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GLOBAL AND INTERIOR POINTWISE BEST APPROXIMATION RESULTS FOR THE GRADIENT

OF GALERKIN SOLUTIONS FOR PARABOLIC PROBLEMS

DMITRIY LEYKEKHMAN† AND BORIS VEXLER‡

Abstract. In this paper we establish best approximation property of fully discrete Galerkin solutions of second order parabolic problems

on convex polygonal and polyhedral domains in the L∞(I;W 1,∞(Ω)) norm. The discretization method consists of continuous Lagrange

finite elements in space and discontinuous Galerkin methods of arbitrary order in time. The method of the proof differs from the established

fully discrete error estimate techniques and uses only elliptic results and discrete maximal parabolic regularity for discontinuous Galerkin

methods established by the authors in [15]. In addition, the proof does not require any relationship between spatial mesh sizes and time steps.

We also establish interior best approximation property that shows more local dependence of the error at a point.

Key words. optimal control, pointwise control, parabolic problems, finite elements, discontinuous Galerkin, error estimates, pointwise

error estimates

AMS subject classifications.

1. Introduction. Let Ω be a convex polygonal/polyhedral domain in RN , N = 2, 3 and I = (0, T ) with

some T > 0. We consider a second order parabolic problem

ut(t, x)−∆u(t, x) = f(t, x), (t, x) ∈ I × Ω,

u(t, x) = 0, (t, x) ∈ I × ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(1.1)

To discretize the problem we use continuous Lagrange finite elements in space and discontinuous Galerkin

methods in time. The precise description of the method is given in section 2. Our main goal in this paper is to

establish global and interior (local) space-time pointwise best approximation type results for the fully discrete

error. The global estimate has the following structure:

‖∇(u− ukh)‖L∞(I×Ω) ≤ Cℓkℓh‖∇(u− χ)‖L∞(I×Ω), (1.2)

where ukh denotes the fully discrete solution and χ is an arbitrary element of the finite dimensional space, h stands

for spatial mesh size and k for the maximal time step, and ℓk, ℓh stand for some logarithmic terms. Such results

are sometimes called symmetric estimates, cf. [4, 8]. The interior (local) result provides an estimate of the error

|∇(u − uukh
)(t̃, x0)| for given t̃ ∈ (0, T ] and x0 ∈ Ω in terms of best approximation on a ball Bd(x0) and some

global terms in weaker norms. Precise results are stated in section 2, see Theorem 2.1 and Theorem 2.2. For the

global estimate (1.2) we assume that f and u0 are such that ∇u ∈ C(Ī × Ω̄). For the interior result we essentially

need only ∇u ∈ C(Ī× B̄d(x0))∩L
2(I×Ω). Such best approximation type results have only natural assumptions

on the problem data and are desirable in many applications, for example optimal control problems governed by

parabolic equations with gradient constraints, cf. [18]. We refer to a recent paper [30] for a further discussion on

the importance of best approximation results and difficulties associated with obtaining such estimates for parabolic

problems.

For elliptic problems the best approximation property as (1.2), which is equivalent to the stability of the Ritz

projection inW 1,∞(Ω) norm, is well known. The first log-free result was established in [23] on convex polygonal

domains. Later the result was extended to convex polyhedral domains with some restriction on angles in [2].

This restriction was removed in [12] and even extended to certain graded meshes in [6]. For parabolic problems

similar results are rather scarce. The main body of the work on pointwise error estimates for parabolic problems

are devoted to L∞(I × Ω) error estimates, see [14] for review of the corresponding results. We are aware of only

three publications dealing with pointwise error estimates for the gradient of the error.

In two space dimensions, semidiscrete error estimates were studied in [3] and the fully discrete Crank-

Nicolson method was studied in [33]. Since the main motivation of both investigations was the question of

superconvergence of the gradient of the error, it was assumed that the solution is sufficiently smooth. More gen-

eral fully discrete error estimates using Padé time schemes were obtained in [16] for smooth domains in RN .
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2 DMITRIY LEYKEKHMAN AND BORIS VEXLER

In both publications dealing with fully discrete error estimates, [16] and [33], the proofs are based on the

splitting u − ukh = (u − Rhu) + (Rhu − ukh), where Rh is the Ritz projection. This idea was first introduced

by M. Wheeler [34] in order to obtain optimal order error estimates in L2 norm in space. The main idea of

this approach is the following: the first part of the error is treated by elliptic results and the second part satisfies

a certain parabolic equation with the right-hand side involving (u − Rhu), which can be treated by results from

rational approximation of analytic semigroups in Banach spaces (see also [31, Thm .8.6]). However, this approach

requires additional smoothness of the solution, well beyond the natural regularity ∇u ∈ C(Ī × Ω̄) of the exact

solution. Our approach is completely different. It uses newly established discrete maximal parabolic regularity

results [15] for discontinuous Galerkin time schemes, see section 5 below, and the discrete resolvent estimate of

the form:

∣

∣

∣

∣

∣

∣(z +∆h)
−1χ

∣

∣

∣

∣

∣

∣ ≤
Mh

|z|
|||χ|||, for z ∈ C \ Σγ , for all χ ∈ Vh = Vh + iVh, (1.3)

where Mh may depend on |lnh| but is independent of h otherwise, Vh is the space of continuous Lagrange finite

elements of degree r, ∆h is the discrete Laplace operator, see (3.9) below, and

Σγ = { z ∈ C | |arg (z)| ≤ γ } ,

for some γ ∈ (0, π2 ). In [14] we showed this estimate for the triple norm |||vh||| = ‖σ
N
2 vh‖L2(Ω) with the

weight function σ(x) =
√

|x− x0|2 +K2h2. This norm behaves similar to the L1(Ω) norm, and we used the

corresponding discrete maximal parabolic result to prove (global and interior) pointwise best approximation for

function values of the solution u. Here, we will in addition require the estimate (1.3) with respect to the norm

|||vh||| = ‖σ
N
2 ∇∆−1

h vh‖L2(Ω),

which behaves similar to the the W−1,1(Ω) norm, see Theorem 4.1 below. This allows us to prove our main

results of (global and interior) pointwise best approximation for the gradient of the solution.

The rest of the paper is organized as follows. In the next section we describe the discretization method and

state our main results. In section 3, we review some essential elliptic results in weighted norms. Section 4 is

devoted to establishing the resolvent estimate in weighted norms. In section 5, we review our discrete maxi-

mal parabolic regularity result. Finally, in sections 6 and 7, we provide proofs of the global and interior best

approximation properties of the fully discrete solution.

2. Discretization and statement of main results. To introduce the time discontinuous Galerkin discretiza-

tion for the problem, we partition (0, T ] into subintervals Im = (tm−1, tm] of length km = tm − tm−1, where

0 = t0 < t1 < · · · < tM−1 < tM = T . The maximal and minimal time steps are denoted by k = maxm km and

kmin = minm km, respectively. We impose the following conditions on the time mesh (as in [15] or [19]):

(i) There are constants c, β > 0 independent of k such that

kmin ≥ ckβ.

(ii) There is a constant κ > 0 independent of k such that for all m = 1, 2, . . . ,M − 1

κ−1 ≤
km
km+1

≤ κ.

(iii) It holds k ≤ 1
4T .

The semidiscrete space Xq
k of piecewise polynomial functions in time is defined by

Xq
k =

{

vk ∈ L2(I;H1
0 (Ω))

∣

∣ vk|Im ∈ Pq(Im;H1
0 (Ω)), m = 1, 2, . . . ,M

}

,

where Pq(Im;V ) is the space of polynomial functions of degree q in time with values in a Banach space V . We

will employ the following notation for time dependent functions

v+m = lim
ε→0+

v(tm + ε), v−m = lim
ε→0+

v(tm − ε), [v]m = v+m − v−m, (2.1)

if these limits exist. Next we define the following bilinear form

B(v, ϕ) =

M
∑

m=1

〈vt, ϕ〉Im×Ω + (∇v,∇ϕ)I×Ω +

M
∑

m=2

([v]m−1, ϕ
+
m−1)Ω + (v+0 , ϕ

+
0 )Ω, (2.2)
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where (·, ·)Ω and (·, ·)Im×Ω are the usualL2 space and space-time inner-products, 〈·, ·〉Im×Ω is the duality product

between L2(Im;H−1(Ω)) and L2(Im;H1
0 (Ω)). We note, that the first sum vanishes for v ∈ X0

k . Rearranging the

terms in (2.2), we obtain an equivalent (dual) expression of B:

B(v, ϕ) = −

M
∑

m=1

〈v, ϕt〉Im×Ω + (∇v,∇ϕ)I×Ω −

M−1
∑

m=1

(v−m, [ϕ]m)Ω + (v−M , ϕ
−
M )Ω. (2.3)

To introduce the fully discrete approximation, let Th for h > 0 denote a quasi-uniform triangulation of Ω with

mesh size h, i.e., Th = {τ} is a partition of Ω into cells (triangles or tetrahedrons) τ of diameter hτ such that for

h = maxτ hτ ,

diam(τ) ≤ h ≤ C|τ |
1
N , for all τ ∈ Th,

hold. Let Vh be the set of all functions in H1
0 (Ω) that are polynomials of degree r on each τ , i.e. Vh is the usual

space of conforming finite elements. To obtain the fully discrete approximation we consider the space-time finite

element space

Xq,r
k,h =

{

vkh ∈ L2(I;H1
0 (Ω))

∣

∣ vkh|Im ∈ Pq(Im;Vh), m = 1, 2, . . . ,M
}

, q ≥ 0, r ≥ 1. (2.4)

We define a fully discrete dG(q)cG(r) solution ukh ∈ Xq,r
k,h by

B(ukh, ϕkh) = (f, ϕkh)I×Ω + (u0, ϕ
+
kh,0)Ω for all ϕkh ∈ Xq,r

k,h. (2.5)

2.1. Main results. Now we state our main results. The first result establishes the global best approximation

property of the fully discrete Galerkin solution in the L∞(I;W 1,∞(Ω)) norm.

