
Dynamics of meandering spiral waves with weak lattice
perturbations

Petko Kitanov
Department of Mathematics and Statistics

University of Ottawa
Ottawa, ON K1N 6N5

CANADA

Victor G. LeBlanc
Department of Mathematics and Statistics

University of Ottawa
Ottawa, ON K1N 6N5

CANADA

May 23, 2022

Abstract

Re-entrant spiral waves are observed in many different situations in nature, perhaps
most importantly in excitable electrophysiological tissue where they are believed to be
responsible for pathological conditions such as cardiac arrhythmias, epileptic seizures
and hallucinations. Mathematically, spiral waves occur as solutions to systems of
reaction-diffusion partial differential equations (RDPDEs) which are frequently used as
models for electrophysiological phenomena. Because of the invariance of these RDPDEs
with respect to the Euclidean group SE(2) of planar translations and rotations, much
progress has been made in understanding the dynamics and bifurcations of spiral waves
using the theory of group-equivariant dynamical systems. In reality however, Euclidean
symmetry is at best an approximation. Inhomogeneities and anisotropy in the medium
of propagation of the waves break the Euclidean symmetry, and can lead to such
phenomena as anchoring and drifting. In this paper, we study the effects on quasi-
periodic meandering spiral waves of a small perturbation which breaks the continuous
SE(2) symmetry, but preserves the symmetry of a regular square lattice.
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1 Introduction

Spiral waves have been studied now extensively for a few decades since the pioneering work
of Winfree [39, 40]. One of the most important reasons why they have been given so much at-
tention is the mounting evidence that in electrophysiological tissue (such as the myocardium,
the visual cortex or the brain), spiral waves are typically symptomatic of pathological con-
ditions such as fibrillation, hallucinations or epileptic seizures [13, 20, 21, 27, 31, 38].

A large class of mathematical models in which spiral waves occur as solutions are reaction-
diffusion partial differential equations (RDPDEs) on planar domains

∂U

∂t
(x, y, t) = D · ∇2U(x, y, t) + f(U(x, y, t), λ), (1.1)

where U : R2 × R+ −→ RN may represent for example electric potentials of different ions
through cellular membranes, or concentrations of chemicals. The N ×N constant matrix D
determines diffusion coefficients, and ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian. The smooth function

f : RN × Rm −→ RN describes the local reaction kinetics of the model, and λ ∈ Rm are
model parameters.

When (1.1) is posed on the whole plane, this equation admits an important symmetry
property1: whenever U(x, y, t) is a solution of (1.1), then so is

S(x, y, t) = U(x cos φ− y sin φ+ p1, x sin φ+ y cos φ+ p2, t)

for any angle φ in the circle group S1, and any (p1, p2) ∈ R2. In the jargon of dynamical
systems theory, we say that the right-hand side of (1.1) is SE(2)-equivariant, where SE(2)
designates the group of all planar translations and rotations.

Barkley [6, 7, 8, 9] was the first to recognize the importance of SE(2) symmetry in de-
scribing the dynamics and bifurcations of spiral waves which were observed in numerical
simulations of (1.1) and in physical experiments [26]. Essentially, Barkley argued that the
continuous symmetries of SE(2) should lead to low-dimensional (finite) ordinary differen-
tial equations models to describe the basic modes of propagation of spiral waves: uniform
spatial rotation of the spiral wave around a fixed point in space, or two-frequency epicyclic
meandering spiral waves, where the tip of the spiral wave rotates around a point which it-
self precesses (see for example Figures 2 and 4 below). Later, Sandstede, Scheel and Wulff
[34, 35] proved mathematically how Barkley’s finite dimensional models are, in fact, center
manifold reductions of (1.1) in the context of infinite-dimensional SE(2)-equivariant dynam-
ical systems. See also [15, 16]. In this context, rigidly rotating spiral waves are examples

1In fact, (1.1) also admits reflectional symmetries, but these will not be relevant for the purposes of this
paper.
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of relative equilibria, and two-frequency epicyclic meandering waves are examples of relative
periodic solutions (see [34, 35] for the precise mathematical definitions of these concepts).

In any real physical situation, it is clear that SE(2) symmetry is, at most, an approx-
imation. Boundaries, non-planar geometry, inhomogeneities and anisotropy (which are all
important in the electrophysiological contexts alluded to earlier) break translational and/or
rotational symmetries. Moreover, there are several experimental studies illustrating how bro-
ken translational and/or rotational symmetries may lead to dynamic states for spiral waves
which are inconsistent with Euclidean symmetry: anchoring of spiral waves around regions of
inhomogeneities [13, 28], drifting along boundaries [43, 44], and phase-locking and/or drift-
ing of two-frequency meandering waves in the bidomain model of cardiac electrophysiology
[32, 33]. These experimental observations led to a program of research [10, 11, 12, 23, 24, 25]
which sought to use the theoretical apparatus of the center-manifold theorems of [34, 35]
to characterize generic effects of forced symmetry-breaking on relative equilibria and relative
periodic solutions. As a basic paradigm to illustrate forced symmetry-breaking from SE(2),
consider the following perturbation of (1.1)

∂U

∂t
(x, y, t) = D · ∇2U(x, y, t) + f(U(x, y, t), λ) + εg(U(x, y, t), x, y, ε), (1.2)

where ε is a small parameter and g is some bounded function which depends non-trivially and
explicitly on the spatial coordinates x and y. Whereas (1.2) admits full SE(2) symmetry
when ε = 0, it typically only admits a subgroup Σ ⊂ SE(2) when ε 6= 0, however small
ε may be. Depending on the physical situation that one wants to describe, the subgroup
Σ is prescribed in advance. Using this approach, it was shown in [10, 23, 25] that spiral
anchoring, boundary drifting, and phase-locking and/or drifting of meandering waves in
anisotropic media are generic consequences of forced symmetry-breaking from SE(2) to Σ,
for appropriate choices of Σ. In some sense, we can view the dynamical system generated
by (1.2) with ε 6= 0 as being close to an SE(2)-equivariant dynamical system, so we expect
solutions of (1.2) to retain some of the features of the SE(2) symmetry (at least on a transient
level), as well as features of a Σ-equivariant dynamical system.

1.1 Lattice symmetry-breaking

In a recent paper [12], we studied the case where Σ in (1.2) is the group of rotational
and translational symmetries of a regular square lattice. Specifically, we characterized the
effects of this symmetry-breaking on relative equilibria (i.e. uniformly rigidly rotating spiral
waves, or linearly translating waves with retracting tip). The motivation was two-fold. First,
whenever an RDPDE model such as (1.1) is used to describe electrophysiological waves, it is
understood that this continuum model is obtained after some averaging and homogenization
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over the cellular structure of the tissue. However, if the size of the spiral wave (e.g. spiral
step size) is comparable to the size of the cellular structure, then inhomogeneities generated
by gap junctions between cells may have an influence on the dynamics of the spiral wave.
See for example Figure 1 (taken from [3]) which illustrates the spatial distribution of cones
in a cross section of the human retina. As a first approximation, one may assume that the
cells are arranged in a square grid, although one could argue that in certain regions of Figure
1, perhaps a hexagonal grid is closer to reality. In any event, our goal is to characterize the
generic first order effects of a lattice structure on spiral dynamics, so the specific geometry
of the lattice (i.e. square vs hexagonal) is secondary in light of this. We choose a square
lattice to simplify the presentation, and for the second motivation described below.

Figure 1: Figure 2 of [3] (with permission) illustrating the spatial arrangement of cones in a
cross section of the human retina.

