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Abstract

We present a non-parametric method to estimate the discount curve from market
quotes based on the Moore–Penrose pseudoinverse. The discount curve reproduces
the market quotes perfectly, has maximal smoothness, and is given in closed-form.
The method is easy to implement and requires only basic linear algebra operations.
We provide a full theoretical framework as well as several practical applications.
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1 Introduction

In financial models it is often assumed that we can observe an initial term-structure of
zero-coupon bond prices for the continuum of maturities, also known as the discount
curve. In practice, however, zero-coupon bonds are rarely traded and the discount curve
has to be derived from prices of actively traded fixed-income instruments such as coupon
bonds, interest rate swaps or futures. Since the discount curve is an infinite-dimensional
object, we need an interpolation method to complete the information obtained from the
finite number of observed market instruments. Broadly speaking we can divide term-
structure estimation methods in two categories: parametric methods and non-parametric
methods.
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Parametric methods impose a particular functional form for (parts of) the discount curve
and calibrate the parameters by minimizing the pricing error. Examples of single-piece
functions that are defined over the entire maturity domain include the seminal work of
Nelson and Siegel (1987) and Svensson (1994). These are typically low-dimensional para-
metric forms and are preferred for more qualitative studies where the general shape of the
curve is more important than the exact values (e.g. monetary policy in central banks).
Single-piece functional forms are however too restrictive for institutions involved in trading
as they prefer to have a discount curve that perfectly reproduces market quotes in order
to mark to market their books within a single arbitrage-free valuation framework. Rather
than specifying a single function for the entire maturity spectrum, polynomial spline meth-
ods impose a piecewise polynomial specification. The first application in term-structure
estimation goes back to McCulloch (1971, 1975) where quadratic and cubic splines are
fitted directly to the discount function using ordinary least squares regressions. Steeley
(1991) proposed the use of B-splines to overcome ill-conditioned matrices encountered in
McCulloch (1971, 1975). We refer to Hagan and West (2006) for a survey of several other
spline based algorithms. A close fit to market data can be achieved by increasing the
number of knot points in the spline. The choice of both the number and the positions of
the knot points remains, however, completely ad hoc.

A second class of estimation methods are the non-parametric approaches. Instead of im-
posing a particular functional form on (a transformation of) the discount curve, these
methods minimize a norm that is related to the smoothness and goodness-of-fit of the
curve. Several definitions of smoothness have been considered in the literature. Delbaen and Lorimier
(1992) and Frishling and Yamamura (1996) minimize the integrated squared first deriva-
tive of the forward curve, arguing that forward rates over various harizons should not
vary too much. Adams and Van Deventer (1994) and Lim and Xiao (2002), among oth-
ers, use the integrated squared second order derivative of the forward curve as a measure
of smoothness. Both approaches lead to polynomial splines for the optimal forward curve.
Manzano and Blomvall (2004), Andersen (2007), and Kwon (2002) consider combinations
of these two measures and show that this results in so called hyperbolic or tension splines.
All of the above papers smooth a transformation of the discount curve (typically the for-
ward curve) and numerical routines have to be invoked to solve for the optimal curve.
Exceptions are the works of Delbaen and Lorimier (1992) and Adams and Van Deventer
(1994) for the special case where the set of benchmark instruments consists solely of zero-
coupon bonds. In reality, however, zero-coupon bonds are hardly ever liquidly traded
and the discount curve has to be estimated based on coupon bearing bonds or swaps
rates.

In this paper we introduce an easy to use non-parametric method based on the Moore–
Penrose pseudoinverse. We search in an infinite-dimensional Hilbert function space for
a discount curve that has minimal norm and exactly prices a benchmark set of linear
fixed-income instruments, e.g. FRAs, swaps, or coupon bonds. The norm is related to
the integrated squared second derivative of the discount curve. The optimal discount
curve is given by a cubic spline with knot points positioned exactly at the cashflow dates
of the benchmark instruments. Because we directly smooth the discount curve func-
tion, the optimal curve is given in closed form and requires only simple linear algebra
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calculations. The methodology in this paper closely resembles that of Lorimier (1995),
Adams and Van Deventer (1994), Tanggaard (1997), Andersen (2007), and others, how-
ever they all focus on estimating transformations of the discount curve (e.g., the forward
curve). To the best of our knowledge, this paper is the first to present a fully worked out
treatment of non-parametrically estimating the discount curve itself. We argue that our
method is a valuable and easy to use alternative to more complex numerical algorithms
to find a smooth discount curve.

Our method is designed to exactly reproduce the prices of benchmark instruments. This
is common practice when the benchmark instruments are liquid Libor related instruments
(e.g., swaps). The prices are typically taken to be the mid-prices. When building discount
curves using coupon bonds, bid-ask ranges are often wider and a discount curve is in
principle allowed to produce any price that lies within this range. We show how to
optimally pick the prices within bid-ask ranges such that the smoothness of the discount
curve is maximally increased. In case the benchmark instruments are coupon bonds, we
show that this reduces to solving a convex quadratic programming problem with linear
inequality constraints.

As highlighted initially by Vasicek and Fong (1982) and Shea (1984), fitting a polynomial
spline directly to the discount curve need not lead to a positive nor a monotonically
non-increasing discount curve. Barzanti and Corradi (1998) use tension splines where
the tension in the spline is increased manually until problematic behaviour is avoided.
Chiu et al. (2008), Laurini and Moura (2010), and Fengler and Hin (2015), among others,
impose shape constraints on the B-splines used to represent the discount function. The
discount curve produced by our method is not guaranteed to be positive or monotonic
non-increasing, however we did not find this to be a problem in the numerical examples
we have explored. We develop a finite-dimensional counterpart of our method for which
positivity and monotonicity constraints can easily be incorporated by numerically solving
a convex quadratic programming problem with linear inequality constraints.

This paper is structured as follows. Section 2 casts the term-structure estimation problem
and shortly reviews the steps taken in a traditional bootstrap. Section 3 presents the
theory behind our proposed method. In Section 4 we discuss the sensitivity of the optimal
discount curve with respect to the input prices. In particular this section shows how to
optimally choose prices from a bid-ask range. Section 5 illustrates our method with
market data. Section 6 contains a finite-dimensional equivalent of our method. Section 7
concludes. The appendix contains all proofs.

