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Abstract. In this paper, we study parameter-independent stability in qualitatively heterogeneous
passive networked systems containing damped and undamped nodes. Given the graph topology and
a set of damped nodes, we ask if output consensus is achieved for all system parameter values. For
given parameter values, an eigenspace analysis is used to determine output consensus. The extension
to parameter-independent stability is characterized by a coloring problem, named the richly balanced
coloring (RBC) problem. The RBC problem asks if all nodes of the graph can be colored red, blue and
black in such a way that (i) every damped node is black, (ii) every black node has blue neighbors if
and only if it has red neighbors, and (iii) not all nodes in the graph are black. Such a colored graph is
referred to as a richly balanced colored graph. Parameter-independent stability is guaranteed if there
does not exist a richly balanced coloring. The RBC problem is shown to cover another well-known
graph coloring scheme known as zero forcing sets. That is, if the damped nodes form a zero forcing
set in the graph, then a richly balanced coloring does not exist and thus, parameter-independent
stability is guaranteed. However, the full equivalence of zero forcing sets and parameter-independent
stability holds only true for tree graphs. For more general graphs with few fundamental cycles an
algorithm, named chord node coloring, is proposed that significantly outperforms a brute-force search
for solving the NP-complete RBC problem.
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1. Introduction. This paper deals with the consensus or synchronization prob-
lem, where heterogeneous dynamical systems are coupled in such a way that they
evolve asymptotically in an identical manner, see e.g. [25], [7]. Synchronization is a
fundamental stability-like property in numerous applications such as power systems,
where frequencies of the power generators should be synchronized [11], or platooning
vehicles, where the velocities of the vehicles should be synchronized, see e.g. [18], [10].

We study in this paper a basic class of passive networks, namely linear mass-
spring-damper networks with constant external forces. While this model is simple, it
captures many of the relevant properties of networks of passive systems as studied in
[3], [1], [29]. We use output strict passivity of the nodes [1], [29], and passivity of the
couplings to ensure that consensus is achieved in the case that all nodes are damped.
However, in the presence of undamped nodes, passivity is not output strictly anymore
and consensus is not necessarily achieved.

Mass-spring-dampers systems are systems with inertia, which involves second-
order dynamics. Depending on the location of the damped nodes in the network, the
system can show either convergence or unwanted oscillatory behavior for some initial
conditions. Such oscillations do not appear in first-order models, and thus require a
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special analysis. In particular, the standard methods for the convergence analysis of
passive networks are not applicable to our class of second-order systems.

Synchronization problems are particularly challenging if the individual systems
are not identical but heterogeneous. There has been tremendous research on synchro-
nization of heterogeneous systems (e.g., using dynamic coupling controllers) [2], [3],
[17]. In this paper, the heterogeneity is qualitative, as we consider mass-spring-type
networks with typically many undamped and few damped nodes. This type of models
might be applied to networks that contain a minority of nodes with damping constants
being considerably higher than the damping constants of other nodes, in which case a
natural approach would be to approximate the damping values below some threshold
value by zero.

Qualitatively heterogeneous systems can be also found in e.g. leader-follower
systems where one is studying controllability properties. Here, the aim is to control the
systems, where the input is applied to a subset of nodes called the leaders. The main
result of [13] relates output consensus to observability of a Kron reduced system and
using duality to controllability. When considering the whole network as one system,
the controllability depends heavily on the location of the leaders in the network. In
[22], the controllability of leader-follower consensus networks has been connected to the
symmetry of the graph with respect to the leaders. Similarly, the research direction of
pinning control investigates the question, where to place a limited number of controllers
in a network to achieve synchronization (see [4], [14] for a survey).

In the research field of strong structural controllability, one looks at controllability
of a class of systems rather than a single system. This is often useful, as in many
large-scale networked systems, the system parameter values are (partially) unknown,
see e.g. [12], [15]. In this paper, we assume that the system parameter values are
completely unknown up to some feasibility constraints. In order to guarantee consensus,
the system needs to satisfy stricter conditions than those described in [13] for the case
of known values. These stricter conditions are fundamentally different as they only
involve the graph structure and the location of the damped nodes in the network.

The contribution of the current paper includes a full characterization of these
topological conditions, thereby giving an answer to the decision problem whether a
system is parameter-independent globally asymptotically stable (PI-GAS). First, we
show that this decision problem is equivalent to a graph coloring problem that we
refer to as the richly balanced coloring (RBC) problem. Secondly, as this coloring
problem turns out to be NP-complete, we discuss two graph coloring algorithms and
show how they relate to the solution of the RBC problem.

Inspired by previous work on zero forcing sets (see e.g. [26], [8], [23]), we study
the zero forcing algorithm as an approximation algorithm for the RBC problem. In
[15] and [16], the zero forcing property was derived as a sufficient condition for strong
structural target controllability for first-order systems. While these results do not
apply to our second-order dynamics, we present a similar result, showing that the
zero forcing property is in general also sufficient for parameter-independent stability.
However, the property turns out not to be a necessary condition for PI-GAS, except
for tree graphs.

Motivated by this lack of necessity, we propose a second coloring algorithm, namely
the novel chord node coloring (CNC) algorithm. This algorithm is proven to find the
true solution to the RBC problem, and thus allows to identify all PI-GAS network
topologies. It performs for certain networks, in particular for large networks with a
limited number of cycles, significantly better than a brute-force search. To the best of
our knowledge, the RBC problem and the CNC algorithm have not been presented in
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the literature before.
The paper is organized as follows. The dynamical network model and the graph

formalism is introduced in section 2. The system characteristics such as the network
equilibrium and a shifted model are covered in section 3. The convergence analysis is
performed in section 4, where first a Lyapunov analysis is presented, followed by a
characterization of a certain invariant subspace, leading to a precise characterization of
the convergence condition. This result is used in section 5 to show that the parameter-
independent stability problem is equivalent to a graph coloring problem. Furthermore,
the sufficient condition for parameter-independent stability based on zero forcing sets
is given, as well as the novel chord node coloring problem. The paper [13] contains a
preliminary version of parts of Sections 2-4.

Notation For v ∈ Rn and w ∈ Rm, by col(v, w) we denote the vector (vT wT )T .
The image and the kernel of a matrix A is given by im(A) and ker(A), respectively.
The block diagonal matrix whose diagonal blocks are A and B is given by diag(A,B).
By A � 0 and A < 0 we denote positive definiteness and semi-positive definiteness of
A, respectively. Moreover, σ(A) is the spectrum of A, i.e. the set of eigenvalues of
A. For two subspaces A,B ⊆ Rn, the subspace sum A⊕B is the span of the union
A∪B.The quotient space of the vector space Rn by a subspace S, i.e. the set of affine
subspaces in Rn parallel to S, is denoted Rn/S. The Kronecker product of A and B
is denoted by A⊗B and A† denotes the Moore-Penrose pseudoinverse of A. 1 is the
vector whose entries are all 1. The identity matrix of size n is denoted by In. For a
graph G = (V,E), the (oriented) incidence matrix B = B(G) ∈ R|V |×|E| shows the
connection of the edges and vertices in such a way that every column contains exactly
one 1 and one -1 in the rows corresponding to its endpoints, while all other entries are
zero. The observability matrix of the system (C,A) is denoted by Obs(C,A).

2. Preliminaries. We consider a mass-spring-damper system defined on an
undirected and connected graph G = (V,E) with n nodes and m edges, and incidence
matrix B. On each node i ∈ V , a mass Σi is placed which is modeled as

ṗi = −Riyi + ui + vi, yi = M−1
i pi(1)

where pi ∈ Rr and yi ∈ Rr are the momentum (state) and velocity (output) of
the masses, respectively. Further, we have the damping matrix Ri, inertia matrix
Mi, coupling force (coupling input) ui and a constant external force (external input)
vi ∈ Rr. On each edge k = (i, j) ∈ E, a spring Γk of dimension r is placed with
elongation (state) qk ∈ Rr, output force fk ∈ Rr, which is modeled as:

q̇k = ζk, fk =Wkqk(2)

Here, Wk is the edge weight matrix of edge k and ζk is the input force. Variables
without subscript denote the corresponding stacked variables of the masses and springs.
The coupling is established through

u = −(B ⊗ Ir)f, ζ = (BT ⊗ Ir)y(3)

In the sequel, we will use the abbreviated notation B := B ⊗ Ir.
Assumption 1. The damping matrix, inertia matrix and edge weight matrix

satisfy Ri < 0, Mi � 0, Wi � 0.

Definition 2. A node i ∈ V is said to be damped if Ri � 0. A node is undamped
if Ri = 0, while it is partially undamped if Ri is nonzero and singular.
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For any partially undamped node, there exist directions for which it does not
experience damping (namely, every direction in the kernel of Ri) and directions for
which it does (any other direction).

Assumption 3. The set V of nodes is partitioned into a set Vd of damped nodes
with cardinality nd ≥ 1 and a set Vu of (partially) undamped nodes with cardinality
nu ≥ 0. 1

Remark Mass-spring-damper systems are used here as a leading example. Other
examples such as hydraulic systems can be modelled similarly.

2.1. Closed-loop system. Let p = col(p1, . . . , pn), q = col(q1, . . . , qm) be the
stacked state vectors and similarly for the other variables. Taking (1), (2) and (3)
together, we obtain the closed-loop system, denoted by Σ× Γ and whose state and
output is denoted by z := col(p, q) ∈ Rr(n+m) and y ∈ Rrn, respectively. Its state-space
representation reads as ż = Az +Gv, y = M−1p, where

(
ṗ
q̇

)
︸︷︷︸
ż

=

(
−RM−1 −BW
BTM−1 0

)
︸ ︷︷ ︸

A

(
p
q

)
︸︷︷︸
z

+

(
I
0

)
︸︷︷︸
G

v

y =
(
M−1 0

)(p
q

)(4)

The system parameters are:
• M := diag(M1, . . . ,Mn) � 0, a block diagonal matrix containing inertia

matrices of the individual nodes.
• R := diag(R1, . . . , Rn) < 0, a block diagonal matrix with damping matrices

of the individual nodes.
• W := diag(W1, . . .Wm) � 0, the block diagonal matrix with spring constants

(edge weights).
• v, a constant external input

Remark The system Σ× Γ can be written in a port-Hamiltonian representation,
where H(p, q) = 1

2p
TMp + 1

2q
TWq is used as Hamiltonian function. This gives

Ḣ = vT y − yTRy ≤ vT y, which shows that Σ× Γ is passive, but not output strictly
passive as R is singular. Hence, this does not give us the wanted convergence results
and we need to invoke LaSalle’s Theorem (section 3).