A second motivation to study square lattice symmetry-breaking from SE(2) is to try
to characterize effects of coarse spatial grids on the resolution of spiral wave dynamics in
numerical simulations of (1.1). Although the RDPDE (1.1) enjoys full SE(2) symmetry,
numerical integration schemes which involve finite difference spatial discretization possess
only the symmetries of the lattice. So it is not unreasonable to expect that numerical
integrations of (1.1) may reflect features which are characteristic of this grid symmetry,
while still being “close” to being fully SE(2) symmetric [11]. This is especially true if the
grid is coarse in relation to the size of the spiral. As an illustration of this point, in Figure 2
below, we show the path of the tip of a meandering spiral wave for four different numerical
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integrations of the FitzHugh-Nagumo system

∂u

∂t
= ∇2u+

1

τ

(
u− 1

3
u3 − v

)
∂v

∂t
= τ(u+ β − γv)

(1.3)

on the domain [−10π, 10π]2 using a finite difference scheme (explicit in time) with varying
grid sizes, and Neumann boundary conditions. In particular, there is phase-locking of a
four-petal closed meandering path for a coarse grid, and this is inconsistent with Euclidean
symmetry [9]. See also [1, 2, 37, 42] for further motivation as to the importance of under-
standing spiral wave dynamics in lattice structures.

As mentioned above, our emphasis in [12] was on characterizing the effects of lattice
symmetry-breaking on relative equilibria. The goal of this present paper is to study the effects
of this type of perturbation on relative periodic solutions (otherwise known as modulated
rotating waves, or modulated travelling waves [6, 7, 9]).

1.2 Numerical simulations

At several places in this paper, we will present results of numerical simulations to illustrate
some of the features which are predicted from our analysis. These simulations are numerical
integrations of the perturbed FitzHugh-Nagumo system

∂u

∂t
= ∇2u+

1

τ

(
u− 1

3
u3 − v

)
+ ε g1(x, y)

∂v

∂t
= τ(u+ β − γv + ε g2(x, y))

(1.4)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 , τ , β and γ are model parameters (which will be varied across the

different simulations), the functions g1 and g2 are the lattice symmetry-breaking terms, and
ε ≥ 0 is a small parameter. When ε = 0, (1.4) reduces to (1.3), and is symmetric under
the planar group of rotations and translations, SE(2). We will consider functions g1,2 of the
form

gi = Ai +Bi(cos(x/2) + cos(y/2)) + Ci(cos((3x− 2y)/2) + cos((2x+ 3y)/2)), i = 1, 2,
(1.5)

where the coefficients Ai, Bi and Ci will vary from simulation to simulation. Therefore, when
ε 6= 0, the SE(2) symmetry of (1.4) is broken, but the rotational and translational symmetries
of a square lattice are preserved. Simulations with more harmonic components and/or with
sine components were also performed, but did not lead to any dynamics significantly different
from that obtained using (1.5).
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Figure 2: Path of the spiral tip path for numerical integrations of (1.3) on the domain
[−10π, 10π]2 using a finite difference scheme (explicit in time) with varying grid sizes: 200×
200 (top left), 100×100 (top right), 50×50 (bottom two figures). The same initial condition
is used in all cases, and transients have been removed. The kinetic parameters are β = 0.755,
γ = 0.5 (for all four figures), and τ = 0.2 (both top figures and bottom left figure), or τ = 0.25
(bottom right). The bottom figures illustrate a phase-locked four-petal closed meandering
path with four-fold rotational symmetry, a result we will see in section 6 that is consistent
with lattice symmetry-breaking.
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Definition 1.1 For the perturbation functions gi in (1.5), system (1.4) is invariant under
transformations which are combinations of translations along the x or the y directions by
integer multiples of 4π, and rotations around the origin by π/2. We will therefore refer to
the points

{ (4πn1, 4πn2) | n1, n2 ∈ Z }

as lattice points in this paper. System (1.4) is also invariant under rotation by π/2 around
the point (2π, 2π). Hence, we will refer to the points

{ (2π + 4πn1, 2π + 4πn2) | n1, n2 ∈ Z }

as dual lattice points in this paper.

Throughout this paper, in the several figures where we present results of numerical simula-
tions of (1.4), we superimpose on the figure red squares and black crosses to guide the eye
as to the position of the lattice points and the dual lattice points respectively (see Figure 6
for example).

For the numerical simulations which will be illustrated in this paper, the partial differ-
ential equation (1.4) is integrated numerically on the rectangle [−10π , 10π]2 using a finite-
difference scheme (200 × 200 spatial grid) and explicit time-stepping. Neumann boundary
conditions are applied, and initial conditions are chosen so that the spiral tip is away from
the edges, so that boundary effects (if any) should be negligible.

Fully symmetric case

In Figure 3, we give a plot of the u and v components of a typical numerical integration
of (1.4) when ε = 0, at a fixed instant in time, illustrating the spiral shape of the profile.
To illustrate the meandering dynamics of spiral waves, we will track the position in space
of the “spiral tip”, which we arbitrarily define in this paper as being the intersection of the
u = 0 and v = 0 contours. Note that other definitions of the “tip” are possible, and it is
well-known [6, 7, 9, 32, 33] that the dynamics are qualitatively similar for different choices
of definitions. In Figure 4, we give the position of the spiral tip for the integration of the
homogeneous case described above and illustrated in Figure 3. We note that the meander
path in Figure 4 resembles a flower with petals [15] pointing outwards. Meander paths
with inward pointing petals also occur in (1.4). Furthermore, in parameter space, there
is a codimension-one surface across which meandering paths with outward petals change
continuously into meandering paths with inward petals via modulated travelling waves, which
are states where the spiral motion is characterized as a composition of a rotation and a linear
translation of the center of rotation [8]. Figure 5 illustrates this phenomenon.
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Figure 3: Plots of the u (left) and v (right) components at a fixed instant in time for a
numerical integration of (1.4) with ε = 0 (homogeneous case), τ = 0.1858, β = 0.755,
γ = 0.5

Figure 4: Plot in space of the position of the spiral tip for the integration described in Figure
3. The left figure is for a short integration time, and the right figure is on a longer integration
time. This is typical of a two-frequency motion, where the frequencies are incommensurate.
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Figure 5: Superposition of meander paths for three simulations of (1.4) with ε = 0 and same
initial condition in all three cases, which illustrate the transition from meandering with
inwards petals (green) to outwards petals (blue) via linear meandering (red). Parameter
values are τ = 0.26, γ = 0.5 and β = 0.793 (green), β = 0.79275 (blue), β = 0.792875 (red).
The parallel black arrows on both sides of the red meander path have been added to the
figure to guide the eye.
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Symmetry-breaking

For simulations of (1.4) involving lattice inhomogeneities (ε 6= 0), we typically use as
initial condition the u − v state of a homogeneous integration (such as depicted in Figure
3), and we choose the size of the perturbation terms |ε gi| small enough so that the wave
retains its overall spiral shape. For example, in Figure 6, we show the u component of such
an inhomogeneous case. The effect of the perturbation on the wave profile can be easily
observed.

Figure 6: Plot of the u component of an integration of (1.4) with an inhomogeneous pertur-
bation. The effect of the perturbation on the wave profile can be easily observed. The red
squares and black crosses represent the lattice and dual lattice respectively.

1.3 Outline of the paper

The paper is organized as follows. In section 2, we present the functional analytic frame-
work and hypotheses. The goal is to reduce the problem of studying the effects of lattice
symmetry-breaking perturbations in (1.2) on relative periodic solutions, to that of studying
the asymptotic behaviour of solutions of a four-dimensional system of ordinary differential

10



equations (2.4) (center bundle equations) possessing symmetry properties related to those
of (1.2).

