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Causal transport in discrete time and applications

JULIO BACKHOFF ', MATHIAS BEIGLBOCK , YIQING LIN §, AND ANASTASIIA ZALASHKO 9

Abstract. Loosely speaking, causal transport plans are a relaxation of adapted processes in the same sense as Kan-
torovich transport plans extend Monge-type transport maps. The corresponding causal version of the transport problem
has recently been introduced by Lassalle. Working in a discrete time setup, we establish a dynamic programming principle
that links the causal transport problem to the transport problem for general costs recently considered by Gozlan et al.
Based on this recursive principle, we give conditions under which the celebrated Knothe-Rosenblatt rearrangement can be
viewed as a causal analogue to the Brenier map. Moreover, these considerations provide transport-information inequalities
for the nested distance between stochastic processes pioneered by Pflug and Pichler, and so serve to gauge the discrepancy
between stochastic programs driven by different noise distributions.
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1. Introduction. In this article we consider the optimal transport problem between two discrete-
time stochastic processes under the so-called causality constraint, highlighted recently by the work of
Lassalle in [Las15] in a more general setting. A transport plan between two processes is said to be causal
if, from an observed trajectory of the first process, the “mass” can be split at each moment of time into
the second process only based on the information available up to that time. It is illustrative to think
of the deterministic case (i.e. when there is no splitting of mass); such a causal plan is then an actual
mapping which is further adapted, and so the relationship between causal plans and adapted processes
is the same as between classical transport plans (Kantorovich) and transport maps (Monge).

The idea of imposing a “causality” constraint on a transport plan between laws of processes seems to
go back to the Yamada-Watanabe criterion for stochastic differential equations [YW71]. Under the name
“compatibility” the same type of constraint was introduced by Kurtz [Kur07]. In this article we will also
link these objects to the notion of nested distance, whose systematic investigation was initiated by Pflug
[Pf109] and Pflug—Pichler [PP12, PP14, PP15], and had a precursor in the “Markov-constructions” studied
by Riischendorf [Riis85]. Roughly, the nested distance is defined through a problem of optimal transport
over plans which are bicausal, this notion being the symmetrized analogue of causality. Interestingly,
[Riis85] and [PP14] established a recursive formulation for the problem, and [PP12, PP14] further obtained
a dual formulation for the nested distance. Moreover, Pflug—Pichler [PP12] applied these considerations
to the practical problem of reducing the complexity of multistage stochastic programs, by showing that
the difference between the optimal value of a program w.r.t. two different noise distributions is dominated
by the nested distance between them. We refer to the books [RS03, SDR14, PP14] for a detailed account
on stochastic programming.

A systematic treatment and use of causality as an interesting property of abstract transport plans
and their associated optimal transport problems was first made by Lassalle in [Lasl3] in the general
context of Polish spaces (then updated in [Las15]). As an application the author considers the Wiener
space setting of the problem and establishes that weak solutions to Brownian-motion-driven stochastic
differential equation can be conceived as causal transport plans between the Wiener measure and a target
measure, and finds that such plans are automatically bicausal and optimal for a Cameron-Martin-type
cost. He then explores functional inequalities in Wiener space (first obtained by [FU04]) by means of this
method. We stress that the main motivation for our article comes from this connection with stochastic
analysis, and our goal is to deepen the understanding of the causal transport problem by looking at the
discrete-time setup; the continuous-time counterpart/extension of our results is a work in progress. This
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motivation implies that for some results we are content with assuming independence of marginals or of
increments for some of the processes we look at. It also means that we often seek to show the robustness
of some of the particular phenomena obtained by Lassalle: for instance by studying when the causal
and bicausal problems coincide/differ, or by showing that functional inequalities are also prevalent in our
setting.

The core subject of our article is the causal optimal transport problem, which consists in finding
the cheapest causal transport plan from a given source measure (process) to a target one, with respect
to a certain cost function on the product space. Since causality can be easily characterized as a linear
constraint on transports, we can embed this problem in the class of optimal transport problems under
(infinitely many) linear constraints, as considered by Zaev [Zael5] and [BG14]; this line of reasoning has
already been applied in the literature, for example in the development of martingale optimal transport
(see [HN12, BHLP13, GHLT14, DS14]). In this way, we obtain conditions for the existence of an optimal
causal transport and identify a dual formulation for the problem, further establishing no-duality-gap; this
is the content of our Theorem 2.6. By studying the conditional distributions of causal transports, we are
able to tackle many instances of the causal optimal transport problem by means of a recursion, which we
call the dynamic programming principle (DPP in short); see Theorem 2.7. The appeal of these recursions
is that instead of one “multi-dimensional” transport problem over causal plans, we obtain recursively
several “one-dimensional” problems, each one of them a “general” (i.e. non-linear) transport problem as
introduced recently in [GRST15, GRST15]. In this way, we reduce the dimensionality of the problem at
the expense of introducing non-linearities.

In Theorem 2.9 we establish that the Knothe-Rosenblatt rearrangement [Kno57] (also known as mul-
tidimensional quantile transform) is causal optimal for the squared euclidean distance (or more generally
for convex and separable cost functions, in the sense of (2.11) below) if the source measure is of product
type. This setting is relevant e.g. in the theory of functional equalities, and such result can be extended
to the case when the source measure has independent increments and the cost is suitably modified (see
Corollary 2.10) which is a set-up relevant to stochastic analysis. The key here is to first identify the
mentioned rearrangement as a bicausal optimizer, which we do in Proposition 5.3 generalizing a corre-
sponding result in [Riis85], and then to prove that under the given assumptions the values of the causal
and bicausal problems coincide. If further the source measure has absolutely continuous marginals, then
the Knothe-Rosenblatt rearrangement is of Monge-type. Hence the Knothe-Rosenblatt rearrangement
can be viewed as a causal version of the classical Brenier map. In our opinion this result adds to the
appeal of this rearrangement, which is in any way widely used in analysis, statistics, and operations
research in the context of scenario generation.

We also further the understanding of the relation between nested distance and multistage stochastic
programming established in [Pfl09, PP12, PP14]. First we show that many stochastic programs are
concave/convex along what we define as lexicographic-displacement interpolations, in analogy to the
concepts of displacement interpolation and displacement convex functionals in classical optimal transport
theory (see [Vil03, chapter 5] or McCann [McC97]), where the role of Brenier’s map is taken by the Knothe-
Rosenblatt rearrangement. Moreover, we give conditions under which the nested distance of “order one”,
which gauges the discrepancy between stochastic programs driven by different noise distributions and a
common Lipschitz-cost criterion, can itself be assessed by the square root of the relative entropy between
such processes. In other words, we establish a transport-information inequality for this nested distance
of “order one”. This means that the discrepancy between such stochastic programs can be simply gauged
by an entropy, which is easier to compute in practice than the nested distance itself. We shall also have
occasion to further highlight the connection between causality and functional inequalities when, in Section
5.2, we establish Talagrand’s celebrated 73 inequality (see [Tal96]) for the standard Gaussian measure
by interpreting the author’s “tensorization/inductive trick” as an instance of our recursions; we refer the
reader to [Led01, GL10] for an account on functional/geometric inequalities and the related concept of
concentration of measure.

The article is organized as follows. In Section 2 we introduce the setting and collect our main results;
Theorem 2.6 on the attainability and duality for the causal transport problem (established in Section 3),
Theorem 2.7 on the recursive formulation of the problem (what we call the DPP, whose proof is given
in Section 4), Theorem 2.9 on the identification of the Knothe-Rosenblatt rearrangement as a causal
optimizer (established in Section 5), and finally Theorem 2.11 on the bicausal transport information in-
equality which is further explored in Section 6 along with other connections to stochastic programming.



CAUSAL TRANSPORT IN DISCRETE TIME AND APPLICATIONS 3
In Section 7 we present some counterexamples cited throughout the paper.

Notation: For a product of sets X x ) we denote by p!, p? the projection onto the first resp. second
coordinate. The pushforward of a measure « by a map M is denoted M,~y. We denote by v*, 7Y the regular
kernels of a measure y on X x Y w.r.t. its first and second coordinate respectively. Thus [ f(y)y*(dy)
gives a version of the conditional expectation of f(y) given x under measure v, sometimes also denoted
E7[f(Y)|X = z] in the literature, and so forth. Analogous notation extends to products of more than
two spaces. On RY x RY we denote by (z1,...,2x) the first half and (y1,...,yn) the second half of
the coordinates, and we convene that for v a probability in RY x RY (respect. 7 on RY), y@1:@t:y1,ey
(respect. n®1»®*) denotes the two-dimensional measure on (2+41, y++1) (respect. one-dimensional measure
on x;4+1) given by regular disintegration of v w.r.t. (x1,...,2¢,y1,...,yt) (respect. n w.r.t. (x1,...,x¢)).
Also, a statement like “for ~-a.e. x1,...,24,y1,...,y or “for n-a.e. x1,...,x;” is meant to denote
respectively “almost-everywhere” with respect to the projections of v onto x1,...,2¢,y1,. ..,y or n onto
Z1,..., 2. Throughout Cp(X) stands for the space of continuous, real-valued, bounded functions on X.
If f and g are real-valued functions on X resp. Y, we denote f & g(z,y) := f(z) + g(y).

2. Main results. Let X and Y be closed subsets of RV and take F¥ and F?Y the filtrations
generated by the coordinate processes (i.e. F;¥ is the smallest o-algebra s.t. € X +— (21,...,7;) € R?
is measurable, and so forth). The probability measures on the product space X x ) with marginals p, v
correspond to all possible transport plans between the given marginals. Denote this set

II(p,v) = {y € P(X x ) with marginals p and v}.

We will often consider pairs of random variables (X,Y) defined on some probability space (2,P) and
taking values in resp. X and Y, and refer to them as transport plans as well. Any property on (X,Y)
should then be understood as a property on (X,Y).P.

In the following we assume w.l.o.g. that X = supp(u) and Y = supp(v), whenever dealing with
transport problems between p and v. With some abuse of notation we will often write R, the reader
keeping in mind we mean X" or ).

REMARK 2.1. Throughout this work most of the results would still hold for S-valued discrete-time
stochastic processes in N-steps, with S a Polish space. That is, we could take X =) = SN . Moreover,
we could also take products of different Polish spaces. These can be interpreted as the set of trajectories
of discrete time stochastic process taking values in rather arbitrary spaces, for instance R®. It is mostly
for the sake of familiarity that we shall take S = R throughout the whole article.

For simplicity, for us being measurable with respect to a sigma algebra means to be equal to a
correspondingly measurable function modulo a null set w.r.t. the measure unequivocally relevant to the
given context.

DEFINITION 2.2. A transport plan v € (u,v) is called causal (between p and v) if for any
te{l,...,N} and B € FY, the mapping v € X — ¥°(B) is F;¥-measurable. The set of all such
plans will be denoted

I.(u, v).

Analogously, we will be interested in transport plans that are “causal in both directions”, or bicausal in
our terminology. The set of all such plans is explicitly given by

Woe(p, v) = {7y € e(p,v) s.t. ey € Ie(v, p)},

where e(z,y) = (y,z). As in the usual optimal transport problem, the set of all causal plans II.(u, v), as
well as Ip.(p, V), are always non-empty because u ® v € (1, v). Further, as in the classical setting,
we shall consider the case of Borel measurable transformations T : X — ) satisfying Ty = v, so that in
particular 47 := (id x T').u belongs to II(u,v), and call them (Monge) transport maps. Transport maps
are termed (bi)causal if the associated 77 is so.