THEOREM 2.1 (Global best approximation). Let u and ukh satisfy (1.1) and (2.5) respectively. Then, there

exists a constant C independent of k and h such that

‖∇(u− ukh)‖L∞(I×Ω) ≤ Cℓkℓh inf
χ∈Xq,r

k,h

‖∇(u− χ)‖L∞(I×Ω),

where ℓk = ln T
k and ℓh = |lnh|

2N−1

N .

The proof of this theorem is given in Section 6.

For the error at a given point x0 ∈ Ω we obtain a sharper results. For elliptic problems similar results were

obtained in [25, 27]. We denote by Bd = Bd(x0) the ball of radius d centered at x0.

THEOREM 2.2 (Interior best approximation). Let u and ukh satisfy (1.1) and (2.5), respectively and let

d > 4h. Assume x0 ∈ Ω and t̃ ∈ Im for some m = 1, 2, . . . ,M and Bd ⊂⊂ Ω. Then there exists a constant C
independent of h, k, and d such that

|∇(u − ukh)(t̃, x0)| ≤ Cℓkℓh inf
χ∈Xq,r

k,h

{

‖∇(u− χ)‖L∞((0,tm)×Bd(x0)) + d−1‖u− χ‖L∞((0,tm)×Bd(x0))

+ d−
N
2

(

‖∇(u− χ)‖L∞((0,tm);L2(Ω)) + d−1‖u− χ‖L∞((0,tm);L2(Ω))

)

}

,

with ℓk and ℓh defined as in Theorem 2.1.

The proof of this theorem is given in Section 7.

3. Elliptic estimates in weighted norms. In this section we collect some estimates for the finite element

discretization of elliptic problems in weighted norms on convex polygonal/polyhedral domains mainly taken

from [13] . These results will be used in the following sections within the proofs of Theorem 4.1, Theorem 2.1,

and Theorem 2.2.

In this section we consider a fixed (but arbitrary) point x0 ∈ Ω. Associated to this point we introduce a

smoothed delta function [27, Appendix], which we will denote by δ̃. This function is supported in one cell, which

is denoted by τ0 with x0 ∈ τ̄0, and satisfies

(χ, δ̃)τ0 = χ(x0), for all χ ∈ Pr(τ0). (3.1)
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In addition we also have, see, e.g., [32, Lemma 2.2],

‖δ̃‖W s,p(Ω) ≤ Ch−s−N(1− 1
p ), 1 ≤ p ≤ ∞, s = 0, 1, 2. (3.2)

Thus in particular ‖δ̃‖L1(Ω) ≤ C, ‖δ̃‖L2(Ω) ≤ Ch−
N
2 , and ‖δ̃‖L∞(Ω) ≤ Ch−N . Next we introduce a weight

function

σ(x) =
√

|x− x0|2 +K2h2, (3.3)

where K > 0 is a sufficiently large constant. This weight function was first introduced in [20, 21] to analyze

pointwise finite element error estimates. One can easily check that σ satisfies the following properties:

‖σ−N
2 ‖L2(Ω) ≤ C|lnh|

1
2 , (3.4a)

|∇σ| ≤ C, (3.4b)

|∇2σ| ≤ Cσ−1, (3.4c)

max
τ

σ ≤ Cmin
τ
σ for all τ ∈ Th. (3.4d)

For the finite element space Vh we will utilize the L2 projection Ph : L
2(Ω) → Vh defined by

(Phv, χ)Ω = (v, χ)Ω for all χ ∈ Vh, (3.5)

the Ritz projection Rh : H
1
0 (Ω) → Vh defined by

(∇Rhv,∇χ)Ω = (∇v,∇χ)Ω for all χ ∈ Vh, (3.6)

and the usual nodal interpolation operator ih : C0(Ω) → Vh with usual approximation properties (cf., e. g., [5,

Theorem 3.1.5])

‖u− ihu‖Lq(Ω) ≤ Ch2+N( 1
q−

1
p )‖u‖W 2,p(Ω), for q ≥ p >

N

2
, (3.7)

as well as the Scott-Zhang interpolation operator iSZ
h : W 1,1

0 (Ω) → Vh with the approximation properties (cf.,

e. g., [28]) for N = 3:

h‖∇(u− iSZ
h u)‖L2(Ω) + ‖u− iSZ

h u‖L2(Ω) ≤ Ch
3
2 ‖u‖

W 2, 3
2 (Ω)

for all u ∈ W 2, 3
2 (Ω) ∩W 1,1

0 (Ω). (3.8)

Moreover we introduce the discrete Laplace operator ∆h : Vh → Vh defined by

(−∆hvh, χ)Ω = (∇vh,∇χ)Ω, for all χ ∈ Vh. (3.9)

The next lemma states an approximation result for the Ritz projection in the L∞(Ω) norm.

LEMMA 3.1. There exists a constant C > 0 independent of h, such that

‖v −Rhv‖L∞(Ω) ≤ Ch|lnh|‖∇v‖L∞(Ω).

For smooth domains such a result was established in [22, 25, 26] (logfree for higher order elements), for polygonal

domains in [24] and [9, Theorem 3.2] (for mildly graded meshes), and for convex polyhedral domains it follows

from stability of the Ritz projection in the L∞(Ω) norm in [13, Theorem 12].

The following lemma is a superapproximation result in weighted norms.

LEMMA 3.2 (Lemma 3 in [13]). Let vh ∈ Vh. Then the following estimates hold for any α, β ∈ R and K (in

the definition (3.3) of the weight σ) large enough:

‖σα(Id−ih)(σ
βvh)‖L2(Ω) + h‖σα∇(Id−ih)(σ

βvh)‖L2(Ω) ≤ ch‖σα+β−1vh‖L2(Ω), (3.10a)

‖σα(Id−Ph)(σ
βvh)‖L2(Ω) + h‖σα∇(Id−Ph)(σ

βvh)‖L2(Ω) ≤ ch‖σα+β−1vh‖L2(Ω). (3.10b)
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The next lemma describes a connection between the regularized delta function δ̃ and the weight σ.

LEMMA 3.3. There hold

‖σ
N
2 δ̃‖L2(Ω) + ‖σ

N+2

2 ∇δ̃‖L2(Ω) + h‖σ
N
2 ∇δ̃‖L2(Ω) ≤ C (3.11)

and

‖σ
N
2 Phδ̃‖L2(Ω) + ‖σ

N+2

2 Ph∇δ̃‖L2(Ω) + h‖σ
N
2 Ph∇δ̃‖L2(Ω) ≤ C. (3.12)

The proof of the first two terms in (3.11) and (3.12) respectively can be found in [10] for N = 2 and in [13,

Lemma 4] for N = 3. Using similar arguments it is straightforward to show the result for the other terms.

The following two lemmas provide the flexibility in manipulating weighted norms.

LEMMA 3.4. For each α ∈ R, there is a constant C > 0 such that for any v ∈ H1
0 (Ω) ∩H

2(Ω) there holds

‖σα∇v‖L2(Ω) ≤ C
(

‖σα+1∆v‖L2(Ω) + ‖σα−1v‖L2(Ω)

)

.

Proof. There holds

‖σα∇v‖2L2(Ω) = (σ2α∇v,∇v) = (∇(σ2αv),∇v) − 2α(vσ2α−1∇σ,∇v)

= −(σα−1v, σα+1∆v) − 2α(vσα−1∇σ, σα∇v).

Using |∇σ| ≤ C we obtain

‖σα∇v‖2L2(Ω) ≤ ‖σα−1v‖L2(Ω)‖σ
α+1∆v‖L2(Ω) + C‖σα−1v‖L2(Ω)‖σ

α∇v‖L2(Ω).

Absorbing ‖σα∇v‖L2(Ω) we obtain the desired estimate.

LEMMA 3.5. For each α ∈ R, there is a constant C > 0 such that for any vh ∈ Vh there holds

‖σα∇vh‖L2(Ω) ≤ C
(

‖σα+1∆hvh‖L2(Ω) + ‖σα−1vh‖L2(Ω)

)

.

Proof. Similar to the proof of the previous lemma we have

‖σα∇vh‖
2
L2(Ω) = (σ2α∇vh,∇vh) = (∇(σ2αvh),∇vh)− 2α(vhσ

2α−1∇σ,∇vh)

= (∇Ph(σ
2αvh),∇vh) + (∇(Id − Ph)(σ

2αvh),∇vh)− 2α(vhσ
2α−1∇σ,∇vh)

= −(σα−1vh, σ
α+1∆hvh) + (σ−α∇(Id− Ph)(σ

2αvh), σ
α∇vh)− 2α(vhσ

α−1∇σ, σα∇vh).