2 Estimation problem

Suppose today is time 0 and denote by p = (p1, . . . , pn)
⊤ the observed prices of n fixed-

income instruments. Denote by 0 ≤ x1 < · · · < xN the union of all the cashflow dates
of these instruments and call C = (cij) the corresponding n × N cashflow matrix.1 If

1By cashflow dates we mean every date that is relevant for the pricing of the instrument.
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instrument i does not have a cashflow at time xj , then we simply set cij = 0. The
information contained in these n instruments about the discount curve can be summarized
by a linear system as follows:

Cd = p, (1)

with d = (g(x1), . . . , g(xN))
⊤ and where g(x) denotes the price of a zero-coupon bond

maturing in x years. If C were an invertible square matrix, then there would exist a
unique solution to this system: d = C−1p. In reality, however, we typically have many
more cashflow dates than instruments (n ≪ N) that we can use for the estimation. In
other words, the linear system Cd = p is under-determined and there exist many discount
vectors d that satisfy the relation in (1).2 The first problem that arises is therefore
which of the admissible discount vectors should be chosen. Second, once we have chosen
a particular admissible vector d, we still face an interpolation problem to find g(x) for
x ∈ (0, x1) and x ∈ (xi−1, xi), i = 2, . . . , N .

Bootstrapping is a common practice among trading desks to construct a discount curve
from a limited number of carefully selected liquid market instruments such that the re-
sulting curve perfectly reproduces the prices of the instruments used in the estimation.
There is no unique bootstrapping method and it is likely that there are at least as many
methods as there are trading desks in the world. In this section we give a very brief
description of some methods, for a more detailed overview of the most popular (single-
curve) bootstrapping methods used in practice we refer to Hagan and West (2006, 2008).
In general, one can a priori impose an explicit parametric form for the discount curve:
g(x) = g(x; z) for some parameter z with dimension less than or equal to the number
of observed instruments n. The pricing system (1) then becomes a system of possibly
nonlinear equations in z:

C(g(x1; z), . . . , g(xN ; z))
⊤ = p.

Assuming that the gradients ∇zg(xj, z), j = 1, . . . , N , are linearly independent, the in-
verse mapping theorem asserts that this system is no longer (locally) under-determined
with respect to the parameter z. If it admits a solution z∗ then it is (locally around z∗)
unique. The choice of a suitable parametric form g(x; z) is however not straightforward.
One possibility is to choose a polynomial of degree n−1, also known as the Lagrange poly-
nomial. Although this function is very smooth and flexible enough to satisfy n constraints,
it demonstrates strong oscillatory behavior. A standard solution to this so called ‘roller
coaster’ effect is to describe the discount curve by splines, i.e. piece-wise low-dimensional
polynomials. There are many different ways to specify the functional form of a spline and
the position of the knot points, see for example McCulloch (1971, 1975), Steeley (1991)
and Adams (2001). It is important to note that in all these cases the spline solution is
imposed a priori and both the number and the position of the knot points are chosen
manually. The method we present in the next section also produces a spline. However,
it remains fully non-parametric in the sense that the spline is the outcome of a proper
optimization problem which determines the optimal number and position of the knot
points.

2Assuming the system is not inconsistent, i.e. instruments that can be replicated as a linear combina-
tion of other instruments must have the same price (no-arbitrage).
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3 Pseudoinverse on Hilbert spaces

Instead of first finding a discount vector d = (g(x1), . . . , g(xN))
⊤ satisfying (1) and in a

second step interpolating these discount factors to a continuous discount curve, we now
directly search for a discount curve in a convenient Hilbert function space that is optimal
in the sense of having minimal norm. The optimal discount curve is explicitly calculated
through the pseudoinverse of a continuous linear map.

We fix a finite time to maturity horizon τ̄ large enough to contain all cashflow dates. We
define the Hilbert space of discount curves H which consists of real functions g : [0, τ̄ ] → R

with absolutely continuous first derivative and norm given by

‖g‖2H = 〈g, g〉H = g(0)2 + g′(0)2 +

∫ τ̄

0

g′′(x)2 dx. (2)

This norm serves as a measure of smoothness for the discount curve, which approximately
captures the ‘flatness’ of the corresponding forward curve. The forward rate is the rate one
can lock in today on a riskless loan over a future time period. Unless there are specific
reasons to believe otherwise, the forward rate should not fluctuate too much from one
period to the next. If we denote by F (x, y) the simple forward rate over a future time
period [x, y], 0 < x < y, then we have for small h > 0:

g′′(x) ≈
g(x− h)− 2g(x) + g(x+ h)

h2

=
g(x)

h

(

F (x− h, x) +
1

h

(
1

1 + hF (x, x+ h)
− 1

))

≈
g(x)

h

(

F (x− h, x)− F (x, x+ h)
)

.

Hence, by minimizing the curvature of the discount curve, we are approximately minimiz-
ing the difference between subsequent simple forward rates.

For any τ ∈ [0, τ̄ ] we now define the linear functional Φτ : H → R which evaluates the
discount curve at τ :

Φτ (g) = g(τ). (3)

By the Riesz representation theorem there exists a unique element φτ ∈ H such that for
any g ∈ H we have

Φτ (g) = 〈φτ , g〉H.

The following lemma gives an explicit expression for this element.

Lemma 3.1. The linear functional Φτ on H can be uniquely represented by the element
φτ ∈ H given by

φτ (x) = 1−
1

6
(x ∧ τ)3 +

1

2
xτ (2 + x ∧ τ) ,

where we write x ∧ τ := min(x, τ).
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Let us define the linear map M : H → R
n by

Mg = C(Φx1(g), . . . ,ΦxN
(g))⊤, (4)

where C is just as before the n×N cashflow matrix. We henceforth assume that C has
full rank. This is without loss of generality. Indeed, if C did not have full rank, we would
be including redundant instruments in our estimation as they can be replicated by linear
combinations of other instruments. For example, two coupon bonds with different prin-
cipal but otherwise identical characteristics impose the same constraints on the discount
curve (assuming their prices are consistent with the law of one price).

We now find the discount curve with minimal H-norm that matches all benchmark quotes.
That is, we solve the following infinite-dimensional optimization problem:

min
g∈H

1
2
‖g‖2H

s.t. Mg = p.
(5)

The solution of (5) is an explicit piecewise cubic function, as shown in the following
theorem:

Theorem 3.2. There exists a unique solution g∗ ∈ H to the optimization problem (5)
and it is given as

g∗(x) = (M+p)(x) = z⊤φ(x), (6)

whereM+ : Rn → H denotes the Moore–Penrose pseudoinverse ofM , z = C⊤
(
CAC⊤

)−1
p,

φ(x) = (φx1(x), . . . , φxN
(x))⊤, and A is the positive definite N × N-matrix with compo-

nents Aij = φxi
(xj) = φxj

(xi).