2.2. Second-order dynamics. Since G is connected, rank(B) = n− 1. Further-
more, ker(BT ) = im(1), where 1 is the stacked vector of all ones. Also, ker(BT ) =
im(Ir), where Ir := 1 ⊗ Ir. In fact, B represents a graph consisting of r connected
components that are copies of G.

A fundamental cycle matrix C of G is a matrix of full column rank that satisfies
ker(B) = im(C), see e.g. [20]2. The full column rank matrix C := C ⊗ Ir satisfies
ker(B) = im(C).

Note that since q̇ ∈ im(BT ), the projection of q onto im(BT )⊥ = ker(B) = im(C)
can be written as Cr for some r ∈ Rr(m−n+1) and is such that q(t) ∈ im(BT ) + Cr
for all t ≥ 0. By integrating the output y, we obtain potentials or positions s(t) :=

1The case with nu = 0 leads to trivial results, but is required for the analysis in Chapter 5.
2The fundamental cycle matrix in [20] is the transposed of the fundamental cycle matrix used in

this paper.
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0
y(τ)dτ + s0, where s0 satisfies q(0) = BT s0 + W−1Cr. This decomposition is

possible and unique. All terms in the equation ṗ = −Ry−BWq + v can be written in
terms of (derivatives) of s and the result is a second order equation:

Ms̈ = −Rṡ−BWBT s+ v(5)

We define L := BWBT to be the total Laplacian matrix. Also, ker(L) = ker(BT ) =
im(Ir). The graph GL associated with L might be disconnected. This is the case if e.g.
r > 1 and all Wi’s are diagonal. Then GL consists of r connected components that are
copies of G. If the matrices of Wi are full, then GL is the strong product of G and the
complete graph with r nodes3. Off-diagonal entries of L can be positive, which occurs
if and only if there are Wk’s with negative off-diagional entries. This does not affect
the stability, since W is positive-semidefinite (see section 4).

2.3. Decomposition of B and L. The partitioning {Vd, Vu} of V also induces
a partitioning of the edges into the set Ed of edges between damped nodes, the set Eu

of edges between undamped nodes and the set Ei of interconnecting edges between
a damped and an undamped node. We obtain G = (Vd ∪ Vu, Ed ∪ Ei ∪ Eu) with
partitioned total incidence matrix

B =

(
Bd
Bu

)
=

(
Bdd Bid 0
0 Biu Buu

)
Let the edge weight matrix W and the total Laplacian matrix L be correspondingly
decomposed. Now, decompose (5) into blocks associated with the damped nodes, with
subscript d, and (partially) undamped nodes, with subscript u, as follows(

Md 0
0 Mu

)
︸ ︷︷ ︸

M

(
s̈d
s̈u

)
=−

(
Rd 0
0 Ru

)
︸ ︷︷ ︸

R

(
ṡd
ṡu

)

−
(
Ldd + Lid Lii
(Lii)

T Luu + Liu

)
︸ ︷︷ ︸

L

(
sd
su

)
+

(
vd
vu

)(6)

Ldd = BddW
d(Bdd)

T and Luu = BuuW
u(Buu)T are the Laplacian matrices corresponding

to the subgraphs Gd := (Vd, E
d) with incidence matrix Bdd and Gu := (Vu, E

u) with
incidence matrix Buu, respectively. The Laplacian matrix

Li :=

(
Lid Lii

(Lii)
T Liu

)
corresponds to the subgraph Gi := (V,Ei). Lii = BidW

i(Biu)T contains the edge
weight matrices of the interconnecting edges. Finally, Lid = BidW

i(Bid)
T and Liu =

BiuW
i(Biu)T are positive semi-definite block diagonal matrices since by definition of

Gi, there are no edges between two damped or two undamped nodes in Gi.

2.4. Stability analysis. Let σ(A) denote the spectrum of the matrix A. In the
stability analysis, we refer to Barbalat’s and Hautus Lemma, which are stated below:

3For more on strong products of graphs, see [24]. In Definition 1.1(2) of this paper, take
B = {G,Gr} and A = ∅, with Gr being the complete graph with r nodes.
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Lemma 4 (Barbalat’s Lemma [30]). Let f(t) be a function of time only. If f(t)
has a finite limit as t→∞ and moreover, ḟ is uniformly continuous or f̈ is bounded,
then ḟ(t)→ 0 as t→∞.

Lemma 5 (Hautus Lemma [9]). Consider matrices A ∈ Rn×n and B ∈ Rm×n.
Then the following is equivalent:

• The pair (A,B) is controllable
• For all λ ∈ C, it holds that rank

(
λI −A B

)
= n.

• For all λ ∈ σ(A), it holds that rank
(
λI −A B

)
= n.

2.5. Problem formulation. Suppose that we know the topology of the graph
including the set Vd of damped nodes, but we do not know the system parameter
values, except that they are feasible, i.e. Assumption 1 is met. The graph topology
and the set of damped nodes define a damping graph represented as G = (V, Vd, E),
where Vd ⊆ V . Output consensus is achieved if the output variable y converges to a
point in the synchronization manifold im{Ir} as t→∞. In this sense, it is of interest
to know whether a given damping graph gives rise to asymptotic output consensus
for all feasible system parameter values and initial conditions. Thus, in this paper we
address the following problem:

Problem (Parameter-independent stability problem) Under which conditions on
the damping graph G = (V, Vd, E) does every output trajectory y(t) of Σ × Γ, i.e.
system (4), converge to a point in im{Ir} as t→∞ for all feasible system parameter
values?

In section 3 and 4 we give a graph theoretic answer to the question whether output
consensus is guaranteed for a given set of system parameter values, which has been
elaborated in [13]. This result is exploited in section 5 as a starting point to solve the
parameter-independent stability problem.

3. System characteristics. In this section, we determine the equilibria and
perform a shift so that the equilibrium is located at the origin. Note first that the
affine subspaces of Rrm\im(BT ) are invariant under the dynamics of the controller
state q(t). We have the following characterization of B and C:

Lemma 6. im(BT )⊕ im(W−1C) = Rrm and im(BT ) ∩ im(W−1C) = {0}.
Proof. The first statement follows easily from im(BT )⊥ = ker(B) = im(C) and

W−1 is positive definite. The second statement holds since im(BT ) ∩ im(W−1C) =
im(BT) ∩ ker(BW ) = {0}.

As a result, the set of solutions z(t) = col(p(t), q(t)) of Σ× Γ where q(t) is in one
of the affine subspaces of Rrm\im(BT ) is a shifted copy of those solutions of Σ × Γ
where q(t) ∈ im(BT ). Consequently, without loss of generality we can assume that
q ∈ im(BT ).

Corollary 7. For every initial condition z(0) = col(p(0), q(0)) ∈ Rr(n+m), there
exists a unique vector γ ∈ Rr(m−n+1) such that q∗(0) := q(0) −W−1Cγ ∈ im(BT ).
Furthermore, with shifted initial conditions z∗(0) = col(p(0), q∗(0)), the trajectory
difference z∗(t)− z(t) is constant for all t ≥ 0.

Proof. Existence and uniqueness of γ follow from Lemma 6
Given that at some time t ≥ 0, p∗(t) = p(t) and q∗(t)− q(t) ∈ im(W−1C), we have

y∗(t) = y(t) and BW (q∗(t)− q(t)) = 0, hence ṗ∗(t)− ṗ(t) = 0. Also, q̇∗(t)− q̇(t) = 0.

If we restrict q to be in the invariant space of im(BT ), the system Σ × Γ has a
unique equilibrium:
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Proposition 8. The system Σ× Γ restricted to q ∈ im(BT ) has a unique equilib-
rium z̄ = col(p̄, q̄) satisfying p̄ = MIrβ and
{q̄} =

[
W−1B†(−RIrβ + v) + im(W−1C)

]
∩ im(BT ).4 In these expressions, β is given

by

β = (ITr RIr)
−1ITr v(7)

Proof. From ˙̄q = 0, we obtain BTM−1p̄ = 0. Since for connected graphs,
ker(BT ) = im{Ir}, it follows that p̄ ∈ im{MIr}. Write p̄ = MIrβ for some β ∈ Rr.
The value of β can be obtained by setting ˙̄p = 0, which gives −RIrβ + v ∈ im(B)
and consequently −ITr RIrβ + ITr v ∈ im(ITr B) = {0}. Since Ri � 0 for at least one
i ∈ V , it follows that ITr RIr � 0 and thus β can be given uniquely as in (7). Substi-
tuting this result in the dynamics of p, we obtain BWq̄ = −RIrβ + v, which gives
q̄ ∈W−1B†(−RIrβ + v) + im(W−1C), with im(W−1C) = ker(BW ). By assumption
and by the dynamics of q, q̄ ∈ im(BT ). The intersection of both sets is a singleton by
Lemma 6.

Remark The unique equilibrium point for q(0) ∈ im(BT ) corresponds to a state
of output consensus since v̄ = M−1p̄ ∈ im{Ir}. Also for q(0) /∈ im(BT ), it is shown
readily that v̄ = Irβ with β being given by (7).

3.1. Shifted model. Now, we introduce shifted state variables so that the
equilibrium coincides with the origin. The main benefit of doing this is that it allows
to use common techniques to show output consensus in section 4.2. Besides that, we
get rid of the constant input v in the dynamics. Define p̃(t) = p(t)− p̄, q̃(t) = q(t)− q̄.
Stack these together in the state vector z̃ = col(p̃, q̃) and define the output ỹ = M−1p,
then we obtain the linear time-invariant (LTI) closed-loop system(

˙̃p
˙̃q

)
︸︷︷︸

˙̃z

=

(
−RM−1 −BW
BTM−1 0

)
︸ ︷︷ ︸

A

(
p̃
q̃

)
︸︷︷︸
z̃

ỹ =
(
M−1 0

)(p̃
q̃

)(8)

Since q̄ ∈ im(BT ), it follows that q(t) ∈ im(BT ) if and only if q̃(t) ∈ im(BT ). By
assumption, Σ× Γ is only defined on the invariant subspace

Ω = {col(p̃, q̃) ∈ Rr(n+m) | q̃ ∈ im(BT )}

System (8) defined on Ω has a unique equilibrium point at ¯̃z = 0. Similarly to
the procedure in section 2.2, we can introduce variables s̃(t) = col(s̃d(t), s̃u(t)) :=∫
ỹ(τ)dτ + s̃0, where s̃0 is such that q̃(0) = BT s̃0, to obtain the second-order equation

M ¨̃s = −R ˙̃s− Ls̃

Noting that q̃(t) = BT s̃(t) and p̃(t) = M ˙̃s(t), (8) can be written equivalently as an
LTI system with states s̃ and ỹ. In the next section we find Lemma 9 that connects
global asymptotic stability of (8) defined on Ω with output consensus of (4).