Applying Lemma 3.2 for the second term and using |∇σ| ≤ C we obtain

‖σα∇vh‖
2
L2(Ω) ≤ ‖σα−1vh‖L2(Ω)‖σ

α+1∆hvh‖L2(Ω) + C‖σα−1vh‖L2(Ω)‖σ
α∇vh‖L2(Ω).

Absorbing ‖σα∇vh‖L2(Ω) we obtain the desired estimate.

In the following proofs we will make a heavy use of pointwise estimates for the Green’s function.

LEMMA 3.6. Let G(x, y) denotes the elliptic Green’s function of the Laplace operator on the domain Ω.

Then for N = 2, 3 the following estimates hold,

|∇xG(x, y)| ≤ C|x− y|1−N , for all x, y ∈ Ω, x 6= y, (3.13a)

|∇yG(x, y)| ≤ C|x− y|1−N , for all x, y ∈ Ω, x 6= y. (3.13b)

|∇y∇xG(x, y)| ≤ C|x− y|−N , for all x, y ∈ Ω, x 6= y. (3.13c)

The proof of the first estimate can be found in [11, Prop 1] and the second one follows from the symmetry of the

Green’s function and the first estimate, i.e. |∇yG(x, y)| = |∇xG(y, x)| ≤ C|x − y|1−N . The third estimate is

also proven in [11, Prop 1].

The next lemma can be thought of as weighted Gagliardo-Nirenberg interpolation inequality.

LEMMA 3.7 (Lemma 5 in [13]). Let N = 3. There exists a constant C independent of K and h such that for

any f ∈ H1
0 (Ω), any α, β ∈ R with α ≥ − 1

2 and any 1 ≤ p ≤ ∞, 1
p + 1

p′
= 1 there holds:

‖σαf‖2L2(Ω) ≤ C‖σα−βf‖Lp(Ω)‖σ
α+1+β∇f‖Lp′(Ω),
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provided ‖σα−βf‖Lp(Ω) and ‖σα+1+β∇f‖Lp′(Ω) are bounded.

LEMMA 3.8. Let D = ∂xi , i = 1, . . . , N denote any partial derivative. Then for N = 2, 3 there holds

‖σ
N−2

2 ∆−1Dδ̃‖L2(Ω) + ‖σ
N
2 ∇∆−1Dδ̃‖L2(Ω) ≤ C|lnh|

1
2 (3.14)

and for N = 3 there holds

‖∆−1Dδ̃‖L3(Ω) + ‖∇∆−1Dδ̃‖
L

3
2 (Ω)

≤ Ch−1. (3.15)

Proof. Consider the following elliptic problem

−∆g(x) = Dδ̃(x), x ∈ Ω,

g(x) = 0, x ∈ ∂Ω.
(3.16)

Thus, in order to obtain the estimate (3.14) we need to establish

‖σ
N−2

2 g‖L2(Ω) + ‖σ
N
2 ∇g‖L2(Ω) ≤ C|ln h|

1
2 .

To estimate the first term, we will be using the following Green’s function representation

g(x) =

∫

τ0

G(x, y)∂yi δ̃(y) dy = −

∫

τ0

∂yiG(x, y)δ̃(y) dy. (3.17)

Define Bh = B3h(x0) ∩ Ω and Bc
h = Ω\Bh and consider two cases: x ∈ Bh and x ∈ Bc

h. In the case x ∈ Bh,

we obtain using polar coordinates centered at x and using (3.2), (3.17), and Lemma 3.6,

|g(x)| ≤ ‖δ̃‖L∞(τ0)

∫

τ0

|∇yG(x, y)|dy ≤ Ch−N

∫

τ0

|x− y|1−N dy ≤ Ch−N

∫ ch

0

dρ ≤ Ch1−N .

Hence by the Hölder inequality and using that σ ≤ Ch on Bh, we have

‖σ
N−2

2 g‖L2(Bh) ≤ Ch
N
2 h

N−2

2 ‖g‖L∞(Bh) ≤ C.

In the case x ∈ Bc
h, we have for any y ∈ τ0 by the triangle inequality

|x− y| ≥ |x− x0| − |y − x0| ≥ |x− x0| − h

and therefore again by (3.17) and Lemma 3.6

|g(x)| ≤ ‖δ̃‖L1(τ0)
C

(|x− x0| − h)N−1
≤

C

(|x− x0| − h)N−1
.

Hence, using polar coordinates with ρ = |x− x0|, we obtain

‖σ
N−2

2 g‖2L2(Bc
h)

≤ C

∫

Bc
h

(|x − x0|+Kh)N−2

(|x− x0| − h)2N−2
dx ≤ C

∫ diam(Ω)

3h

(ρ+Kh)N−2

(ρ− h)2N−2
ρN−1 dρ ≤ C|lnh|.

Thus, we established

‖σ
N−2

2 g‖L2(Ω) ≤ C|lnh|
1
2 . (3.18)

To estimate the second term in (3.14) we apply Lemma 3.4 and obtain

‖σ
N
2 ∇g‖L2(Ω) ≤ C

(

‖σ
N+2

2 Dδ̃‖+ ‖σ
N−2

2 g‖
)

≤ C + C‖σ
N−2

2 g‖ ≤ C|ln h|
1
2 ,

where we have used Lemma 3.3 and (3.18).

The first term in (3.15) is estimated as follows. There holds

‖g‖3L3(Ω) = ‖g‖3L3(Bh)
+ ‖g‖3L3(Bc

h)
.
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For the term on Bh we obtain as above

‖g‖3L3(Bh)
≤ Ch3‖g‖3L∞(Bh)

≤ Ch−3.

For the second term we have

‖g‖3L3(Bc
h)

≤ C

∫

Bc
h

1

(|x − x0| − h)6
dx ≤ C

∫ diam(Ω)

3h

1

(ρ− h)6
ρ2 dρ ≤ Ch−3.

In order to estimate ‖∇g‖
L

3
2 (Ω)

we use the pointwise representation

∇g(x) =

∫

τ0

∇xG(x, y)∂yi δ̃(y) dy, (3.19)

apply Lemma 3.6, and obtain for x ∈ Bh

|∇g(x)| ≤ ‖δ̃‖W 1,∞(τ0)

∫

τ0

|∇xG(x, y)|dy ≤ Ch−N−1

∫

τ0

|x− y|1−N dy ≤ Ch−N−1

∫ ch

0

dρ ≤ Ch−N .

Hence, for N = 3, we have

‖∇g‖
L

3
2 (Bh)

≤ Ch−3
(

h3
)

2
3 = Ch−1.

For x ∈ Bc
h we integrate by parts in (3.19),

∇g(x) = −

∫

τ0

∂yi∇xG(x, y)δ̃(y) dy,

and obtain using estimate (3.13c) from Lemma 3.6

|∇g(x)| ≤ ‖δ̃‖L1(τ0)
C

(|x− x0| − h)3
≤

C

(|x − x0| − h)3
.

Thus,

‖∇g‖
3
2

L
3
2 (Bc

h
)
≤ C

∫

Bc
h

1

(|x− x0| − h)
9
2

dx ≤ C

∫ diam(Ω)

3h

ρ2

(ρ− h)
9
2

dρ ≤ Ch−
3
2 .

This completes the proof.

We will also require a discrete version of the Lemma 3.8.

LEMMA 3.9. For N = 2, 3, we have

‖σ
N
2 ∇∆−1

h PhDδ̃‖L2(Ω) ≤ C|ln h|
1
2 .

Proof. Let g be solution of (3.16) and let gh ∈ Vh satisfy

−∆hgh = PhDδ̃. (3.20)

Notice that gh = Rhg. Thus in order to establish the lemma, we need to show

‖σ
N
2 ∇gh‖L2(Ω) ≤ C|lnh|

1
2 .

For N = 2 we apply Lemma 3.5 and obtain

‖σ∇gh‖L2(Ω) ≤ C
(

‖σ2PhDδ̃‖L2(Ω) + ‖gh‖L2(Ω)

)

≤ C + C‖gh‖L2(Ω),

where we have used Lemma 3.3. Thus, for N = 2 it remains to prove

‖gh‖L2(Ω) ≤ C|ln h|
1
2 .
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To prove this estimate, we use Lemma 3.8, global error estimates in the L2(Ω), the H2 regularity, and the prop-

erty (3.2) of δ̃. Thus, we obtain

‖gh‖L2(Ω) ≤ ‖g‖L2(Ω) + ‖g − gh‖L2(Ω) ≤ C|lnh|
1
2 + Ch2‖g‖H2(Ω)

≤ C|lnh|
1
2 + Ch2‖Dδ̃‖L2(Ω) ≤ C|lnh|

1
2 .

The case N = 3 is more challenging. By the triangle inequality we get

‖σ
3
2∇gh‖L2(Ω) ≤ ‖σ

3
2∇g‖L2(Ω) + ‖σ

3
2∇(g − gh)‖L2(Ω). (3.21)

For the first term we have by Lemma 3.8

‖σ
3
2∇g‖L2(Ω) ≤ C|ln h|

1
2 .