1Lassalle ([Las15]) introduced more technical definitions. The one here is enough for us. The concept of “causality”
need not be taken literally here (for instance the independent coupling being causal). Perhaps it helps to think of it as a
generalization of adaptedness (i.e. non-anticipativity).
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The condition for a transport plan to be causal, written in terms of stochastic processes, looks as
follows: for allt=1,...,N and B; € ]_-ty,

P((Y1,...,Ys) € By | X1,...,Xn) =P((V1,...,Y}) € By | X1,... X).

Heuristically this reads as “given the past of X, the past of Y and the future of X are independent”. This
is perhaps best interpreted by the following equivalent formulation (see e.g. [Kal02, Proposition 6.13]):

S/t:Ft(Xl,...,Xt,Ut) VtE{l,...,N},

for some measurable functions F; and where each U; is a uniform random variable independent of
X1,..., Xn; however, the U’s need not be independent of each other.

REMARK 2.3. Clearly a transport map T is causal if and only if it is adapted, in the sense that there
exist Borel-measurable Tt : Rt — R such that for p-a.e. (x1,...,xN):

T(J,'l, ce ,xN) = (T1($1), T2($1,$2), N ,TN(,Tl, ce ,xN)).
The following proposition allows us on the one hand to characterize the causal transport plans using
the successive disintegrations of measures on a product space. On the other hand, it shows that causality

can be seen as a linear constraint on measures on the product space, stated in terms of a special class of
test functions or via discrete stochastic integrals.

PROPOSITION 2.4. The following statements are equivalent:
1. v is a causal transport plan on X x Y between the measures p and v.
2. Decomposing v in terms of successive reqular kernels

(2.1)  A(dzy,...,dey, dys, ..., dyn) = F(dzy, dyr )y Y (dao, dys) . . .70 TN =2V YN = (dey dy ),

then 7 € I(pLu, plv) and for t < N and v-almost all x1,..., 24,1, Yt

(22) pi,.yxl ..... Lty YLyees Yt (d$t+1) — ‘uzl ..... Tt (d$t+1),
and for v-almost all y1, ...,y
(2.3) AV (dyy ) = pY Ve (dyy ).

3. y€Il(p,v) and for allt € {1,...,N}, hy € Co(R?) and g+ € C,(RY) we have

(2.4) fht(yl,...,yt){ gi(x1,...,xN) —

f gt(xlv vy Tty Tig 1y - - aIN):uzl ..... mt(d'rt+17 s 7dIN) }d,-)/ =0.
4. v € T(p,v) and for every bounded continuous F¥-adapted process H and each bounded F<-
martingale M we have

I ien Hers - sue) [Mega (1, oo 1) — My(a, .. aq)] dy = 0.
The proof of the above result is given in the next section. Notice that (2.3) is equivalent to

f,ywhm,wt,yhm,yn (R, dysr1)yY0 Y (day, ... dxy) = v¥ Y (dysi1),

which is more convenient for the derivation of the dynamic programming principle to come.

We now introduce our main optimization problem, the causal optimal transport problem: given some
Borel cost? function ¢ defined on RY x RY and the probability measures u, v, find the minimal cost at
which they can be coupled in a causal way, i.e. consider

Pc inf cdry.
( ) YEL (p,v) f 7

Minimizing over the set . (i, v) defines the bicausal optimal transport problem

Pbc inf cdry.
( ) ’YEHbc(M7V) f 7

These should be compared to the classical problem of optimal transport in which minimization is done
over II(p, v). Let us introduce an assumption, which eases the proof of Theorem 2.6:

2In the following, we shall usually assume ¢ to be bounded from below; in principle it would also suffice that c(z,y) >
a(z) +b(y) for a € LY (p),b € L1 (v).



CAUSAL TRANSPORT IN DISCRETE TIME AND APPLICATIONS )

ASSUMPTION 2.5. The measure i is successively weakly continuous in the sense that for eacht < N,
there is a version of the regular conditional kernel of p w.r.t. its first t variables s.t.

(w1,..., 1) € supp(p) NRE s p®1%t (dzyyq, ..., dey) € PRV,

is continuous w.r.t. the weak topology in the range and the relative topology in the domain.

Let us observe that if supp(u) contains no accumulation points, as in the random walk/event tree setting,
Assumption 2.5 is vacuously fulfilled. On the other extreme, there are many discrete-time processes
with full support satisfying it, e.g. the Gaussian case. Let us also notice that pu**»*N-1 is a univari-
ate measure, and more generally we will commonly write p*%t(dxsq1,...,dr ) for the measure
T (dayy .. dogy g, RV T07F) and similarly p(dey, ..., dx,) for the projection of u into the first
t-marginals. The following sets of test functions will be instrumental for the dual formulation:

F:RNYN xRN 5 Rst. F(z1,..., TN, Y1y, YN) =

(25) F:= Z ht(yla'“ayt) [gt(xla“wl‘N)_fgt(zlw"axt7mt+17"'751"N)/Lm17"‘7mt(d$t+17~"7d1.N)] )
t<N
with hy € Cy(RY), gs € Cp(RYN) for all t < N

)

S:RY xRN = Rs.t. S(.T1,...,$N,y1,...,yN) =
(2.6) S:= > Hiyr, - ye) Mg (21, i) = Mi(a, -0 )]
t<N
with Hy, M; € Cy(R?) for all t < N, and with M a martingale

All in all we are ready to present the basic primal attainability/no-duality-gap result:

THEOREM 2.6. Suppose that ¢ : RN x RN — R U {400} is lower semicontinuous and bounded from
below, and that Assumption 2.5 holds. Then there is no duality gap

inf [edy = sup [[ ®dp+ [Wdv] = sup [[ ®dp+ [ Wdv],
V€M (p,v) ®,WeC,(RN),FER ®,WeC,(RY),S€8
PHU<cAF PHU<cAS

and the infimum on the Lh.s. (i.e. (Pc)) is attained.

We observe that Assumption 2.5 allows us to test against continuous bounded functions, instead of
just bounded Borel, which is necessary for the simple proof of the previous theorem given in Section 3.
However, this assumption can be lifted at the price of losing simplicity (see [Lasl5], which was written
concurrently), and we choose not to prove the most general statement as our interest lies in other aspects
of the problem. It is also easy to see that the dual problem can be reduced to both:

sup [ ¥dv and sup [ dv.
VeC,(RN),FeF, U <c+F VeC,(RY),S€S,w<c+S

The analogue of this theorem for bicausal transport plans is given in the next section, and was first
obtained in [PP12, Theorem 7.2]

Going back to Proposition 2.4, the importance of decomposition (2.1) lies in the fact that it suggests
that the causal optimal transport problem can be solved recursively if the starting measure p is Markovian
and the cost function has a “semiseparable” structure:

THEOREM 2.7 (Dynamic Programming Principle (DPP) for causal plans). Let u,v € P(RY), sup-
pose that p is a Markov measure and that the cost is semiseparable in the sense that for non-negative
l.s.c. functions ¢; we have ¢ = ci(xt, Y1, ..., Yt)-

T
Then, starting from Vg := 0 and defining recursively fort = N,...,2:

(2.7) VE (Y1, yi—1;m(dri—q)) =
inf f%(d:zcta dyt){ct(iﬂt, Yty Yt)

. m(dzs—1)pt=1 (dxy) , vY1 V=1 (dyy)

'YtGH(j

T

+‘/tc(y17' 7yt7%§h(d$t))}a
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and

Vo = inf Jyi(dzy, dyr){ci(@1,y1) + ViE(y1; 47 (dz)) }s
T €l(pyp,piv)
the integrals above are well-defined and Vi = value(Pc), i.e. the recursion determines (Pc). Furthermore,
if Assumption 2.5 holds, there exists a causal optimizer 4 with the additional property that for all t:

ﬁIhant;yl;nwyt (dxt—i-la dyt+1) — z’?mt;ylx"wyt (dxt—i-la dyt+1)7

and each of the one-step optimization problems in (2.7) corresponds to a general transport problem of
[GRST15] which is convex and l.s.c. in the kernel (i.e. in v}, for fized y1,...,ys_1).

The very last line of the previous result means concretely that

(28) V}c_l(yl,...,yt_l;m(d:bt_l)) =
inf fy pY =t (dyy ) {f W (day)er(ze, yas - ye)

Yyt st
fyt pYLo Yt—1 (dyt),),yt (dmt) = fﬂvr,l m(dzt,l),u,zt71 (dmt)

VWL, o1,y ()

and that the function in curly brackets in the r.h.s. is convex and l.s.c. in 7{* (ceteris paribus). The
same function in brackets is only jointly universally measurable (actually lower semianalytic) as far as
we can say, regardless of Assumption 2.5. If on the other hand Assumption 3.2 holds, then this function
is jointly Ls.c. In [GRST15] problems of this kind have been analysed and their duality theory has been
established; we provide the dual formulation of V¢ ; in (4.7). To fully grasp the nature of the DPP one
should better look at an example; this requires the use of some extra notation which will be also useful
also for Theorem 2.9 below. We denote by

Fﬁ() = V((—OO, ])7

the usual cumulative distribution function of a probability measure 7 on the line, and by F,- L(u) its
left-continuous generalized inverse, i.e.

Fy'(u) = inf {y : Fy(y) > u}.

EXAMPLE 2.8. Take N = 2 and ¢ = [v1 — y1)? + [x2 — y2]?. Using the well-known optimality of the
monotone coupling on the line we get:

2
AU R ; —
Vl(yla'h (dxl)) = S wflggzl)#zl,uyl)f72 dI2ad92) Z2 y2 fo { vyl le AV (dxy) p (u)} du,
2
_ : _ _ 1
Vo = ’Y1€H(12£liflhpiv){le,y1 (dxl’ dyl)[xl yl + f’yl dyl fo [ yl ) fol Y (dzy) p*1 (u)} du}'

From this the non-linear behaviour of the cost function in Vg, in terms of 1, is apparent in its last term.

Our next main result, Theorem 2.9 (which we prove in Section 5), establishes the equivalence of (Pc)
and (Pbc) under Condition 2.12 below, and furthermore, it identifies the causal optimizer of (Pc) for
convex separable costs (as well as clarifying when these are Monge maps), in a setting relevant for future
applications. We denote F;,, the distribution of ply whenever 7 is a measure in multiple dimensions. The
increasing N-dimensional Knothe-Rosenblatt rearrangement® of p and v is defined as the law of the
random vector (X7,..., XA, Yi*, ..., Y}) where

(2.9) Xi =F, ' (th), Yy =F, N (Uh), and inductively
X = F#_le xe (Un), Y= Fv_yl* ve (U), fort=2,...,N,

FRERERD)

3 The reader might know it by the name quantile transform or Knothe-Rosenblatt coupling.
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for Uy,...,Uy independent and uniformly distributed random variables on [0,1]. Additionally, if u-a.s.
all the conditional distributions of p are atomless (e.g. if p has a density), then this rearrangement is
induced by the (Monge) map

(l‘l, ceey ,TN) — T(J,'l, . ,xN) = (T1($1), T2(£L'2;£L'1), ceey TN(LL'N;J,'l, - .,TN_l)),
where
T (z1) :== F,' o Fj, (21),
(2.10) T g2, ..., 20 1) 1= Flell(ZI) ’’’’’ T ey yers ey g) o Fyermeon (1), t2>2

THEOREM 2.9. Assume that c is l.s.c. bounded from below and has a separable structure

(211) C($17---7$N7y17---7yN): Z ct(‘rtuyt)'
t<N

Further suppose that the starting measure p is the product of its marginals, i.e.