We have therefore explicitly constructed the discount curve x 7→ g∗(x) that exactly repli-
cates the prices p of the instruments with cashflows C and moreover it is the smoothest
curve to do so among all real functions with absolutely continuous first derivative in the
sense that it minimizes the norm in (2). The corresponding instantaneous forward curve
f ∗ : [0, τ̄ ] → R is given explicitly by:

f ∗(x) = −
d

dx
ln(g∗(x)) = −

z⊤φ′(x)

z⊤φ(x)
,

where φ′(x) = (φ′
x1
(x), . . . , φ′

xN
(x))⊤ and φ′

xj
(x) = xj −

1
2
(x ∧ xj)

2 + xj(x ∧ xj).

Remark 3.3. Gourieroux and Monfort (2013) characterize dynamic term-structure mod-
els in which the zero-coupon bond prices are of the form P (t, T ) = z⊤t a(T − t), where zt is
a set of N ≥ 1 linearly independent stochastic factors and a : R+ → R

N is a deterministic
function. They show that the absence of arbitrage opportunity for a self-financed portfolio
of zero-coupon bonds implies that there must exist a matrix M such that a′(τ) = Ma(τ).
The function φ = (φx1, . . . , φxN

)⊤ does not satisfy this requirement and hence (6) is not
consistent with a dynamic term-structure model. Similarly, the Nelson and Siegel (1987)
and Svensson (1994) specifications are also not arbitrage-free in a dynamic sense, see e.g.
Filipović (2000).
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The terms g(0)2 and g′(0)2 are included in (2) to guarantee the definiteness of the norm.
Since the discount curve must start at face value, we henceforth impose g(0) = 1 by
setting x1 = 0, p1 = 1, c11 = 1, and c1j = ci1 = 0 for all i, j 6= 1. Hence, minimizing g(0)2

does not influence the optimal curve since it is fixed in the constraints.

The term g′(0)2 leads to a minimization of the instantaneous short rate. If this is not
desirable, we can easily fix the short rate to an exogenously specified value r ∈ R. Indeed,
note that ψ(x) = x is the Riesz representation of the linear functional Ψ(g) = g′(0) in H .
We now add Ψ(g) = −r as an additional constraint in (5) and find (analogously as in the
proof of Theorem 3.2) the following unique solution:

g∗(x) = z̃⊤φ̃(x), (7)

with z̃ = C̃⊤

(

C̃ÃC̃⊤

)−1

p̃, C̃ = blkdiag(C, 1), p̃ =

(
p

−r

)

, φ̃(x) =

(
φ(x)
ψ(x)

)

, and Ã is the

positive definite (N + 1)× (N + 1) matrix with components

Ãij =







Aij i ≤ j ≤ N

xi i < j = N + 1

1 i = j = N + 1

.

4 Discount curve sensitivites

The optimal discount curve (6) depends on the benchmark quotes through the vector
z = C⊤(CAC⊤)−1p. Depending on the type of benchmark instruments used, their quotes
can enter through the price vector p or through the cashflow matrix C. For example,
prices of coupon bonds enter through p, while swap rates and forward rates enter through
C. The results in this section are derived for the curve in (6), however the results for
the optimal curve (7) with constrained short rate directly follow by replacing p, C, z, A, φ
with p̃, C̃, z̃, Ã, φ̃, respectively.

4.1 Portfolio hedging

The sensitivities of the optimal discount curve g∗(x; p, C) with respect to the entries of p
and C are most easily expressed using directional derivatives:

Lemma 4.1.

1. The directional derivative Dpg
∗ ·v ∈ H of the optimal discount curve g∗ in (6) along

a vector v ∈ R
n is given by

(Dpg
∗ · v) (x) =

n∑

i=1

vi
∂g∗

∂pi
(x) = c(v)⊤φ(x),

with c(v) = C⊤
(
CAC⊤

)−1
v ∈ R

N .
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2. The directional derivative DCg
∗ · m ∈ H of the optimal discount curve g∗ in (6)

along a matrix m ∈ R
n×N is given by

(DCg
∗ ·m) (x) =

n∑

i=1

N∑

j=1

mij
∂g∗

∂Cij

(x) = f(m)⊤φ(x),

with f(m) =
[
m⊤ − C⊤(CAC⊤)−1(CAm⊤ +mAC⊤)

]
(CAC⊤)−1p ∈ R

N .

These sensitivities can be used in practice to hedge a portfolio of securities against changes
in the discount curve. Consider for example a bond portfolio which generates fixed cash-
flows ck in τk years, τk ∈ [0, τ̄ ], k = 1, . . . , K, and denote its current value by Vport.
Suppose that all benchmark instruments are coupon bonds.3 A change ∆pi in the price
of the i-th benchmark instrument leads to the following change ∆Vport in the value of the
bond portfolio:

∆Vport =

n∑

i=1

∂Vport

∂pi
∆pi =

n∑

i=1

K∑

k=1

ck (Dpg
∗ · ei) (τk)

︸ ︷︷ ︸

=:qi

∆pi,

where ei ∈ R
n denotes the i-th canonical basis vector. Hence, we can hedge the bond

portfolio against changes in the prices of the benchmark coupon bonds by purchasing
−qi units of the i-th benchmark coupon bond. Andersen (2007) points out that such a
hedging strategy only works well in practice if the discount curve construction produces
‘local perturbations’. For example if bond i has a short maturity, then (Dpg

∗ · ei)(x)
should be zero for large x in order to avoid hedging long-term cashflows with short-term
instruments. In general, cubic splines are known to perform poor with this respect and
the above hedging strategy might therefore give unreasonable results with the discount
curve construction presented in this paper.

Hedging against individual small movements of the benchmark prices is however not nec-
essarily consistent with the way interest rates move over time. Indeed, there is abundant
empirical evidence that interest rate movements are attributable to a small number of
stochastic factors often called level, slope, and curvature (see e.g., Litterman and Scheinkman
(1991)). An alternative to hedging against changes in each benchmark price is therefore
to directly hedge against interest rate movements that are deemed most likely. Specif-
ically, we first build a discount curve g∗(x) and then consider functional shifts sj(x),
j = 1, . . . , J , to, for example, the corresponding forward curve f ∗(x). The sensitivity
of Vport = Vport(f

∗) to these functional shifts can be expressed through the following
functional derivative:

dVport(f
∗ + ǫsj)

dǫ

∣
∣
∣
∣
∣
ǫ=0

= −

K∑

k=1

ckg
∗(τk)

∫ τk

0

sj(x) dx, j = 1, . . . J.