For the second term we apply [13, Lemma 10], which gives

‖σ
3
2∇(g − gh)‖L2(Ω) ≤ Ch

(

‖σ
3
2∆hgh‖L2(Ω) + ‖σ

1
2∇gh‖L2(Ω)

)

.

For the term ‖σ
3
2∆hgh‖L2(Ω) we get by Lemma 3.3

‖σ
3
2∆hgh‖L2(Ω) = ‖σ

3
2PhDδ̃‖L2(Ω) ≤ Ch−1.

Inserting this estimate into (3.21) we obtain

‖σ
3
2∇gh‖L2(Ω) ≤ C|lnh|

1
2 + Ch‖σ

1
2∇gh‖L2(Ω). (3.22)

Thus, it remains to estimate ‖σ
1
2∇gh‖L2(Ω). To this end we apply Lemma 3.5 and obtain

‖σ
1
2∇gh‖L2(Ω) ≤ C

(

‖σ
3
2PhDδ̃‖L2(Ω) + ‖σ− 1

2 gh‖L2(Ω)

)

.

Using Lemma 3.3 we obtain

‖σ
1
2∇gh‖L2(Ω) ≤ Ch−1 + C‖σ− 1

2 gh‖L2(Ω). (3.23)

To estimate ‖σ− 1
2 gh‖L2(Ω) we use Lemma 3.7, with α = β = − 1

2 and p = 3, to obtain

‖σ− 1
2 gh‖L2(Ω) ≤ C‖gh‖

1
2

L3(Ω)‖∇gh‖
1
2

L
3
2 (Ω)

≤ C‖gh‖
1
2

L3(Ω)‖∇g‖
1
2

L
3
2 (Ω)

, (3.24)

where in the last step we used stability of the Ritz projection in the W 1, 3
2 (Ω) seminorm, see [12]. Using the

inverse and the triangle inequalities,

‖gh‖L3(Ω) ≤ ‖g‖L3(Ω) + ‖g − gh‖L3(Ω) ≤ ‖g‖L3(Ω) + ‖ihg − gh‖L3(Ω) + ‖g − ihg‖L3(Ω)

≤ ‖g‖L3(Ω) + Ch−
1
2 ‖ihg − gh‖L2(Ω) + ‖g − ihg‖L3(Ω)

≤ ‖g‖L3(Ω) + Ch−
1
2 ‖g − gh‖L2(Ω) + Ch−

1
2 ‖g − ihg‖L2(Ω) + ‖g − ihg‖L3(Ω).

Using the approximation theory (3.7), the standard L2 estimate, and the properties of δ̃ function, we have

h−
1
2 ‖g−gh‖L2(Ω)+h

− 1
2 ‖g−ihg‖L2(Ω)+‖g−ihg‖L3(Ω) ≤ Ch

3
2 ‖g‖H2(Ω) ≤ Ch

3
2 ‖Dδ̃‖L2(Ω) ≤ Ch−1. (3.25)

By Lemma 3.8 we have

‖g‖L3(Ω) + ‖∇g‖
L

3
2 (Ω)

≤ Ch−1.

Inserting this in (3.24) and (3.23) we obtain

‖σ
1
2∇gh‖ ≤ Ch−1.

Using (3.22) we establish the lemma for N = 3.
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4. Weighted resolvent estimates. In this section we will prove the weighted resolvent estimates in two and

three dimensions. Since in this section (only) we will be dealing with complex valued function spaces, we need to

modify the definition of the L2-inner product as

(u, v)Ω =

∫

Ω

u(x)v̄(x) dx,

where v̄ is the complex conjugate of v. Moreover we introduce the spaces V = H1
0 (Ω) + iH1

0 (Ω) and Vh =
Vh + iVh.

In the continuous case for Lipschitz domains the following result was shown in [29]: For any γ ∈ (0, π2 ) there

exists a constant C = Cγ such that

‖(z +∆)−1v‖Lp(Ω) ≤
C

|z|
‖v‖Lp(Ω), z ∈ C \ Σγ , 1 ≤ p ≤ ∞, v ∈ Lp(Ω), (4.1)

where Σγ is defined by

Σγ = { z ∈ C | |arg z| ≤ γ } . (4.2)

In the finite element setting, it is also known that

‖(z +∆h)
−1χ‖Lp(Ω) ≤

C

|z|
‖χ‖Lp(Ω), for all z ∈ C \ Σγ , χ ∈ Vh (4.3)

for 1 ≤ p ≤ ∞. For smooth domains such result is established in [1] and for convex polyhedral domains in

[13, 17]. In [14, Theorem 7] we also established the following weighted resolvent estimate:

‖σ
N
2 (z +∆h)

−1χ‖L2(Ω) ≤
C| lnh|

|z|
‖σ

N
2 χ‖L2(Ω), for all z ∈ C \ Σγ , χ ∈ Vh. (4.4)

Our goal in this section is to establish another resolvent estimate in the weighted norm, which will be required

later.

THEOREM 4.1. Let N = 2, 3. For any γ ∈ (0, π2 ), there exists a constantC independent of h and z such that

‖σ
N
2 ∇∆−1

h (z +∆h)
−1χ‖L2(Ω) ≤

C|ln h|
N−1

N

|z|
‖σ

N
2 ∇∆−1

h χ‖L2(Ω), for all z ∈ C \ Σγ , χ ∈ Vh,

where Σγ is defined in (4.2).

Before we provide a proof of the above theorem we collect some preliminary results.

4.1. Preliminary resolvent results. The following lemma will be often used if dealing resolvent estimates.

LEMMA 4.2. Let for each z ∈ C \ Σγ the numbers αz, βz ∈ R+ be given and let Fz = −zα2
z + β2

z . Then

there exists a constant Cγ such that

|z|α2
z + β2

z ≤ Cγ |Fz | for all z ∈ C \ Σγ .

Proof. We consider the polar representation −zα2
z = |z|α2

ze
iφz with |φz | ≤ π − γ, since γ ≤ |arg z| ≤ π.

This results in

|z|α2
ze

iφz + β2
z = Fz .

Multiplying it by e−iφz/2 and taking real parts, we have

|z|α2
z + β2

z ≤ (cos (φz/2))
−1|Fz | ≤ (sin (γ/2))−1|Fz| = Cγ |Fz |.

The following result is a best approximation type estimate in H1 norm.

LEMMA 4.3. Let w ∈ V and let wh ∈ Vh with e = w − wh be defined by the orthogonality relation

z(e, χ)− (∇e,∇χ) = 0, for all χ ∈ Vh. (4.5)
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Then there exists a constant C > 0 such that for any χ ∈ Vh

‖∇(w − wh)‖L2(Ω) ≤ C inf
χ∈Vh

(

h−1‖w − χ‖L2(Ω) + ‖∇(w − χ)‖L2(Ω)

)

.

Proof. Although the proof is straightforward, we will provide it for a completeness. Using (4.5), for any

χ ∈ Vh we have

−z‖e‖2 + ‖∇e‖2 = −z(e, e) + (∇e,∇e) = −z(e, w − χ) + (∇e,∇(w − χ)) := F.

Using the Cauchy-Schwarz inequality, we obtain

|F | ≤ |z|‖e‖‖w− χ‖+ ‖∇e‖‖∇(w − χ)‖

Hence, by Lemma 4.2 and the Young’s inequality, we have

|z|‖e‖2 + ‖∇e‖2 ≤ Cγ (|z|‖e‖‖w− χ‖+ ‖∇e‖‖∇(w − χ)‖)

≤
|z|

2
‖e‖2 +

C2
γ

2
|z|‖w − χ‖2 +

1

2
‖∇e‖2 +

C2
γ

2
‖∇(w − χ)‖2.

Canceling, we obtain for all z ∈ C \Σγ

|z|‖e‖2 + ‖∇e‖2 ≤ C2
γ

(

|z|‖w − χ‖2 + ‖∇(w − χ)‖2
)

. (4.6)

Now we consider two cases: |z| ≤ h−2 and |z| > h−2.

Case 1: |z| ≤ h−2.

Using that |z| ≤ h−2 from (4.6) we immediately obtain

‖∇e‖ ≤ Cγ

(

h−1‖w − χ‖+ ‖∇(w − χ)‖
)

.

Case 2: |z| > h−2.

In this case from (4.6), we conclude

‖e‖2 ≤ C2
γ

(

‖w − χ‖2 +
1

|z|
‖∇(w − χ)‖2

)

≤ C2
γ

(

‖w − χ‖2 + h2‖∇(w − χ)‖2
)

.

To estimate ‖∇e‖ we use the triangle and the inverse estimate to obtain

‖∇e‖ ≤ ‖∇(w − χ)‖ + ‖∇(χ− wh)‖

≤ ‖∇(w − χ)‖ + Cinvh
−1‖χ− wh‖

≤ ‖∇(w − χ)‖ + Cinvh
−1(‖χ− w‖ + ‖e‖)

≤ Cinv(1 + Cγ)h
−1‖w − χ‖+ (CinvCγ + 1)‖∇(w − χ)‖.