(2.12) pldxy, ... den) = pi(dzy) ... py(dey).

Then the values of (Pc) and (Pbc) coincide. If moreover, ci(x,y) = ci(x — y) and ¢, is convex®, then
a solution to (Pc) is given by the Knothe-Rosenblatt rearrangement Additionally, if each p; is atomless
(e.g. if they have a density), then this rearrangement is induced by the Monge map (2.10).

COROLLARY 2.10. Assume that c is l.s.c. bounded from below and is of the form

(213) C(xl7"'7xN7y17"'7yN):Cl(‘rluyl)'i_ Z Ct(xt_xt—layt_yt—l)u
1<t<N

and the source measure u has independent increments. Then the values of (Pc) and (Pbc) coincide. If
moreover, c:(a,b) = c:(a — b) and c; is convex then a solution to (Pc) is given by the Knothe-Rosenblatt
rearrangement (2.9) and if additionally each p; is atomless then this rearrangement is induced by the
Monge map (2.10).

In [Lasl3, Lemma 5] it was shown that the optimal solution to the causal transport problem in
Wiener Space, with Cameron-Martin cost and Wiener measure as source, is bicausal. The results above
give the causal/bicausal equality and existence as well as characterization of the Monge solution to
what can be thought of as “finite-dimensional projections” of that problem. We can only guess then
that causal/bicausal equality in continuous-time is a result of the Cameron-Martin cost being written
in terms of “speed” and the source measure having independent increments. In Section 7 we give two
counterexamples showing that if either independence or separability of the cost is dropped, the causal-
bicausal equality may fail.

One question that the above considerations and results leave open, is to what extent the Knothe-
Rosenblatt rearrangement is canonical. This is answered in Section 5.1, where we show how it is char-
acterized as the only increasing transport (in a precise sense) which is also bicausal. In Section 6 we
will further highlight the importance of this rearrangement by viewing it in light of a modern tenant of
optimal transport theory. Inspired by the concepts of displacement interpolation/convexity (as in [Vil03,
Chapter 5]), we will define a related notion where the Knothe-Rosenblatt rearrangement replaces the
role of the Brenier’s map, and dub it lexicographical displacement interpolation/convexity. We expect
that the lexicographical displacement interpolations should have a geometric meaning as geodesic curves,
however the materialization of this idea is left as an open problem, which we consider as a relevant step
towards an understanding of the geometrical side of the bicausal/nested transport problem. We only
provide indirect evidences in this respect. Still, this also provides an interesting link to stochastic pro-
gramming and nested distances. Concretely, we show that under convexity and Lipschitz conditions on
the cost, stochastic programs are lexicographical displacement concave in analogy to the potential energy
in optimal transport ([Vil03, Chapter 5.2]).

4We overload notation here; we mean c¢(z,y) = hi(x — y) and redefine ¢; as h¢. This “univariate” structure is not
indispensable for the result: it can be replaced by a more general Spence-Mirrlees condition.
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We turn our attention to multistage stochastic programming, and introduce now our last main results.
The goal here is to explore and to further the connection between (non-anticipative) multistage stochastic
programming and bicausal optimal transport, discovered by Pflug and Pichler [PP12], from the point of
view of geometric/functional inequalities. We start by defining the value function of a stochastic program

(2.14)  w(n) :==infy, (), uno J H(zy, ooy, ui(zy), ua(zy, 22), .. un (21, .. 2n))n(dey, ... dey),

as a function of the noise distribution n. Here H : RY x RY — R is the objective function and the
minimization is taken over Borel adapted controls. As established in [PP12, Theorem 6.1], as soon as H
is 1-Lipschitz in its first argument and convex in the second one, the discrepancy |v(u) — v(v)| is less than
the bicausal distance between p and v w.r.t. the cost

c(,y) = llz =yl =22 2 — vil.

This means that if say u is a “complicated law” (for instance given by a nightmarish tree), then finding a
“simpler law” v close enough in the causal distance sense guarantees that uniformly in the given class of
stochastic programs the discrepancy is controlled. Therefore, the practical question is how to efficiently
minimize this bicausal distance over a given set of measures. We argue that in many situations a transport-
information inequality for such bicausal distances permits to gauge the discrepancy of stochastic programs
replacing the computation of such distance by the evaluation of a relative entropy. Notice that in our
interpretation, the complicated measure p is expected to dominate (in the sense of absolute continuity)
the simpler measure v. Our result is reminiscent of [PP14, Proposition 4.6]; crucially the presence of the
entropy here stems from our assumption (EXP).
THEOREM 2.11. Let u € P(RYN) satisfy:

(EXP) for each t there exist ax > 0, s € R such that feafmguml““*szl(dxt) <eM p-a.s.

(LIP) There is C > 0 such that for allt € {1,..., N}, and every 1-Lipschitz function f : R — R, the

function
(@1, .y m—) = [ ) p™ =1 (dy),

s p-a.s. equal to a C-Lipschitz function.
Then we have the following bicausal transport-information inequality:

(2.15) for allv € PRY) : Wy pe(p,v) = inf e, () [z = yllidy(z,y) < K/Ent(v|p),

where Ent(-|p) denotes the relative entropy with respect to p and

J<N

K= \/2 S (1 oyl

In particular, for every “cost criterion” H : RN x RN — R bounded from below, r-Lipschitz in its first
argument and convex in its second, we have for the corresponding stochastic programs

(2.16) [o() — v(v)| < rE /Bt ]n),
with v(-) defined as in (2.14).
REMARK 2.12. A few observations are in order:

1. The entropic upper bounds in (2.15)-(2.16) of course trivialize, becoming +oo, if v & p. On the
other hand, one could expect the r.h.s. of (2.16) to be easier to compute (when finite) than a
transport-type quantity.

2. W.l.o.g. the Lipschitz property above is meant with respect to the sum-of-absolute-values norms
in the respective spaces. By the tower property (EX P) implies

2 2
fealmlJr'JraNzN,u(d:Z?l, L ,dCCN) < eMt AN 00,

and in particular every Lipschitz function is p-integrable.

3. We stress that Assumption (EX P) is reasonable in practice; it is automatically satisfied in the
finite discrete case, for empirical measures, or when p has bounded support. The corresponding
non-causal version of (2.15), which can be found in [Vil08, Theorem 22.10] or [DGW0/, Theorem
2.3] and crucially does not implies ours, actually also needs a condition equivalent to (EXP).
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4. Assumption (LIP) implies, by the Kantorovich-Rubinstein Theorem (e.g. [Vil03, Theorem 1.14])
that
Wl (MI17~~~,M717lepn,ztfl) < CZi<t |$i _ Zi|7

where Wy is the usual 1-Wasserstein distance on P(R). If p is a Markov law, then the r.h.s.
here can be taken as C|xi—1 — zt—1|. On the other hand, if pu is a martingale law, the Lh.s. is in
turn bounded from below by |xs—1 — z¢—1].

5. All in all, Assumption (LIP) is the most fundamental for Theorem 2.11. It is however clearly
satisfied in the discrete case or for empirical measures. In general it is also implied if p has
independent increments (with C =1 then), or if e.g. u is the law of the solution X1,..., XN of a
uniformly Lipschitz random dynamical system of the form Xiy1 = R(Z, (X1,...,X¢),t), where
R is Borel in the first argument, Lipschitz in the second one (uniformly w.r.t. the first one), and
Zy is independent of (X1,...,X¢).

The proof of the previous theorem is given in Section 6. We observe that the constant in (2.15)
can be very plausibly improved (making it of order VN is probably the best possible). This is done for
example in [DGW04, Theorem 2.5] for the non-causal but Markov case, and necessitates more care and
further assumptions.

3. Duality. The dual to the causal transport problem is discussed in this section. First, we give the
proof of Proposition 2.4.

Proof of Proposition 2.4.

STEP 1: Equivalence between Points 1 and 3:

Denote f(z1,...,xn) = [ he(yr,...,y)y"0 2N (dy, . .., dy,) with by € C(R?). By definition
v € I.(u,v) if and only if for all ¢ < N and all such f" we have

fh(xl,.. .,IN) = ffh(fbl,.. .,CCt,J_?tJrl,. - ,J_TN),LLII """ mt(d$t+1,. ..,dIN),

which is equivalent to the following:
Jg(z1,....zN) [fh(acl, cosn) = [ (@1, m e AN )P (AT, ,de)] dp =0,

for every function g € C,(RY) and for all t < N. The fact we can take the g’s continuous and not merely
Borel bounded comes from the fact that p is a Borel finite measure on a Polish space. It is easy to see
that the previous equation is equivalent to

ffh(:zrl,...,:er) [g(a:l,...,:cN) _fg(xl,...,It,xt+1,...,$N)uzl """ If(da:Hl,...,da:Nﬂ du = 0.

Finally, by the tower property of conditional expectations the latter is equivalent to:

fht(yl,...,yt) [gt(:cl,...,:cN) — fgt(:cl,...,xt,xtJrl,...,:cN);ﬁl """ mt(d:cHl,...,d:cN)} dy = 0.

STEP 2: Equivalence between Points 1 and 2:

Let v € II(u,v) be decomposed as in (2.1). It is causal if and only of for any time t < N,
AEL YLVt (dpy L dey) = TPt (de, ... daey) (see [Kal02, Proposition 6.6]). Since the z-
marginal of v is p, these facts imply (2.2). On the other hand, the y-marginal of v is v, so (2.3)
directly follows. For the converse direction, it is enough to verify (2.4) for any t = 1,..., N — 1. Since
the functions h; in (2.4) depend only on g1, ..., y:, the latter can be computed as

fht(yl,...,yt) [gt(xl,...,a:N) —fgt(arl,...,xt,le,...,:z:N);ﬁl """ zt(dxt+1,...,d.rN):|
pE N d ) L T (g )y T DY YL (dy dyy) L TV YY (dag, dy2 )Y (dey, dyr), O

which is zero as desired because of p**N=1(dxy) ... u" Tt (drypy) = p*ro%t (depyy, ..., dey) (dis-
integration property).