3A similar hedging strategy can be built if the benchmark instruments have quotes that enter through
C using the directional derivative with respect to C from Lemma 4.1.
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Next, we construct a hedging portfolio such that the functional derivatives of the hedged
portfolio are equal to (or as close as possible to) zero.4 The main advantage of this
approach is that the method used to construct g∗ does not play a major role in determining
the hedging strategies (see e.g., Hagan and West (2006)). If J = 1 and s1(x) ≡ 1, then
we have a standard duration hedge. In order to hedge more than only parallel shifts in
the forward curve, a popular choice in practice for sj are piecewise triangular functions
around a pre-defined set of so called key rate horizons 0 ≤ ξ1 < · · · < ξJ ≤ τ̄ :

s1(x) =

{
ξ2−x
ξ2−ξ1

x ∈ [ξ1, ξ2]

0 else
, sJ(x) =

{
x−ξJ−1

ξJ−ξJ−1
x ∈ [ξJ−1, ξJ ]

0 else

sj(x) =







x−ξj−1

ξj−ξj−1
x ∈ [ξj−1, ξj]

ξj+1−x

ξj+1−ξj
x ∈ [ξj, ξj+1]

0 else

, j = 2, . . . , J − 1.

4.2 Optimal market quotes

So far we have assumed that market quotes are observed without any error. In practice,
however, we do not observe a single price but rather a bid-ask range. Any price in this
range can be used to estimate the discount curve and this flexibility can be used to increase
the smoothness of the discount curve.

The following lemma provides an explicit expression for the norm of the optimal discount
curve we have derived before (i.e., for the case with equality constraints):

Lemma 4.2. The squared norm of the optimal discount curve g∗ in (6) is given by

‖g∗‖2H = p⊤(CAC⊤)−1p.

We first assume that the benchmark instruments are coupon bonds for which we observe
bid prices pb ∈ R

n and ask prices pa ∈ R
n. We are now interested in solving the following

optimization problem:
min
p∈Rn

p⊤(CAC⊤)−1p

s.t. pb ≤ p ≤ pa
. (8)

Remark that (CAC⊤)−1 ∈ R
n×n is a positive definite matrix. Indeed, C is assumed

to have full rank and A is positive definite as a consequence of the definiteness of the
inner product. Hence, (8) is a convex quadratic programming problem where the unique
solution p∗ can easily be found using standard techniques. The optimal discount curve is
then given by g∗ =M+p∗.

Assume now that the benchmark instruments have quotes that enter through C. This is
for example the case for swaps and FRAs. Denote the bid and ask quotes by αb and αa,

4We refer to section 6.4.2-6.4.3 in Andersen and Piterbarg (2010) for more details on this hedging
approach.
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respectively. The optimization problem now becomes:

min
α∈Rn

p⊤(CAC⊤)−1p

s.t. αb ≤ α ≤ αa

. (9)

This problem is more difficult to solve than (8) because it is not necessarily a convex
programming problem. However, we are able to compute the gradient explicitly:

Lemma 4.3. The partial derivative with respect to αi of the squared norm of the optimal
discount curve in (6) is given by:

∂‖g∗‖2H
∂αi

= −2p⊤(CAC⊤)−1 ∂C

∂αi
AC⊤(CAC⊤)−1p,

where ∂C
∂αi

denotes the componentwise derivative of C with respect to the quote αi.

We can therefore use a wide range of gradient-based constrained optimization algorithms.
A similar idea was used by Kwon (2002), however his approach requires a numerical
evaluation of the gradient at every iteration step. In contrast, we have the gradient in
closed form which can be beneficial for both the computation time and accuracy of the
numerical procedure.

5 Numerical examples

In this section we discuss three practical illustrations of the pseudoinverse method using
different types of benchmark instruments.

5.1 Coupon bonds

In this example we estimate the discount curve from prices of coupon bonds. Specifically,
we consider data from 4th of September 1996 on nine UK government bonds with semi-
annual coupons and times to maturity varying approximately from 2 months to 12 years,
see Table 1 for details. The vector p and the first ten columns (out of 104+1) of the
matrix C are shown below:

p =































1
103.82
106.04
118.44
106.28
101.15
111.06
106.24
98.49
110.87































, C =































1 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 105 0 0 0 0 0 0 . . .
0 0 0 0 0 0 4.875 0 0 0 0 . . .
0 6.125 0 0 0 0 0 0 0 0 6.125 . . .
0 0 0 0 0 0 0 0 4.5 0 0 . . .
0 0 0 3.5 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 4.875 0 0 0 . . .
0 0 0 0 0 4.25 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 3.875 0 . . .
0 0 4.5 0 0 0 0 0 0 0 0 . . .































.

The first row and column of C and p correspond to the restriction g(0) = 1. Figure
1a shows the continuously compounded yield curve and the instantaneous forward curve
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obtained from the pseudoinverse method presented in Section 3. The yield curve looks
very smooth, but the forward curve exhibits oscillatory behavior that might be undesir-
able.

Next, we assume that the observed coupon bond prices are mid prices and we assume a
relative bid-ask spread of 0.50% for every bond price. We use the approach outlined in
Section 4.2 to find a discount curve which produces coupon bond prices within the bid-
ask range. Figure 1b shows the resulting yield curve and instantaneous forward curve.
We observe a significant increase in smoothness for the forward curve. Remark also the
decrease of the short rate from approximately 5.5% to 4% as a consequence of the g′(0)2

term in the norm definition (2). As explained at the end of Section 3 this can be avoided
by fixing the short rate to an exogenous constant, for example r = 5.5%. The result of
this estimation is shown in Figure 1c and Figure 1d for the original and optimal prices,
respectively.