Combining both cases, we complete the proof.

We will also need the following lemma.

LEMMA 4.4. Let wh ∈ Vh be the solution of

z(wh, ϕ)Ω − (∇wh,∇ϕ)Ω = (f, ϕ)Ω, for all ϕ ∈ Vh

for some f ∈ L
3
2 (Ω) + iL

3
2 (Ω). There exists a constant c > 0 such that

‖∇wh‖L3(Ω) ≤ C‖f‖
L

3
2 (Ω)

.

Proof. Let w = (z +∆)−1f . From the resolvent estimates [29] we have

‖(z +∆)−1f‖
L

3
2 (Ω)

≤
C

|z|
‖f‖

L
3
2 (Ω)

and ‖∆(z +∆)−1f‖
L

3
2 (Ω)

≤ C‖f‖
L

3
2 (Ω)

.
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Therefore ∆w ∈ L
3
2 (Ω) and using the elliptic regularity, see [11, Corollary 1], we can conclude that w ∈

W 2, 3
2 (Ω) with

‖w‖
W 2, 3

2 (Ω)
≤ C‖f‖

L
3
2 (Ω)

. (4.7)

Since W 2, 3
2 (Ω) is not embedded into C(Ω), we use the Scott-Zhang interpolant iSZ

h . Thus, by the triangle

inequality we have

‖∇wh‖L3(Ω) ≤ ‖∇w‖L3(Ω) + ‖∇(w − iSZ
h w)‖L3(Ω) + ‖∇(wh − iSZ

h w)‖L3(Ω) := J1 + J2 + J3.

Using the Sobolev embeddingW 2, 3
2 (Ω) →֒W 1,3(Ω) and (4.7) we have

J1 ≤ ‖w‖
W 2, 3

2 (Ω)
≤ C‖f‖

L
3
2 (Ω)

.

Similarly, using stability of iSZ
h we have

J2 ≤ ‖w‖
W 2, 3

2 (Ω)
≤ C‖f‖

L
3
2 (Ω)

.

To estimate J3, we first use the inverse inequality, Lemma 4.3, and (3.8), we have

J3 ≤ Ch−
1
2 ‖∇(wh − iSZ

h w)‖L2(Ω) ≤ Ch−
1
2

(

‖∇(wh − w)‖L2(Ω) + ‖∇(w − iSZ
h w)‖L2(Ω)

)

≤ Ch−
1
2

(

h−1‖w − iSZ
h w‖L2(Ω) + ‖∇(w − iSZ

h w)‖L2(Ω)

)

≤ C‖w‖
W 2, 3

2 (Ω)
≤ C‖f‖

L
3
2 (Ω)

.

Combining estimates for J1, J2, and J3 we obtain the lemma.

The following lemma is needed for the proof of our main resolvent estimate Theorem 4.1.

LEMMA 4.5. Let N = 2, 3. For a given χ ∈ Vh, let uh = (z +∆h)
−1χ, or equivalently

z(uh, ϕ)Ω + (∆huh, ϕ)Ω = (χ, ϕ)Ω, for all ϕ ∈ Vh. (4.8)

Then for any γ ∈ (0, π2 ), there exists a constant C independent of h and z such that

‖σ
N−2

2 ∆−1
h uh‖L2(Ω) ≤

C|ln h|
N−1

N

|z|
‖σ

N
2 ∇∆−1

h χ‖L2(Ω) for all z ∈ C \ Σγ . (4.9)

Proof. Most arguments will be using L2 inner-products and L2 norms over the whole domain Ω. To simplify

the notation in this proof we will denote ‖ · ‖L2(Ω) by ‖ · ‖ and (·, ·)Ω by (·, ·).
We will consider the cases N = 2 and N = 3 separately. Thus, for N = 2, we need to show

‖∆−1
h uh‖ ≤

C|ln h|
1
2

|z|
‖σ∇∆−1

h χ‖. (4.10)

To accomplish that, we test (4.8) with ϕ = −∆−2
h uh. We obtain

−z(uh,∆
−2
h uh)− (∆huh,∆

−2
h uh) = −(χ,∆−2

h uh).

Using that (uh,∆
−2
h uh) = ‖∆−1

h uh‖
2 and (∆huh,∆

−2
h uh) = −‖∇∆−1

h uh‖
2 we obtain

− z‖∆−1
h uh‖

2 + ‖∇∆−1
h uh‖

2 = −(χ,∆−2
h uh) = −(∆−1

h χ,∆−1
h uh). (4.11)

Using Lemma 4.2 we obtain

|z|‖∆−1
h uh‖

2 + ‖∇∆−1
h uh‖

2 ≤ Cγ |(∆
−1
h χ,∆−1

h uh)|, for z ∈ C \ Σγ .

For the right-hand side we have by the Cauchy-Schwarz and the Young’s inequalities,

|(∆−1
h χ,∆−1

h uh)| ≤ ‖∆−1
h χ‖‖∆−1

h uh‖ ≤
|z|

2Cγ
‖∆−1

h uh‖
2 +

C

|z|
‖∆−1

h χ‖2.
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With the Sobolev W 1,1(Ω) →֒ L2(Ω) in two space dimensions, the Poincare inequality, and using the property of

σ (3.4a), we obtain

‖∆−1
h χ‖ ≤ C‖∆−1

h χ‖W 1,1(Ω) ≤ C‖∇∆−1
h χ‖L1(Ω) ≤ C|lnh|

1
2 ‖σ∇∆−1

h χ‖.

Thus, we have

|z|‖∆−1
h uh‖

2 + ‖∇∆−1
h uh‖

2 ≤
C|lnh|

|z|
‖σ∇∆−1

h χ‖2 +
|z|

2
‖∆−1

h uh‖
2.

Kicking back
|z|
2 ‖∆−1

h uh‖
2, we establish (4.10) and hence the lemma for N = 2.

For N = 3, we need to show

‖σ
1
2∆−1

h uh‖ ≤
C|lnh|

2
3

|z|
‖σ

3
2∇∆−1

h χ‖. (4.12)

To accomplish that, we test (4.8) with ϕ = −∆−1
h Ph(σ∆

−1
h uh). We obtain

−z(uh,∆
−1
h Ph(σ∆

−1
h uh))− (∆huh,∆

−1
h Ph(σ∆

−1
h uh)) = −(χ,∆−1

h Ph(σ∆
−1
h uh)).

Using that

(uh,∆
−1
h Ph(σ∆

−1
h uh)) = (∆−1

h uh, Ph(σ∆
−1
h uh)) = ‖σ

1
2∆−1

h uh‖
2

and

(∆huh,∆
−1
h Ph(σ∆

−1
h uh)) = (∆h∆

−1
h uh, Ph(σ∆

−1
h uh))

= −(∇∆−1
h uh,∇Ph(σ∆

−1
h uh))

= −(∇∆−1
h uh,∇(σ∆−1

h uh))− (∇∆−1
h uh,∇(Ph − Id)(σ∆−1

h uh))

= −‖σ
1
2∇∆−1

h uh‖
2 − (∇∆−1

h uh,∇σ∆
−1
h uh)

− (σ
1
2∇∆−1

h uh, σ
− 1

2∇(Ph − Id)(σ∆−1
h uh)),

we obtain

− z‖σ
1
2∆−1

h uh‖
2 + ‖σ

1
2∇∆−1

h uh‖
2 = F, (4.13)

where

F = F1 + F2 + F3 := −(χ,∆−1
h Ph(σ∆

−1
h uh))− (∇∆−1

h uh,∇σ∆
−1
h uh)

− (σ
1
2∇∆−1

h uh, σ
− 1

2∇(Ph − Id)(σ∆−1
h uh)).

Using Lemma 4.2 we conclude

|z|‖σ
1
2∆−1

h uh‖
2 + ‖σ

1
2∇∆−1

h uh‖
2 ≤ Cγ |F |, for z ∈ C \ Σγ . (4.14)

By the Cauchy-Schwarz and the Young’s inequalities,

|F1| ≤ ‖σ
1
2∆−1

h χ‖‖σ
1
2∆−1

h uh‖ ≤
CCγ

|z|
‖σ

1
2∆−1

h χ‖2 +
|z|

4Cγ
‖σ

1
2∆−1

h uh‖
2

≤
CCγ

|z|
‖σ

3
2∇∆−1

h χ‖2 +
|z|

4Cγ
‖σ

1
2∆−1

h uh‖
2,

where in the last step we again use Lemma 3.7 with α = 1
2 , β = 0, and p = 2. To estimate F2 we use the

Cauchy-Schwarz and the Young’s inequalities, as well as the fact that |∇σ| ≤ C.

|F2| ≤ C‖σ
1
2∇∆−1

h uh‖‖σ
− 1

2∆−1
h uh‖ ≤

1

4Cγ
‖σ

1
2∇∆−1

h uh‖
2 + CCγ‖σ

− 1
2∆−1

h uh‖
2.
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Using Lemma 3.7 with α = β = − 1
2 , p = 3

2 and p′ = 3, we obtain

‖σ− 1
2∆−1

h uh‖
2 ≤ C‖∆−1

h uh‖
L

3
2 (Ω)

‖∇∆−1
h uh‖L3(Ω).