One of our most important analytical tools in this paper is Hale’s theory of averaging
of multiply periodic differential equations and associated results on the existence of integral
manifolds, presented in Theorem 2.3, §VII.2 of [18]. In section 3, we perform certain changes
of coordinates on (2.4) in order to transform these equations into forms that are suitable to
apply Hale’s theorem. The analysis also depends on the commensurability or incommensu-
rability of various quantities which will be described later on. Furthermore, this is related
to the classical problem of small divisors [4, 14], which we briefly summarize in section 4.

Our main results are contained in sections 5, 6 and 7 where we study the effects of lattice
symmetry-breaking on respectively quasi-periodic meandering waves, on meandering waves
whose meander path is a closed epicycle (we will pay special attention to phase-locking in
this case), and on modulated travelling waves. In each of these 3 chapters, we give the main
mathematical results, give an interpretation for how these mathematical results translate to
dynamical features of spiral waves, and then illustrate with numerical results performed on
(1.4) for various choices of inhomogeneity functions gi, and various kinematic parameters τ ,
β and γ.

We end with a discussion in section 8. Some of the more technical proofs are omitted
from the main text, and instead presented in Appendix A.

2 Preliminaries

The special Euclidean group, denoted by SE(2), is the set of all planar translations and
rotations. We parametrize this group as

SE(2) = {(φ, p) ∈ S1 × R2}.

The action of SE(2) on a point z =

(
x
y

)
∈ R2, is given by

(φ, p) · z = Rφ · z + p,

where

Rφ =

(
cosφ − sinφ
sinφ cosφ

)
, p =

(
px
py

)
. (2.1)

We define Σ to be the following subgroup of SE(2)

Σ =

{
(φ, p) ∈ SE(2) |φ =

n1π

2
(mod 2π), p =

(
2πn2

2πn3

)
, n1, n2, n3 ∈ Z

}
, (2.2)
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which represents the symmetry subgroup of a regular square lattice.
Let X be a Banach space, and suppose

a : SE(2)→ GL(X)

is a faithful and isometric representation of SE(2) in the space of bounded, invertible linear
operators on X. The situation we have in mind is that X is a space of functions defined from
R2 into RN , and the action a on X is

(a(ν)U)(z) = U(ν−1 · z), ν = (φ, p) ∈ SE(2).

We consider a semilinear autonomous differential equation on X of the form

wt = Aw + F (w) + εG (w, ε), (2.3)

where ε ≥ 0 is a small parameter, A, F and G satisfy conditions which guarantee that (2.3)
generates a smooth local semiflow Φt,ε on X [19], and G is bounded.

We assume the following hypothesis on the semiflow Φt,ε:

Hypothesis 2.1

Φt,0(a(ν)w) = a(ν)Φt,0(w), ∀w ∈ X, ν ∈ SE(2), t > 0,

and for ε > 0, we have

Φt,ε(a(ν)w) = a(ν)Φt,ε(w), ∀w ∈ X, ∀t > 0⇐⇒ ν ∈ Σ.

This hypothesis means thatA+F in (2.3) is SE(2)−equivariant, but G is only Σ−equivariant.
It is in this sense that we say that G breaks the SE(2) symmetry of (2.3).

As mentioned in the Introduction, we are interested in how the symmetry-breaking term
G in (2.3) affects the dynamics of meandering waves. Thus, we will need to assume that
(2.3) admits such solutions when ε = 0.

Hypothesis 2.2 (Existence of normally hyperbolic relative periodic solutions)
There exists w? ∈ X, T > 0 and ν∗ ∈ SE(2) such that

ΦT,0(w∗) = a(ν∗)w∗,

and for all t ∈ (0, T ), we have Φt,0(w∗) /∈ {a(ν)u∗ | ν ∈ SE(2)}. Furthermore, we assume
that the set {σ ∈ C | |σ| ≥ 1} is a spectral set for the linearization a(ν∗)−1DΦT,0(w?),
with projection P? such that the generalized eigenspace range(P?) is four-dimensional (three
corresponding to the symmetry eigenvalues, and one corresponding to the flow direction).
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For simplicity, we will only be interested in one-armed spiral waves, so we assume the
isotropy subgroup of w? in Hypothesis 2.2 is trivial, i.e.

a(φ, p) · w? = w? ⇐⇒ (φ, p) = (0, 0).

Remark 2.3 The group element a(ν∗) in Hypothesis 2.2 is either a rotation or a translation.
In the former case, the spiral wave evolves in time in such a way that the tip of the spiral
traces out an epicyclic path (with petals either inwards or outwards) - see for example
[6, 7, 9, 39, 40] who coined such states as meandering. Such a state is illustrated in Figure
4. In the case where a(ν∗) is a translation, the path of the spiral tip is a combination of a
rotation superimposed with a translation - the center of rotation travels linearly at a constant
speed. These states were described in [8] as occurring arbitrarily close to a point of resonant
Hopf bifurcation from a purely rotating spiral waves. See the red meander path of Figure 5
for an illustration of such a state.

Assuming all other hypotheses of the center manifold theorem of [34, 35] are satisfied,
then for ε small enough and after a rescaling of time along the orbits of the semiflow, the
dynamics of (2.3) near the relative periodic solution reduce to the following ODE system on
the center bundle X which is diffeomorphic to the 4-torus T4 (compare with [12]):

Ψ̇ = Rϕ [h1(θ) + εF1(Ψ, ϕ, θ, ε)]
ϕ̇ = ω + h2(θ) + εF2(Ψ, ϕ, θ, ε)

θ̇ = 1,

(2.4)

where  Ψ
ϕ
θ

 =


ψ1

ψ2

ϕ
θ

 ∈ X = T4,

h1,2 are smooth and 2π-periodic with

〈h2〉 ≡
1

2π

∫ 2π

0

h2(θ)dθ = 0, (2.5)

ω ≥ 0 is a constant real number, ε ≥ 0 is a small parameter, and we remind the reader
that Rϕ is the rotation matrix (2.1). The variables Ψ = (ψ1, ψ2) are the usual translation
variables of the center manifold reduction procedure [12, 15, 34, 35], but viewed modulo the
lattice of the perturbation, and therefore are periodic with respect to this lattice. It is for

13



this reason that the equations (2.4) are viewed as being defined over T4 instead of the usual
C × T2 [25, 23]. When one of the variables ψ1,2 advances through a complete period of 2π,
this should be interpreted in physical space as the spiral has advanced to a neighbouring
fundamental domain in the spatial grid.

Also in (2.4), the functions F1,2 are assumed to be smooth enough for our purposes, are
2π-periodic in ψ1, ψ2, ϕ and θ and satisfy the lattice symmetry property

F1,2

(
−JΨ, ϕ+

π

2
, θ, ε

)
= F1,2(Ψ, ϕ, θ, ε), ∀

 Ψ
ϕ
θ

 ∈ T4, 0 ≤ ε� 1, (2.6)

where

J ≡ R−π
2

=

(
0 1
−1 0

)
.

The group SE(2) acts on the phase space X = T4 of (2.4) as follows:

(φ, p) ·

 Ψ
ϕ
θ

 =

 (RφΨ + p) (mod [0, 2π]× [0, 2π])
ϕ+ φ (mod 2π)

θ

 .

When ε = 0, (2.4) is equivariant with respect to this action. However, when ε > 0, property
(2.6) implies that the symmetry group of (2.4) is restricted to the lattice subgroup Σ defined
in (2.2). Thus, (2.4) reflects the forced symmetry-breaking property of (2.3). When ε > 0,

if (Ψ(t), ϕ(t), θ(t)) is a solution of (2.4), then so is
(
JΨ(t), ϕ(t)− π

2
, θ(t)

)
.