5.2 Libor single curve

In this example we use the same curve for both discounting cashflows as well as projecting
forward rates. We consider data from the US money and swap markets as of 1st of October
2012, as shown in Table 2. More specifically we look at three USD Libor rates (overnight,
1M and 3M) with maturity dates S = {S1, S2, S3}, five futures contracts on the 3M Libor
and nine par swap rates with annual paying fixed leg. The futures contracts are quoted
as:

100(1− Ffutures(Ti−1, Ti)), i = 1, . . . , 7,

with Ffutures(Ti−1, Ti) denoting the futures rate and T = {T0, T1, . . . , T7} the correspond-
ing reset/settlement dates. We ignore any convexity adjustments and take the futures
rate as the simple forward rate to keep the estimation procedure model-independent.5

Finally we denote by U = {U1, . . . , U30} the cashflow dates of the swaps.

Traditional bootstrap

We first perform a traditional bootstrap where we interpolate all the missing simple spot
and swap rates linearly. Remark first the overlapping cashflow dates of the different
instruments:

S1 < S2 < T0 < S3 < T1 < T2 < T3 < U1 < T4 < T5 < U2 < · · · < U30. (10)

The prices of the discount bonds g(S1), g(S2), and g(S3) are readily obtained from the
given Libor rates. At the reset date of the first futures contract, we obtain the simple
spot rate L(T0) by linear interpolation of the last two Libor rates:

L(T0) = wL(S2) + (1− w)L(S3), w =
δ(T0, S3)

δ(S2, S3)
,

5The convexity adjustments are only a fraction of basis points because of the short maturities, so they
do not make much qualitative difference.
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where δ(x, y) denotes the day count fraction between dates x and y. The discount factor
g(T0) is now recovered from the interpolated simple spot rate L(T0). Treating the futures
rates as simple forward rates, we have all the information needed to compute g(Ti),
i = 1, . . . , 5, iteratively from:

P (Ti) =
g(Ti−1)

1 + δ(Ti−1, Ti)F (Ti−1, Ti)
.

For the swaps we exploit again the overlapping cashflow dates to obtain g(U1) by linearly
interpolating between L(T3) and L(T4). The swap rate Rswap(U1) of the swap with just
one cashflow at U1 can be calculated from the discount bond price g(U1). The remaining
discount factors are now obtained by iterated use of the formula:

g(Ui) =
1− Rswap(Ui)

∑i−1
j=1 δ(Uj−1, Uj)g(Uj)

1 +Rswap(Ui)δ(Ui−1, Ui)
, i = 2, . . . , 30,

where all the missing swap rates are obtained by linear interpolation.

Finally, we obtain the discount curve for the continuum of maturities by linearly inter-
polating the zero-coupon bond yields between cashflow dates. Figure 2a and Figure 2b
show the zero-coupon bond yields and the instantaneous forward rates6. Although the
zero-coupon yield curve looks fairly smooth, the same cannot be said of the instanta-
neous forward curve. This well known ‘sawtooth’-behaviour of the forward curve is a
consequence of the linear interpolation. Other interpolation techniques may lead to im-
proved smoothness of the forward curve, however choosing the correct technique remains
somewhat arbitrary and can lead to a significant increase in complexity.

Pseudoinverse

The pseudoinverse method that we introduced in Section 3 does not require any ad hoc
interpolation. We only have to construct the cashflow matrix and the smoothness maxi-
mization criterion uses the remaining degrees of freedom in an optimal way. The cashflow
matrix C in this example has dimension 18 × 40, one row for every observed instrument
and an additional row to impose g(0) = 1. The columns represent all the dates relevant
in the valuation of the instruments.

The Libor rates L(Si), i = 1, 2, 3, can be represented as instruments that have price 1
today and cashflow 1 + δ(0, Si)L(Si) at time Si. The simple forward rates F (Ti−1, Ti),
i = 1, . . . , 5, can be seen as instruments with price 0 today, cashflow −1 at time Ti−1 and
another cashflow of 1 + δ(Ti−1, Ti)F (Ti−1, Ti) at time Ti. For the swaps with maturity Ui,
i = 2, 3, 4, 5, 7, 10, 15, 20, 30, we recall the definition of the par swap rate Rswap(Ui):

1− g(Ui) = Rswap(Ui)

i∑

j=1

δ(Uj−1, Uj)g(0, Uj)

6We have approximated the instantaneous forward rates using first order finite differences on a fine
grid.
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where we set U0 := 0. We see that this is equivalent to an instrument with price 1
today, cashflow δ(Uj−1, Uj)Rswap(Ui) at time Uj , j = 1, . . . , i − 1, and a final cashflow
1 + δ(Ui−1, Ui)Rswap(Ui) at time Ui. The vector p and the first 13 columns of the matrix
C therefore take the following form:

p =

























































































































1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1

, C =

0 S1 S2 T0 S3 T1 T2 T3 U1 T4 T5 U2 U3 · · ·
























































































































1 0 0 0 0 0 0 0 0 0 0 0 0 · · · g(0)=1

0 c11 0 0 0 0 0 0 0 0 0 0 0 · · · Libor

0 0 c22 0 0 0 0 0 0 0 0 0 0 · · · Libor

0 0 0 0 c34 0 0 0 0 0 0 0 0 · · · Libor

0 0 0 −1 0 c45 0 0 0 0 0 0 0 · · · Futures

0 0 0 0 0 −1 c56 0 0 0 0 0 0 · · · Futures

0 0 0 0 0 0 −1 c67 0 0 0 0 0 · · · Futures

0 0 0 0 0 0 0 −1 0 c79 0 0 0 · · · Futures

0 0 0 0 0 0 0 0 0 −1 c8,10 0 0 · · · Futures

0 0 0 0 0 0 0 0 c98 0 0 c9,11 0 · · · Swap

0 0 0 0 0 0 0 0 c10,8 0 0 c10,11 c10,12 · · · Swap

0 0 0 0 0 0 0 0 c11,8 0 0 c11,11 c11,12 · · · Swap

0 0 0 0 0 0 0 0 c12,8 0 0 c12,11 c12,12 · · · Swap

0 0 0 0 0 0 0 0 c13,8 0 0 c13,11 c13,12 · · · Swap

0 0 0 0 0 0 0 0 c14,8 0 0 c14,11 c14,12 · · · Swap

0 0 0 0 0 0 0 0 c15,8 0 0 c15,11 c15,12 · · · Swap

0 0 0 0 0 0 0 0 c16,8 0 0 c16,11 c16,12 · · · Swap

0 0 0 0 0 0 0 0 c17,8 0 0 c17,11 c17,12 · · · Swap

.

In Figure 2c and Figure 2d we have plotted zero-coupon yields and instantaneous forward
rates. We observe that the pseudoinverse method produces a substantially smoother
forward curve than the one in Figure 2a. Note that fixing the short rate to an exogenous
constant would not change much here since we have included the overnight Libor rate as
a benchmark instrument.