Using the properties of σ and the Hölder inequality, we have

‖∆−1
h uh‖

L
3
2 (Ω)

≤ C|lnh|
1
6 ‖σ

1
2∆−1

h uh‖,

and as a result

|F2| ≤
1

4Cγ
‖σ

1
2∇∆−1

h uh‖
2 +

|z|

4Cγ
‖σ

1
2∆−1

h uh‖
2 +

C

|z|
|lnh|

1
3 ‖∇∆−1

h uh‖
2
L3(Ω). (4.15)

Finally, using the Cauchy-Schwarz inequality, Lemma 3.2, and the Young’s inequality, we obtain

|F3| ≤ C‖σ
1
2∇∆−1

h uh‖‖σ
− 1

2∆−1
h uh‖ ≤

1

4Cγ
‖σ

1
2∇∆−1

h uh‖
2 + Cγ‖σ

− 1
2∆−1

h uh‖
2.

Similarly to the estimate of F2 above we obtain,

|F3| ≤
1

4Cγ
‖σ

1
2∇∆−1

h uh‖
2 +

|z|

4Cγ
‖σ

1
2∆−1

h uh‖
2 +

C

|z|
|lnh|

1
3 ‖∇∆−1

h uh‖
2
L3(Ω). (4.16)

Combining estimates for F1, F2, and F3, inserting them into (4.14) and kicking back, we obtain

|z|‖σ
1
2∆−1

h uh‖
2 + ‖σ

1
2∇∆−1uh‖

2 ≤
C

|z|
‖σ

3
2∇∆−1

h χ‖2 +
C

|z|
|lnh|

1
3 ‖∇∆−1

h uh‖
2
L3(Ω). (4.17)

Thus, in order to establish the lemma for N = 3, we need to show

‖∇∆−1
h uh‖L3(Ω) ≤ C|ln h|

1
2 ‖σ

3
2∇∆−1

h χ‖. (4.18)

This estimates follows by Lemma 4.4, Sobolev embedding theorem W 1,1(Ω) →֒ L
3
2 (Ω) combined with the

Poincare inequality, and the properties of σ. Indeed,

‖∇∆−1
h uh‖L3(Ω) ≤ C‖∆−1

h χ‖
L

3
2 (Ω)

≤ C‖∇∆−1
h χ‖L1(Ω) ≤ C|lnh|

1
2 ‖σ

3
2∇∆−1

h χ‖.

This concludes the proof of the lemma.

4.2. Proof of Theorem 4.1. For an arbitrary χ ∈ Vh, the solution to resolvent equation uh satisfies

z(uh, ϕ) + (∆huh, ϕ) = (χ, ϕ), for all ϕ ∈ Vh. (4.19)

First we test (4.19) with ϕ = ∆−1
h Ph(σ

Nuh) to obtain

z(uh,∆
−1
h Ph(σ

Nuh)) + (∆huh,∆
−1
h Ph(σ

Nuh)) = (χ,∆−1
h Ph(σ

Nuh)).

Using that

(∆huh,∆
−1
h Ph(σ

Nuh)) = (uh, Ph(σ
Nuh)) = (uh, σ

Nuh) = ‖σ
N
2 uh‖

2

and

(uh,∆
−1
h Ph(σ

Nuh)) = (∆−1
h uh, Ph(σ

Nuh)) = (∆−1
h uh, σ

Nuh) = (σN∆−1
h uh,∆h∆

−1
h uh)

= −(∇(Phσ
N∆−1

h uh),∇∆−1
h uh)

= −(∇(σN∆−1
h uh),∇∆−1

h uh)− (∇(Ph − Id)(σN∆−1
h uh),∇∆−1

h uh)

= −‖σ
N
2 ∇∆−1

h uh‖
2 −N(σN−1∇σ∆−1

h uh,∇∆−1
h uh)− (∇(Ph − Id)(σN∆−1

h uh),∇∆−1
h uh),
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we obtain

− z‖σ
N
2 ∇∆−1

h uh‖
2 + ‖σ

N
2 uh‖

2 = F, (4.20)

where

F = F1 + F2 + F3

:= (χ,∆−1
h Ph(σ

Nuh)) +Nz(σN−1∇σ∆−1
h uh,∇∆−1

h uh) + z(σ−N
2 ∇(Ph − Id)(σN∆−1

h uh), σ
N
2 ∇∆−1

h uh).

By Lemma 4.2 we conclude

|z|‖σ
N
2 ∇∆−1

h uh‖
2 + ‖σ

N
2 uh‖

2 ≤ Cγ |F |, for z ∈ C \ Σγ .

To estimate F1 we notice that

(χ,∆−1
h Ph(σ

Nuh)) = (∆−1
h χ, Ph(σ

Nuh)) = (σN∆−1
h χ, uh)

= (Ph(σ
N∆−1

h χ),∆h∆
−1
h uh)

= −(∇Ph(σ
N∆−1

h χ),∇∆−1
h uh)

= −(∇(σN∆−1
h χ),∇∆−1

h uh)− (∇(Ph − Id)(σN∆−1
h χ),∇∆−1

h uh)

= −(σN∇∆−1
h χ,∇∆−1

h uh)−N(σN−1∇σ∆−1
h χ,∇∆−1

h uh)

− (σ−N
2 ∇(Ph − Id)(σN∆−1

h χ), σ
N
2 ∇∆−1

h uh).

Using |∇σ| ≤ C, the Cauchy-Schwarz inequality, and the Young’s inequality, we obtain,

|F1| ≤ ‖σ
N
2 ∇∆−1

h uh‖‖σ
N
2 ∇∆−1

h χ‖+ C‖σ
N−2

2 ∆−1
h χ‖‖σ

N
2 ∇∆−1

h uh‖

+ ‖σ−N
2 ∇(Ph − Id)(σN∆−1

h χ)‖‖σ
N
2 ∇∆−1

h uh‖

≤
CCγ

|z|

(

‖σ
N
2 ∇∆−1

h χ‖2 + ‖σ
N−2

2 ∆−1
h χ‖2

)

+
|z|

4Cγ
‖σ

N
2 ∇∆−1

h uh‖
2,

where in the last step we used Lemma 3.2 to obtain

‖σ−N
2 ∇(Ph − Id)(σN∆−1

h χ)‖ ≤ C‖σ
N−2

2 ∆−1
h χ‖.

For N = 2, using the Sobolev embeddingW 1,1(Ω) →֒ L2(Ω) and the Poincare inequality, we obtain

‖vh‖ ≤ C‖vh‖W 1,1(Ω) ≤ C‖∇vh‖L1(Ω), for all vh ∈ Vh.

Using in addition the property of σ (3.4a), we obtain

‖∆−1
h χ‖ ≤ C‖∇∆−1

h χ‖L1(Ω) ≤ C|lnh|
1
2 ‖σ∇∆−1

h χ‖.

For N = 3, we use Lemma 3.7 with α = 1
2 , β = 0, and p = 2, to obtain

‖σ
1
2∆−1

h χ‖ ≤ C‖σ
3
2∇∆−1

h χ‖.

Thus,

|F1| ≤
CCγ |lnh|

3−N

|z|
‖σ

N
2 ∇∆−1

h χ‖2 +
|z|

4Cγ
‖σ

N
2 ∇∆−1

h uh‖
2.

To estimate F2 we use the Cauchy-Schwarz and the Young’s inequalities,

|F2| ≤ C|z|‖σ
N−2

2 ∆−1
h uh‖‖σ

N
2 ∇∆−1

h uh‖ ≤
|z|

4Cγ
‖σ

N
2 ∇∆−1

h uh‖
2 + CCγ |z|‖σ

N−2

2 ∆−1
h uh‖

2.

To estimate F3 we use Lemma 3.2, the Cauchy-Schwarz and the Young’s inequalities,

|F3| ≤ C|z|‖σ−N
2 ∇(Ph − Id)(σN∆−1

h uh)‖‖σ
N
2 ∇∆−1

h uh‖ ≤ Cγ |z|‖σ
N−2

2 ∆−1
h uh‖

2 +
|z|

4Cγ
‖σ

N
2 ∇∆−1

h uh‖
2.

Combining estimates for F1, F2, F3 and kicking back, we obtain

|z|‖σ
N
2 ∇∆−1

h uh‖
2 + ‖σ

N
2 uh‖

2 ≤
C|lnh|3−N

|z|
‖σ

N
2 ∇∆−1

h χ‖2 + C|z|‖σ
N−2

2 ∆−1
h uh‖

2. (4.21)

Now applying Lemma 4.5 to the last term concludes the proof of the theorem.
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5. Discrete maximal parabolic estimates. In this section we state stability results for inhomogeneous prob-

lems that are central in establishing our main results. Since we apply the following results for different norms on

Vh, namely, for Lp(Ω), weighted L2(Ω), and weighted H−1(Ω) norms, we state them for a general Banach norm

|||·|||.

Let |||·||| be a norm on Vh (naturally extended to a norm on Vh) such that for some γ ∈ (0, π2 ) the following

resolvent estimate holds,

∣

∣

∣

∣

∣

∣(z +∆h)
−1χ

∣

∣

∣

∣

∣

∣ ≤
Mh

|z|
|||χ|||, for all z ∈ C \ Σγ , χ ∈ Vh, (5.1)

where Σγ is defined in (4.2) and the constant Mh is independent of z.