4Here, † denotes the Moore-Penrose pseudoinverse.
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4. Steady-state behavior. In this section, we determine the long-run behavior
of (8) defined on Ω by performing a common Lyapunov analysis. This allows us to
derive the set of points to which all solutions converge. To find necessary conditions
for the steady-state behavior, we use as Lyapunov function the Hamiltonian function
that has a minimum at the equilibrium point (¯̃p, ¯̃q) = (0, 0):

U(p̃, q̃) =
1

2
p̃TM−1p̃+

1

2
q̃TWq̃

The time derivative of U(p̃, q̃) now reads as

U̇(p̃, q̃) = ˙̃pTM−1p̃+ ˙̃qTWq̃

= (−RM−1p̃−BWq̃)TM−1p̃+ p̃TM−1BWq̃

= −
(
p̃Td p̃Tu

)
M−1

(
Rd 0
0 Ru

)
M−1

(
p̃d
p̃u

)
= −p̃TdM−1

d RdM
−1
d p̃d − p̃TuM−1

u RuM
−1
u p̃u

From the fact that M and W are positive definite, U is a postive-definite function
for (p̃, q̃) 6= (0, 0), while U̇ is negative semi-definite, U is a suitable Lyapunov function.
Since U is a radially unbounded function, it follows that the system ˙̃z = Az̃ as defined
in (8), is stable.

Lemma 9. Every trajectory y(t) of Σ× Γ, i.e. system (4), converges to a point in
the set im{Ir} if and only if every trajectory z̃(t) = col(p̃(t), q̃(t)) of (8) defined on Ω
converges to the origin.

Proof. In this proof, every convergence statement holds exclusively for t → ∞.
(⇒) Suppose that every output trajectory y(t) of Σ × Γ converges to im{Ir}, then
this holds in particular for those trajectories generated with q(0) ∈ im(BT ). So
p(t) → p∗, where p∗ ∈ im{MIr}. Since Σ × Γ is stable, p̈(t) is bounded, hence
ṗ(t) is uniformly continuous and we can apply Barbalat’s lemma to conclude that
ṗ(t) → 0. That gives −RM−1p(t) − BWq(t) + v → 0. So BWq(t) converges too
and consequently, q(t)→ q∗ + ker(BW ) for some q∗ ∈ Rm. Since q(t) ∈ im(BT ), we
have that q(t) → im(BT ) ∩ [q∗ + ker(BW )], which is a singleton, so q(t) converges
too and consequently, the whole state z(t) converges. Uniqueness of the equilibrium
implies that z(t)→ z̄ and hence z̃(t)→ 0. (⇐) For every trajectory z̃(t)→ 0 we have
z(t)→ z̄, yielding y(t)→ ȳ = M−1p̄ = Irβ, with β as in (7).

Lemma 9 shows that asymptotic output consensus of the system Σ×Γ is equivalent
to global asymptotic stability (GAS) of the system (8) defined on Ω and we will
interchangeably use both terms.

Now we use LaSalle’s invariance principle: as t goes to infinity, the trajectory
converges to the largest invariant set in the set of states where U̇ = 0.

Lemma 10. Let SLS be the set of initial conditions z̃(0) = col(p̃(0), q̃(0)) ∈ Ω of
the system (8) such that for all t ≥ 0, p̃d(t) = 0 and p̃u(t) ∈ ker(RuM

−1
u ). The largest

invariant set contained in the subset of Ω where U̇ = 0 equals SLS.

Proof. The set of points in Ω where U̇ = 0, is equal to the set of points in Ω where
p̃d = 0 and p̃u ∈ ker(RuM

−1
u ). This follows by positive definiteness of M−1

d RdM
−1
d

and by ker(M−1
u RuM

−1
u ) = ker(RuM

−1
u ). The largest invariant subset of the set of

states where U̇ = 0 is then precisely SLS .
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4.1. Behavior of the undamped nodes at steady state. In this subsection,
we give a precise characterization of SLS as defined in Lemma 10 and work towards
an LTI system that is observable if and only if output consensus of Σ× Γ is achieved.
Starting with (8), we derive the following explicit characterization of SLS :

Lemma 11. SLS = Q̂ ker(Obs(Ĉ, Â)), with SLS as defined in Lemma 10 and

Q̂ =

0ndr×nur 0ndr×nur

Mu 0nur×nur

0mr×nur BTu −BTd (Ldd + Lid)
−1Lii

 ,

Ĉ =

(
Lii 0ndr×nur

Ru 0nur×nur

)
, Â =

(
0nur×nur −M−1

u L̃u
Inur 0nur×nur

)
,

L̃u = (Luu + Liu)− (Lii)
T (Ldd + Lid)

−1Lii(9)

Here, the block rows of Q̂ are decomposed according to the decomposition of z̃(t) =
col(p̃d, p̃u, q̃) and the block columns of Q̂ according to the decomposition of Â.

Proof. (⊆) Take z̃(0) ∈ SLS and consider the trajectory z̃(t) = eAtz̃(0) ⊂ Ω,
which is a solution to (8). Decompose z̃ as col(p̃d, p̃u, q̃), then we have for all t ≥ 0:
p̃d(t) = 0, p̃u(t) ∈ ker(RuM

−1
u ), q̃(t) ∈ im(BT ) and ˙̃pd

˙̃pu
˙̃q

 =

−RdM−1
d 0 −BdW

0 −RuM−1
u −BuW

BTdM
−1
d BTuM

−1
u 0

p̃dp̃u
q̃


From p̃d ≡ 0, it also follows that ˙̃pd ≡ 0. Also, −RuM−1

u p̃u ≡ 0. Substituting these
results in the dynamics, we obtain that for all t ≥ 0, −BdWq̃(t) = 0 and(

˙̃pu
˙̃q

)
=

(
0 −BuW

BTuM
−1
u 0

)(
p̃u
q̃

)
(10)

Define the function ỹu(t) := M−1
u p̃u(t) and the auxiliary function ỹd(t) := M−1

d p̃d(t) ≡
0. It follows directly that

Ruỹu(t) ≡ 0(11)

Since q̃ ∈ im(BT ), there exist initial positions s̃d(0) and s̃u(0) satisfying

q̃(0) = BTd s̃d(0) +BTu s̃u(0)(12)

Now, define the functions s̃u(t) :=
∫ t

0
ỹu(τ)dτ+ s̃u(0) and s̃d(t) :=

∫ t
0
ỹd(τ)dτ+ s̃d(0) ≡

s̃d(0). From ˙̃q(t) = BTu ỹu(t), we have q̃(t) =
∫ t

0
BTu ỹu(τ)dτ + q̃(0), which is easily

shown to satisfy q̃(t) = BTd s̃d(t) +BTu s̃u(t) for all t ≥ 0.
From BdWq̃(t) ≡ 0, it follows that −BdWBTd s̃d(t) = BdWB

T
u s̃u(t), which, after

exploiting the decomposition of L as in (6), results in

s̃d(t) ≡ −(Ldd + Lid)
−1Liis̃u(t)(13)
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Also, from −BdWq̃(t) ≡ 0, it follows that −BdW ˙̃q(t) = −BdWBTuM−1
u p̃u(t) ≡ 0, or

equivalenlty,

−Liiỹu(t) ≡ 0(14)

The first row of the dynamics (10) can now be rewritten in the new variables:

Mu
˙̃yu(t) = −BuW (BTd s̃d(t) +BTu s̃u(t))

By construction, ˙̃su(t) = ỹu(t). Using (13) and (9), the dynamics of s̃u and ỹu satisfy(
˙̃yu
˙̃su

)
=

(
0 −M−1

u L̃u
Inur 0

)(
ỹu
s̃u

)
(15)

From (11), (14) and (15), it follows immediately that col(ỹu(t), s̃u(t)) ∈ ker(Obs(Ĉ, Â))
for all t ≥ 0, which holds in particular for t = 0. Finally, by combining (12) and (13)
for t = 0, we see that q̃(0) = (BTu −BTd (Ldd + Lid)

−1Lii)s̃u(0). We conclude thatp̃d(0)
p̃u(0)
q̃(0)

 ∈ Q̂ ker(Obs(Ĉ, Â))(16)

(⊇) Consider any vector col(ỹu(0), s̃u(0)) ∈ ker(Obs(Ĉ, Â)) and the trajectory

col(ỹu(t), s̃u(t)) = eÂtcol(ỹu(0), s̃u(0)). Note that Q̂ col(ỹu(0), s̃u(0)) ∈ SLS if and
only if the trajectory

z̃(t) =

p̃d(t)p̃u(t)
q̃(t)

 :=

 0 0
Mu 0
0 BTu −BTd (Ldd + Lid)

−1Lii


︸ ︷︷ ︸

ˆ
Q

(
ỹu(t)
s̃u(t)

)
(17)

is contained in SLS and satisfies the dynamics of system (8). Firstly, p̃d(t) = 0
and q̃(t) ∈ im(BT ) for all t ≥ 0. Secondly, by unobservability we have Ruỹu(t) =
RuM

−1
u p̃u(t) ≡ 0. It remains to show that ˙̃z(t) = Az̃(t) for all t ≥ 0. Note that

BdWq̃(t) = Liis̃u(t)− Liis̃u(t) = 0. Therefore,

˙̃pd(t) = 0 = −RdM−1
d p̃d(t)︸ ︷︷ ︸

=0

−BdWq̃(t)︸ ︷︷ ︸
=0

(18)

From q̃(t) = (BTu −BTd (Ldd + Lid)
−1Lii)s̃u(t), it follows that BuWq̃(t) = L̃us̃u(t). Also,

˙̃yu(t) = −M−1
u L̃us̃u(t), hence:

˙̃pu(t) = Mu
˙̃yu(t) = −RuM−1

u p̃u(t)︸ ︷︷ ︸
=0

−BuWq̃(t)
(19)

By unobservability, Liiỹu(t) = Lii
˙̃su(t) ≡ 0. As a consequence, ˙̃q(t) = BTu

˙̃su(t) =
BTu ỹu(t) = BTuM

−1
u p̃u(t) and therefore

˙̃q(t) = BTdM
−1
d p̃d(t)︸ ︷︷ ︸
=0

+BTuM
−1
u p̃u(t)

(20)
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Taking together (18), (19), (20), we have ˙̃pd
˙̃pu
˙̃q


︸ ︷︷ ︸

˙̃z

=

−RdM−1
d 0 −BdW

0 −RuM−1
u −BuW

BTdM
−1
d BTuM

−1
u 0


︸ ︷︷ ︸

A

p̃dp̃u
q̃


︸ ︷︷ ︸

z̃

SLS can also be written as the unobservable subspace of the reduced system
that gives the dynamics of the undamped nodes written in the (p̃, q̃) coordinates:
SLS = Q̆ ker(Obs(C̆, Ă)), with

Q̆ =

0ndr×nur 0ndr×mr
Inur 0nur×mr

0mr×nur Imr

 ,

C̆ =

 0ndr×nur BdW
RuM

−1
u 0nur×mr

0(m−n+1)r×nur CT

 , Ă =

(
0nur×nur −BuW
BTuM

−1
u 0mr×mr

)

Here, the row and column decomposition of Ă is such that the upper rows and left
columns are associated with p̃u and the bottom rows and right columns with q̃.