We end this section with some remarks.

Remark 2.4 (a) The functions F1,2, h1,2 and the number ω in (2.4) obviously depend on
the operator A and the functions F and G in (2.3), via the center manifold reduction
process. By studying, as we do in this paper, generic properties of the class of ODEs
of the general form (2.4) without further specifications, we are in a sense studying
the range of possible generic local dynamics near relative periodic solutions of the
infinite-dimensional system (2.3). However, from a practical consideration, one would
like to be able to obtain a formula that maps between the space of functions A, F
and G in (2.3), and the space of functions F1,2, h1,2 and the number ω in (2.4). This
is a very difficult problem in general, and requires information which is usually not
readily available (for example, an explicit algebraic representation of the unperturbed
meandering spiral wave solution). With this limitation in mind, our goals in this
paper will be more modest. We will characterize certain model-independent features
of solutions to system (2.4), and interpret these results in terms of how a weak lattice
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symmetry-breaking perturbation generically affects the dynamics of relative periodic
solutions of (2.3).

(b) Because there has been a rescaling of time to set the coefficient of the θ̇ equation in
(2.4) to 1, the coefficient ω in (2.4) in fact represents a ratio of the two frequencies of
the epicyclic meandering in (2.3) when ε = 0.

3 Preparing the equations for averaging

In the previous section, we have seen that the local dynamics of (2.3) near the relative
periodic solution reduces to the center bundle ODEs (2.4) defined on the 4-torus T4, where
the function h2(θ) satisfies the zero-mean condition (2.5).

Later in the paper, we will want to apply results from the theory of averaging and integral
manifolds, as set forth in [18], to find invariant periodic solutions and invariant tori to (2.4)
for small ε > 0. However, we must first transform (2.4) into a standard form suitable to
apply Theorem 2.3, §VII.2 of [18] - see also section 3 of [12]. As will become evident in the
sequel, the transformations and the resulting transformed system will depend on whether or
not ω is an integer in (2.4).

Proposition 3.1 Suppose ω in (2.4) is not an integer. Then under a suitable change of
variables, the system (2.4) is equivalent to

Ψ̇ = εRϕG1(Ψ, ϕ, θ, ε)
ϕ̇ = ω + εG2(Ψ, ϕ, θ, ε)

θ̇ = 1,

(3.1)

where G1,2 are smooth, 2π-periodic in ψ1, ψ2, ϕ and θ, and satisfy the symmetry properties
(2.6).

Proposition 3.2 Suppose ω in (2.4) is an integer. Then under a suitable change of vari-
ables, the system (2.4) is equivalent to

Ψ̇ = RϕV + εRϕH1(Ψ, ϕ, θ, ε)
ϕ̇ = εH2(Ψ, ϕ, θ, ε)

θ̇ = 1,

(3.2)

where V ∈ R2 is a constant (which is generically non-zero), H1,2 are smooth, 2π-periodic in
ψ1, ψ2, ϕ and θ, and satisfy the symmetry properties (2.6).
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The proofs of these propositions are found in Appendix A.
As mentioned above, in the rest of the paper, we will analyze systems (3.1) and (3.2)

using Theorem 2.3, §VII.2 of [18]. Throughout, we will assume that the continuity and
smoothness conditions which are required by this theorem are satisfied by A, F and G in
(2.3), and consequently by the vector fields (3.1) and (3.2).

It is well-known [4, 14] that an important technical obstacle to applying ideas from the
theory of averaging to a system such as (3.1) or (3.2) is the problem of small divisors. In the
next section, we will briefly address this issue.

4 Small divisors

The problem of small divisors is a classical one in the analysis of multiply periodic dynamical
systems, and is related to solving a linear partial differential equation of the form

ω1
∂r

∂φ1

+ · · ·+ ωn
∂r

∂φn
= s(φ1, . . . , φn)

by way of a multiple Fourier series

r(φ1, . . . , φn) =
∑

(m1,...,mn)∈Zn
Am1,...,mn e

i(m1φ1+···+mnφn)

given s(φ1, . . . , φn) =
∑

(m1,...,mn)∈Zn Bm1,...,mn e
i(m1φ1+···+mnφn) with B0,...,0 = 0. Formal inte-

gration of the PDE leads to

Am1,...,mn =
Bm1,...,mn

i(m1ω1 + · · ·+mnωn)
, (m1, . . . ,mn) ∈ Zn \ {(0, . . . , 0)},

which can get uncontrollably large even if ω1, . . . , ωn are linearly independent over the ratio-
nals. So we can not guarantee the convergence of the series for r, (unless s is a trigonometric
polynomial, in which case convergence is not an issue). We must thus impose restrictions on
ω1, . . . , ωn in the general case.

Definition 4.1 A vector Ω = (ω1, . . . , ωn) ∈ Rn, n ∈ N is said to satisfy a diophantine
condition of constant ρ > 0 and exponent µ ≥ n − 1, and we write Ω ∈ Cρ,µ, if for every
m = (m1, . . . ,mn) ∈ Zn, we have

|〈m,Ω〉| ≡

∣∣∣∣∣
n∑
j=1

mjωj

∣∣∣∣∣ ≥ ρ|m|−µ,

where |m| =
∑n

j=1 |mj|.
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One can show [14] that the Lebesgue measure of Cρ,µ is positive.
The following is an adaptation of Theorem 12.9 of [14], where we also use well-known

results on the rate of convergence of Fourier coefficients and the degree of smoothness of the
corresponding Fourier series [30].

Proposition 4.2 Suppose Ω = (ω1, . . . , ωn) ∈ Rn is such that its components are linearly
independent over the rationals, and consider the partial differential equation on the torus Tn

n∑
k=1

ωk
∂r

∂φk
(x, φ1, . . . , φn) = s(x, φ1, . . . , φn) (4.1)

where x ∈ K ⊂ Rq, K compact.

(a) If s(x,φ) = s(x, φ1, . . . , φn) is a trigonometric polynomial of the form

s(x,φ) =

N1∑
m1=−N1

· · ·
N1∑

mn=−N1

Bm(x)ei〈m,φ〉

with B0 = 0, then the trigonometric polynomial

r(x,φ) =

N1∑
m1=−N1

· · ·
N1∑

mn=−N1

Am(x)ei〈m,φ〉,

where A0 = 0 and Am(x) =
Bm(x)

i〈m,Ω〉
, m 6= 0, is a solution to (4.1).

(b) If s(x,φ) =
∑
m∈Zn

Bm(x)ei〈m,φ〉 (with B0 = 0) is smooth, but not a trigonometric poly-

nomial, and if Ω ∈ Cρ,µ (for some ρ > 0 and µ ≥ n− 1), then the function

r(x,φ) =
∑

m∈Zn\{0}

Bm(x)

i〈m,Ω〉
ei〈m,φ〉

is smooth (with degree of smoothness determined by µ), and is a solution to (4.1).
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5 The case where ω is irrational in (3.1)

Performing the near identity change of variables Ψ = Ψ̂ + εr(Ψ̂, ϕ, θ) transforms (3.1) into
(upon dropping the hats)

Ψ̇ = εG(Ψ) + ε
[
s(Ψ, ϕ, θ)− ω ∂r

∂ϕ
(Ψ, ϕ, θ)− ∂r

∂θ
(Ψ, ϕ, θ)

]
+ ε2RϕG3(Ψ, ϕ, θ, ε)

ϕ̇ = ω + εG4(Ψ, ϕ, θ, ε)

θ̇ = 1,

(5.1)

where

G(Ψ) =
1

(2π)2

∫
T2

RϕG1(Ψ, ϕ, θ, 0) dϕdθ, (5.2)

and
s(Ψ, ϕ, θ) = RϕG1(Ψ, ϕ, θ, 0)− G(Ψ). (5.3)

The following is a straightforward consequence of Proposition 4.2,

Proposition 5.1 If s in (5.1) and (5.3) is a trigonometric polynomial, or if Ω = (ω, 1)
satisfies Definition 4.1, then a smooth function r can be chosen so that (5.1) simplifies to

Ψ̇ = εG(Ψ) + ε2RϕG3(Ψ, ϕ, θ, ε)
ϕ̇ = ω + εG4(Ψ, ϕ, θ, ε)

θ̇ = 1,

(5.4)

where G is as in (5.2). Moreover, G3,4 satisfy the symmetry properties (2.6), and G(JΨ) =
JG(Ψ).