STEP 3: Equivalence between Points 3 and 4:

Evidently in Point 3 we could have taken h; and g, Borel bounded, as STEP 1 suggests. Choosing
then g, = My, and hy = Hy for each ¢t < N, and summing up, proves Point 4 from Point 3. Conversely,
given t, hy and g; we build Hy = hylsse and My = [ gi(@1, ..., Ts, Tsg1, - -, TN )" % (d2s g1, - ., dTN)
and conclude by telescopic sum over s.
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We now proceed to the duality and attainment questions. First:

LEMMA 3.1. Suppose Assumption 2.5 holds. For g € Cy(RY), the functions

(z1,...,an) = g@1, ..., an) — [g(@1, ., @ Tegrs o 2N " (Ao, - day),
belong themselves to Cy(RY).
Proof. 1t is suffices to check the continuity of

(xlv"'vxt) = fg(xla'"aIt7$t+17"'7$N)IUJ zt(dIiH*lv"'ad'rN)'

Let 2™ := (27, ...,2}) converge to y := (y1, ..., yt), thus we > may assume all ™ belongs to a fixed ball B
around y™. Let us ﬁx an arbitrary € > 0. By assumption u* converges weakly to p¥ and so in particular
{u®" }nen is tight. Thus we may find a compact in RV ~* such that sup,, u*" (K°) < £/3. For large enough
no we also have that sup,,~.,,, .cx [9(2", 2) —g(y, 2)| < /3, since g restricted to B x K must be uniformly
continuous. We then write:

[ g(a", 2) — [9(y, ¥ (dz)| < a+ B+,
with
a=|[lg(z"2) = gy, 2)lp" (d2)|, B = | [ lg(a",2) = gy, )u™" (dz)| v = | [ 9(y, 2)[u"" (d2) — p¥ (d2)]|.
K Ke
We easily see that each term is smaller that /3 for n large enough. O

Proof of Theorem 2.6. By Proposition 2.4, item 3, we know that the set II.(u,v) is the intersection
of the compact II(u,r) with all the subspaces defined by the functions in (2.5), each of them closed
owing to Lemma 3.1. Thus IT.(p, V) is compact and primal attainment follows easily. If the cost function
belongs to Cy(RY x RY), this theorem can be seen as a particular case of the Monge-Kantorovich
problem with additional linear constraints considered in [Zael5, Theorem 2.5], where we just have to
show that F C Cy(RY x RY); but this is clear again by Lemma 3.1. On the other hand, when working
with S € Cp(RY x R¥Y), it is easy to see that the same lemma implies that the martingales M can
be assumed continuous in the context of Proposition 2.4 and its proof, so again [Zael5, Theorem 2.5]
establishes our stated result. Finally duality for lower semicontinuous cost functions is achieved by the
usual approximation arguments in [Vil03, Chapter 1], owing to the compactness of the set of all causal
plans. O

The analogue of Theorem 2.6 is obtained for the bicausal setting. As in the causal case, we define
the set

F:RN xRN 5 Rst. F(x1,..., TN, Y1, YN) =
Z he(y1, - ue) [ge(an, .- an —f(]t (T, T gy TN )RS (dTy g, - o) ] +

(3.1) = Z Ry, ) (9, un) = [ 9, o Y Yerts - - YN )OVYE Y (dygg, - dyn)]
with hy, h} € C';,(]Rt)7 gi, 9 € Cp(RY) for all t < N
The following strengthened version of Assumption 2.5 will be needed:
ASSUMPTION 3.2. Both i and v are successively weakly continuous.

COROLLARY 3.3. Suppose that ¢ : RV x RN — R is lower semicontinuous and bounded from below,
and that Assumption 3.2 holds. Then there is no duality gap:

(Dbc) inf [edy= sup [[ ®dp+ [ dv].
YE€pe(1,v) ®,WeC, (RN),F'cF’
PRU<c+F’

Moreover, the infimum in the l.h.s. is attained.

We omit the obvious formulation with discrete stochastic integrals, as well as the proof.

REMARK 3.4. We have observed that a measurable T : RN — RY is causal if and only if it is adapted,
in the sense that p-a.s. T(z1,...,2n) = (TY(x1),T*(z1,22),...,TN(z1,...,2N)) for measurable T :
R? — R. Bicausality is more subtle, but clearly holds if for instance T admits a measurable p-a.s. left
inverse which is also adapted.
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4. Dynamic programming principle. Let v € II(RY,R™). It is then possible to decompose
7, uniquely in a suitable way, by successive disintegration first w.r.t. (z1,...,25y-1,91,-..,y~N—1), then
w.r.t. (x1,...,ZN_2, Y1,-..,Y~N—2) and so forth in a recursive way, obtaining

(4.1) y(dxy,...,dxN,dyr, ..., dyn) = F(dx1, dy) YV (dzg, dys) . . . y* L TN =LY UN-1(dp y dyy ),

so that each @1t Yb-Vt (dyy 1, dys41) is a regular conditional probability or kernel (see [Bog07, The-
orem 10.4.14, Corollary 10.4.17] and [Kal02, Lemma 1.41 ]). We will freely perform concatenation of
these objects or further decompose them into smaller kernels, as justified in [BS78, Chapter 7.4.3]. The
characterization of causal plans through the kernels was given in Point 2 of Proposition 2.4.

We believe that generally (Pc) does not allow for a meaningful and useful “factorized” or “recursive”
formulation, along the lines of what a dynamic programming principle (DPP) ought to be. However, we
show first that the causal quasi-Markov transport plans we will introduce, and their associated optimal
transport problem, do possess a DPP. This fact (Theorem 4.2) together with Proposition 4.5 will then
allow us to prove Theorem 2.7.

DEFINITION 4.1. A causal transport plan v € 1.(u, v) is called causal quasi-Markov, which we denote
by 7y € Wegm (p, v), if y*1 "0Vt Ve(day gy, dypr) = 470V Y (dwgyr, dyer) for every t.

Of course g, (1, ) # O iff p is a Markov measure. To wit, if y € ILegum (1, ) then y%+ Y1 ¥t (dxy ) =
u*t ot (dryy 1), which implies the Markov property of p. Conversely, if this property holds, one can check
that the independent coupling of y and v belongs to e, (1, v). In either case, y*t@t:¥l ¥t (dp, 4 q) =
1t (dxs41) must be satisfied. We introduce the causal quasi-Markov transport problem:

Pcqm inf cd
(Peqm) WEchm(u;V)f 7

We now prove the DPP for (Pcqm):

THEOREM 4.2 (DPP for (Pcqm)). Let p,v € P(RY), suppose that pu is Markov and that the cost is
semiseparable in the sense that ¢ =" ci(xe, y1, - .., Yyt) for non-negative Borel functions ¢;. Then starting

¢
from Vi := 0 and defining recursively fort = N,...,2:

(4.2) Vi&i(y1,.- s yi—1;m(dze—1)) =

inf f’Y(detydyt){ct(Itaylv--'ayt)
yET( [, | m(dzey)u™t=1 (dey) , v"1 V=1 (dyy) )

+ V;c(yla ) 7yt;’7)’§ut)}7
we have that
Vi = 1nfyen(pppiv) [ Y(dzr, dyn){ei(zr, y1) + VE(y197") Y = value(Peqm).

Furthermore, each function V¢, is jointly universally measurable and convex in its last component. If
moreover Assumption 2.5 holds and each ¢t is l.s.c, then V€ 1 (y1,...,yt—1;) s l.s.c. and Problem (Pcqm)
1s attained.

To be precise, we shall prove that V¢ ; is lower semianalytic (i.e. {V,¢; < r} is analytic for each r;
see [BS78, Definition 7.21]), which implies universal measurability.

Proof. We split the proof in several steps. It is clear from its definition that V,¢ (for any ¢) is convex in
its last component (namely V,¢(y1, ...,y dm—+ (1= AN)m) < AVE(y1, ..,y m) + (L= XN VE(ya, - - ., Y3 M),
see e.g. [Vil08, Theorem 4.8]) and generally bounded from below.

STEP 1: We first show that the sets:
Dy := {(yl, ces Y1, My y) sk Y € H( fmt*l m(dxi—q1)p*=1(dxy), V¥ yffl(dyt)) },

are Borel, so in particular analytic. Indeed, observe first that

Di—y:=A{(p,q,7) st. v € I (q(dxy) , p(dy))},
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is closed w.r.t. weak convergence of probability measures. So if we denote by ¥ the map
(ylu e Yt—1,Mm, 7) = (Vyhm)ytil (dyt)u f$t71 m(divt—l)ﬂmt*l (d{Et), 7)7

we have D;_; = =1 (D;_;) and so it suffices to show that the map m(dz;_1) f m(dxy—1)p*t=1(dxy)
Tt—1

is Borel. For this, it suffices to show that for Borel sets {A;, B;}1_; the sets of the form

{m: fzt*l m(dxi—1)pu™ 1 (A;)) € Bifori=1,...,r},

are again Borel. Since x;_1 — g;(2¢—1) := p™~1(4;) is a bounded Borel function, everything ultimately
boils down to proving that if g1, ..., g, are bounded Borel functions, then the sets

(4.3) {m Borel prob. measures s.t. [gidm >0,..., [ grdm >0},

are Borel. But this is now a straightforward monotone class argument which we omit.
For future use in Step 5, we observe that the sets

{(m,*y) s.t. y € H( fz m(dxy—q)p* =1 (dx,) , VY1 yffl(dyt))},

t—1
which are generally Borel only (as a fibers of the set D;_1), are further closed as soon as Assumption 2.5
holds.

STEP 2: Let us now prove that the recursion is well-defined; namely, that the involved integrated
functions are defined at most except for a null-set w.r.t. the integral. To be precise, we will show that
these functions are lower semianalytic, and so universally measurable, thus in particular their integrals
are well defined w.r.t. any Borel measure. For that matter, we shall first prove that

Y1y .- ,yt,m(dxt) — ‘/tc(ylv s 7yt;m)

is lower semianalytic (1.s.a. in short). By [Kal02, Lemma 1.40], we know that for the regular kernel of a
given 7(dxy, dyt), the application y; — ¥t (dx;) is Borel measurable, then so is the map (y1,...,9t,7) —
(y1,- -, Yt,YV*(dxs)). Therefore, by [BS78, Lemma 7.30(3)] (on the composition of l.s.a. and Borel maps)
we deduce that (y1,...,yt,7) = Vi€(y1, ..., y;7Y*) is Ls.a for «y participating in the infimum in (4.2) and
in particular the integral is indeed well-defined.

We start with V_;. The cost

(yla"-ayN—lumu/y) — f/Y(deadyN)cN(xNayla"'7yN)7

is Borel measurable and so in particular l.s.a. To see this, take g1 = —[cy A 8] in (4.3) and take s — +o0.
We can write Vg_;(y1,...,yn—1;m) as the infimum of this cost over the fiber of the set Dy_1 at
(y1,-.-,yn—1,m). By [BS78, Proposition 7.47] and Step 1, the function Vj_; is l.s.a. on the projection
of Dy_1 onto its (y1,...,yn—1,m) components. By reverse induction, let us suppose that V¢ is lLs.a.
and prove that V¢ ; is likewise. The cost to consider is now

(yla s 7yt*17m77) = fﬂ)/(dxta dyt)Ct(It, Yty .- 7yt) + f vyt ytil(dyt)‘/tc(ylv R yt;ﬂ)/;fyt)v

the first term of which is Borel as before and whose second term is l.s.a. by virtue of the inductive step,
the discussion about composition of 1.s.a. and Borel maps above, and by [BS78, Proposition 7.48] on the
integration of l.s.a. functions with respect to Borel kernels. By [BS78, Lemma 7.30(4)] we get that their
sum is l.s.a. and so by [BS78, Proposition 7.47] and Step 1 again we conclude that V;¢ ; is Ls.a.