As an example of a hedging strategy, we consider a payer swap maturing in 13 years. We
want to hedge this swap with the nine receiver swaps used in our estimation through the
hedging approach outlined in Section 4.1 with triangular functional shifts to the forward
curve. Following Andersen and Piterbarg (2010) we choose to use key rate horizons ξj,
j = 1, . . . , J , spaced three months apart over the interval [0, τ̄ ]. Note that J > 9, which
means we cannot build a perfect hedge but only an approximate one (in a least squares
sense). The hedging quantities are shown in Figure 3. The hedging strategy consists
roughly in combining the swaps with maturity in 10 and 15 years. This makes sense
intuitively since these are the two hedging instruments whose cashflows resemble the one
of the 13 year swap the most.

5.3 Libor multi curve

After the credit crisis of 2008 it became clear that using one and the same curve for both
discounting and projecting cashflows was no longer realistic. Today’s market standard
is to use overnight indexed swaps (OIS) to extract a risk-free curve for the purpose of
discounting cashflows and to use separate curves to project forward rates with different
tenors. We show in this example how the pseudoinverse method can easily be used to
extract all these different curves from market data.
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Table 3 shows quotes of four different swap instruments from the eurozone market as of 4th
of November 2013. The first is an OIS that pays fixed and receives floating tied to EONIA.
EONIA swaps with maturity longer than one year have annual payment frequency on both
legs while those with maturity less than one year only have a cashflow at maturity. The
second swap instrument pays fixed and receives floating tied to 6M Euribor. The 6M
Euribor swap has annual payments on its fixed leg and semi-annual on the floating leg.
The remaining two swap instruments are basis swaps that swap cashflows tied to floating
rates. The first one swaps 3M Euribor against 6M Euribor and the second one 1M Euribor
against 6M Euribor. These swaps are quoted in terms of the spread that has to be added
to the shorter leg such that the two legs have identical present value.

The curve gOIS used for discounting is extracted from the OIS quotes. This can be done
with the pseudoinverse method in exactly the same way as in the single curve example.
The corresponding yield and instantaneous forward curve are plotted in Figure 4a. The
6M Euribor swap and the two basis swaps have payment frequencies that are multiples
of one month. In the following we therefore consider a time grid T = {t1, . . . , tN} where
ti and ti−1, i = 1, . . . , N , are one month apart and N = 30× 12.

We start with the instruments that swap the 6M Euribor against a fixed rate. These are
quoted in terms of the swap rate K that equates the value of the fixed and the floating
leg:

K

n∑

i=1

δ(t12(i−1), t12i)gOIS(t12i) =
2n∑

i=1

δ(t6(i−1), t6i)gOIS(t6i)F6(t6i),

where t0 = 0, t12n is the maturity of the swap, and Fk(ti) denotes the k-month simple
forward rate with reference period [ti−k, ti]. With our estimate for the OIS discount curve
we are able to value the fixed leg of this swap. Notice that the right-hand side is a linear
function of the unknown 6M forward rates with known coefficients. In other words, using
our methodology from before we are able to extract the smoothest possible 6M forward
curve that exactly fits the quoted swap rates. The pricing system therefore becomes
Cf = p, where f = (F6(t6), . . . , F6(tN ))

⊤, the price vector p takes the form

p =

(

F6(t6), Kδ(t0, t12)gOIS(t12), . . . , K

30∑

i=1

δ(t12(i−1), t12i)gOIS(t12i)

)⊤

and the first three rows of the ‘cashflow’ matrix C for become:

C =











1 0 0 0 0 · · ·

δ(t0, t6)gOIS(t6) δ(t6, t12)gOIS(t12) 0 0 0 · · ·

δ(t0, t6)gOIS(t6) δ(t6, t12)gOIS(t12) δ(t12 , t18)gOIS(t18) δ(t18 , t24)gOIS(t24) 0 · · ·

..

.
..
.

..

.
..
.

..

.
. . .











.

Next to the quotes of the swaps, we also included here the given 6M Euribor spot rate
F6(t6) by adding the row (1, 0, . . . , 0) to the matrix C and the rate to the vector p.

In a next step we use the 6M forward curve to extract the 3M forward curve from the
3M-6M tenor basis swaps. Basis swaps are quoted in terms of the spread S that has to be
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added to the leg with the highest frequency in order to equate the value of both legs:

2n∑

i=1

δ(t6(i−1), t6i)gOIS(t6i)F6(t6i)

=
4n∑

i=1

δ(t3(i−1), t3i)gOIS(t3i)(F3(t3i) + S).

Rearranging terms we get:

2n∑

i=1

δ(t6(i−1), t6i)gOIS(t6i)F6(t6i)− S

4n∑

i=1

δ(t3(i−1), t3i)gOIS(t3i)

=

4n∑

i=1

δ(t3(i−1), t3i)gOIS(t3i)F3(t3i).

The left-hand side can be evaluated with the discount and 6M forward curve we have
extracted earlier and the right-hand side is a linear function of the unknown 3M forward
rates. We can therefore use the pseudoinverse method to extract the 3M forward curve.
Once again we can also easily include the spot 3M Euribor rate F3(t3). In a very similar
fashion we also obtain the 1M forward curve from the 1M-3M basis swap quotes, where
we also include the spot 1M Euribor rate F1(t1). All three curves are plotted in Figure
4b.

Remark 5.1. Although EONIA swaps are quoted up to 60 years of maturity, it is some-
times argued that the EONIA swaps with maturity longer than 1 year are not sufficiently
liquid to be used in the construction of the OIS discount curve. The remaining part of the
curve is instead often calculated from OIS-3M basis swaps, which are more actively traded.
This does however create a circular dependency between the OIS discount curve, the 3M
forward and 6M forward curves. The easy extension of the pseudoinverse method to the
multi-curve world was mainly due to the fact that we can estimate all the curves one by
one. If we have to estimate a part of the OIS discount curve from OIS-3M swaps, then
we need to solve for all three curves at once. This increases the complexity of the problem
because in the swap valuations the forward rates are multiplied with the discount rates, i.e.
we face non-linear constraints in the optimization problem. One possible workaround is
to jointly estimate the OIS discount curve g1(x) := gOIS(x) and the ‘discounted’ forward
curves g2(x) := gOIS(x)F3(x), g3(x) := gOIS(x)F6(x). By smoothing the discount curve
and discounted forward curves, we are again solving an optimization problem with linear
constraints:

min
g1,g2,g3∈H

‖g1‖
2
H + ‖g2‖

2
H + ‖g3‖

2
H

s.t. M1g1 +M2g2 +M3g3 = p,

for some appropriately defined linear mapsM1,M2, andM3. We leave the implementation
of this extension for further research.
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6 Pseudoinverse on the Euclidean space