The two-dimensional Z4−equivariant system

Ψ̇ = εG(Ψ), (5.5)

has an equilibrium at Ψ = 0, and any non-trivial equilibria occur as a conjugate set{
JkΨ?, k = 0, 1, 2, 3

}
.

If {Ψ(t)| 0 ≤ t ≤ T} is a T−periodic orbit of (5.5), then either
{
JkΨ(t)| 0 ≤ t ≤ T

}
is

a distinct periodic orbit for k = 1, 2, 3, or {JΨ(t)| 0 ≤ t ≤ T} coincides with the orbit
{Ψ(t)| 0 ≤ t ≤ T}. In this latter case, the periodic solution has one of the following spatial-
temporal symmetries

Ψ(t− T/4) = ±JΨ(t). (5.6)

The main result of this section is the following:
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Theorem 5.2 Let us consider the equation (5.5).

(i) Suppose the equation (5.5) has an equilibrium at Ψ? which is linearly stable (resp.
unstable). Then for ε > 0 small enough, the system (5.4) has linearly stable (resp.
unstable) invariant two-tori represented as

Ψ = Jk
(

Ψ? +
√
εσΨ?

(
ϕ+

kπ

2
, θ, ε

))
, k = 0, 1, 2, 3, (5.7)

where the smooth function σΨ? is such that σΨ? → 0 as ε → 0. If Ψ? = 0, then the
torus has the Z4-symmetry

σ0

(
ϕ− π

2
, θ, ε

)
= Jσ0(ϕ, θ, ε). (5.8)

(ii) Suppose {Ψ?(t)| 0 ≤ t ≤ T} is a non-trivial periodic orbit of (5.5) and that this orbit
is linear stable (resp. unstable). Then for ε > 0 small enough, the system (5.4) has
linearly stable (resp. unstable) invariant three-tori represented as

Ψ = Jk (Ψ?(η + kT/4) +
√
εΣΨ? (η + kT/4, ϕ+ kπ/2, θ, ε)) , k = 0, 1, 2, 3,

(η, ϕ, θ) ∈ [0, T ]× [0, 2π]× [0, 2π],
(5.9)

where the smooth function ΣΨ? is such that ΣΨ? → 0 as ε → 0. Furthermore, if Ψ?

satisfies the spatial-temporal symmetry (5.6), then the invariant three-torus is such that

ΣΨ?(η − T/4, ϕ∓ π/2, θ, ε) = ±JΣΨ?(η, ϕ, θ, ε). (5.10)

Proof We first prove item (i). Setting

Ψ = Ψ∗ +
√
εΨ̂ (5.11)

transforms (5.4) into the following (upon dropping the hats)

Ψ̇ = εDΨG(Ψ∗)Ψ + ε
3
2RϕR1(Ψ, ϕ, θ, ε)

ϕ̇ = ω + εR2(Ψ, ϕ, θ, ε)

θ̇ = 1,

(5.12)

where R1,2 are smooth and 2π-periodic in ϕ and in θ. System (5.12) is in the appropriate
form to apply Theorem 2.3, §VII.2 of [18], and conclude that (5.12) has an invariant two-
torus of the form Ψ = σΨ∗(ϕ, θ, ε) for all ε > 0 sufficiently small, with σΨ∗ → 0 as ε → 0.
Using (5.11), we get that (5.7) with k = 0 is an invariant two-torus for (5.4).
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For the conjugate equilibrium JΨ∗ of (5.5), we replace (5.11) by

Ψ = J(Ψ∗ +
√
εΨ̂).

Setting ϕ = ϕ̂−π/2 and using the equivariance properties ofR1 andR2, (5.4) also transforms
into (5.12) upon dropping the hats. Therefore, Ψ = JΨ∗ + J

√
εσΨ∗(ϕ+ π/2, θ, ε) is also an

invariant two-torus for (5.4), distinct from the previous one if Ψ∗ 6= 0, but if Ψ∗ = 0, we get
(5.8). This ends the proof of item (i).

To prove (ii), we introduce a local coordinate system (b, η) near the periodic orbit (see
[18] and [12]) defined by

Ψ = Ψ∗(η) + b J
Ψ̇∗(η)

||Ψ̇∗(η)||
(5.13)

which transforms (5.4) into

ḃ = εA(η, b)b+ ε2U(b, η, ϕ, θ, ε)
η̇ = ε(1 +B(η, b)b) + ε2V(b, η, ϕ, θ, ε)
ϕ̇ = ω + εW(b, η, ϕ, θ, ε)

θ̇ = 1,

(5.14)

where U , V and W are smooth, T -periodic in η, and 2π-periodic in ϕ and θ, and where

A(η, 0) = trace(DΨG(Ψ∗(η)))− d

dη
ln(||Ψ̇∗(η)||).

If we define

δ =
1

T

∫ T

0

A(s, 0) ds =
1

T

∫ T

0

trace(DΨG(Ψ∗(s))) ds,

then δ < 0 (resp., δ > 0) if the limit cycle Ψ∗(t) is linearly stable (resp., unstable). Performing
the periodic change of variable

b =
√
ε ξe

∫ η
0 (A(s,0)−δ) ds

transforms (5.14) into

ξ̇ = εδξ + ε
3
2U(ξ, η, ϕ, θ, ε)

η̇ = ε+ ε
3
2V (ξ, η, ϕ, θ, ε)

ϕ̇ = ω + εW (ξ, η, ϕ, θ, ε)

θ̇ = 1,

(5.15)

which is in the proper form to apply Theorem 2.3, §VII.2 of [18], and conclude that (5.15)
admits an invariant three-torus

ξ = σΨ∗(η, ϕ, θ, ε), σΨ∗ → 0, as ε→ 0.
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Using (5.13), we conclude that (5.4) admits an invariant three-torus

Ψ = Ψ∗(η) +
√
εΣΨ∗(η, ϕ, θ, ε),

where

ΣΨ∗(η, ϕ, θ, ε) = σΨ∗(η, ϕ, θ, ε)e
∫ η
0 (A(s,0)−δ) ds JΨ̇∗(η)

||Ψ̇∗(η)||
.

We have thus established (5.9) in the case k = 0. The other cases for k in (5.9) and the
spatio-temporal symmetry property (5.10) follow using similar arguments to those used in
the proof of item (i) above.

Interpretation: Two-frequency meandering spiral waves have been observed in RDPDE
systems such as (1.4) when ε = 0 [8]. If the two-frequencies are incommensurate, then the
meander path typically resembles that in Figure 4, and this path densely fills a circular annu-
lus. Theorem 5.2 characterizes the simplest ways in which these meandering waves typically
behave under a generic lattice symmetry-breaking perturbation, assuming the frequency
ratio satisfies a Diophantine condition.