STEP 3: By the previous point, and the way we wrote (4.2) as an infimum of a l.s.a. cost over a fiber
of an analytic set in Step 2, we can perform for any £ > 0 by [BS78, Proposition 7.50(b)] a selection

(W15 g1, m) = LU (day, dyy) € T ( Jo,, mldazp—a) et (day ), vV (dyt)) ,
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so that the above mapping is universally measurable (i.e. measurable w.r.t. any completion of the corre-
sponding Borel sets of its domain) and

‘/tc—l (yla e Yt—1, m) +e Z f L’fiH;;ytil;m(dxt, dyt) [Ct(l’t, Y1y .- - 7yt)
VW, -y (LY 2],
so each L is an e-optimizer for the corresponding problem. We will now build a measure, whose successive
kernels will solve the recursions (4.2) at each step, modulo an € margin. Start with any e-optimizer

Y1
Y0,(dz1,dy1) of Vi, Then take y; — 7/ (dr2, dys) := Lyfg”yo’i (dzo, dys2), which is universally measurable
by the composition result [BS78, Proposition 7.44]. Inductively, if (y1,...,49:—1) — Wfi’l';;y"l (dxy, dy:)
has been constructed in a universally measurable way, we build

. Y1seoes Yt—1\y
Y15y (Ve e t

(ylu see 7yt) — ’71%/715)...7yt (d$t+1adyt+1) = L;&7g (d$t+1, dyt+1)7

which is universally measurable by [BS78, Proposition 7.44], the inductive step, and the fact that the
function that associates a regular kernel to a product measure is Borel. This finishes the induction, and
by construction

(4.4) Ve Y ey, dyepr) € T ( L, 2 e (da )t (dgr ), w9 (dyt+1)) ;

and v/ Y attains VE(y1, ...,y (7/170771)Y) except for an & margin. We now define

(@6, Y1,y ye) = TE2Y 0¥ (dog oy, dyey) i= p® (dae) (%) " (dyes),

which is universally measurable by [BS78, Proposition 7.44] again. By [BS78, Proposition 7.45] the
successive concatenation of these kernel induce a unique Borel measure I'. such that

I.(dzy,...,deNn,dy1, ..., dyn) = Yo.e(dzy, dyl)Ff}E’yl (dxza,dys) . ..

F1t7'91 »»»»» r@N—lwyl ----- nyl(

t,e yt(dItJrladytﬂLl) . N-1l,.e dIN,dyN).

By construction, this measure is causal quasi-Markov and its z-marginal is exactly p. As for the y-
marginal, it is easy to see that I'c(dy1) = v(y1) and that

Lo(dyr, dy2) = [, 4, Y0.e(der, dyn) ™ (dza) (4] L) ™ (dy2)

= vdys) [,,, ([, Weldwa)ut (do2)) (727 (dya) = v(dya)v” (dye),

observing (from (4.4)) in the last line, inside the brackets, that this is exactly the first marginal of ~7"..
Inductively, one can verify that I'c has v as its y-marginal.

STEP J: We now prove the equality Vi = wvalue(Pcqm). By the previous step, Vi + Ne >
value(Peqm), since T is feasible for (Pcqm) and because by construction I'. was designed e-optimal
at each step, so that overall Vf + Ne > [cdl'.. By letting ¢ — 0, we get Vi > value(Pcqm). On the
other hand, given any v € IL.qm (1, v), we clearly have that

(4.5) I (g, dyegn) € T(f, (300 (g i (dgg ) o7 (dges)),

and further we can write

f Ctd'7 = I’Y(dyh ey dyt—l)Vyl""’y“l (d.’L’t, dyt)ct(xta Yiye - 7yt) -
fﬁ)/(dxlv dyl)ﬁyyl (dIQ, dy2)7y17y2 (dI3a dy3) s ’Yyl ..... Yye—t (dIta dyt)Ct(fta Yty .- 7yt)a

SO

(4.6) [edy = [y(dwy,dyr) {e1 + [ (dwe, dya) {c2 + [ V0¥ (das, dys){cs +... }}}.
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Combining this with (4.5) we get value(Pcqm) > Vi§ and conclude the desired equality.
From now on we take Assumption 2.5 for granted and assume l.s.c. costs.

STEP 5: We establish now that V,° ; is lower semicontinuous in its last argument (i.e. m), the other
ones being fixed. The desired lower semicontinuity could be proved by hand using convex combination
of kernels as in Step 6 below, but a simpler argument is to invoke a “maximum theorem” as in [BS78,
Proposition 7.33], which establishes the lower semicontinuity of a value function as long as the cost is
jointly lower semicontinuous (in our case w.r.t. (m,~), since the y’s are fixed, and this clearly holds) and
as soon as the constraint set is a fiber of a closed set (which is true by the last observation in Step 1).
The lower semicontinuity in (m,~) is proved by reverse induction, much as in Step 2, and for [BS78,
Proposition 7.33] one can assume that the 7’s live a priori in a compact space, since varying the m’s in
a tight set only will “move” the constraint set II inside a larger tight set in the product.

STEP 6: We now prove that each of the problems in (4.2) is attained. The [ ¢;dvy part of the cost is
L.s.c. and linear, so it causes no trouble and we may assume c¢; = 0. We take a minimizing sequence 7,
for (4.2):

Viea(yr, - yemim) = Ty, [o3e (dy ) VE(ys, oy ).
Trivially the sequence fyt VYL Yt=1 (dyy )yYe (doy) is tight, since it is identically equal to the measure
Jo,_, m(dzxy—1)p*=* (dxy). By [Bal, Theorem 3.15] we conclude that there is a subsequence of the kernel
{y+ — ~¥},, which we denote the same, and a kernel {y; — ~¢*} such that the sequence of Césaro
averages
Yo AR = A
i<n

converges weakly, for v¥1-¥t-1(dy,)-a.e. y;, to the kernel y; — ¥t (i.e. as measures on z, see [Bal,
Definition 3.10]) and further it holds that [ Y0¥t (dy,)v/* (dz,) equals [ m(dz,—1)pu™=*(dz,) by
[Bal, Corollary 3.14], so the measure  := v¥1-¥t=1(dy; )/ (dxy) is feasible for (4.2). All in all it follows

VE Ly, gy m) = liminf, £ 37 [ oVt et (dy)Ve(yr, .y 07)
i<n
> liminf, [v¥0 Y1 (dy ) VE(y1, ..., ys7Y)
> [p¥revi-t(dy,) iminf, VO(ya,. ..,y 52)

= [v¥ Ve (dy)Ve(yr, -y 07,

by convexity, Fatou’s Lemma (remember the Vs are bounded below) and the lower semicontinuity es-
tablished in the previous Step. Therefore, «y is feasible and optimal.

STEP 7: By the previous step, we may now go back to Step 3 and find by
[BS78, Proposition 7.50(b)] a selection of optimizers at each time (as opposed to only e-optimizers)
Ly ¥"™ Then we can redo Step 3 with ¢ = 0, building a global measure I' which exactly solves the
recursion and is feasible for (Pcqm), and so is optimal for it. O

Some observations regarding the previous theorem and its proof:

REMARK 4.3. Even if ¢ does not have the stated semiseparable structure, a look at the proof shows that
the recursion is well-posed and that its value gives an upper bound for value(Pcqm). The semiseparable
structure is crucial for the lower bound (see (4.6)) only.

REMARK 4.4. As a by-product of the previous proof, we see from Step 6 therein a way to prove
attainability of general transport problems as in [GRST15] in the presence of lower semicontinuity and
convezity of the cost w.r.t. the kernel, without the assumption that the state space be compact or discrete-

like.

As we have mentioned in Theorem 2.7, each optimization problem in DPP is of the form of general
(non-linear) transports on the line. Under Assumption 3.2 and for the lower semicontinuous cost function
each of the value functions in (4.2) is convex in the kernel and jointly l.s.c. Assuming additionally that
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all the regular kernels of measures p, v are compactly supported, we can use the duality result of Gozlan
et al. [GRST15, Theorem 9.5]. Denote n(day) = [ m(dws—1)pu®~"(dxs), and

Tt—1

Y1, Yt—1

e (vesp) = [, ct(@e, yns- - ye)p(dee) + VE(yns - -, ye1, yas p(dae)).

Then the following dual formulation holds:

(4.7) Viea(yn, -y mdae—)) = supg { [ R wems oy )v¥ 9= (dy) — [ d(@)n(de)

where

Ry §(ye) = infpepry { [ ¢(w)p(dae) + &% (yesp) } -

We finally establish a sufficient condition for (Pcqm) and (Pc) to be equivalent:

PROPOSITION 4.5. Let u be Markov and the cost be semiseparable. Then value(Pcqm) = value(Pc)
and if (Pc) is attained, then there is some optimal causal transport which is further causal quasi-Markov.

Proof. We prove that under the given assumptions, any causal plan has a related causal quasi-Markov
plan which incurs in the same cost. Let v € II.(u, v), and build

dy = y(dz1, dyr )y ¥ (dza, dy2)y"> Y2 (das, dys) . .. YN 0¥ YN (dx n, dyn ).
As AP Tellenlt = A Telieslt = 4%6Y1Yt we have 4 is quasi-Markov and its z-marginal is g, indeed

,3/961 »»»»» TtyY1se-es Yt (d$t+1) — ,yzt,yl »»»»» Yt (dlvt-i-l)

= v ’ymly"wmtyyly"wyt (dwt_i_l)/ywhylv'“»yt (d:El, L 7dxt_1)

o B (AT Yo (de, L dy) = o (da ),

so it is also causal. We finally prove that for every function of the form H := H(x¢,y1,...,Yy:), holds
that [ Hdy = [ Hd4. This shows first that v and 4 incur in the same cost under the semiseparability
assumption, and second that the y-marginal of 4 is v, which finally establishes 4 € I qm (1, V).

[ Hdy = [ Hy(dz1,dxs, dyr, dy2)y">Y¥2 (das, dys) 375 Y Y23 (day, . . ., dya, . . .)
= [ Hy(dza, dyr, dy2)v">¥ 2 (das, dys)y s v+ Y2293 (day, . . ., dya, . . .)
= [ Hy(dzo,dzs, dyr, dys, dys)y™> V1 v2Y3 (day, dys)Yo+V1v293:94 (das, ... dys, ... )
= [ Hy(dzs,dyr, dys, dys)y™s Y9295 (day, dys) Y7+ Y0¥2:93:Y4 (das, ..., dys, .. .)
v = [Hy(dzi—1,dyr, . .., dyp—1 )y"t=rV0Ye-1(dey, dy) = [ Hdy. 0

REMARK 4.6. With Proposition /.5 we can conclude that, whenever p is Markov and the cost is
l.s.c. and semiseparable, the problem (Pcqm) has a solution. Indeed, since (Pc)=(Pcqm) and by [Las15,
Corollary 1] the former is attained, one constructs also an optimizer for the latter. Our Theorem 4.2
yields the same with a stronger assumption in a self-contained way, through DPP. Let us stress that the
causal quasi-Markov constraint is not a linear/conver one.