Remark
• The state trajectories col(ỹu, s̃u) of the system (Ĉ, Â) describe the behavior

of the undamped nodes in the reduced graph with total Laplacian matrix
L̃u, which is obtained by eliminating the damped nodes according to a Kron
reduction. Kron reduction changes the topology including edge weights, but
connectivity is preserved, hence ker(L̃u) = im(Ir). Q̂ represents the trans-
formation matrix of the (ỹu(t), s̃u(t)) coordinates to the (p̃d(t), p̃u(t), q̃u(t))
coordinates at steady state. Furthermore, Liiỹu = 0 is an algebraic constraint
that boils down to BdWq̃ = 0, i.e. zero net force at damped nodes in the orig-
inal graph. Finally, the constraint Ruỹu = 0 assures that partially undamped
nodes can only move in directions in which they do not experience damping.

• The system (C̆, Ă) gives the dynamics of the undamped nodes when the
damped nodes would be fixed at a single position. The set of solutions of
(C̆, Ă) for which BdWq̃(t) ≡ 0, RuM

−1
u p̃u(t) ≡ 0 and q̃(t) ∈ im(BT ) for all

t ≥ 0 is the orthogonal projection of the steady-state trajectories of z̃ of the
system (8) defined on Ω onto the p̃u and q̃ coordinate space. This yields SLS
by taking p̃d(t) ≡ 0.

We show that all solutions in SLS are composed of sinusoids:

Proposition 12. Each solution z̃(t) ⊆ SLS generated by system (8) can be written
as a finite sum of sinusoids.

Proof. Note that Ă can be written as a product of a skew-symmetric matrix and
a positive-definite diagonal matrix:

Ă =

(
0 −Bu
BTu 0

)
︸ ︷︷ ︸

B̆

(
M−1
u 0
0 W

)
︸ ︷︷ ︸

W̆
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Therefore, Ă = B̆W̆ is similar to the real skew-symmetric matrix W̆
1
2 B̆W̆

1
2 and

thus it has purely imaginary eigenvalues that are semisimple5. Consequently, for
any solution z̃(t) ⊆ SLS of (8), p̃d(t) ≡ 0 and the trajectories col(p̃u(t), q̃(t)) =

eĂtcol(p̃u(0), q̃(0)) are composed of periodic functions of the form cos(I(λi)t)R(xi) +
sin(I(λi)t)I(xi), where xi is an eigenvector of Ă and λi the associated semisimple,
purely imaginary eigenvalue.

Remark Each component cos(I(λi)t)R(xi)+sin(I(λi)t)I(xi) of z̃(t) corresponds
to a group of nodes that is oscillating with the same angular frequency I(λi). The
nodes in this group are indicated by the non-zero entries in xi. If undamped nodes
belong to multiple oscillating groups, they might oscillate with multiple frequencies.

Due to this periodic character of the components of the solutions, we cannot find
a proper subset of SLS to which all solutions converge. Hence,

Corollary 13. The smallest set to which all solutions of (8) in Ω converge is
given by SLS.

From the periodic character of z̃(t) at steady state, the solutions of (8) in Ω
are bounded. This has an important implication: the sum of the momenta of the
undamped nodes turn out to be zero:

Proposition 14. (Conservation of momentum at steady state) For any solution
z̃(t) = col(p̃d(t), p̃u(t), q̃(t)) of (8) in Ω, it holds that ITr p̃u(t) ≡ 0.

Proof. Since ITr B = 0, it follows from (10) that ITr ˙̃pu(t) = −ITr BuWq̃(t) =
ITr BdWq̃(t) ≡ 0 at steady state. Hence, ITr p̃u(t) ≡ K, for some constant vector
K ∈ Rr. Suppose for the sake of contradiction that K 6= 0. Decompose the solution
p̃u(t) into components in im(L̃u) and im(Ir): p̃u(t) = L̃ug̃(t) + IrK

1
nu

, which must
hold for some function g̃(t). Then q̃ can be expressed as

q̃(t)− q̃(0) =

∫ t

0

˙̃q(τ)dτ =

∫ t

0

BTuM
−1
u p̃u(τ)dτ

=

∫ t

0

BTuM
−1
u L̃ug̃(τ)dτ +BTuM

−1
u IrK

t

nu

Since nd, nu ≥ 1, BTu has full column rank: there exists a (partially) undamped node,
which we label as k, that is adjacent to a damped node. Now, define Ek = ek ⊗ Ir,
where ek denotes the k’th unit vector. Then ker(BTu ) = ker((Buu)T ) ∩ ker((Biu)T ) ⊆
im(Ir) ∩ ker(ETk ) = {0}. Thus, BTu has indeed full column rank and as a consequence,
(BTuM

−1
u )†BTuM

−1
u = Inur. But then ITr (BTuM

−1
u )†(q̃(t) − q̃(0)) = Kt, which is

unbounded and contradicts the boundedness of q̃(t). Therefore, K = 0 and the result
follows.

Remark In the original coordinates we have ITr pu(t) = ITr (p̃u(t) + MuIrβ) ≡
ITrMuIrβ, which is nonzero for β 6= 0. This is the reason to refer to this characteristic
as conservation of momentum rather than zero net momentum.

In the (ỹu, s̃u) coordinates, we find that conservation of momentum leads to
ITrMuỹu(t) ≡ 0. Thus, ITrMuỹu(t) might serve as an additional output variable to the
system (Ĉ, Â) that does not affect the unobservable subspace. What is more, the same
holds for its integral ITrMus̃u(t) so that SLS can be written equivalently as follows:

5A real skew-symmetric matrix is a normal matrix which has the property to be diagonalizable
and therefore, its eigenvalues are semisimple.
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Corollary 15. SLS = Q̂ ker(Obs( ˆ̂C, Â)), where

ˆ̂C =

Lii 0
Ru 0
0 ITrMu


Proof. (⊆) Due to the freedom to choose an s̃(0) that satisfies (12), we can choose

one that satisfies ITrMus̃u(0) = 0. To see that this is possible, consider solutions
s̃(t) = col(s̃d(t), s̃u(t)) and ỹu(t) that satisfy (11), (12), (13), (14) and (15). Replacing
s̃(t) by s̃∗(t) = s̃(t)− Irα with

α = (ITrMuIr)
−1ITrMus̃u(0)

preserves these identities and furthermore ITrMus̃
∗
u(0) = 0. Since ITrMu

˙̃s∗u(t) =
ITrMu

˙̃su(t) = ITr p̃u(t) ≡ 0, it holds that ITrMus̃
∗
u(t) ≡ 0. (⊇) This follows from

Lemma 11: Q̂ ker(Obs( ˆ̂C, Â)) ⊆ Q̂ ker(Obs(Ĉ, Â)) = SLS

4.2. Conditions on output consensus. By combining Lemma 9, 10 and Corol-

lary 13, 15, we find that the pair ( ˆ̂C, Â) is observable if and only if output consensus
is guaranteed:

Proposition 16. All output trajectories y(t) of Σ × Γ converge to a point in

im{Ir} if and only if ker(Obs( ˆ̂C, Â)) = {0}.
Proof. From Lemma 9, all output trajectories y(t) of Σ× Γ converge to a point

in im{Ir} if and only if every trajectory z̃(t) = col(p̃(t), q̃(t)) of (8) defined on Ω
converges to the origin. Since SLS is the smallest set to which all state trajectories

of (8) defined on Ω converge, that is equivalent to SLS = Q̂ ker(Obs( ˆ̂C, Â)) = {0}. It

follows immediately that ker(Obs( ˆ̂C, Â)) = {0} results in SLS = {0}. Now suppose

that SLS = Q̂ ker(Obs( ˆ̂C, Â)) = {0}, i.e. ker(Obs( ˆ̂C, Â)) ⊆ ker(Q̂). Note that

ker(Obs( ˆ̂C, Â)) ⊆ ker
(
0 ITrMu

)
and

ker(Q̂) ⊆ ker

[(
0 M−1

u 0
0 0 BuW

)
Q̂

]
= ker

(
I 0

0 L̃u

)
= im

(
0
Ir

)
Hence,

ker(Q̂) ∩ ker(Obs( ˆ̂C, Â))

⊆ im

(
0
Ir

)
∩ ker

(
0 ITrMu

)
= {0}

Then, by assumption we obtain ker(Obs( ˆ̂C, Â)) = {0}.
We come to the following equivalence relation that connects the output consensus

problem with the eigenspaces of M−1
u L̃u and M−1L:

Theorem 17. The following is equivalent:
(i) Every plant output trajectory y(t) of Σ×Γ converges to a point in the set im{Ir}.

(ii) None of the eigenvectors of M−1
u L̃u is contained in the intersection of the kernel

of Lii and the kernel of Ru, i.e. for each µ ∈ σ(M−1
u L̃u):

ker(M−1
u L̃u − µI) ∩ ker

(
Lii
Ru

)
= {0}(21)
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(iii) Every eigenvector of M−1L in the kernel of R has at least one nonzero value in
an entry that corresponds to a damped node, i.e. for each µ ∈ σ(M−1L):

ker(M−1L− µI) ∩ ker(R) ∩ im

(
0

Inur

)
= {0}(22)

Proof. (i) ⇐⇒ (ii) From Proposition 16, condition (i) holds if and only if

ker(Obs( ˆ̂C, Â)) = {0}. According to Hautus lemma (Lemma 5), that is equivalent to

rank

(
Â− λI

ˆ̂C

)
= 2nu ∀λ ∈ C

Equivalently, from the rank-nullity theorem: ∀λ ∈ C it must hold that if

(23)


−λI −M−1

u L̃u
I −λI
Lii 0
Ru 0
0 ITrMu


(
ỹu
s̃u

)
= 0

then ỹu = 0 and s̃u = 0. For λ = 0, this implication always holds, since from the
second block row it follows that ỹu = 0 and from the first block row, s̃u ∈ im{Ir},
which, combined with the bottom block row ITrMus̃u = 0, yields s̃u = 0 (notice that
im(Ir) ∩ ker(ITrMu) = {0}).