One possibility is that the two-frequency meandering wave drifts and anchors at a point
in space that may or may not be a lattice point. If the point of anchoring is a point of
the lattice, then the meander path will typically lose the full circular symmetry of Figure
4, but retains a four-fold rotational symmetry. If the point of anchoring is not related to
the lattice, then we expect that the meander path doesn’t retain any rotational symmetries.
Furthermore, to any such anchored meander paths, there are conjugate anchored meander
paths related to the first one by the symmetries of the lattice.

Another possibility is that the lattice symmetry-breaking induces a third (slow) frequency
in the meandering motion of the spiral. Again, the resultant three-frequency motion will
be anchored at some point in space. If this anchoring point is a lattice point, then the
three-frequency meander path has overall four-fold rotational symmetry, otherwise it re-
tains no rotational symmetries. Again, lattice symmetries lead to conjugate three-frequency
meandering states.

In Figures 7 and 8, we show the meander path of a spiral wave solution observed in a
numerical simulations of (1.4) with inhomogeneity data (1.5) given respectively by

ε = 0.01, A1 = −0.7, A2 = 0.14, B1 = −2.5, B2 = −0.5, C1 = 0.5, C2 = 1.5 for Figure 7
(5.16)

and

ε = 0.01, A1 = −0.9, A2 = 0.46, B1 = −2.5, B2 = 0.5, C1 = −0.5, C2 = 1.5 for Figure 8.
(5.17)
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We have chosen the same kinetic parameters τ = 0.1858, β = 0.755, γ = 0.5 as for the
simulation of the fully Euclidean case illustrated in Figure 4. After transients have died out,
one observes a two-frequency meandering wave which is anchored at a point that is not a
lattice point in Figure 7, and a three-frequency meandering wave which is anchored at a
lattice point in Figure 8

Figure 7: A two-frequency anchored meandering path for a spiral wave in (1.4) with inhomo-
geneity data (5.16) and kinetic parameters τ = 0.1858, β = 0.755, γ = 0.5. The red square
and black cross are there for reference purposes to illustrate points of the lattice and the
dual lattice respectively. The transient is in green, and the final anchored state is in blue.

6 Phase-locking

When ω = k/` is rational (but not an integer) in (3.1) (with gcd(k, `) = 1), then as we
will see in this section, phase-locking of meandering waves can occur. We prepare (3.1) for
averaging by setting ϕ̂ = ϕ− kθ/`, which yields (after dropping the hats)

Ψ̇ = εRϕRkθ/`G1(Ψ, ϕ+ kθ/`, θ, ε)
ϕ̇ = εG2(Ψ, ϕ+ kθ/`, θ, ε)

θ̇ = 1.

(6.1)
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Figure 8: A three-frequency anchored meandering path for a spiral wave in (1.4) with in-
homogeneity data (5.17) and kinetic parameters τ = 0.1858, β = 0.755, γ = 0.5. The red
square and black crosses are there for reference purposes to illustrate points of the lattice
and the dual lattice respectively. The transient is in green, and the final anchored state is
in blue.
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We then define the averages

G1(Ψ, ϕ) =
1

2π`

∫ 2π`

0

RϕRkθ/`G1(Ψ, ϕ+ kθ/`, θ, 0) dθ

G2(Ψ, ϕ) =
1

2π`

∫ 2π`

0

G2(Ψ, ϕ+ kθ/`, θ, 0) dθ.

(6.2)

The following is a straightforward consequence of the standard (singly periodic) theory of
averaging [17, 18]

Theorem 6.1 Let (Ψ0, ϕ0) be a hyperbolic equilibrium point of the averaged equations

Ψ̇ = εG1(Ψ, ϕ)
ϕ̇ = εG2(Ψ, ϕ).

(6.3)

Then for all small enough ε > 0, the system (6.1) has a 2π`-periodic solution represented
as

Ψ = f 1
(Ψ0,ϕ0)(θ, ε), ϕ = f 2

(Ψ0,ϕ0)(θ, ε) (6.4)

which tend to Ψ0 and ϕ0 respectively when ε→ 0. Furthermore, the stability of the periodic
solution is the same as the stability of the equilibrium point (Ψ0, ϕ0) in (6.3).

Interpretation: Theorem 6.1 implies that if (Ψ0, ϕ0) is a linearly stable equilibrium point
for (6.3), then (6.1) has an asymptotically stable 2π`-periodic solution

(Ψ(t), ϕ(t)) = (f 1
(Ψ0,ϕ0)(t, ε), f

2
(Ψ0,ϕ0)(t, ε)).

Working backwards through the changes of coordinates that transformed (2.4) into (6.1) (see
Appendix A for details), the linearly stable 2π`-periodic solution (6.4) of (6.1) corresponds
to a 2π`-periodic solution of (2.4) which is such that

Ψ(t, ε) = f 1
(Ψ0,ϕ0)(t, ε) +Rf2

(Ψ0,ϕ0)
(t,ε)Rkt/`R∫ t

0 h2(s) ds S(t), (6.5)

where S(t) is 2π-periodic (see Lemma A.2 and equation (A.3)). The term

Rf2
(Ψ0,ϕ0)

(t,ε)Rkt/`R∫ t
0 h2(s) ds S(t)

represents a compound motion of a 2π-periodic term R∫ t
0 h2(s) ds S(t), a 2π`/k-periodic term

Rkt/` and a 2π`-periodic term Rf2
(Ψ0,ϕ0)

(t,ε). Thus, this 2π`-periodic solution corresponds to a

two-frequency solution for (2.4), where the two frequencies are in ratio k/`. If such a solution
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represents the dynamics of a spiral wave solution to (2.3) via the center manifold reduction
(2.4), then the meander path of the spiral tip is closed and is composed of two-frequencies
which are in ratio k/`. Moreover, because of the linear stability of this solution, then it is
stable to small perturbations in (2.3). This means that contrary to the fully Euclidean case,
lattice symmetry-breaking may lead to phase-locking of meandering spiral waves.

In Figure 9, we illustrate meander paths for two simulations of (1.4) with different pa-
rameters, and with transients removed. We observe a phase-locked 3-petal meandering path.
The inhomogeneity functions g1 and g2 in (1.5) have the following coefficients for both sim-
ulations:

ε = 0.01, A1 = −0.1997, A2 = 0.2997, B1 = 0.001, B2 = −0.001, C1 = −1, C2 = 1.5.
(6.6)

Figure 9: Meander paths of spiral waves in numerical simulations of (1.4) with inhomogeneity
coefficients given by (6.6). The transients have been removed, and what is represented here
is the final (steady) epicyclic meandering regime. The kinetic parameters are β = 0.8 and
γ = 0.5 for both, and τ = 0.1018 (left) and τ = 0.10195 (right). The 2-frequency 3-petal
motion thus appears to be phase-locked, as predicted by Theorem 6.1. The red square at
(0, 0) indicates a lattice point.
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6.1 Symmetry properties of (6.3)

The following is a direct consequence of the symmetry properties (2.6) for the functions G1

and G2 in (6.1) and the definitions (6.2).

Proposition 6.2 The averaged differential equations (6.3) are such that

G1(−JΨ, ϕ+ π/2) = −JG1(Ψ, ϕ) and G2(−JΨ, ϕ+ π/2) = G2(Ψ, ϕ)

Proof This is a straightforward computation.

