of e;

0, otherwise, i.e., if v is not incident with e.
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Define the colored degree of a vertex v by

ΦG(v) =
∑

e∈E(G)

e(v).

Alternatively, one may consider every red end is weighted by +1, and every green end is

weighted by −1. In this way, the colored degree of a vertex v is the weight sum of ends

that incident with v.

2.2. The structural description. A set {h1, h2, . . . , hm} of increasing integers is said

to be allowed if hi+1−hi ≤ 2 for all 1 ≤ i ≤ m−1. Let H : V (G) → 2Z be an allowed set

function, that is, the set H(v) is allowed for each vertex v. A factor F of the graph G

is said to be a colored H-factor if ΦF (v) ∈ H(v) for each vertex v. The distance of the

colored degree ΦF (v) from the set H(v) is defined by

distF (v, H(v)) = min
{

|ΦF (v) − h| : h ∈ H(v)
}

.

Lovász [7] introduced the functions

δH(F ) =
∑

v∈V (G)distF (v, H(v)), and(2.2)

δ(H) = min{δH(F ) : F is a subgraph of G}.(2.3)

The factor F is said to be H-optimal if δH(F ) = δ(H). It is an H-factor if and only if

δH(F ) = 0. Denote

(2.4) IH(v) = {ΦF (v) : F is an H-optimal subgraph}.

The vertex set V (G) can be decomposed as V (G) = AH ⊔BH ⊔ CH ⊔DH , where

CH = {v ∈ V (G) : IH(v) ⊆ H(v)},

AH = {v ∈ V (G)\CH : min IH(v) ≥ maxH(v)},

BH = {v ∈ V (G)\CH : max IH(v) ≤ minH(v)}, and

DH = V (G)\AH\BH\CH .

The 4-tuple (AH , BH , CH ,DH) is said to be the H-decomposition of G. In [7, Corollary

(2.4)], Lovász gave the next result.

Lemma 2.1 (Lovász). The graph G has no edge between the vertex subsets CH and DH .

Let X and Y be disjoint vertex subsets of the graph G. Denote by E(X,Y ) the

set of edges with one end in X and the other end in Y . Define the set function

HX,Y : V (G)−X − Y → 2Z by

HX,Y (z) = H(z)−
∑

e : e(Y )−e(X)=1

e(z).
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In particular, we denote HX = HX,∅. On the other hand, define

ν(X,Y ) =
∑

e : e(Y )−e(X)≥1

|e(Y )− e(X)| and ν(X) = ν(X, ∅).

Note that for any edge e, a vertex in the set X having a non-trivial contribution to the

number e(X) must be an end of e. It follows that e(X) ∈ {0, ±1, ±2} for any edge e

and for any vertex subset X. Therefore, we have

ν(X) =
∑

−e(X)≥1

|e(X)|

= |{e ∈ E(G) : e(X) = −1}| + 2|{e ∈ E(G) : e(X) = −2}|.(2.5)

For any vertex subset S, we denote by G[S] the subgraph induced by S. Denote the

number of components of G[S] by c(S). In [7, Theorem (4.3)], Lovász established a

formula for the number δ(H).

Theorem 2.2 (Lovász). We have

δ(H) = c(DH) +
∑

v∈BH

minH(v)−
∑

v∈AH

maxH(v)− ν(AH , BH).

For any set Y of integers, we denote its convex hull by [Y ] = {y : minY ≤ y ≤ maxY }.

In [7, Theorem (2.1)], Lovász gave the following property for the vertex subset DH .

Lemma 2.3 (Lovász). Suppose that DH 6= ∅. Let v ∈ DH . Then the set IH(v) is an

allowed set. Moreover, we have

(i) if {u± 1} ⊆ IH(v) and u 6∈ IH(v), then u ∈ H(v) and u± 1 6∈ H(v);

(ii) neither the intersection [IH(v)] ∩H(v) nor the difference [IH(v)]\H(v) contains

a pair of consecutive integers.