For readers unfamiliar with infinite-dimensional Hilbert spaces, we introduce in this sec-
tion a finite-dimensional analogue of the method introduced in Section 3. Instead of
looking for a discount curve in a Hilbert function space, we now search for a vector of
discount factors in the Euclidian space which has maximal smoothness in some sense.
Suppose we are interested in the discount factors at dates 0 = u1 < · · · < uK :

d = (g(u1), . . . , g(uK))
⊤,

for some K ≥ 1 and (for simplicity) ui+1 − ui ≡ δ > 0. Suppose furthermore that d
contains all the discount factors that are required to value the n instruments we observe,
i.e. {x1, . . . , xN} ⊆ {u1, . . . , uK}. Redefine C ∈ R

n×K as the cashflow matrix of the n
benchmark instruments on the dates {u1, . . . , uK}.

We cast the smoothness criterion (2) in a discrete form using a left Riemann sum for the
integral and forward finite differences for the derivatives (other choices are possible of
course):

g(0)2 + g′(0)2 +

∫ uK−1

0

g′′(x)2 dx

≈ g(u0)
2 +

1

δ
(g(u1)− g(u0))

2 +

K−2∑

i=0

(
g(ui+2)− 2g(ui+1) + g(ui)

δ2

)2

δ

= ‖Ad‖2K,

where ‖ · ‖2K denotes the Euclidian norm on R
K and

A = diag(1, δ−1/2, δ−3/2, . . . , δ−3/2)











1 0 . . . . . . . . . 0

−1 1 0
...

1 −2 1
. . .

...

0 1 −2 1
. . .

..

.
.
..

. . .
. . .

. . .
. . . 0

0 . . . 0 1 −2 1











∈ R
K×K.

The finite dimensional optimization problem now becomes:

min
d∈RK

1
2
‖Ad‖2K

s.t. Cd = p
. (11)

The above is a convex quadratic programming problem with linear inequality constraints,
for which we obtain the following solution:

Theorem 6.1. There exists a unique solution d∗ ∈ R
K to the optimization problem (11)

and it is given as
d∗ = A−1M+p,

where M = CA−1 and M+ = M⊤(MM⊤)−1 is the Moore–Penrose pseudoinverse of the
matrix M .
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Remark that in the finite-dimensional case it becomes very easy to impose positivity and
monotonicity constraints on the discount factors:

min
d∈RK

1
2
‖Ad‖2K

s.t. Cd = p

d1 > · · · > dK > 0

.

We therefore obtain a convex quadratic programming problem with linear inequality con-
straints. Such a problem has a unique solution that can easily be found with established
algorithms implemented in many numerical software packages.

7 Conclusion

We have introduced a novel method based on the Moore–Penrose pseudoinverse to ex-
tract a discount curve that exactly reproduces the prices of the benchmark instruments
and that has maximal smoothness in the sense that it has minimal integrated squared
second-order derivatives. The optimal discount curve is a piecewise-cubic function and is
obtained as the unique solution of an infinite-dimensional optimization problem. Bid-ask
spreads can be incorporated to further increase the smoothness of the discount curve.
The pseudoinverse method is very easy to implement, making it an interesting method of
first resort before considering more complex alternatives.
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A Proofs

This appendix contains all proofs.

Proof of Lemma 3.1

Integration by parts gives

g(τ) = g(0) +

∫ τ

0

g′(x) dx

= g(0) + τg′(0)−

∫ τ

0

(x− τ)g′′(x) dx.

From the definition of the scalar product 〈·, ·〉H we get the following conditions for the
function φτ : 





φτ(0) = 1
φ′
τ(0) = τ

φ′′
τ(x) = (τ − x)1[0,τ ](x), x ∈ [0, τ̄ ].

Integrating two time we arrive at:

φ′
τ (x) = τ − 1

2
(x ∧ τ)2 + τ(x ∧ τ), x ∈ [0, τ̄ ],

φτ (x) = 1− 1
6
(x ∧ τ)3 + τ

2
(x ∧ τ)2 − τ2

2
(x ∧ τ) + x(1 + τ

2
)τ, x ∈ [0, τ̄ ].

Proof of Theorem 3.2

The transpose (adjoint operator)M⊤ : Rn → H of the linear map M : H → R
n is defined

by:
〈Mg, z〉Rn = 〈g,M⊤z〉H , ∀g ∈ H, ∀z ∈ R

n.

Using the definition ofM and the Riesz representation of the linear functional Φ we easily
get:

M⊤z =

N∑

j=1

φxj
C⊤

j z, z ∈ R
n,

where Cj represents the j-th column of the matrix C.

The Lagrangian L : H × R
n → R for problem (5) is defined as

L(g, λ) =
1

2
‖g‖2H + λ⊤ (Mg − p)

=
1

2
‖g‖2H + 〈λ,Mg〉Rn − 〈λ, p〉Rn

=
1

2
‖g‖2H + 〈M⊤λ, g〉H − 〈λ, p〉Rn.
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The optimizers g∗ and λ∗ satisfy the following first-order conditions with respect to the
Fréchet derivative in H and R

n

g∗ +M⊤λ∗ = 0 (12)

Mg∗ − p = 0. (13)

From (12) we get g∗ = −M⊤λ∗. Plugging this into (13) gives −MM⊤λ∗ = p. Observe
now that MM⊤ : Rn → R

n is a linear map that can be represented by the matrix CAC⊤,
where A is the positive definite N ×N matrix with components

Aij = 〈φxi
, φxj

〉H = φxi
(xj) = φxj

(xi).

We now obtain the following unique solution for the optimal Lagrange multiplier and
optimal discount curve:

λ∗ = −
(
CAC⊤

)−1
p, g∗ =M⊤

(
CAC⊤

)−1
p.

Note that the matrix CAC⊤ is invertible because A is positive definite and C has full
rank.

The map

M+ : Rn → H, z 7→M⊤
(
MM⊤

)−1
z,

is known as the Moore–Penrose pseudoinverse of the linear map M . We can therefore
write the optimal discount curve as

g∗ =M+p.