It follows from this proposition that if (Ψ0, ϕ0) is an equilibrium for (6.3), then there
are conjugate equilibria (−JnΨ0, ϕ0 + nπ/2), n = 0, 1, 2, 3. Consequently, the 2π`-periodic
solutions (6.4) of (6.1) also come in conjugate families, and it follows from a straightforward
computation that these possess the symmetry properties

f 1
(−JΨ0,ϕ0+π/2)(θ, ε) = −Jf 1

(Ψ0,ϕ0)(θ, ε),

f 2
(−JΨ0,ϕ0+π/2)(θ, ε) = f 2

(Ψ0,ϕ0)(θ, ε) + π/2.
(6.7)

Now, depending on the denominator ` for ω = k/`, the functions G1 and G2 may possess
additional symmetries.

Proposition 6.3 If ` is an integer multiple of 4, then

G1(JΨ, ϕ) = JG1(Ψ, ϕ) and G2(JΨ, ϕ) = G2(Ψ, ϕ). (6.8)

If ` is an integer multiple of 2, then

G1(−Ψ, ϕ) = −G1(Ψ, ϕ) and G2(−Ψ, ϕ) = G2(Ψ, ϕ). (6.9)

Proof We will prove (6.8). The proof of (6.9) is similar, so we will omit it. Let n1 and
n2 be integers such that

4`n1 + 4kn2 = `.
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Such integers n1 and n2 exist since gcd(4`, 4k) = 4, and ` is a multiple of 4. It follows that

G1(JΨ, ϕ) =
1

2π`

∫ 2π`

0

RϕRkθ/`G1(JΨ, ϕ+ kθ/`, θ, 0) dθ

=
1

2π`

∫ 2π`

0

RϕRkθ/`G1(JΨ, ϕ+ (−2n1 + 1/2)π + kθ/`− π/2, θ, 0) dθ

=
1

2π`

∫ 2π`

0

RϕRkθ/`G1(Ψ, ϕ+ (−2n1 + 1/2)π + kθ/`, θ, 0) dθ

=
1

2π`

∫ 2π`

0

RϕRkθ/`G1

(
Ψ, ϕ+

k

`

(
θ +

`

2k
(−4n1 + 1)π

)
, θ, 0

)
dθ

=
1

2π`

∫ 2π`+ `
2k

(−4n1+1)π

`
2k

(−4n1+1)π

RϕRkθ/`R2n1πR−π/2G1(Ψ, ϕ+ kθ/`, θ + 2πn2, 0) dθ

= J

(
1

2π`

∫ 2π`+2πn2

2πn2

RϕRkθ/`G1(Ψ, ϕ+ kθ/`, θ, 0) dθ

)
= J

(
1

2π`

∫ 2π`

0

RϕRkθ/`G1(Ψ, ϕ+ kθ/`, θ, 0) dθ

)
= JG1(Ψ, ϕ).

A similar computation using the second equation in (6.2) reveals that G2(JΨ, ϕ) = G2(Ψ, ϕ).

These additional symmetry properties have the following consequence:

Corollary 6.4 If ω = k/`, (gcd(k, `) = 1) is such that ` is even, then G1 in (6.3) is such
that

G1(0, ϕ) = 0, ∀ϕ ∈ S1.

Therefore, the roots of the π/2 periodic function G2(0, ϕ) correspond to equilibria of (6.3). If
ϕ0 is such that G2(0, ϕ0) = 0, and the equilibrium point (0, ϕ0) for (6.3) is hyperbolic, then
(6.7) reduce to

f 1
(0,ϕ0+π/2)(θ, ε) = −Jf 1

(0,ϕ0)(θ, ε),

f 2
(0,ϕ0+π/2)(θ, ε) = f 2

(0,ϕ0)(θ, ε) + π/2.
(6.10)

Proof This is a straightforward computation, using (6.8) and (6.9), and the fact that J
and J2 = −I are rotation matrices which leave only the origin invariant.

Proposition 6.5 Let ω = k/`, (gcd(k, `) = 1) be such that ` is even, and let (0, ϕ0) be a
hyperbolic equilibrium point for (6.3). Then the 2π`-periodic solution (6.4) of (6.1) has the
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spatio-temporal symmetry

f 1
(0,ϕ0)(θ + π`, ε) = −f 1

(0,ϕ0)(θ, ε)

f 2
(0,ϕ0)(θ + π`, ε) = f 2

(0,ϕ0)(θ, ε).

If ` is an integer multiple of 4, we have the additional spatio-temporal symmetry

f 1
(0,ϕ0)(θ + π`/2, ε) = (−J)kf 1

(0,ϕ0)(θ, ε)

f 2
(0,ϕ0)(θ + π`/2, ε) = f 2

(0,ϕ0)(θ, ε).

Proof Again, we will only prove the case where ` is an integer multiple of 4, the other
case being similar. We note that the change of variables θ = θ̃ + π`/2, ϕ̃ = ϕ+ kπ/2 leaves
(6.1) invariant. From this, it immediately follows that

f 1
(0,ϕ0)(θ, ε) = f 1

(0,ϕ̃0)(θ̃, ε), f 2
(0,ϕ0)(θ, ε) + kπ/2 = f 2

(0,ϕ̃0)(θ̃, ε),

or equivalently

f 1
(0,ϕ0)(θ+π`/2, ε) = f 1

(0,ϕ0+kπ/2)(θ, ε), f 2
(0,ϕ0)(θ+π`/2, ε)+kπ/2 = f 2

(0,ϕ0+kπ/2)(θ, ε). (6.11)

But it follows from (6.10) that

f 1
(0,ϕ0+kπ/2)(θ, ε) = (−J)kf 1

(0,ϕ0)(θ, ε)

f 2
(0,ϕ0+kπ/2)(θ, ε) = f 2

(0,ϕ0)(θ, ε) + kπ/2.
(6.12)

The conclusion follows from combining (6.11) with (6.12).

Interpretation: For spiral waves, lattice symmetry-breaking can lead to phase-locked me-
andering spiral waves with even numbered “petals” which are anchored at a lattice point,
and have spatio-temporal symmetry characterized as follows: rotating the meander path
about the lattice point by an angle of π (or π/2 if the number of petals is a multiple of 4) is
the same as advancing in time along the meander path by half (or a quarter) of the period.
It follows that the meander paths as a whole are invariant under rotations by π (or π/2 if
the number of petals is a multiple of 4).

In Figure 10, we illustrate meander paths for two simulations of (1.4) with different
parameters and inhomogeneity functions. We observe in one case a phase-locked 6-petal
meandering path, and in another case a phase-locked 4-petal meandering path. The ro-
tational symmetries of these meander paths are consistent with the above remarks. The
inhomogeneity functions g1 and g2 in (1.5) are

ε = 0.01, A1 = 1.4, A2 = 0.92, B1 = 5, B2 = 1, C1 = −1, C2 = 3. (6.13)
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for the six-petal path, and

ε = 0.01, A1 = −1.75, A2 = −0.35, B1 = −6.25, B2 = 1.25, C1 = 1.25, C2 = −3.75.
(6.14)

for the four-petal path.

Figure 10: Meander paths of spiral waves in numerical simulations of (1.4) with inho-
mogeneity coefficients given by (6.13) (left) and by (6.14) (right). The transients are in
green and the final phase-locked meander path is in blue. The kinetic parameters are
(β, γ, τ) = (0.87, 0.49, 0.22) (left) and (β, γ, τ) = (0.8, 0.65, 0.17) (right). The red square
at (4π, 4π) indicates a lattice point.

6.2 Phase-locking windows and bifurcations

As we have seen above, linearly stable equilibrium points of (6.3) correspond to linearly
stable phase-locked commensurate frequency meandering solutions of (2.4). We are now
interested in understanding how these solutions behave under variation of ω and ε.