The graph G is said to be H-critical if it is connected and DH = V (G). Lovász [7,

Lemma (4.1)] showed the following property.

Lemma 2.4 (Lovász). If G is an H-critical graph, then δ(H) = 1.

In [7, Theorem (4.2)], he also showed that any component of the subgraph G[DH ] is

HAH ,BH
-critical. In view of Lemma 2.4, this can be stated as follows.

Lemma 2.5 (Lovász). Suppose that DH 6= ∅. Then for any H ′-optimal subgraph F of

any component of the subgraph G[DH ], we have δH′(F ) = 1, where H ′ = HAH ,BH
.
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3. Main result

This section devotes to the main results of this paper.

Let G be a graph with two vertex subsets S and T . We denote by E(S, T ) the set

of edges e with one end in S and the other end in T . When T = V (G) \ S, we use the

notation ∂(S) = ∂(T ) = E(S, T ). Let f : V (G) → Z
+ be a function. Define

J∗
f (v) = Jf (v) ∪ {−1, −3, −5, . . .}

=







{. . . , −5, −3, −1, 1, 3, . . . , f(v)}, if f(v) is odd

{. . . , −5, −3, −1, 1, 3, . . . , f(v)− 1, f(v)}, if f(v) is even
(3.1)

for each vertex v of G. From definition, we see that the set function J∗
f is allowed.

Throughout this section, we let (A,B,C,D) be the J∗
f -decomposition of G. Denote

I = IJ∗
f
; see Definition (2.4).

Theorems 3.1 and 3.2 treat graphs of even and odd orders respectively.

Theorem 3.1. Let G be a connected general graph. Let f : V (G) → Z
+ be a function.

Then the graph G satisfies Condition (1.3), i.e.,

o(G− S) ≤ f(S) for all vertex subsets S.

if and only if it contains a colored J∗
f -factor for any 2-end-coloring.

Proof. Necessity. Suppose that G contains a vertex subset S such that

(3.2) o(G− S) ≥ f(S) + 1.

We shall show that there exists a 2-end-coloring for which G has no J∗
f -factors. We

consider the 2-end-coloring defined by that an end is colored in red if and only if its

incident vertex belongs to the set S. Let F be a J∗
f -factor of G.

Assume that E(F ) ∩ (∂FC) = ∅ for some odd component of the subgraph G − S.

By parity argument, the component C contains a vertex v having an even degree in F .

From definition, every edge having v as an end contributes the weight −1 to the colored

degree of v. Thus the colored degree of v in the factor F is a negative even integer,

contradicting Definition (3.1) of the function J∗
f .

Otherwise, we have E(F )∩ (∂C) 6= ∅ for every odd component C of G−S. It follows

that |∂FS| ≥ o(G − S) ≥ f(S) + 1 by Ineq. (3.2). Consequently, there exists a vertex

u ∈ S such that |∂F (u)| ≥ f(u) + 1. Since the colored degree of u in the factor F is

at least |∂F (u)|, we infer that the vertex u has colored degree larger than f(v) in F ,

contradicting Definition (3.1) of the function J∗
f again.
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Sufficiency. By way of contradiction, let G be a graph satisfying Condition (1.3)

without colored J∗
f -factors. From Definition (2.3), we have

(3.3) δ(J∗
f ) > 0.

Assume that B 6= ∅. Let vB ∈ B. From definition, we see that

ΦF (vB) ≤ max I(vB) ≤ min J∗
f (vB)

for any J∗
f -optimal subgraph F , contradicting the definition of the function J∗

f . There-

fore, we have

(3.4) B = ∅.

As a consequence, Theorem 2.2 and Ineq. (3.3) imply that

(3.5) c(D) >
∑

vA∈A

maxJ∗
f (vA) + ν(A) = f(A) + ν(A).

From Eq. (2.5), we can infer that

|{e ∈ E(A,D) : e(A) = −1}| ≤ |{e ∈ E(G) : e(A) = −1}| ≤ ν(A).