All in all, the proof of Theorem 2.7 is now trivial:

Proof of Theorem 2.7. By Proposition 4.5 value(Pcqm) = value(Pc) and by Theorem 4.2 we have
the recursion and all the other properties. O

We close the present part with a preliminary illustration of how the causal DPP can be used in
practice; here we show a condition giving the equivalence between (Pc) and (Pbc):

COROLLARY 4.7. Consider N =2 and a separable cost of the form ¢ = c¢1(x1,y1) + |x2 — ya|, with ¢1
l.s.c. and bounded from below. Suppose that for every z,y1 one of the following two cases holds

either Va1 : Fe1(2) > Fui (2)]  or [Vai @ Fei(2) < Fuu (2)],

Then (Pc) is equivalent to (Pbc).
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Proof. Borrowing from Theorem 2.7, call
Vi(y1,7") = infoen(f o (doy)per o) J 122 = y2lm(das, dys),

which by e.g. [Vil03, eq.(2.48), p.75] equals [ |F [ u (day)per (2) — Fun (z)‘ dz. But Fp o (ge e (2) =
J 7Y (dz1)Fye1 (2), so by our technical assumption:

LAFr w1 (doyyper (2) = Fum (z)‘ dz= [ |[,, 7 (dw1) Fye (2) =
(4.8) = [, Jo, 7P (dan) [Fyer (2) —

Fyn (z)‘ dz
Fl,yl (Z)| dZ,

and by Fubini’s Theorem we get Vi (y1,7Y!) = fwl AV (day) inf eri(uer pu) [ |22 — y2|dm and again from
Theorem 2.7 we obtain that

Value(Pc) = inf enipippion) [ v(doy, dyr) {er(@r, y1) + infoenque puy [ |22 — y2ldm}
which as we shall see in Proposition 5.2, equals the bicausal DPP, so we conclude. O

5. The bicausal case. We can obtain a similar DPP for bicausal transport plans. Let us introduce:

(Dyn-Pbc) inf 1 erm(pt ppio) f’yl(dxl,dyl)inf72en(uzl),,y1) f’y2(d172,dy2) ..

...inf,yNen(H’Il 44444 TN—1 ¥l nyl)f"yN(d:EN,dyN)C(:Z?l,...,CCN,yl,...,yN).
The previous recursive problem is motivated by the following structure result, the proof of which is
analogous to the causal case, so we omit it:

PROPOSITION 5.1. Let y,v € P(RY).
If v € Wpe(p,v) is decomposed as in (2.1), then the following conditions on the kernels hold:

(i) 7 € W(pip, pyv), and
(i) successively for t < N and for ~y-almost every x1,...,%t, Y1, ...,y holds

zymlxnwmt)yl)"wyt (d«%'t-i-l, dyt+1) c H(uﬂﬂhmwt (dxt-i-l)u pYL Yt (dyt+l))~

Conwversely, given reqular kernels

:Y(dxladyl)afyzl’yl(devdyQ)v"'7ﬁyml ..... N =1L yN?l(devdyN)v

satisfying the properties (i) — (ii), the measure y constructed as in (2.1) belongs to Upe(p, V).

The recursion corresponding to (Dyn-Pbc) (starting from Vi :=¢) is:

(51) ‘/tc(x17"'7xt7yla---7yt):

infvt+1en(uzl ,,,,, Ty YL ut) f’y (d$t+1,dyt+1)‘/;€rl($1, ey L4115 Y1y - - ,yt+1),

and so we want to compare the values of (Dyn-Pbc), (Pbe) and

Ve = infienpppin) [ VI (@1, 91)7" (do, dyn).

We now give the DPP for the bicausal case, which appeared in [Riis85, Theorem 3]; we will prove it with
our methods, obtaining further attainability and some regularity of the value function. Observe that no
Markovianity of u or separability of the costs is needed, and that the above value function (and recursion)
are more tractable than in the causal quasi-Markov case (4.2).

PROPOSITION 5.2. Given a Borel bounded from below cost function c, we have that the recursive
optimization problem (Dyn-Pbc) is well-defined, namely the successive integrals in (5.1) are well-defined,
and the values of (Dyn-Phc), (Pbc) and V§ coincide. If further c is l.s.c. and Assumption 3.2 holds,
then there is a bicausal optimizer and the value functions V¢ are all l.s.c.
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Proof. Since (x1,...,&4, Y1, ..., ye) — (uF-%t p¥0--¥t) ig Borel and the set {(p,q,7) : v € II(p, q)}
is clearly closed, we get that

Dt = {(3317---73315,917---7915,7)5”YGH(HM ..... mtvyyl VVVVV yt)}a

is Borel. As in the proof of Theorem (4.2), we start by proving recursively that the V,%’s are lower
semianalytic (1.s.a). As in Step 2 therein one observes first that

(‘Ilv"'7$N*17y15"'7yN717FY) ’_)fFY(dINadyN)C(Ilv"'aINayla"'ayN)v

is Borel, and so l.s.a. Since V§_,(x1,...,2N-1,¥1,...,Y~N—1) is the infimum of this function over the
fiber of Dy_1 at (1,...,ZN-1,¥1,...,Yn—1) We get by [BS78, Proposition 7.47] that V_, is l.s.a. and
in particular universally measurable. The recursive step is obvious, and we get this result for each V°,
and so the integrals in (5.1) are well-defined. Now take, as in Step 3 of the proof of Theorem (4.2), a
universally measurable selection of e-optimizers for Vi¢; call these ~; L ~*"¥" ¥ Build then I as the
unique Borel measure that comes out of concatenating these ([BS78, Proposition 7.45]). By construction
each I'. is in II(p, v) (see Proposition 5.1) and Vif + Ne > [ edl. > value(Pbc) and so Vi > value(Pbc).
The reverse inequality follows trivially from Proposition 5.1.

If Assumption 3.2 holds then Dy is closed and so if further ¢ is l.s.c. we argue as in Step 5 of the
proof of Theorem (4.2), proving that the value functions are l.s.c. as well. In turn, applying now [BS78,
Proposition 7.50(b)] we can obtain a universally measurable selection of optimizers ;' and
with them we build an optimal bicausal transport T' (just like the previous paragraph with e = 0). O

Since at each step of the dynamic programming principle (Dyn-Pbc), or equivalently (5.1), we have a
usual optimal transport problem, we can write these in their dual formulation; for simplicity we assume
that ¢ is l.s.c. and non-negative (see however [BS11] for an extension). In effect, the value function at
time ¢ for each t = N — 1, N — 2,...,1 is obtained recursively as:

Ve(t;zr, ..o, @, y1 -0, Yp) i=

sup {J bra(@eqr) " (dar 1)
bi+1,%t4+1€CH(R),
Gt+1(Te41)+e 41 (Ye41) SVE(EH1LT1, T84 1,Y15-- Yt 41)

+ [ e (yep) V¥ (dyey)

so the value of (Dyn-Phbc) is also given by

Ve(0) = sup J ér(@)piplder) + [ ¢r(yy)piv(dyr).
¢1,1E€CH(R)
d1(z1)+¥1 (y1) <V (Liw1,91)
Observe that this recursive structure of the dual problem is not obvious from (Dbc), but can be guessed
a posteriori thanks to the apparent “primal” recursive structure. A simpler picture of (Dyn-Pbc) arises
when ¢ has separable structure as in (2.11); see [PP12, Theorem 7.2].

We give now the belated proof of Theorem 2.9:

Proof of Theorem 2.9. The result follows from Proposition 5.3 below, if the causal/bicausal equality
is proved. We stress that Condition (5.6), which is needed for Proposition 5.3, is satisfied in the present
case because the conditional distribution functions associated to u do not depend on the conditioning
argument. We now prove the causal/bicausal equality. Start with v € II.(u, ) and decompose it as in
(2.1). From Proposition 2.4, we know that the following conditions (¢ < N) are satisfied by the kernels
F(dxy, dyr), vV (dxe, dys), up to yF1rEN=LYLsYUN=1 (dyn dy N ):

(5.2) T Y (dpy g g, R) = gy (dagsr)
and
(5.3) [ e (R, gy b (da, o diy) = 0P (d)

— /yylxnwyt (R7 dyt+1)
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We can rewrite (5.2) in the following way:

(54) fau Tt 711 VVVVV Tyt ye (dxt+1a R)’Yyl ..... vt (dxlv AR dIt

~—
|

pre+1(dzeqr)
— ,Yy1,~~~7yt (d$t+17 R)

Therefore, we can construct a new plan v as follows

'?(d(El, e 7de7 dylu e 7dyN) = ﬁ(d$17dy1)7y1 (dl’g, dy?) e ’7y17m7yN71(d$N7 dyN)u
with

(5.5) AWV (dagr, dyes) = [, T e (1 s )YV (. day).

1ye-5Tt

Due to (5.4) and (5.3), one can see that for any ¢t < N each kernel

7y17--~>yt c H(Nt—i—l (dxt+1)7 Py Yt (dyt-i-l))-

Then, from Proposition (5.1), we know that 4 € IIp.(u,v). Writing down the minimization over the
kernels (5.5), we have exactly (Pbc). Since the kernels of 4 and v are connected via (5.4) and (5.3), one
can observe that the value of the bicausal transport problem is less or equal than the causal one, giving
us the desired result. O

Proof of Corollary 2.10. Follows from Theorem 2.9 by observing that the map

(T1, 2N, YL, - YN) = (T1, T2 = T1, 0 IN — IN-1L YL Y2 — Yl YN — YUN-1),
preserves causality when applied to v € TI.(u, v). o

The proof of Theorem 2.9 rests on the following result, which needs Condition (5.6) encompassing at
the same time the independence condition (2.12) and Riischendorf’s “monotone regression dependence”
in [Riis85, Corollary 2].

PROPOSITION 5.3. For eacht=1,...,N —2, all (x1,...,2¢),(y1,...,9t), and u € R, suppose
(56) (FMII ,,,,, T, T (U) — Fﬂzl ,,,,, Tt,T (U)) (Fuyl,m,yp,ﬂ (U) — Fl,yl ,,,,, Yty (U)) 2 0,

whenever T > x and § > y. Assume further that

C($17---7$N7y17---7yN) = th(xt_yt)7
t<N

where each ¢, is convex. Then a solution to (Pbc) is given by the Knothe-Rosenblatt rearrangement (2.9).
Additionally, if p-a.s. all the conditional distributions of u are atomless (e.g. if p has a density), then
this rearrangement is induced by the Monge map determined by (2.10).

Proof. First, we give the proof for the case when the source measure is the product of its marginals,
for N = 2. From Proposition 5.2 we know that the values of (Pbc) and (Dyn-Pbc) coincide, and by
assumption p(dxy, dxs) = p1(dxy)ua(des), so (Dyn-Pbce) has the form

(5.7)  infyicngu pivy [y (der, dyn) [ei(z1 = y1) +infrecnqn ) [ ca(2 — y2)7* (da2, dys)] -

From classical optimal transport (see [Vil03]) it is known that

inf 2 eni(upm) [ c2(wa = y2)v2 (dae, dys) = [ e(F! (ug) — Fyan (u2))dus.

The last value does not depend on 1, therefore, it is constant for the minimization with respect to !
in (5.7), and we conclude that the pair (X7, Y;") will be the optimizer at this step, which in turn allow
to construct (X3,Y5") by the previous considerations. For general N the result follows by induction,
iterating the arguments so far. When g is not the product of its marginals, yet the monotone regression
assumption of [Riis85] holds, the proof of this result is given in [Riis85, Corollary 2]. Finally, it is easy
to observe that Condition 5.6 unifies exactly the two cases described. O



CAUSAL TRANSPORT IN DISCRETE TIME AND APPLICATIONS 19

We stress that in case the independent marginals condition 2.12 does not hold, and even if condition
5.6 is true, Example 7.2 shows that causal and bicausal values may differ.