Proof of Lemma 4.1

The optimal discount curve g∗ can be written as

g∗(x) =
N∑

j=1

zj φxj
(x) = p⊤

(
CAC⊤

)−1
Cφ(x), (14)

with φ(x) := (φx1(x), . . . , φxN
(x))⊤. Differentiating (14) with respect to the components

of p immediately gives the first statement of the theorem:

(Dpg
∗ · v)(x) = v⊤

(
CAC⊤

)−1
Cφ(x).

Differentiating (14) with respect to the cashflow Cij gives

∂g∗

∂Cij

(x) = −p⊤
(
CAC⊤

)−1 ∂CAC⊤

∂Cij

(
CAC⊤

)−1
Cφ(x) + p⊤

(
CAC⊤

)−1
Iijφ(x)

= p⊤
(
CAC⊤

)−1
(

Iij − (CAIji + IijAC
⊤)
(
CAC⊤

)−1
C
)

φ(x),

where Iij ∈ R
n×N denotes a matrix with the (i, j)-th entry equal to one and all of the

other entries equal to zero. The second statement of the theorem now easily follows from
the distributive property of matrix multiplication and

∑

1≤i≤n
1≤j≤N

mijIij = m.
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Proof of Lemma 4.2

Using the notation of the proof of Theorem 3.2, the optimal discount curve g∗ can be
written as

g∗ =M+p =M⊤(MM⊤)−1p.

Using the fact that M⊤ is the dual operator of M , we get:

‖g∗‖2 = 〈g∗, g∗〉H

=
〈
M⊤(MM⊤)−1p,M⊤(MM⊤)−1p

〉

H

=
〈
(MM⊤)−1p,MM⊤(MM⊤)−1p

〉

Rn

=
〈
(CAC)−1p, p

〉

Rn

= p⊤(CAC⊤)−1p.

Proof of Theorem 6.1

The Lagrangian is defined as

L(λ, d) =
1

2
‖Ad‖2K + λ⊤(Cd− p).

The first-order optimiality conditions for the optimal λ∗ and d∗ are

A⊤Ad∗ + C⊤λ∗ = 0, Cd∗ − p = 0.

Straightforward calculations give the following unique solution:

d∗ = (A⊤A)−1C⊤
(

C(A⊤A)−1C⊤
)−1

p.

Using the fact that A is invertible and defining M := CA−1, we finally obtain

d∗ = A−1M+p,

where M+ =M⊤(MM⊤)−1 is the Moore–Penrose pseudoinverse of the matrix M .
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Coupon Next Maturity Dirty price
(%) coupon date (pi)

Bond 1 10 15/11/96 15/11/96 103.82
Bond 2 9.75 19/01/97 19/01/98 106.04
Bond 3 12.25 26/09/96 26/03/99 118.44
Bond 4 9 03/03/97 03/03/00 106.28
Bond 5 7 06/11/96 06/11/01 101.15
Bond 6 9.75 27/02/97 27/08/02 111.06
Bond 7 8.5 07/12/96 07/12/05 106.24
Bond 8 7.75 08/03/97 08/09/06 98.49
Bond 9 9 13/10/96 13/10/08 110.87

Table 1: Market prices for UK gilts, 04/09/1996. Source: James and Webber (2000).

Maturity date Market quote (%) Instrument

S1 = 04/10/2012 0.1501 o/n Libor
S2 = 05/11/2012 0.2135 1M Libor
S3 = 03/01/2013 0.3553 3M Libor
T1 = 20/03/2013 99.685 Futures
T2 = 19/06/2013 99.675 Futures
T3 = 18/09/2013 99.655 Futures
T4 = 18/12/2013 99.645 Futures
T5 = 19/03/2014 99.620 Futures
U2 = 03/10/2014 0.361 Swap
U3 = 05/10/2015 0.431 Swap
U4 = 03/10/2016 0.564 Swap
U5 = 03/10/2017 0.754 Swap
U7 = 03/10/2019 1.174 Swap
U10 = 03/10/2022 1.683 Swap
U15 = 04/10/2027 2.192 Swap
U20 = 04/10/2032 2.405 Swap
U30 = 03/10/2042 2.579 Swap

Table 2: Market quotes for Libor rates, futures prices and swap rates from the USD market
as of 1st of October 2012. All contracts are spot (T + 2) starting. Source: Bloomberg.
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Tenor EONIA-Fix (%) 6M-Fix (%) 3M-6M (bps) 1M-3M (bps) Cash (%)

o/n 0.092
1m 0.102 0.129
3m 0.109 0.227
6m 0.108 0.342
9m 0.121
1y 0.130 0.386 10.85 8.90
2y 0.205 0.482 12.15 10.90
3y 0.334 0.656 12.85 12.60
4y 0.533 0.870 13.00 13.70
5y 0.742 1.097 12.95 14.20
6y 0.952 1.306 12.70 14.30
7y 1.145 1.503 12.35 14.20
8y 1.328 1.677 11.90 14.00
9y 1.479 1.833 11.40 13.80
10y 1.625 1.973 10.90 13.60
11y 1.757 2.095
12y 1.872 2.199
15y 2.124 2.418 8.85 11.80
20y 2.317 2.570 7.40 10.10
25y 2.385 2.618 6.50 8.90
30y 2.406 2.625 5.90 8.10

Table 3: Mid swap rates for EONIA swaps, 6M Euribor swaps, 3M-6M basis swaps,
1M-6M basis swaps and Euribor cash rates as of 04/11/2013. Source: Bloomberg.
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(a) Original prices.
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(b) Optimal prices
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(c) Original prices, fixed r = 5.50%.
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(d) Optimal prices, fixed r = 5.50%.

Figure 1: Zero-coupon yield and instantaneous forward rate from the discount curve
estimated using prices of UK government bonds.
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(a) Bootstrap.
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(b) Bootstrap, zoom.
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(c) Pseudoinverse.
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(d) Pseudoinverse, zoom.

Figure 2: Zero-coupon yield and instantaneous forward rate from the discount curve
estimated using Libor instruments.
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Figure 3: Hedging a 13 year swap using the nine swaps used in the estimation as hedging
instruments.
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(a) Zero-coupon yield and instantaneous forward curve corresponding to the
OIS discount curve gOIS.
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(b) Forward curves with tenors one, three, and six months.

Figure 4: Multicurve estimation with pseudoinverse method.
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