This assumption is fulfilled for |||·||| = ‖·‖Lp(Ω), 1 ≤ p ≤ ∞, with a constant Mh ≤ C independent of h,

see [17], for |||·||| = ‖σ
N
2 (·)‖L2(Ω) with Mh ≤ C|lnh|, see [14, Theorem 7], and for |||·||| = ‖σ

N
2 ∇∆−1

h (·)‖L2(Ω)

with Mh ≤ C|lnh|
N−1

N , see Theorem 4.1.

We consider the inhomogeneous heat equation (1.1), with u0 = 0 and its discrete approximation ukh ∈ Xq,r
k,h

defined by

B(ukh, ϕkh) = (f, ϕkh), for all ϕkh ∈ Xq,r
k,h. (5.2)

The next result is a discrete maximal parabolic regularity result [15, Theorem 14].

LEMMA 5.1 (Discrete maximal parabolic regularity). Let |||·||| be a norm on Vh fulfilling the resolvent esti-

mate (5.1) and let 1 ≤ s ≤ ∞. Let ukh be a solution of (5.2). Then, there exists a constant C independent of k
and h such that

(

M
∑

m=1

∫

Im

|||∂tukh(t)|||
sdt

)

1
s

+

(

M
∑

m=1

∫

Im

|||∆hukh(t)|||
sdt

)

1
s

+

(

M
∑

m=1

km
∣

∣

∣

∣

∣

∣k−1
m [ukh]m−1

∣

∣

∣

∣

∣

∣

s

)

1
s

≤ CMh ln
T

k

(
∫

I

|||Phf(t)|||
s
dt

)
1
s

,

with obvious change of notation in the case s = ∞. For m = 1 the jump is understood as [ukh]0 = u+kh,0.

6. Proofs of pointwise global best approximation results. We are now ready to establish our main results.

6.1. Proof of Theorem 2.1. Proof. Let t̃ ∈ (0, T ] and let x0 ∈ Ω be an arbitrary but fixed point. Without

loss of generality we assume t̃ ∈ IM = (tM−1, T ]. Note, that the case t̃ = 0 is trivial, since ukh(0) = Phu0 and

the statement of the theorem follows by the stability of the L2 projection in the W 1,∞(Ω) norm. This stability

result is a consequence of the stability in the L∞(Ω) norm, see [7] and the standard inverse inequality.

We consider the following regularized Green’s function

−g̃t(t, x) −∆g̃(t, x) = Dδ̃x0
(x)θ̃(t) (t, x) ∈ I × Ω,

g̃(t, x) = 0, (t, x) ∈ I × ∂Ω,

g̃(T, x) = 0, x ∈ Ω,

(6.1)

where δ̃x0
is the smoothed Dirac introduced in (3.1), D denotes an arbitrary partial derivative in space, and

θ̃ ∈ C∞(0, T ) is the regularized Delta function in time with properties supp(θ̃) ⊂ IM , ‖θ̃‖L1(IM ) ≤ C and

(θ̃, ϕk)IM = ϕk(t̃), for all ϕk ∈ Xq
k .

Let g̃kh be dG(q)cG(r) approximation of g̃, i.e. B(ϕkh, g̃ − g̃kh) = 0. Then we have

−Dukh(t̃, x0) = (ukh, Dδ̃x0
θ̃) = B(ukh, g̃) = B(ukh, g̃kh) = B(u, g̃kh)

= −

M
∑

m=1

(u, ∂tg̃kh)Im×Ω + (∇u,∇g̃kh)I×Ω −

M
∑

m=1

(um, [g̃kh]m)Ω = J1 + J2 + J3,



16 DMITRIY LEYKEKHMAN AND BORIS VEXLER

where in the sum with jumps we included the last term by setting g̃kh,M+1 = 0 and defining consequently

[g̃kh]M = −g̃kh,M . Using the Hölder inequality, stability of the Ritz projection in W 1,∞(Ω) from [12] and the

L∞ error estimate from Lemma 3.1 we have

J1 = −

M
∑

m=1

(

(Rhu,∆h∆
−1
h ∂tg̃kh)Im×Ω + ((I −Rh)u, ∂tg̃kh)Im×Ω

)

=
M
∑

m=1

(

(∇Rhu,∇∆−1
h ∂tg̃kh)Im×Ω − ((I −Rh)u, ∂tg̃kh)Im×Ω

)

≤

M
∑

m=1

(

‖∇u‖L∞(Im×Ω)‖∇∆−1
h ∂tg̃kh‖L1(Im;L1(Ω)) + ‖(I −Rh)u‖L∞(Im×Ω)‖∂tg̃kh‖L1(Im;L1(Ω))

)

≤ C|ln h|
1
2 ‖∇u‖L∞(I×Ω)

M
∑

m=1

‖σ
N
2 ∇∆−1

h ∂tg̃kh‖L1(Im;L2(Ω))

+ Ch|lnh|‖∇u‖L∞(I×Ω)

M
∑

m=1

‖∂tg̃kh‖L1(Im;L1(Ω)).

Applying the discrete maximal parabolic regularity result from Lemma 5.1 with respect to ‖σ
N
2 ∇∆−1

h (·)‖L2(Ω)

and with respect to the L1(Ω) norm we get

J1 ≤ C ln
T

k
‖∇u‖L∞(I×Ω)

(

|lnh|
1
2
+N−1

N ‖σ
N
2 ∇∆−1

h PhDδ̃‖L2(Ω)‖θ̃‖L1(IM ) + h|lnh|‖PhDδ̃‖L1(Ω)‖θ̃‖L1(IM )

)

≤ C|lnh|
2N−1

N ln
T

k
‖∇u‖L∞(I×Ω),

(6.2)

where in the last step we used Lemma 3.9, Lemma 3.3 and the fact that ‖θ̃‖L1(IM ) ≤ C. Similarly, using the

Hölder inequality, properties of σ, Lemma 5.1, and Lemma 3.9, we have

J2 = (∇u,∇gkh)I×Ω ≤ ‖∇u‖L∞(I×Ω))‖∇g̃kh‖L1(I;L1(Ω))

≤ C|lnh|
1
2 ‖∇u‖L∞(I×Ω)‖σ

N
2 ∇g̃kh‖L1(I;L2(Ω))

≤ C|lnh|
1
2
+N−1

N ln
T

k
‖∇u‖L∞(I×Ω)‖σ

N
2 ∇∆−1

h PhDδ̃‖L2(Ω)‖θ̃‖L1(IM )

≤ C|lnh|
2N−1

N ln
T

k
‖∇u‖L∞(I×Ω).

(6.3)

Similarly to the estimate of J1, using the Hölder inequality, properties of σ, and Lemma 3.1 we have

J3 = −

M
∑

m=1

(

(Rhum, [g̃kh]m)Ω + ((I −Rh)um, [g̃kh]m)Ω

)

=

M
∑

m=1

(

(∇um, [∇∆−1
h g̃kh]m)Ω − ((I −Rh)um, [g̃kh]m)Ω

)

≤
M
∑

m=1

‖∇um‖L∞(Ω)‖[∇∆−1
h g̃kh]m‖L1(Ω) +

M
∑

m=1

‖(I −Rh)um‖L∞(Ω)‖[g̃kh]m‖L1(Ω)

≤ C|ln h|
1
2 ‖∇u‖L∞(I×Ω)

M
∑

m=1

‖σ
N
2 [∇∆−1

h g̃kh]m‖L2(Ω) + Ch|lnh|‖∇u‖L∞(I×Ω)

M
∑

m=1

‖[g̃kh]m‖L1(Ω).

Applying the discrete maximal parabolic regularity result from Lemma 5.1 with respect to ‖σ
N
2 ∇∆−1

h (·)‖L2(Ω)

and with respect to the L1(Ω) norm we get

J3 ≤ C ln
T

k
‖∇u‖L∞(I×Ω)

(

|lnh|
1
2
+N−1

N ‖σ
N
2 ∇∆−1

h PhDδ̃‖L2(Ω)‖θ̃‖L1(IM ) + h|lnh|‖PhDδ̃‖L1(Ω)‖θ̃‖L1(IM )

)

≤ C|lnh|
2N−1

N ln
T

k
‖∇u‖L∞(I×Ω),

(6.4)
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where in the last step we again used Lemma 3.9, Lemma 3.3, and the fact that ‖θ̃‖L1(IM ) ≤ C. Combining the

estimates for J1, J2, and J3, and taking supremum over all partial derivatives, we conclude that

|∇ukh(t̃, x0)| ≤ Cℓhℓk‖∇u‖L∞(I×Ω).

Using that the dG(q)cG(r) method is invariant on Xq,r
k,h, by replacing u and ukh with u − χ and ukh − χ for any

χ ∈ Xq,r
k,h, and using the triangle inequality we obtain Theorem 2.1.