So it remains to consider λ ∈ C\{0}, for which ỹu = λs̃u. Inserting this in
the first block row yields λ2s̃u = −M−1

u L̃us̃u. Premultiplying by 1
λ2 I

T
rMu yields

ITrMus̃u = − 1
λ2 I

T
rMuM

−1
u L̃uỹu = 0, hence the last block row is always satisfied if the

block rows above are satisfied too. Thus, for all λ 6= 0, the only solutions of (23) are
ỹu = 0, s̃u = 0 if and only if for all λ 6= 0,

M−1
u L̃us̃u = − λ2s̃u

λLiis̃u = 0

λRus̃u = 0

(24)

implies s̃u = 0 (and therefore also ỹu = λs̃u = 0). That is, for any eigenvalue
µ = −λ ∈ σ(M−1

u L̃u)\{0}, (21) holds. Since for µ = 0 ∈ σ(M−1
u L̃u), ker(M−1

u L̃u −
µI) = im(Ir) and im(Ir) ∩ ker(Lii) = {0}6, (21) always holds for µ = 0.

(ii) ⇐⇒ (iii) Write out L̃u in the left-hand side of the first equation in (24)
where λ 6= 0 and use the second constraint to obtain:

M−1
u L̃us̃u = M−1

u (Luu + Liu − (Lii)
T (Ldd + Lid)

−1Lii)s̃u

= M−1
u (Luu + Liu)s̃u

With this and the fact that ker(Lii) = ker(M−1
d Lii), the first two identities in (24) are

equal to (
M−1
d 0
0 M−1

u

)(
Ldd + Lid Lii
(Lii)

T Luu + Liu

)(
0
s̃u

)
= −λ2

(
0
s̃u

)
6This holds since Li

i is a nonzero and nonpositive matrix
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The last identity in (24) can be rewritten as(
Rd 0
0 Ru

)(
0
s̃u

)
=

(
0
0

)
Hence, (21) is true for any µ ∈ σ(M−1

u L̃u)\{0} if and only if there does not exist an
eigenvector of M−1L corresponding to a nonzero eigenvalue that is in the kernel of
R and of the form col(0, s̃u). Also, (22) is always true for µ = 0. Thus, the latter
condition is equivalent to (iii).

We give the following corollary without proof:

Corollary 18. By a change of coordinates, we can extend Theorem 17 with the
following equivalent conditions:
(iv) None of the eigenvectors of L̃uM

−1
u is contained in the intersection of the kernels

of LiM
−1
u and RuM

−1
u .

(v) Every eigenvector of LM−1 in the kernel of RM−1 has at least one nonzero
value in an entry that corresponds to a damped node.

5. Topological conditions for parameter-independent stability.
The equivalence relation in Theorem 17 formulates a matrix-theoretic approach to
check if a system achieves output consensus based on its parameters W , M , R and the
graph structure. In this section, we assume that we only know the graph structure and
the set of damped nodes and show how to extend the result of Theorem 17 to solve the
parameter-independent stability problem as formulated in subsection 2.5. Motivated by
the observation that asymptotic output consensus of system (4) is equivalent to GAS
of system (8) defined on Ω (Lemma 9), we define the notion of parameter-independent
global asymptotic stabiltity:

Definition 19. Given a damping graph G = (V, Vd, E). If the system (8) defined
on Ω is GAS for all feasible system parameters M , W and R, where the structure
of R is according to the set Vd ⊆ V of damped nodes, then this system is said to be
parameter-independent globally asymptotically stable, abbreviated PI-GAS.

In the sequel we abuse terminology and say that the damping graph G is PI-GAS
instead of the system (8). The parameter-independent stability problem boils down to
the question whether a given damping graph G = (V, Vd, E) is PI-GAS. Note that if
G is not PI-GAS, there exist system parameter values and an initial condition that
lead to nonzero oscillatory behavior. Notice further that turning undamped nodes into
partially undamped nodes would never lead to a bigger set at the left-hand side of
(22). Therefore, for determinining PI-GAS of G, we assume without loss of generality
that the nodes in V \Vd are undamped. Also, we pose the following assumption on the
feasibility of the system parameters:

Assumption 20. For all nodes i ∈ V and edges k ∈ E, the mass matrix Mi and
edge weight matrix Wk are diagonal. Consequentely, M and W are diagonal and GL,
the graph associated with the Laplacian matrix L, consists of r connected components
that are copies of G.

This assumption is natural: when the matrices Mi and Wk are diagonal, the
velocity yi = M−1

i pi and force fk = Wkqk are in the same orthant as pi and qk,
respectively.7

7The general case, where Mk and Wk are any positive-definite matrices, much likely gives rise to
a more complex analysis as GL depends on the structure of these matrices and moreover, negative
edge weights are allowed. This generalization is left as a topic for future research.
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Theorem 17 can be extended to give necessary and sufficient conditions for which
G is PI-GAS under the feasibility condition stated in Assumption 20.

Lemma 21. The damping graph G is PI-GAS if and only if K̃G = {0}, where

(25) K̃G :=
⋃

M̃,W̃∈Λ̃

ker
[
BW̃BT − M̃

]
∩ im

(
0nd×nu

Inu

)

and Λ̃ is the set of n× n diagonal positive-definite matrices.

Proof. Let Λ be the set of nr × nr positive-definite diagonal matrices. Consider
any system with dynamics (8) defined on Ω with underlying damping graph G and
system parameters M0,W0 ∈ Λ and R0 = diag(Rd, Ru) . By the equivalence relation
(1) ⇐⇒ (3) of Theorem 17 and Lemma 9, this system is GAS if and only if for all
µ ∈ σ(M−1

0 BW0B
T ), we have

ker(M−1
0 BW0B

T − µI) ∩ ker

(
Rd 0
0 Ru

)
∩ im

(
0ndr×nur

Inur

)
= {0}

This statement still holds if we replace ‘for all µ ∈ σ(M−1
0 BW0B

T )’ by ‘for all
µ > 0’. Indeed, all eigenvalues of M−1L are nonnegative and by the assumption that
there is at least one damped node, ker(M−1L) = im(Ir), whose intersection with

im
(
0nur×ndr Inur

)T
is {0} and thus µ = 0 won’t be a troublemaker either. For

determining PI-GAS, we consider w.l.o.g. the worst-case scenario for the damping

matrix, which is Ru = 0. This gives ker(R) = im
(
0 Inur

)T
. Thus, G is PI-GAS if

and only if for any inertia matrix M ∈ Λ, weight matrix W ∈ Λ and scalar µ > 0, it
holds that

ker(M−1BWBT − µI) ∩ im

(
0ndr×nur

Inur

)
= {0}

Since for any µ > 0 and M ∈ Λ, ker(M−1BWBT − µI) = ker(BWBT − µM) and
{µM | µ > 0, M ∈ Λ} = Λ, we can take µ = 1 without loss of generality. Hence, G is
PI-GAS if and only if

(26) KG :=
⋃

M,W∈Λ

ker(BWBT −M) ∩ im

(
0ndr×nur

Inur

)
= {0}

Notice the differences in dimensions of KG (nr × nr) and K̃G (n × n). To see that
K̃G = {0} is a necessary and sufficient condition for PI-GAS, observe that L = BWBT

is reducible under Assumption 20: it is easily checked that Lij = 0 if mod(i− j, r) 6= 0.
This allows us to write KG as an intersection of r equally sized subspaces associated
with each dimension. Define the nr × n matrix Pi :=

(
ei ei+r . . . ei+(n−1)r

)
and

mr×m matrix Qi :=
(
ei ei+r . . . ei+(m−1)r

)
, where ej denotes the j’th unit vector

and i ∈ {1, . . . , r}. By reducibility of M and L, we have that [PTk (BWBT −M)]ij = 0
if mod(j, r) 6= k. Since also

[PkP
T
k ]ij =

{
1 i = j ∧mod(i, r) = k

0 otherwise,
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we have that PTi (BWBT −M) = PTi (BWBT −M)PiP
T
i . This gives

ker
(
BWBT −M

)
=

r⋂
i=1

ker
[
PTi
(
BWBT −M

)]
=

r⋂
i=1

ker
[
PTi
(
BWBT −M

)
PiP

T
i

]
Similarly, [PTk B]ij = 0 if mod(j, r) 6= k and PTi B = PTi BQiQ

T
i . Since furthermore,

B = PTi BQi, we have that PTi B = BQTi and hence

ker
(
BWBT −M

)
=

r⋂
i=1

ker
[(
BQTi WQiB

T − PTi MPi
)
PTi
]

We obtain for KG :

KG =
⋃

M,W∈Λ

r⋂
i=1

ker
[(
BQTi WQiB

T − PTi MPi
)
PTi
]
∩ im

(
0ndr×nur

Inur

)
(27)

We are now ready to show that K̃G = {0} if and only if KG = {0}. Suppose

first that K̃G = {0}. Consider any nonzero w ∈ im
(
0nur×ndr Inur

)T
and any

M,W ∈ Λ. There exists i0 ∈ {1, . . . , r} for which PTi0w is nonzero. Since K̃G = {0},
QTi0WQi0 , P

T
i0
MPi0 ∈ Λ̃ and PTi0w ∈ im

(
0nu×nd

Inu

)T
, which is nonzero, we have

(BQTi0WQi0B
T − PTi0MPi0)PTi0w 6= 0. Consequently,

w /∈
r⋂
i=1

ker
[(
BQTi WQiB

T − PTi MPi
)
PTi
]
.

Since w ∈ im
(
0nur×ndr Inur

)T \{0} and M,W ∈ Λ were taken arbitrarily, KG = {0}.
Now, suppose that KG = {0}. Consider any nonzero v ∈ im

(
0nu×nd

Inu

)T
and

any M̃, W̃ ∈ Λ̃. Define M∗ :=
∑r
i=1 PiM̃PTi and W ∗ :=

∑r
i=1QiW̃QTi and notice

that both matrices are in Λ. Also, let w :=
∑r
i=1 Piv, which is nonzero. For all

i = 1, . . . , r, PTi M
∗Pi = M̃ , QTi W

∗QTi = W̃ and

PTi w = PTi

r∑
i=1

Piv = PTi Pi︸ ︷︷ ︸
=In

v +
∑
j 6=i

PTi Pj︸ ︷︷ ︸
=0

v = v,

Since w ∈ im
(
0ndr×nur Inur

)T
, M∗, W ∗ ∈ Λ and KG = {0}, we deduce that w /∈⋂r

i=1 ker
[(
BQTi W

∗QiB
T − PTi M∗Pi

)
PTi
]
. But (BQTi W

∗QiB
T − PTi M∗Pi)PTi w =

(BW̃BT − M̃)v is constant for all i = 1, . . . , r, hence (BW̃BT − M̃)v 6= 0. Since

v ∈ im
(
0nu×nd

Inu

)T \{0} and M̃, W̃ ∈ Λ̃ were taken arbitrarily, K̃G = {0}.
Lemma 21 shows that determining PI-GAS of G is independent of the agent and

controller state dimension r. Note further that K̃G is indeed independent of the system
parameters due to the union that is taken over all feasible system parameter values.
The next lemma shows an easy test to verify whether a vector v ∈ Rn is contained in
K̃G .
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Lemma 22. For any node i ∈ V , denote by Ni the set of neighbors of i in the
graph G. A vector v ∈ Rn is contained in K̃G if and only if the following conditions
hold:

1. vi = 0 for all indices i of v associated with damped nodes.
2. for all indices i with vi = 0, there exists j ∈ Ni for which vj < 0 if and only

if there exists k ∈ Ni for which vk > 0.
3. for all indices i with vi > 0, there exists j ∈ Ni for which vj < vi.
4. for all indices i with vi < 0, there exists j ∈ Ni for which vj > vi.