Consequently, there are at most ν(A) components T of the subgraph G[D] such that

{e ∈ E(A,T ) : e(A) = −1} 6= ∅.

In other words, the subgraph G[D] has at least c(D) − ν(A) components such that all

edges connecting these components with A have red ends in A. Together with Ineq. (3.5),

we can suppose that the subgraphG[D] has q componentsD1, D2, . . ., Dq with q > f(A),

such that

e(vA) ≥ 0 for each vertex vA ∈ A and for all edges e ∈ ∂(D′),

where D′ = ∪q
i=1Di. In particular, we find D′ 6= ∅. Let v ∈ D′. From definition, we have

(3.6) (J∗
f )A(v) = J∗

f (v)−
∑

e : e(A)=−1

e(v) = J∗
f (v).

By Lemma 2.5 and Eq. (3.6), we have δJ∗
f
(Fi) = 1 for any J∗

f -optimal subgraph Fi of

any component Di, where i ∈ [q]. In particular, there exists a unique vertex v0 ∈ V (Di)

such that

(3.7) ΦFi
(v0) 6∈ J∗

f (v0).

Since v ∈ D′, we have v 6∈ A ∪C. From definition, we have

(3.8) min I(v) ≤ maxJ∗
f (v)− 1 = f(v)− 1.
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We claim that

(3.9) max I(v) ≤







f(v)− 1, if f(v) is even;

f(v) + 1, if f(v) is odd.

In fact, Ineq. (3.9) can be shown by Lemma 2.3 and Ineq. (3.8). We handle it in two

cases according to the parity of f(v).

Case 1. f(v) is even.

Assume that f(v) ∈ I(v). From Lemma 2.3 (ii), we infer that f(v)− 1 6∈ I(v). Then,

from Lemma 2.3 (i), we deduce f(v) − 2 6∈ I(v). In view of Ineq. (3.8), we derive that

the set I(v) is not allowed, contradicting Lemma 2.3. Therefore, we have f(v) 6∈ I(v).

Now, assume max I(v) ≥ f(v) + 1. Since the set I(v) is allowed, in view of Ineq. (3.8),

we infer that {f(v)± 1} ⊆ I(v). From Lemma 2.3 (i), we deduce that f(v)− 1 6∈ J∗
f (v),

a contradiction. Therefore, we have max I(v) ≤ f(v)− 1.

Case 2. f(v) is odd.

Suppose that there exists r > f(v) + 1 such that r ∈ I(v). Then there exists a J∗
f -

optimal subgraph F such that ΦF (v) = r. Since r ≥ 3, there exists an edge e such that

e(v) > 0, that is, e(v) ∈ {1, 2}. Consider the subgraph F − e.

If e(v) = 2, then the edge e is a loop with two red ends. In this case, the distance

distF−e(v, J
∗
f (v)) = r − 2− f(v) < distF (v, J

∗
f (v)) − 2.

In view of Definition (2.2), it follows that δJ∗
f
(F − e) < δJ∗

f
(F ), contradicting the opti-

mality of F . Otherwise, we have e(v) = 1. Then

distF−e(v, J
∗
f (v)) = r − 1− f(v) = distF (v, J

∗
f (v)) − 1.

Let e = uv. Since

distF−e(u, J
∗
f (u)) ≤ distF (u, J

∗
f (u)) + 1,

we infer that δJ∗
f
(F − e) ≤ δJ∗

f
(F ) from Definition (2.2). Since F is optimal, namely

δJ∗
f
(F−e) ≥ δJ∗

f
(F ), we deduce that the subgraph F−e is optimal. From Definition (2.4)

of I(v), we find r − 1 ∈ I(v). Now, we have {r − 1, r} ⊆ I(v) \ J∗
f (v), contradicting

Lemma 2.3 (ii). This proves Ineq. (3.9).

We shall show that the cardinalities |Di| are odd.