The explicit form of the optimizers in Theorem 2.9 is obviously only true for R-valued processes.
Interestingly, if the transport problem consisted in mapping (in a bicausal way) R*-valued process, the
recursive structure is just as in the case L = 1 and so if 4 were the product of its marginals (each of them
in P(R%) now) we would get a similar conclusion with the role of the monotone rearrangements taken by
general Brenier maps, under suitable conditions.

REMARK 5.4. We reassure the reader that the Knothe-Rosenblatt rearrangements in the form (2.9)
are always bicausal, and in the Monge form (2.10) this is also the case as soon as all conditional dis-
tributions of the source measure are atomless. We illustrate the argument for (2.9) as follows: for each
bounded Borel g(-,-) we may define

y1 — G(y1) fo g(y1, Fut (v))dv,
so that denoting X7 := F; ' (Uy), Y := F, ' (U1) and Y5 : Ff (Us), we get

FL (o)
BIF(XDg(V Y = Jy Jy PO ) (B ) F ol () ) dugdun

= fo fo F )G (FyH(u)) dua
= E[E[f (X1)|Y1] G(Yy)]
= E[E[f(X7)|Y1]g(Y7", Y5)).

Thus the law of X5 given (Y{*,Y5"), equals the law of X7 given Yi*. The same holds inverting the roles
of i and v and going to greater time indices. As for (2.10), the argument actually follows directly upon
noticing for example that for p—a.e. x1 the measure [Fj o] p™t is equal to Lebesque measure on [0, 1],
under the given assumptions. FEven though these considerations are not explicit in [Ris85], they underpin
some of the results therein.

5.1. A characterization of the Knothe-Rosenblatt rearrangement. As we have seen, the
Knothe-Rosenblatt rearrangement (2.9)-(2.10) appears quite naturally in our setting. In light of Remark
5.4, we would like to characterize it as the unique bicausal transport plan with a desirable “increasingness”
property. The correct concept turns out to be that of increasing triangular transformations, found in
[BKMO5], which we recall:

DEFINITION 5.5. A map T : RN — R s an increasing triangular transformations (in short ITT)
with source p if for each t € {1,..., N} there is a function

R 3 (w1,...,m¢) = THwe; 21, .., 20-1) €ER,
such that Tt(- ST, ..., Xe) 18 non-decreasing’ for p-almost every (1,...,2¢-1) and further

T(x1,...,2n) = (TH(x1), T*(x0;21), ..., TN (N5 21, ..., 2N 1)), p— a.s.

Clearly the Knothe-Rosenblatt map (2.10) is an ITT. As [BKMO05, Lemma 2.1] shows, given that all
conditional distributions of p and v are atomless, there is a canonical I'TT that pushes p into v which
is unique up to p-negligible sets: the Knothe-Rosenblatt map. Under the same conditions on p and v,
this characterization has a geometric counterpart; as shown in e.g. [Sanl5, Chapter 2.3, Remark 2.20],
the Knothe-Rosenblatt map is the unique map which is increasing in the lexicographical order of RY and
pushes g into v. Under the same assumptions [CGS10] obtains the Knothe-Rosenblatt map as a natural
limit of Brenier maps®. We ask: what distinguishes/characterizes the Knothe-Rosenblatt map without
any assumption on v? Here is the first result:

PROPOSITION 5.6. Suppose all conditional distributions of i are atomless. Then the Knothe-Rosenblaitt
map from u into v, defined in (2.10), is the unique bicausal transport plan between p and v which is in-
duced by an increasing triangular transformation.

5For ¢t = 1 one should understand T as a non-decreasing function of z1 only.
6Beware that [San15, CGS10] read coordinates from N to 1 rather than from 1 to N as we do.
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Proof. Let v be a bicausal transport plan between p and v. By Proposition 5.1.(ii) we know that
AT Tt =LY Y-t g [ (PPt pYhesYi-1) - Bug if 4 is further induced by an ITT (say T') this
means that T%(-;z1,...,2¢_1) is pushing p®~=1 into ¥¥1>+~¥-1 in an increasing way (of course, under
the understanding that (yi,...,y:—1) = (T%,..., T Y (z1,...,24-1)). This immediately shows that
T' = F,' o F,, but for a g-null set. A straightforward induction argument proves that p-a.s. the
Knothe-Rosenblatt map and T' are equal. O

The relevance of this result is that, as the counter-example after the proof of [BKMO05, Lemma
2.1] reveals, when v has atoms in its conditional distributions then there may be many ITT’s from pu
into v. The same counter-example proves that the Knothe-Rosenblatt map need not be increasing in
lexicographical order in this case, so it cannot be characterized in terms of lexicographical order in this
generality. Furthermore, under this pathology of v, the Knothe-rosenblatt map need not be the natural
limit of Brenier maps (see [Sanl5, Example 2.26]). So, as far as we know, Proposition 5.6 is the only
robust characterization of the Knothe-Rosenblatt map. We finally stress that this result can be extended
to the case where p and v are arbitrary (so the Knothe-Rosenblatt rearrangement (2.9) need not be
induced by a map) provided one generalizes the definition of ITT to transport plans:

DEFINITION 5.7. v € P(RY x RY) is an increasing triangular transport if v(dx1,dy:), as well as
AT Tt= 1YY= (g, dyy) for y-almost every (a1, ..., Te—1,Y1,---,Yt—1), all have monotone support as
bivariate measures.”

PROPOSITION 5.8. The Knothe-Rosenblatt rearrangement from p into v, defined in (2.9), is the
unique bicausal transport plan between p and v which is an increasing triangular transport.

The proof is essentially the same as in Proposition 5.6, so we omit it.

5.2. Digression into a classical functional inequality. Another instance where Theorem 2.9
(and Condition 2.12) comes in handy, is the following interpretation of the proof of Talagrand’s T3
inequality. Out point is to show how the ideas discussed in this article are pertinent to several fields
in mathematics. First, recall (see [Tal96]): given a unit standard Gaussian measure G and any other
measure v on RV, the following holds:

(T2) 2Ent(v|GN) > To(GN,v),

where Ent denotes relative entropy and Ta(-,-) is the value of the optimal transport problem with
quadratic cost. Equality holds iff v is an affine translate of GY. We establish here the related bicausal
inequality

(CT2) 2Ent(v|GN) > Tren(GN,v), for all v € P(RV),

where Tpe2(GY,v) is the value of the optimal bicausal transport problem for quadratic cost. This clearly
implies (T2) for GV. Tt is the DPP for the bicausal transport problem that replaces the role of the
usual tensorization trick; strictly speaking, the DPP is just giving a name to an intermediate step in
Talagrand’s well-known proof. The proof given here applies of course to other product measures, and in
that setting is reminiscent of [Vil08, Proposition 22.5]; we stick to the gaussian case only for the sake of
concreteness and because this relates to the Wiener case in continuous time.

PROPOSITION 5.9. For GV the unit standard Gaussian measure on RY, the bicausal transport-
entropy inequality (CT2) holds.

Proof. We start assuming (CT2) for N = 1, which holds by [Tal96], and prove it for N = 2. The
general inductive argument is then obvious and therefore skipped. By e.g. [Var84, Lemma 10.3] it is clear
that for any v € P(R?) holds:

Ent(v|G?) = Ent(v|G' @ G*)

= Ent(pv|GY) + [ Ent(u |GYplu(dy,) > ZE20) o [ TG ™) by, ),

On the other hand, by the bicausal dynamic programming principle (Proposition 5.2) we get

Toe,2(G?,v) = infenar pro) [ {lz1 — w1 |* + T2(G v¥) } y(day, dyr)
= To(G, ptv) + [ (G v )plu(dyr ). 0

7A set T' C R? is called monotone if (x,y), (Z,7) € T and = < Z implies y < 7.
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REMARK 5.10. It is clear that equality cannot generally hold in (CT2), since for N = 1 we have
T2(G,v) = Toc,2(G,v) and equality in (T2) is not usually the case. On the other hand, if v is an affine
translate of GV | then of course 2Ent(v|GN) = To(GN,v) = Toe2(GN,v). More generally, there is equality
in (CT2) provided v¥'»Y¢(dy;11) is an affine translate of G*, for each t and v-a.e. y.

6. Some geometrical aspects of the bicausal case and connections with stochastic pro-
gramming. At the end of this section we shall prove Theorem 2.11. We start however with a discussion
about geometric properties of the space of probability measures endowed with a bicausal Wasserstein
distance (equiv. nested distance). We notice first that the Knothe-Rosenblatt rearrangement offers a way
to interpolate in a meaningful and non-linear way between stochastic programs. From Remark 5.4 we
know that this rearrangement is bicausal, and as discussed in the previous section if all conditional prob-
abilities p%t%» p¥u-Yn gre atomless, then it is induced by a bicausal map which is characterized as
the p-a.s. unique transformation increasing w.r.t. lexicographical order and which pushes forward p onto
v. Inspired by the concept of displacement interpolation/convexity in optimal transport (as in [Vil03,
Chapter 5]) let us define:

DEFINITION 6.1. Let m = 7(u,v) be the Knothe-Rosenblatt rearrangement as in (2.9). The lexico-
graphical displacement interpolation between p and v is then defined as the function
(6.1) t€[0,1] = [, V]t := [(w, ) = (1 — )z + tyl.7m € PRY),
If all conditional probabilities p* "~ are atomless, we also have

[, v]e = ([L = tid + tT)ups,

w};[ere T = T(u,v) is the Knothe-Rosenblatt map defined in (2.10) and id denotes the identity map in
RY.

Thus we have that [p,v]g = p and [u,v];1 = v; therefore the name. We prove now that many

stochastic optimization problems are concave along the curves given by (6.1). Recall from (2.14) that the
value of a stochastic program with cost H and noise distribution n € P(RY) is given by

v(n) == inf 50 JH(z1,...,xn,ui(z1),us(z1, 22), ..., un (21, .., 2N ))n(dT).

THEOREM 6.2. Let H : RN x RN — R be bounded from below, concave in the first variable while
convez in the second one. Then the functions

t €[0,1] = v([u, v]t)

are concave for each v and p such that all conditional probabilities p*'»*» are atomless, so we may say
that v(-) is lexicographic-displacement concave. If further v(u) is attained, then

U(V) < U(M) + infu*eargmin(v(u)) finféeaxH(z,u* (z)) 5 : [T(‘T) - ,T]/J,(d.’l])

The previous result should be seen as a complement to the results of G. Pflug and A. Pichler [Pfl09,
PP12], which give conditions under which |v(v) —v(u)| can be gauged by the value of a bicausal problem
between p and v. Indeed, Theorem 6.2 highlights the connection between the most eminent of bicausal
maps, i.e. the Knothe-Rosenblatt rearrangement, and multistage stochastic programming. On the other
hand, the previous result can be related to [Vil03, Open Problem 5.17], with the caveat that we replaced
the role of the Brenier’s map by the Knothe-Rosenblatt rearrangement when defining the interpolations.