7. Proof of pointwise interior best approximation results.

7.1. Proof of Theorem 2.2. To obtain the interior estimate we introduce a smooth cut-off function ω with

the properties that

ω(x) ≡ 1, x ∈ Bd (7.1a)

ω(x) ≡ 0, x ∈ Ω\B2d (7.1b)

|∇ω| ≤ Cd−1, |∇2ω| ≤ Cd−2, (7.1c)

where Bd = Bd(x0) is a ball of radius d centered at x0.

As in the proof of Theorem 2.1, we obtain

−Dukh(t̃, x0) = B(ukh, g̃kh) = B(u, g̃kh) = B(ωu, g̃kh) +B((1 − ω)u, g̃kh), (7.2)

where g̃kh is the solution of (6.1). The first term can be estimated using the global result from Theorem 2.1. To

this end we introduce ũ = ωu and the corresponding dG(q)cG(r) solution ũkh ∈ Xq,r
k,h defined by

B(ũkh − ũ, ϕkh) = 0 for all ϕkh ∈ Xq,r
k,h.

There holds

B(ũ, g̃kh) = B(ũkh, gkh) = −Dũkh(t̃, x0) ≤ Cℓkℓh‖∇ũ‖L∞(I×Ω)

≤ Cℓkℓh
(

d−1‖u‖L∞(I×B2d) + ‖∇u‖L∞(I×B2d)

)

.

This results in

|∇ukh(t̃, x0)| ≤ Cℓkℓh
(

d−1‖u‖L∞(I×B2d) + ‖∇u‖L∞(I×B2d)

)

+B((1 − ω)u, g̃kh). (7.3)

It remains to estimate the termB((1−ω)u, g̃kh). Using the dual expression (2.3) of the bilinear formB we obtain

B((1 − ω)u, g̃kh) = −

M
∑

m=1

((1 − ω)u, ∂tg̃kh)Im×Ω + (∇((1 − ω)u),∇g̃kh)I×Ω

−

M
∑

m=1

((1 − ω)um, [g̃kh]m)Ω = J1 + J2 + J3,

(7.4)

where again in the sum with jumps we included the last term by setting g̃kh,M+1 = 0 and defining consequently

[g̃kh]M = −g̃kh,M . For J1, adding and subtracting (Rh(1− ω)u, ∂tg̃kh)I×Ω, we obtain

J1 = −

M
∑

m=1

(Rh(1− ω)u, ∂tg̃kh)Im×Ω +

M
∑

m=1

((I −Rh)(1− ω)u, ∂tg̃kh)Im×Ω = J11 + J12.

Using that σ−N
2 ≤ Cd−

N
2 on Ω\Bd and (1 − ω) ≤ 1, we obtain

J11 =

M
∑

m=1

(∇((1 − ω)u),∇∆−1
h ∂tg̃kh)Im×Ω

=
M
∑

m=1

(σ−N
2 ∇((1 − ω)u), σ

N
2 ∇∆−1

h ∂tg̃kh)Im×Ω

≤ Cd−
N
2

M
∑

m=1

‖∇((1 − ω)u)‖L∞(Im;L2(Ω))‖σ
N
2 ∇∆−1

h ∂tg̃kh‖L1(Im;L2(Ω))

≤ Cd−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

M
∑

m=1

‖σ
N
2 ∇∆−1

h ∂tg̃kh‖L1(Im;L2(Ω)).
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Applying the discrete maximal parabolic regularity result from Lemma 5.1 with respect to ‖σ
N
2 ∇∆−1

h (·)‖L2(Ω)

we get

J11 ≤ C ln
T

k
|ln h|

N−1

N d−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

‖σ
N
2 ∇∆−1

h PhDδ̃‖L2(Ω)‖θ̃‖L1(IM )

≤ C ln
T

k
|ln h|

N−1

N + 1
2 d−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

,

(7.5)

where in the last step we used Lemma 3.9, Lemma 3.3 and the fact that ‖θ̃‖L1(IM ) ≤ C.

The estimate for J12 is slightly more involved sinceRh is a global operator. Put ψ = (1−ω)u, then pointwise

in time we obtain

((I −Rh)ψ, ∂tg̃kh)Ω = ((I −Rh)ψ, ∂tg̃kh)Bd/2
+ ((I −Rh)ψ, ∂tg̃kh)Ω\Bd/2

= I1 + I2.

Using local pointwise error estimates [25], the fact that ψ is supported on Ω\Bd, and the standard error estimate

for Rh we have

I1 ≤ ‖(I −Rh)ψ‖L∞(Bd/2)‖∂tg̃kh‖L1(Bd/2)

≤ C
(

|lnh|‖ψ‖L∞(Bd) + d−
N
2 ‖(I −Rh)ψ‖L2(Ω)

)

‖∂tg̃kh‖L1(Ω)

≤ Chd−
N
2 ‖∇ψ‖L2(Ω)‖∂tg̃kh‖L1(Ω) ≤ Chd−

N
2

(

d−1‖u‖L2(Ω) + ‖∇u‖L2(Ω)

)

‖∂tg̃kh‖L1(Ω).

Using that σ ≥ Cd on Ω\Bd/2 we have for I2:

I2 = (σ−N
2 (I −Rh)ψ, σ

N
2 ∂tg̃kh)Ω\Bd/2

≤ Cd−
N
2 ‖(I −Rh)ψ‖L2(Ω)‖σ

N
2 ∂tg̃kh‖L2(Ω)

≤ Chd−
N
2 ‖∇ψ‖L2(Ω)‖σ

N
2 ∂tg̃kh‖L2(Ω) ≤ Chd−

N
2

(

d−1‖u‖L2(Ω) + ‖∇u‖L2(Ω)

)

‖σ
N
2 ∂tg̃kh‖L2(Ω).

Combining estimates for I1 and I2 and using discrete maximal parabolic regularity from Lemma 5.1 with respect

to the L1(Ω) norm and ‖σ
N
2 (·)‖L2(Ω), we obtain

J12 ≤ Chd−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

M
∑

m=1

(

‖∂tg̃kh‖L1(Im×Ω) + ‖σ
N
2 ∂tg̃kh‖L1(Im;L2(Ω))

)

≤ C ln
T

k
hd−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

‖θ̃‖L1(IM )×

(

‖PhDδ̃‖L1(Ω) + |lnh|‖σ
N
2 PhDδ̃‖L2(Ω)

)

≤ C ln
T

k
|lnh|d−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

,

(7.6)

where in the last step we used Lemma 3.3. Thus, combining estimates for J11 and J12 we obtain

J1 ≤ C ln
T

k
|lnh|

N−1

N + 1
2 d−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

.

To estimate J2, we use the Hölder inequality, Lemma 5.1, and Lemma 3.9, to obtain

J2 = (σ−N
2 ∇((1− ω)u), σ

N
2 ∇g̃kh)I×Ω

≤ Cd−
N
2 ‖∇((1 − ω)u)‖L∞(I;L2(Ω))‖σ

N
2 ∇g̃kh‖L1(I;L2(Ω))

≤ C ln
T

k
|lnh|

N−1

N d−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

‖σ
N
2 ∇∆−1

h PhDδ̃‖L2(Ω)‖θ̃‖L1(IM )

≤ C ln
T

k
|lnh|

N−1

N + 1
2 d−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

.

(7.7)

Similarly to J1, to estimate J3, we, add and subtract (Rh(1− ω)u, [g̃kh]m)Ω, to obtain

J3 = −

M
∑

m=1

(Rh((1− ω)um), [g̃kh]m)Ω +

M
∑

m=1

((I −Rh)((1 − ω)um), [g̃kh]m)Ω = J31 + J32.
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Similarly to J11, using that σ−N
2 ≤ Cd−

N
2 on Ω\Bd and (1− ω) ≤ 1, we obtain

J31 =

M
∑

m=1

(∇((1 − ω)u),∇∆−1
h [g̃kh]m)Ω

=
M
∑

m=1

(σ−N
2 ∇((1 − ω)u), σ

N
2 ∇∆−1

h [g̃kh]m)Ω

≤ Cd−
N
2

M
∑

m=1

‖∇((1− ω)u)‖L∞(Im;L2(Ω))‖σ
N
2 ∇∆−1

h [g̃kh]m‖L2(Ω)

≤ Cd−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

M
∑

m=1

‖σ
N
2 ∇∆−1

h [g̃kh]m‖L2(Ω)

≤ C ln
T

k
|ln h|

N−1

N d−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

‖σ
N
2 ∇∆−1

h PhDδ̃‖L2(Ω)‖θ̃‖L1(IM )

≤ C ln
T

k
|ln h|

N−1

N + 1
2 d−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

.

(7.8)

Similarly to J12 we also obtain

J32 ≤ C ln
T

k
|lnh|d−

N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

.

Combining the estimates for J1, J2, and J3, and taking supremum over all partial derivatives, we conclude that

|∇ukh(t̃, x0)| ≤ Cℓkℓh

(

d−1‖u‖L∞(I×B2d) + ‖∇u‖L∞(I×B2d)

+ d−
N
2

(

d−1‖u‖L∞(I;L2(Ω)) + ‖∇u‖L∞(I;L2(Ω))

)

)

.

Using that the dG(q)cG(r) method is invariant on Xq,r
k,h, by replacing u and ukh with u − χ and ukh − χ for any

χ ∈ Xq,r
k,h, we obtain Theorem 2.2.
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