For any Jf -optimal subgraph Fi, we have for v ∈ V (Di),

(3.10) ΦFi
(v) ≤







f(v)− 1, if f(v) is even;

f(v) + 1, if f(v) is odd.
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Recall from Relation (3.7) that ΦFi
(v) 6∈ J∗

f (v) if and only if v = v0. We observe that

the colored degree ΦFi
(v) is even if and only if v = v0. On the other hand, we claim

that the colored degree sum
∑

v∈V (Di)

ΦFi
(v) =

∑

e = vv′ ∈ E(Fi) is not a loop

(

e(v) + e(v′)
)

+
∑

e ∈ E(Fi) is a loop centered at v

e(v)

is even. In fact, from Definition (2.1), the summand e(v)+e(v′) ∈ {0,±2} when the edge

e = vv′ is not a loop, and the summand e(v) ∈ {±2} when the edge e is a loop centered

at v. It follows that the component Di is of odd order. From Lemma 2.1, Ineq. (3.5),

and Eq. (3.4), we derive that

(3.11) o(G−A) ≥ q > f(A),

contradicting Condition (1.3). This completes the proof. �

It is easy to observe that when the integer f(v) is odd for each vertex v, the graph G

contains a (1, f)-odd-factor if and only if it contains a colored J∗
f -factor for any 2-end-

coloring. In this sense, Theorem 3.1 is a generalization of Theorem 1.2. On the other

hand, by coloring all ends in red, the sufficiency part of Theorem 3.1 reduces to Egawa

et al.’s Theorem 1.5.

By taking S = ∅, we find Condition (1.3) implies the evenness of the order |G|.

For graphs of odd orders, a slightest remedy to Condition (1.3) might be removing the

requirement for empty sets S.

Theorem 3.2. Let G be a connected general graph of odd order. Let f : V (G) → Z
+ be

a function. Then the graph G satisfies the Tutte-type condition

(3.12) o(G− S) ≤ f(S) for all non-empty vertex subsets S,

if and only if for every 2-end-coloring, either G is J∗
f -critical, or G contains a colored

J∗
f -factor.

Proof. Necessity. Suppose that G contains a nonempty vertex subset S satisfying

Ineq. (3.2). Same to the necessity part of the proof of Theorem 3.1, we can show that

the graph G admits a 2-end-coloring for which G has no J∗
f -factors. It suffices to show

that G is not J∗
f -critical for the same coloring. Assuming that the graph G is J∗

f -critical,

namely, D = V (G), we shall show that the empty set A ∪ C contains the nonempty set

S, which is absurd. In other words, we will prove that

(3.13) ΦF (v) ≥ f(v) for any J∗
f -optimal subgraph F and for any vertex v ∈ S.

Let F be a J∗
f -optimal subgraph. From Lemma 2.4, we infer that

(3.14) δJ∗
f
(F ) = 1 for any J∗

f -optimal subgraph F.
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By parity argument, we have E(S, T ) 6= ∅ for any odd component T of the subgraph

G− S such that v0 6∈ T .

Assume that v0 ∈ S. By Ineq. (3.2), we have

∑

v∈S

ΦF (v) ≥ o(G − S) ≥ f(S) + 1.

If there is a vertex v ∈ S and a such that ΦF (v) < f(v), then either there are two other

vertices v1, v2 ∈ S such that ΦF (vi) ≥ f(vi) + 1 for i = 1, 2, or there is a vertex v3 ∈ S

such that ΦF (v3) ≥ f(v3) + 2. In either case, we have δJ∗
f
(F ) ≥ 2 taking account of the

contributions of the vertices vi to the total distance between the optimal subgraph F

and the function J∗
f , contradicting Eq. (3.14).

Otherwise, we have v0 6∈ S. In this case, there are at least o(G−S)−1 odd components

T of the subgraph G− S such that |EF (S, T )| ≥ 1. Therefore, we infer that

∑

v∈S

ΦF (v) ≥ o(G − S)− 1 ≥ f(S).