Proof of Theorem 6.2. Take u,v, H as stated, and a, b, s,t € [0,1] with a + b = 1. We will show that
v([1 Vatres) = av([p, v]e) + bv([p, v]s). We write

An(x) = (1 —t)zy +tT™(zp; 21, ..., Tp—1)
B, (x) = (1 —8)xy + sT™(xn; 21, -+, Tn—1)
Cpn(x) = (1 — at — bs)xy, + [at + bs|T™ (Xp; 21, . ., Tpn—1),

with © = (z1,...,2y), so we have

V([ V]atses) = infy . uN()fH(Cl(:v),...,CN(x),ul(Cl(x)),...,uN(Cl(x),...,CN(:U))>u(dx),
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and by the concavity assumption,

(6.2)  v([p V]at+bs) >

0 {inf 5 ey S H(Bi@), oo B (@), (C1(@)), - un (Ca(@), ., On (@) J(da) }

If say t < 1, we have that A;(z) = Ai(z1) is injective (as it is strictly increasing) so defining @;(-) =
uy 0 Cy o AT (-) we have @ (A () = u1 (Cy(x)). For n = 2 we introduce

lig(21,22) = uz( C1 0o AT (#1) 02(141_1(21)7A2_1(22|A1_1(21))) )

which is well-defined due to the function A, being strictly increasing in its second variable, and ver-
ify that @2(A1(z), A2(z)) = ua(Ci(z),C2(x)). Inductively, we obtain easily for each n < N a 4, s.t.
Un(A1(x), ..., Ap(x)) = un(Ci(x),...,Cn(z)). Hence the first term on the r.h.s. of (6.2) is bounded
from below by v([p,v]:). Using similar arguments for the second term, we see that v([u, V]at+bs) >
av([p, Vi) + bu([u, v]s) holds if s,¢ < 1. The case s = 1 or ¢ = 1 can be obtained by a limiting and
a Komlos-Mazur type argument (with convex combinations; here the convexity assumption is used). A

direct argument, inspired by [PP12] and relying in convexity too, is as follows:

[H(A1(z),...,Ax(z),u1(C1(2)),...,un(Ci(z),...,Cn())) p(dz) >
E* {H(Al,...,AN,E“[ul(ClﬂAl,...,AN],...,E“[uN(Cl,...,ON)|A1,...,AN])} ,

by the convexity assumption and Jensen’s inequality, so now observing that if e.g. ¢ = 1 then A = T,
which is bicausal from u to v, we get that E#[u,(Cy,...,Cn)|A1, ..., AN] = @n(A1, ..., Ay) for each n
and we conclude as before. The case s = 1 is analogous.

For the last statement we obtain by the concavity assumption that

H([1 -tz +tT(x),u"(z)) < H(z,u*(z)) + t&(z) - [T'(x) — ],

where u* is any optimizer for v(p), and £(z) is any measurable selection of z — 0, H (x, u*(z)) (the partial
superdifferential w.r.t. the first variable). Such a selection exists by [RW98, Theorem 14.56], for which
H must be a normal integrand, but this is true by [RW98, Proposition 14.39]. In particular for ¢ = 1 and
integrating we get

JH(T (), v (z)p(dx) < v(p) + [E(x) - [T(x) — 2]p(dz).
By the same arguments as before (the convexity assumption, the bicausality of T and Ti.u = v), the Lh.s.
is an upper bound for v(v). All in all, if we could find a measurable selector £(-) such that

§(x) € argmingey, q(zus () 1§ - [T'(x) — 2]},

this would finish the proof. This follows from the measurable maximum theorem [AB0G, Theorem 18.19]
after observing that (z,&) — £ - [T'(z) — ] is a Carathéodory function and that the correspondence
x — Oy H(xz,u*(x)) is nonempty compact-valued and weakly measurable (i.e. measurable in the sense of
[RW98, Theorem 14.56]). O

Let us now discuss the geometric interpretation that lexicographic displacement interpolation should
have. We start from the observation that for costs of the type

cplz,y) =Y lei —yil”,

i<N

lexicographic displacement interpolation has “constant speed” w.r.t. the associated bicausal / nested
distances®, namely:

. 1 . 1
(6.3) (lanGHbc(uy[u,V]t) / deV) "=y (1nf7€nbc(#v’/) / Cp‘h) v )

8That this constitutes an actual distance was proved in the appendix of [PP12].



CAUSAL TRANSPORT IN DISCRETE TIME AND APPLICATIONS 23

whenever p has atomless conditional distributions. Indeed, the map = — (1 —t)z +tT'(x) by assumption
pushes forward p into [u, v]:, is bicausal, and is further an increasing triangular transformation m(See
previous section), so it is the Knothe-Rosenblatt rearrangement of y into [u, v]¢ and therefore optimal for
the Lh.s. above. Hence

. 1 ;
(lnfvenbc(u,[uw]t) il de’)’) "= / Zigz\r |zi — (L =)z —tT*(vis 21, ..., i) [Pdp
=" f Z’LSN |x’b - T’L(‘T’H Tlyeeny xi*1)|pd,u‘7

which is the r.h.s. of (6.3). The argument is of course reminiscent to the Brenier case. This suggests that for the
case p = 2 one would want to interpret the corresponding bicausal distance as a geodesic length over the space
of probability measures (say absolutely continuous ones) when given a differentiable structure and corresponding
metric. This is discussed in [Vil03, Chapter 8] for the classical transport case, and no such thing has yet been
accomplished for the present bicausal setting. In a way, a first step in this direction was done by Mikami [Mik12],
where a Hamilton-Jacobi formulation for the dual of the bicausal problem was derived.

We finally give the missing proof of Theorem 2.11:

Proof of Theorem 2.11. By (EXP) and [Vil08, Theorem 22.10 + (22.16)] we have that pu®1%t=1 satisfies
the next T3 functional inequality (for every Borel prob. measure m):

1/2
V2 (1 +logfeatz?luzhm,zp71(dxt)) \/Ent(mm”lv“"xtfl)

= ag

< VIR

(6.4)

3
<
8
;
;
2
N

m|uzl ,,,,, It—l)‘

Let us denote by K;—1 the constant in the r.h.s. above. By triangle inequality and (LIP):

Wl(uxl)“'vxt—l7Vylv“')yt—l) S Wl(uxl)“'vxt—l7M:Ulw")yt—l) + Wl (M:Ulw"vyt717V:Ulw"vytfl)
< Czi<t |wi — yi| + Ktil\/Ent(yylw»yyt71 |yt vi=1),

for p ® v-a.e. (x1,...,Te—1,Y1,...,Yt—1); we are entitled to do this since we may assume w.l.o.g. that v < p.
Using (Dyn-Pbc) and applying the above computation recursively, one arrives at:

so using Cauchy-Schwartz for the sum and for the integral we get
VVLb.;(;L7 V) S \/Z\/E7

where
B = [v(dyi,...,dyn) > Ent(p¥0¥N=i=1|yioYN=j-1)

J<N
which by the additive property of the entropy (e.g. [Var84, Lemma 10.3]) equals Ent(v|u), and where
A=2 ¥ (140 i)
J<N IN—j

a

7. Counterexamples. Previously we have discussed that the values of the causal and bicausal problems
coincide in the case when the starting measure p is the product of its marginals and the cost function has a
separable structure. The following two examples show that dropping either assumption causes this equality to
break down.

EXAMPLE 7.1. Here p is the product of its marginals, but the cost function c(x1,22,91,y2) = Lwy 20)#(y1,y2)
is non-separable. Take
p=0.160¢1,1) +0.2461,—1) +0.245(_1,1) +0.36 (_1,—1),

v =20.25 (5(1Y1) +0.25 (5(1’,1) + 0.25 6(71,1) +0.25 (5(,1’,1).

Then an optimal causal transport plan is
Ye = 0.16 7((17 1); (17 1)) + 0‘247((17 _1); (17 _1)) + 0‘037((_17 1)§ (17 1))

+0.01y((=1,1); (1,—1)) +0.2 ~v((=1,1); (=1,1)) +0.06y((—1,—1); (1,1))
+0.05 y((=1,-1); (=1,1)) + 0.25y((=1, =1); (-1, —1)),
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giving the optimal causal value 0.15, and an optimal bicausal one is

+ 0'047((_17 1); (17 1)) +0.2 7((_17 1); (_17 1)) +0.01 7((_17 _1); (17 1))
+0.057((=1, ~1); (1, =1)) + 0.05 (=1, —1); (=1, 1)) + 0.255((—1, —1); (=1,1)),
giving the value 0.19. The optimal dual variables that correspond to reverse causality constraints are monzero in
this example, conceptually supporting the gap in the optimal values.
ExAMPLE 7.2. Consider a quadratic-separable cost function and define p, failing to be the product of its
marginals, and v as:
w=0.18 5(1’2) +0.24 5(170) +0.18 5(1,,2) + 0.08 5(,172) +0.12 5(,1,0) + 0.2 5(,17,2),
v=0.1 (5(1’2) + 0.26 6(1,72) + 0.16 (5(,12) + 0.48 (5(,1’,2).

An optimal causal plan is
~ve = 0.144v((1,0); (1,—2)) + 0.008v((1,0); (—1,2)) + 0.088v((1,0); (—1,—2))
+0.179((1,2); (1,2)) + 0.008 v((1,2); (1,—2)) 4+ 0.072~((1,2);(—1,2))
+0.108 v((1,—2); (1, —2)) + 0.072v((1, —2); (—1,—-2)) + 0.12 ~((—1,0); (-1, —2))
+0.087((—=1,2); (=1,2)) + 0.29((-1, —2); (-1, —2)),

—~ =

giving the value 2.528, and a bicausal optimal one

Yoo = 0.1445((1, 0); (1, =2)) + 0.096 7((1, 0); (—1, —2)) + 0.1 ¥((1, 2); (1, 2))
+0.0087((1,2); (1, —2)) + 0.06v((1,2); (=1,2)) + 0.0127((1,2); (~1,—2))
+0.108 v((1, —2); (1, —2)) 4 0.072v((1, =2); (—1, —2)) + 0.02v((—1,0); (—1,2))
+0.15((=1, 05 (1, =2)) + 0.08 7((~1,2); (=1,2)) + 0.2 7((~ 1, =2); (~ 1, ~2)),

with value 2.72.

The previous example also shows us that Condition 5.6 and so the monotone regression condition in [Riis85,
Corollary 2], which holds here, is insufficient to guarantee the equality between (Pc) and (Pbc) even for separable
costs. Finally, we present an example showing that there may easily be no causal Monge maps even if classical
Monge maps do exist.

EXAMPLE 7.3. In the case, when
p=a1d(1,2) + a20(1,0) +azd—1,0) + as 61, _3),

v =a180,2) +asda,0 +a20(-1,0) + a4d(-1,-2),

where a;,i = 1,...,4 are positive numbers that sum up to one and a1 # a4, one can easily observe that there is
no causal Monge map pushing forward the former into the latter; i.e. the mass must split. On the other hand, a
non-causal Monge map is given by:

T(172) = (172) ) T(_17_2) = (_17_2) ) T(170) = (_170) ) T(_170) = (170)
77 = a1 y((1,2)5 (1,2)) + a2 ((1,0); (~1,0)) + a3 Y((~1,0); (1,0)) + aa Y((~1, ~2); (~1, ~2)).

Acknowledgments. We thank B. Acciaio, J. Fontbona, R. Lassalle, W. Schachermayer and J. Yang for
valuable discussions.
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