Proof. (⇒) Suppose that v ∈ K̃G . Then it follows immediately that condition 1
holds. Since v ∈ K̃G , (BW̃BT − M̃)v = 0 for arbitrary M̃, W̃ � 0. Consider the i’th
row of BW̃BT −M̃ . It has negative entries on those columns j for which j ∈ Ni and is
zero on entries j /∈ Ni∪{i}. Observering that Lii = (BW̃BT )ii = −

∑
k=(i,j), j∈Ni

W̃kk,
we derive that

vi

 ∑
k=(i,j)∈E

W̃kk − M̃ii

 =
∑

k=(i,j)∈E

vjW̃kk

Or equivalently,

viM̃ii =
∑

k=(i,j)∈E
vj<vi

|vi − vj |W̃kk −
∑

k=(i,j)∈E
vj>vi

|vi − vj |W̃kk
(28)

From this equality, conditions 2, 3 and 4 are immediately derived.
(⇐) Now suppose that a vector v ∈ Rn satisfies conditions 1, 2, 3 and 4. Since

the entries of v corresponding to the damped nodes are zero by 1, it remains to show
the existence of matrices M̃ � 0 and W̃ � 0 that satisfy (BW̃BT − M̃)v = 0. For
each i ∈ V , the vector v partitions its neighbors into 3 sets:

N+
i ={j ∈ Ni | vj ≥ |vi|},
N 0
i ={j ∈ Ni | |vj |< |vi|},

N−i ={j ∈ Ni | vj ≤ −|vi|}

The terms in the right-hand side of (28) can be grouped according to this partition:

viM̃ii = L−i − L
+
i + εi(29)

where

L±i :=
∑

k=(i,j)∈E
j∈N±

i

|vi − vj |W̃kk, εi :=
∑

k=(i,j)∈E
j∈N 0

i

(vi − vj)W̃kk

Now, v ∈ K̃G if and only if for each i = 1, . . . , n there exists a scalar M̃ii > 0 and
scalars W̃kk > 0 for all k = (i, j) ∈ E such that (29) holds.

One way to construct the matrix W̃ iteratively is as follows. Label the nodes
such that j > i whenever |vj |> |vi|. Start with i = 1 according to this labelling and

consider all edges k = (i, j). Set each diagonal entry W̃kk, corresponding to the edge
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k = (i, j) with j > i to be

W̃kk =



1 vj = vi
1

|vi−vj ||N+
i |

0 ≤ vi < vj , εi = 0

1
|vi−vj ||N−

i |
vj < vi ≤ 0, εi = 0

2
|vi−vj ||N+

i |
vi < 0 < vj , εi = 0

2
|vi−vj ||N−

i |
vj < 0 < vi, εi = 0

1
2 |εi|

|vi−vj ||N+
i |

0 6= vi < vj , εi 6= 0
1
2 |εi|

|vi−vj ||N−
i |

vj < vi 6= 0, εi 6= 0

Repeat the assignment of values to the W̃kks iteratively for higher i. Note that with
the chosen labelling, W̃kk is well-defined since εi does not depend on W̃kk values for
edges k that connect i with nodes that have a higher index. Substituting these positive
values of W̃kk in (29), we make the following observations:

• if vi = 0, then N 0
i = ∅ and hence εi = 0. From condition 2 it follows that

N+
i and N−i are either both empty or both nonempty. Hence, (L+

i , L
−
i , εi) ∈

{(0, 0, 0), (1, 1, 0)}, yielding viM̃ii = 0.
• if vi > 0 and εi = 0, then again N 0

i = ∅. From condition 3, it follows that
there exists j ∈ N−i , yielding L−i = 2. Depending on whether N+

i is empty or
not, L+

i ∈ {1, 0}, so we obtain viM̃ii ∈ {1, 2}.
• if vi < 0 and εi = 0, then similarly, viM̃ii ∈ {−1,−2}.
• otherwise, vi 6= 0 and εi 6= 0. Depending on whether N+

i and N−i are empty
or not, L+

i , L
−
i ∈

{
0, 1

2 |εi|
}

. This gives viM̃ii ∈
{

1
2εi, εi,

3
2εi
}

Noting that εi ≥ 0 if vi > 0 and εi ≤ 0 if vi < 0, we see that in all cases, (29) is
satisfiable for some M̃ii > 0. Therefore, w ∈ K̃G .

By the above lemma, PI-GAS of G is independent of the edges between damped
nodes. Note that the conditions in Lemma 22 can be completely rephrased in terms
of the signs of v ∈ Rn and BT v ∈ Rm, where the latter vector contains the entry
differences of neighboring nodes. This makes explicit computing of K̃G a finite
dimensional problem: it suffices to perform a brute-force search using (sign) vectors in
{−1, 0, 1}n+m.

Interestingly, for determining whether K̃G = {0}, only the first two conditions of
Lemma 22 are relevant. That is, there exists a nonzero vector that only meets the
first two conditions if and only if there exists a nonzero vector that meets all four
conditions, which holds if and only if G is not PI-GAS. This is shown in the following
proposition:

Proposition 23. G is PI-GAS if and only if there does not exist a nonzero v ∈ Rn
that satisfies the following two conditions:

1. vi = 0 for all indices i of v associated with damped nodes.
2. for all indices i with vi = 0, there exists j ∈ Ni for which vj < 0 if and only

if there exists k ∈ Ni for which vk > 0.

Proof. (⇒) Suppose that there exists a nonzero v ∈ Rn that meets conditions 1
and 2. We construct a vector w ∈ Rn that meets the four conditions of Lemma 22.
Denote by dist0(i) the minimum number of edges in a path in G from node i to a node
j for which vj = 0. For all i = 1, . . . , n, set wi = 0 if vi = 0, wi = dist0(i) if vi > 0
and vi = −dist0(i) if vi < 0. Obviously, sgn(w) = sgn(v), so w satisfies conditions
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1 and 2. Now, consider i ∈ V for which wi > 0 and the path of minimum length
that connects i with a node j ∈ V for which wj = 0. Then the second node on this
path, say node k, satisfies wk = wi − 1 and thus w meets condition 3 too. Similar
for condition 4. Hence, by Lemma 22, w ∈ K̃G . Again from sgn(w) = sgn(v), w is
nonzero too and thus K̃G 6= {0}, which, by Lemma 21, implies that G is not PI-GAS.

(⇐) Suppose that G is not PI-GAS. Then by Lemma 21 and 22, there exists
a nonzero vector v ∈ Rn satisfying the four conditions stated in Lemma 22 and in
particular the two conditions stated above.

The above proposition can be completely rephrased in terms of the sign of v
and therefore, a brute-force search with vectors in {−1, 0, 1}n suffices to determine if
K̃G = {0}. Thus, the parameter-independent stability problem is reduced to an even
smaller finite dimensional problem. In fact, the problem is equivalent to a topological
coloring problem, where each node i that is black, red or blue corresponds to the value
vi = 0, vi > 0 or vi < 0, respectively. Before we state the problem, we introduce the
following terminology:

Consider a simple, connected damping graph G = (V, Vd, E), whose nodes are
colored black, blue and red. A black node is called poorly balanced if all its neighbors
are black, richly balanced if it has at least one red and at least one blue neighbor and
is unbalanced otherwise.

Also, the colored graph of G is called poorly balanced if G consists entirely of black
nodes, richly balanced if G contains at least one richly balanced black node and no
unbalanced black nodes. Otherwise, G is called unbalanced and contains at least one
unbalanced black node.

Problem (Richly balanced coloring (RBC) problem) Given a damping graph G,
determine if there exists an assignment of colors that renders G richly balanced.

Definition 24. In a damping graph G = (V, Vd, E), a node v ∈ V is said to be
uncolorable if v is black in every balanced colored graph of G. The set of uncolorable
nodes is denoted by U(G). All other nodes are called colorable nodes.

Using the RBC problem formulation and the above definition we restate Proposi-
tion 23 in terms of richly balanced colorings and uncolorable nodes:

Proposition 25. Consider a damping graph G = (V, Vd, E). The following state-
ments are equivalent:

(i) G is PI-GAS.
(ii) There does not exist an assignment of colors that renders G richly balanced.

(iii) U(G) = V , i.e. every node in G is uncolorable.

5.1. Time complexity of the RBC problem. Unfortunately, the RBC prob-
lem has a high time complexity as it is NP-complete. A problem is NP-complete if
every solution can be checked for feasibility in polynomial time (i.e. it is in NP) and
furthermore, it is at least as hard as the hardest problems in NP (i.e. it is NP-hard).
It is clear that the RBC problem is in NP. We show that the RBC problem is NP-hard
by a reduction from SAT, a problem which is known to be NP-hard.

Theorem 26. The decision problem whether a given damping graph G = (V, Vd, E)
is PI-GAS is NP-complete.

Proof. The SAT problem is a decision problem that asks if we can assign to
n boolean variables the value ’true’ or ’false’ such that a given boolean formula
that includes these variables is true. Here, the boolean formula is assumed to be a
conjunction of disjunctive clauses, where each clause consists of positive or negative
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literals associated with the n boolean variables.8 We will show now how we can use the
RBC problem to solve an instance I of the SAT problem. I is defined by a boolean
formula consisting of p clauses and containing n boolean variables. We construct the
connected damping graph GI = (V, Vd, E) in the following way:

• Create an undamped base node, denoted by v0.
• For each boolean variable xi, create 2 undamped nodes: v+

i and v−i and a
damped node v0

i . Create edges (v+
i , v

0
i ) and (v0

i , v
+
i ). For i = 1 create the

edge (v0, v
−
1 ), for i ≥ 2 create an edge (v+

i−1, v
−
i ).