Since v0 6∈ S, we have ΦF (v) ∈ J∗
f (v) for any vertex v ∈ S. Hence we deduce that

ΦF (v) = f(v) for all vertices v ∈ S. This guarantees Ineq. (3.13), and completes the

proof of the sufficiency part.

Sufficiency. By way of contradiction, let G be a graph satisfying Condition (3.12)

without colored J∗
f -factors, and is not J∗

f -critical. Suppose that V (G) = C ∪ D. By

Lemma 2.1 and the connectivity of G, we have V (G) = C or V (G) = D. In the former

case, the graph G has a J∗
f -factor, while in the latter case, the graph G is J∗

f -critical.

Same to the sufficiency part of the proof of Theorem 3.1, we have B = ∅. Thus we

find A 6= ∅. Same to the remaining proof of Theorem 3.1, we have o(G − A) > f(A),

contradicting Condition (3.12). This completes the proof. �

As an application of Theorem 3.2, we have the following corollary.

Corollary 3.3. Let G be a connected general graph of odd order, with a 2-end coloring.

Let f : V (G) → Z
+ be a function such that f(v) is even for each vertex v. Suppose that

Condition (3.12) holds true. If the colored degree of each vertex v is at least f(v), then

G contains a colored J∗
f -factor.

Proof. By Theorem 3.2, it suffices to show that G is not J∗
f -critical.

Suppose that G is J∗
f -critical. Let F be a J∗

f -optimal subgraph with a maximal edge

set. By Lemma 2.4, there is a vertex v0 such that ΦF (v0) 6∈ J∗
f (v0).

Assume that ΦF (v0) ≤ f(v0) − 2. From premise, we see that ΦG(v0) ≥ f(v0). Thus

there is an edge e = v0u0 such that e(v0) ≥ 1. If the edge e is a loop, i.e., u0 = v0, then
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the distance between ΦF∪e(v0) and the function J∗
f (v0) is either equal to or one less than

the distance between ΦF (v0) and J∗
f (v0), namely,

distF∪e(v0, J
∗
f (v0)) ∈ {0, 1}.

Since the subgraph F is optimal, it is impossible that distF∪e(v0, J
∗
f (v0)) = 0. In other

words, the subgraph F ∪ e must be optimal, contradicting the choice of F . When e is

not a loop, the colored degree ΦF∪e(v0) must be in the set J∗
f (v0). Since

(3.15) |distF∪e(u0, J
∗
f (u0))− distF (u0, J

∗
f (u0))| ≤ 1,

we infer that the subgraph F ∪ e must be optimal, the same contradiction.

Below we can suppose that ΦF (v0) ≥ f(v0) + 1. From definition, we have

f(v0) + 1 ∈ I(v0).

Since δ(F ) = 1, we find ΦF (v0) = f(v0) + 1 > 0. Pick up an edge e ∈ E(F ) such that

e(v0) ≥ 1. If e is a loop, then ΦF−e(v0) = f(v0)− 1 ∈ J∗
f (v0). Thus the subgraph F − e

is a J∗
f -factor, a contradiction. Otherwise, we can suppose that e = u0v0 with u0 6= v0.

In this case, we have ΦF−e(v0) = f(v0) ∈ J∗
f (v0). By Ineq. (3.15), we infer that the

subgraph F − e is also J∗
f -optimal. Thus we have

f(v0) ∈ I(v0).

Since {f(v0), f(v0)− 1} ⊂ J∗
f (v0), by Lemma 2.3 (ii), we infer that

f(v0)− 1 6∈ I(v0).

From Lemma 2.3, we also see that the set I(v0) is allowed. It follows immediately that

f(v0) − 2 ∈ I(v0). By Lemma 2.3 (i), we find f(v0) 6∈ J∗
f (v0), a contradiction. This

completes the proof. �
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[9] A. Sebő, General antifactors of graphs, J. Combin. Theory Ser. B 58 (1993), 173–184.



12 H. LU AND D.G.L. WANG
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