• For each clause j = 1, . . . , p, create a damped node v̄j and an edge (v0, v̄j).
Also, for each positive literal xi in clause j, create an edge (v̄j , v

+
i ). For each

negative literal ¬xi in clause j, create an edge (v̄j , v
−
i ).

Note that GI is connected and I can be derived uniquely from GI and the labelling
of the nodes. We show that the following statements are equivalent:

1. The boolean formula of I is satisfiable, i.e. there exists an assignment of truth
and false values to x1, . . . , xn such that the boolean formula of I is true

2. There exists a richly balanced colored graph of the damping graph GI .

Consider the color function fc that maps an assignment of boolean variables to a
coloring of G as follows:

fc(v0) =red

fc(v
+
i ) =

{
blue xi is true

red xi is false

fc(v
−
i ) =

{
blue xi is false

red xi is true

(1) =⇒ (2) Consider an assigment of true and false values such that the boolean
formula is true. Apply the color function fc to this assignment to obtain a colored
graph of GI . Each node of the type v0

i in the colored graph is richly balanced since
it has a red and blue neighbor. Also, each v̄j is richly balanced since it has a red
neighbor (v0) and at least one blue neighbor, which is the node corresponding to the
literal that is true in clause j. There are no other black nodes and consequently the
created colored graph is richly balanced.

(2) =⇒ (1) GI satisfies the property that if one of the undamped nodes is black
in a balanced colored graph of GI , then all undamped nodes are black. This can be
easily shown by applying the zero forcing algorithm. Also, by the red-blue symmetry
of the RBC problem, (2) is true if and only if there exists a richly balanced colored
graph in which v0 is red. Consider such a richly balanced colored graph of GI , then
every v0

i must be richly balanced and thus precisely one of its neighbors v+
i and v−i is

red; the other one is blue. Note that the color function fc according to which GI is
colored, has a unique inverse, which is the corresponding assignment of the boolean
variables. Every node v̄j has at least one blue neighbor, which corresponds to the
literal which is true in clause j. Therefore, the boolean formula corresponding to I is
true.

8A positive literal is a boolean variable; a negative literal is its negation A disjunctive clause is
an expression of a finite collection of positive and negative literals that is true if and only if at least
one literal is true. A conjunction of clauses is true if and only if all clauses are true.
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If there exists an algorithm that solves the RBC problem in polynomial time, then
any instance I of SAT can be solved in polynomial time too. Indeed, given I, we create
the damping graph GI in time O(|I|), solve the RBC problem with the polynomial
algorithm and if the output is ’yes’, the boolean formula of I is satisfiable. Hence, if
there does not exists an algorithm that solves SAT in polynomial time (this question
boils down to the P versus NP problem, which is a Millennium Prize Problem), then
there does not exist such an algorithm for the RBC problem either. Therefore, the
RBC problem is as hard as SAT and consequently, it is NP-hard.

Example
Consider an instance I of SAT defined by the boolean formula (¬x1 ∨x2)∧ (¬x1 ∨

¬x2) ∧ (x1 ∨ ¬x3 ∨ ¬x4). This formula is satisfiable, e.g. with x1 and x4 being false
and x2 and x3 being true. The corresponding richly balanced colored graph of GI is
illustrated in Figure 1.

v0

v−1 v0
1 v+

1 v−2 v0
2 v+

2 v−3 v0
3 v+

3 v−4 v0
4 v+

4

v̄1 v̄2 v̄3

Fig. 1: The richly balanced colored graph of GI associated with the instance I of SAT
of the example above.

5.2. Zero forcing property. In this subsection we focus on a property of the
graph topology called the zero forcing property, which is a sufficient condition for PI-
GAS. To determine if a damping graph G = (V, Vd, E) satisfies the zero forcing property,
we use the zero forcing algorithm (ZFA). Initiating with the set of damped nodes being
black and the undamped nodes being white, the algorithm applies repeatedly the
black forcing rule of selecting a black node b with exactly one white neighbour w and
change the color of w to black. Alternatively, we say that b forces w. The algorithm
terminates if the black forcing rule cannot be applied anymore, which occurs if every
black node has either none or at least two white neighbours. We refer to the graph
after application of the zero forcing algorithm as the derived graph. The set of black
nodes in the derived graph is denoted by D(G).

Definition 27. The original set of black nodes is said to be a zero forcing set if
D(G) = V , i.e. the derived graph consists entirely of black nodes. In that case, G is
said to satisfy the zero forcing property.

We refer to [26], [8], [23] and [16] for more on zero forcing sets. In the following
lemma we show that the set of uncolorable nodes is unchanged when all black nodes
are turned into damped nodes. Then a small step is needed to show that G is PI-GAS
if it satisfies the zero forcing property (Corollary 29).

Lemma 28. Consider a damping graph G = (V, Vd, E) and define
Ĝ := (V,D(G), E). Then U(Ĝ) = U(G).
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Proof. We use an inductive argument to show that the black nodes in the derived
graph of the ZFA are uncolorable, i.e. D(G) ⊆ U(G). Denote by Di(G) the set of
black nodes at the end of stage i of the ZFA. The black nodes in the initial graph of
the ZFA are the damped nodes and they are black in every balanced colored graph,
hence D0(G) = Vd ⊆ U(G). Suppose that i is not the last stage of the algorithm
and Di(G) ⊆ U(G). At the beginning of stage i, the algorithm selects and blackens
a white node w that is the only white neighbor of some black node b. Since b and
all its neighbors except for w are uncolorable, w must be black too in every balanced
colored graph. So Di+1(G) ⊆ U(G). By induction now follows that D(G) ⊆ U(G).
Now, consider any balanced colored graph of G. Note that its black nodes cover U(G)
and hence D(G) too. Since furthermore, the graph structures of G and Ĝ are equal,
the same color assignment can be used in Ĝ to induce a balanced colored graph of Ĝ.
Thus, any colorable node in G is colorable in Ĝ, i.e. U(Ĝ) ⊆ U(G). The other direction
follows readily from the fact that Vd ⊆ D(G).

Corollary 29. If G satisfies the zero forcing property, then G is PI-GAS.

Proof. If G = (V, Vd, E) satisfies the zero forcing property, then D(G) = V and
thus Ĝ = (V, V,E). From Lemma 28 it follows that U(G) = U(Ĝ) = V .

The converse of Corollary 29 is not true. A simple counterexample is a chordless
6-cycle, consisting of 3 damped and 3 undamped nodes, which are arranged alternately.
Obviously, it does not satisfy the zero forcing property and still it is PI-GAS. Indeed,
regardless of the way we would color the undamped nodes black, blue or red, no
balanced colored graph contains a blue or red node. Interestingly, a similar 8-cycle
allows oscillatory behavior.

Fig. 2: The 6-cycle of alternating damped (black) and undamped (white) nodes is
PI-GAS. On the other hand, the similar 8-cycle allows oscillatory behavior, as can be
shown with the above richly balanced colored graph.

For the special case of tree graphs, the zero forcing property is also a necessary
condition for G to be PI-GAS. Before we prove this, we need the following lemma:

Lemma 30. Consider damping graphs G1 = (V, Vd, E1) and
G2 = (V,U(G1), E2), where E2 is obtained from E1 by deleting all or some edges in
U(G1)× U(G1). Then U(G1) = U(G2).

Proof. Since U(G1) is the set of damped nodes in G2, which are black in every
balanced colored graph of G2, we have U(G1) ⊆ U(G2). Now, consider a colorable
node i of G1 and a balanced colored graph of G1 in which i is not black. Note that
the uncolorable nodes of G1 are a subset of the black nodes in this colored graph and
removing edges between black nodes preserves the balance of black nodes. Hence,
by removing edges in U(G1)× U(G1) in a balanced colored graph of G1, the induced
colored graph is still balanced. Therefore, i is also colorable in G2. This shows that
U(G2) ⊆ U(G1).
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Proposition 31. Suppose that G is a tree graph. Then G satisfies the zero forcing
property if and only if G is PI-GAS.

Proof. Let G = (V, Vd, E) be a damping graph of a tree. We show that D(G) =

U(G). Consider Ĝ = (V,D(G), E). Denote by ˆ̂G the damping graph that is obtained
by removing all edges between damped nodes in Ĝ. By Lemma 28 and 30, we have

U(G) = U(Ĝ) = U( ˆ̂G). In Ĝ, each damped node has either none or at least two
undamped neigbors, so the ZFA terminates immediately. By removing the links

between damped nodes in Ĝ, this property is preserved, so D( ˆ̂G) = D(Ĝ) = D(G).

It remains to show that D( ˆ̂G) = U( ˆ̂G). Any connected component of ˆ̂G is a tree
whose leaves are undamped nodes. Consider arbitrarily two leaves l1, l2 on such a
connected component. On the path l1 → l2, there are no two consecutive damped
nodes. Color the undamped nodes alternately blue and red. Then for any other

leaf li of the corresponding connected component in ˆ̂G, consider l1 → li and observe
that only the last part of this path has not been colored. Hence we can color the
undamped nodes on this last part in such a way that the undamped nodes of the path
l1 → li are colored alternately blue and red. Repeat this until all undamped nodes on

paths from l1 to leaves in the same connected component have been colored. As ˆ̂G
is a tree, these paths cover all nodes. By also coloring the damped nodes black, we
obtain a balanced colored graph in which all damped nodes are richly balanced and
the undamped nodes are red or blue and therefore colorable. Thus, the white nodes in

the derived graph of ˆ̂G, which are the undamped nodes in this graph, are colorable.

Consequently, V \D( ˆ̂G) ⊆ V \U( ˆ̂G). From the proof of Lemma 28, D( ˆ̂G) ⊆ U( ˆ̂G) and

hence D( ˆ̂G) = U( ˆ̂G). We conclude that D(G) = U(G), so D(G) = V if and only if
U(G) = V .

5.3. Chord node coloring. The fact that the RBC problem is NP-complete,
does not imply that the existence of a richly balanced colored graph can only be
determined by a brute-force approach that involves all undamped nodes. For (large)
graphs with a low number of fundamental cycles, we can significantly reduce the
search space. In this subsection, we present the chord node coloring (CNC) algorithm
that solves the RBC problem in such a way that the number of variables used in the
brute-force search is proportional to the fundamental cycles in the graph. The CNC
algorithm only runs through combinations of colors of the chord nodes: undamped
nodes that are the endpoints of the chords of the graph. It can be verified in quadratic
time if for a given coloring of chord nodes there exists a richly balanced colored
graph. Notice that the number of chord nodes is not more than twice the number of
fundamental cycles.

Given the damping graph G, the algorithm starts with a given coloring of the

chord nodes of the reduced graph ˆ̂G, as defined in the proof of Proposition 31, in the
original colors red, blue and black. All damped nodes are black, while other nodes are
white to indicate that its coloring in one of the original colors is yet to be determined.
White nodes are recolored according to the forcing rules:

• black forcing rule: If there is a black node b that has precisely one white
neighbor w and no red or blue neighbors, color w black. b is called a (black-)
forcing node.

• color forcing rule: If there is a black node b that has precisely one white
neighbor w, at least one red (blue) neighbor and no blue (red) neighbors, color
w blue (red). b is called a (color-)forcing node.
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The forcing rules are necessary conditions for creating a balanced colored graph,
in the sense that coloring the white node otherwise would immediately result in an
unbalanced node, which, in this context, is a node that does not have white neighbors
and either red or blue neighbors but not both. In the sequel, the graph that is obtained
after repeatedly applying the forcing rules (in arbitrary order) is referred to as the
derived graph. Notice that the number of times the forcing rules need to be applied
to obtain the derived graph is at most n, where in each iteration, finding a forcing
node and coloring the white node can be done in linear time. Thus, the time needed
to find the derived graph for a single chord node coloring can be done in polynomial
(quadratic) time. In Theorem 32, we show that the original graph is PI-GAS if and only
if there exists a chord node coloring for which the derived graph of one of the connected

components of ˆ̂G does not contain unbalanced black nodes and is not completely black.
The chord node coloring algorithm is summarized as follows:
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Algorithm 1 Chord node coloring (CNC) algorithm

Input: the damping graph G = (V, Vd, E)

Create the possibly disconnected colored graph ˆ̂G = (V,D(G), ˆ̂E), where ˆ̂E is
obtained from E by deleting all edges in D(G)×D(G)
Color the nodes in D(G) black

for each connected component ˆ̂Gi = (Vi, Vi ∩ D(G), ˆ̂E ∩ (Vi × Vi)) of ˆ̂G do

Find a spanning tree of ˆ̂Gi
Let V ci be the set of undamped nodes in Vi\D(G) that are the endpoints of the
chords of the spanning tree
for each color combination in {black, blue, red}|V c

i | do
Color the nodes in V ci according to this combination of colors
Color the nodes in Vi\(D(G) ∪ V ci ) white

Apply repeatedly the black and color forcing rules to ˆ̂Gi, until no forcing nodes
are left
If the derived graph of ˆ̂Gi does not contain unbalanced black nodes and not all
nodes are black, terminate and return: “G is not PI-GAS”

end for
end for
Return: “G is PI-GAS”

Let us verify the algorithm:

Theorem 32. The RBC problem is solved correctly by the CNC algorithm.

Proof. For this proof, we categorize black nodes as follows9:
number of neighbors of the color →
black node type ↓ black white blue red
poorly balanced 0+ 0 0 0
richly balanced 0+ 0+ 1+ 1+
unbalanced 0+ 0 1+ 0
poorly indefinite 0+ 2+ 0 0
richly indefinite 0+ 2+ 1+ 0
black-forcing 0+ 1 0 0
color-forcing 0+ 1 1+ 0

Suppose first that the algorithm claims that G is PI-GAS. Then for any connected

component ˆ̂Gi and assignment of colors to V ci , applying the two forcing rules lead to
unbalanced black nodes or all nodes being black. In both cases, there does not exist a
richly balanced colored graph with the given chord node coloring. Since this holds
for all components and color assignments to V ci , the only balanced colored graph of
ˆ̂G consist entirely of black nodes, meaning that U( ˆ̂G) = V . Recall from the proof of

Proposition 31 that U( ˆ̂G) = U(G). Hence, U(G) = V , i.e. there does not exist a richly
balanced colored graph of G.

Now suppose that the algorithm claims that G is not PI-GAS. Consider the derived

graph of the connected component ˆ̂Gi, which does not contain unbalanced black nodes

and is not completely black. We remove the following elements of ˆ̂Gi:

9Due to the symmetry regarding blue and red nodes, the defining conditions for a node to be of
the type described in the tabular, must be extended with the same conditions where the results for
red and blue nodes are interchanged. Also, note that this tabular is in accordance with the balancing
definitions for colored graphs.
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1. All blue and red nodes and their incident edges
2. All edges between black nodes
3. All edges between richly balanced black nodes and white nodes

Doing this creates a forest, referred to as Ği. Indeed, each connected component
of Ği must be a tree since all chords are removed and thus, no fundamental cycles

are left. Note furthermore that every balanced black node in ˆ̂Gi is an isolated node

in Ği, whereas every indefinite black node in ˆ̂Gi is poorly indefinite in Ği. Since

furthermore, ˆ̂Gi does not contain forcing nodes, every black node in Ği contains none
or at least two white neighbors. Consider one of the connected components (Ği)j . Its
white nodes can be colored according to the procedure in the proof of Proposition 31.

By reconnecting all removed edges and nodes, all black nodes in ˆ̂Gi are balanced:

previously richly balanced black nodes in ˆ̂Gi remain richly balanced and the same holds

for poorly balanced nodes. However, previously indefinite black nodes in ˆ̂Gi become
richly balanced, since they were rendered richly balanced in Ği by coloring at least

one white neighbor blue and another one red. Thus, the colored graph of ˆ̂Gi is richly

balanced and we can render ˆ̂G richly balanced by coloring the nodes of other connected

components ˆ̂Gj black. Since the nodes in D(G) are black and the graph structures of

G and ˆ̂G are equal except for the edges in D(G)×D(G), the same assignment of colors
can be used to the nodes of G to obtain a richly balanced graph of G.

Remark The number of chord nodes depends on the chosen spanning tree. In
order to reduce the completion time of the algorithm, we want to find a selection of
chord nodes with a minimum number of undamped nodes, e.g. by avoiding chords that
have two undamped endpoints and selecting as many chords as possible that share an
undamped node.

Example An example of a damping graph that is not PI-GAS is given in the
figure below.

Fig. 3: A damping graph that is shown to admit a richly balanced coloring. By
Proposition 25, it is not PI-GAS.

The figure on the left shows a damping graph G where black and white nodes
represent damped and undamped nodes, respectively. The chord node algorithm first
applies the ZFA, which terminates immediately and then it deletes the single edge
between two black nodes. The next step is selecting the chords, which are depicted by
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the dotted edges in the figure on the right. The undamped chord nodes are depicted
as squares. For the illustrated combination of red, black and black chord nodes, the
two forcing rules are applied (depicted by arrows). This does not lead to unbalanced
nodes. The nodes that are still white at this step are connected to each other through
the dashed edges. The procedure described in the proof of Proposition 31 describes
how to color them red or blue. The result is the richly balanced colored graph on the
right.

Let us design the system parameter values in such a way that the velocities of
the oscillating nodes are equal. Let r = 1 and consider the vector v ∈ Rn such that
vi = −1, 0, 1 for blue, black and red nodes, respectively. The system parameter values
can now be obtained from the proof of Lemma 22. This leads to an invariant set
SLS of dimension 2, which accounts for one oscillating group having one dimension of
freedom for momenta and one for spring elongations. Therefore, any initial condition
will lead to a partial synchronization of the groups of red, blue and black nodes (see
Figure 4). The oscillating group has an angular frequency of 1, as can be verified
by analyzing the eigenvalues of the matrix Ă (see the remark under Proposition 12).
A simulation of the same network with perturbed parameter values that render the
system GAS is shown in Figure 5.10

Fig. 4: Velocity of the nodes of the graph in Figure 3 with system parameters designed
to oscillate with equal velocities. Black, red and blue lines correspond to black, red
and blue nodes. The red and blue nodes form one oscillating group.

Fig. 5: Velocities of the nodes of the same network, with perturbed system parameters
that render the system GAS.

By placing dampers at strategic locations in the graph, the system becomes PI-
GAS. This occurs for example if the uppermost undamped node is changed into a
damped node, see Figure 6. This node forces his white neighbor to black (depicted

10With probability 1, for uniformly distributed randomly chosen parameter values, the matrix
M−1L in (22) has distinct eigenvalues with 1-dimensional eigenspaces that are not contained in the

subspace
(
0 Inur

)T
. Therefore, perturbations of parameter values typically render the system GAS.
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by the arrow). After removal of the edges between black nodes, we find one major
connected component with white nodes. By selecting the chords of Figure 5 within
the set of remaining edges (dotted edges), two undamped chord nodes appear (yellow
squares). If one of them is colored black, the black forcing rule colors the whole
component black. Therefore, the only remaining option is to color the chord nodes
red and blue. The color forcing rule will color the node depicted by the yellow circle
red or blue, but in either case, an unbalanced black node will appear. By the CNC
algorithm, the system is PI-GAS.

Fig. 6: The network of Figure 5, where the uppermost undamped node is changed into
a damped node. The CNC algorithm certifies that this network is PI-GAS.

6. Conclusion. Asymptotic output consensus of a mass-spring-damper system
with damped and undamped nodes amounts to global asymptotic stability (GAS) of a
linearly shifted system. For a given set of system parameters, the consensus problem
is equivalent to an eigenspace problem that depends on the graph topology and the
edge weights, as well as on the mass and resistance matrices of the undamped nodes
(Theorem 17). This result is taken as starting point for the parameter-independent
output consensus problem, which asks if all systems with the same underlying graph
and set of damped nodes are GAS. We showed that this problem is equivalent to an
NP-complete graph coloring problem called the richly balanced coloring problem. The
zero forcing property is a sufficient condition for the system to be PI-GAS and thus, to
guarantee output consensus for all system parameter values. For tree graphs, it is also
a necessary condition. The search space of the brute-force approach to decide if the
system is PI-GAS can be confined to the undamped nodes that are endpoints of a set
of edges that form the chords of the graph. This allows one to decide fast whether a
large network with a few fundamental cycles guarantees output consensus. The results
obtained in this paper open the way for an analysis of qualitatively heterogeneous
networks. It can be expected to influence also structural controllability analysis and
pinning control, focusing on the problem of where to allocate a minimum amount of
dampers in order to render the system PI-GAS.
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[3] M. Bürger, D. Zelazo, and F. Allgöwer, Duality and network theory in passivity-based
cooperative control, Automatica, 50 (2014), pp. 2051–2061.

[4] G. Chen, Pinning control and synchronization on complex dynamical networks, Int. J. Control
Autom. Syst., 12 (2014), pp. 221–230.

[5] F. Dörfler and F. Bullo, Kron reduction of graphs with applications to electrical networks,
IEEE Trans. Circuits Syst. I: Reg. Pap., 60 (2013), pp. 150 – 163.
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