In (3.1), we introduce an additional detuning parameter ζ, and write ω = k/`+ εζ (with
gcd(k, `) = 1). By following the same procedure as we did at the beginning of this section,
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we obtain a parametrized system of averaged equations analogous to (6.3):

Ψ̇ = εG1(Ψ, ϕ, ζ)
ϕ̇ = εG2(Ψ, ϕ, ζ).

(6.15)

where the functions G1,2 possess the same symmetry properties as the functions G1,2 (respec-
tively), and G1,2(Ψ, ϕ, 0) = G1,2(Ψ, ϕ).

Therefore, if (ω, ε) = (k/`, ε0) (with ε0 > 0, gcd(k, `) = 1) is such that (6.3) possesses
such a linearly stable equilibrium point (Ψ0, ϕ0), then by using the implicit function theorem,
there is a neighbourhood of the point (0, ε0) in (ζ, ε)-space where (6.15) possesses a linearly
stable equilibrium point (Ψ(ζ, ε), ϕ(ζ, ε)) close to (Ψ0, ϕ0). From this argument, it follows
that the `-petal phase-locked meandering solution (6.5) of (2.4) which corresponds to (Ψ0, ϕ0)
persists in a neighbourhood of (k/`, ε0) in the (ω, ε) parameter space of (2.4) We call such
a neighbourhood a phase-locking window for (2.4). The boundary of such a phase-locking
window thus corresponds to bifurcation of the equilibrium point (Ψ(ζ, ε), ϕ(ζ, ε)) of (6.15).
Since the phase space of (6.15) is three-dimensional, then we could potentially observe higher-
codimension bifurcations (e.g. mode interactions) in (6.15), and a thorough analysis will
likely require the theoretical tools of [22] and [41]. We will not pursue this issue further in
this paper. Instead, we will briefly address saddle-node and Hopf bifurcations.

Saddle-node bifurcation

Phase-locked meander paths may lose stability via a saddle-node bifurcation of equilibria
in (6.15). This phenomenon is very similar to the case where phase-locking is lost after
exiting an Arnol’d tongue [4] in the theory of forced oscillators, so we will not pursue it
in more details here. In Figure 11, we see such a saddle-node bifurcation in (1.4) with
inhomogeneity coefficients (1.5) given by (6.18).

Hopf bifurcation

Here, we present what we believe to be a previously undocumented state for spiral waves.
Suppose that for ε = ε0 > 0 and ζ = ζ0, the point (Ψ0, ϕ0) is an equilibrium point of (6.15),
and that the linearization of (6.15) at (Ψ0, ϕ0, ζ0) has a pair of complex conjugate eigenvalues
on the imaginary axis and the other eigenvalue with negative real part. Then generically,
as ζ varies near ζ0, there will be a Hopf bifurcation, which will generate a limit cycle with
amplitude of the order O(

√
|ζ − ζ0|).

Heuristically, as a leading-order approximation, we write this limit cycle as

Ψ(t) = Ψ0 +
√
|ζ − ζ0|A (t), ϕ(t) = ϕ0 +

√
|ζ − ζ0|B(t)
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Figure 11: Saddle-node bifurcation of 4-petal phase-locked meander paths in (1.4) with
inhomogeneity coefficients (6.18). For both simulations, we have β = 0.8 and γ = 0.65. In the
left figure (τ = 0.15818), the meandering starts near an unstable 4-petal flower (presumably
located in the white gap), flows in the direction of the green arrow, and eventually settles onto
the stable 4-petal meandering state in red. In the right figure (τ = 0.15816), the unstable
and stable 4-petal flowers have coalesced and disappeared in a saddle-node bifurcation, and
the meandering is now unlocked (although we can still observe the slow transient passing
through the remnants of the bifurcated states).
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where A and B are T -periodic, which leads to a leading-order approximation for the cor-
responding solution of (2.4)

ΨHB(t) = R√|ζ−ζ0|B(t)
Ψ(t), (6.16)

where Ψ(t) is the `-petal phase-locked path given by (6.5). In general, we expect that the
period T will be incommensurate with 2π`, and the resulting meander path (6.16) can
best be described as a “fattened” `-petal flower, with thickness O(

√
|ζ − ζ0|): this fattening

results from the small-amplitude time-periodic rotation R√|ζ−ζ0|B(t)
of the overall `-petal

meander path (6.5) that is losing stability at the bifurcation. In the vocabulary of bifurcation
theory, (6.16) represents a Naimark-Sacker bifurcation from the 2π`-periodic phase-locked
solution (6.5).

In Figure 12, we illustrate such a fattened 3-petal flower in a simulation of (1.4) with
inhomogeneity coefficients (1.5) given by

ε = 0.01, A1 = −0.2, A2 = 0.3, B1 = 0, B2 = 0, C1 = −1, C2 = 1.5. (6.17)

In Figure 13, we illustrate how the image in Figure 12 originates in a Hopf bifurcation from
varying the parameter τ in (1.4). Figure 14 illustrates a Hopf bifurcation from an anchored
4-petal flower for system (1.4) with inhomogeneity data

ε = 0.01, A1 = −0.082, A2 = −0.014, B1 = −0.1, B2 = 0.05, C1 = −0.25, C2 = −0.15
(6.18)

in (1.5).

7 Stable linear meandering waves in (3.2)

When ε = 0 in (3.2), the solutions are such that

ϕ(t) = ϕ(0), θ(t) = t+ θ(0), Ψ(t) = Rϕ(0)V t+ Ψ(0). (7.1)

Working backwards through the changes of coordinates which transformed (2.4) into (3.2),
this corresponds to linearly meandering travelling waves, such as illustrated with the red me-
ander path in Figure 5. In the context of full SE(2) symmetry (i.e. ε = 0), this phenomenon
is not structurally stable, since arbitrarily small changes to the value of ω in (2.4) leads to a
meander pattern which has (large radius) circular shape (green and blue meander paths in
Figure 5).

In the sequel, it will be helpful to interpret (7.1) in the following manner. Consider the
hypersurface ϕ = constant = ϕ(0) in T4. This hypersurface is diffeomorphic to a three-torus
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Figure 12: Fattened 3-petal meander path observed in a simulation of (1.4) with inhomo-
geneity (6.17) and kinetic parameters τ = 0.1014, β = 0.8, γ = 0.5 (transients removed).
The bottom figure is a close-up view of the inset box in the top figure. As an admittedly
arbitrary measure of the thickness, we choose the length between the two little red lines of
the black segment (line connecting the point (−0.52, 3.12) to the point (−0.40, 3.24)). In
this case, it measures 0.06760. In Figure 13 below, we illustrate how this meander path
originates from a Hopf bifurcation from a phase-locked 3-petal meander path.
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Figure 13: Amplitude (measured as described in the caption of Figure 12) of fattened 3-
petal meander path as a function of τ for 9 simulations of (1.4). The inhomogeneity data
and values for β and γ are the same as in Figure 12, and τ is varied from 0.1012 to 0.1020.
We observe the characteristic shape of a Hopf bifurcation diagram.
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Figure 14: Hopf bifurcation of a phase-locked symmetric 4-petal meander path in (1.4) with
inhomogeneity data (6.18). For each of the five simulations, we have β = 0.8 and γ = 0.65.
The phase-locked paths (prior to bifurcation) are the green (τ = 0.1586), black (τ = 0.1590)
and red (τ = 0.1596). The bifurcated (fattened) paths are the yellow (τ = 0.1600) and blue
(τ = 0.1604).
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(parametrized by ψ1,2 and θ). Equation (7.1) describes a linear flow on this three-torus, with
frequencies given by the two components of Rϕ(0)V and 1. If these frequencies are rationally
independent, then the solution curves for this linear flow are dense on the three-torus. In a
sense, we are interested in the persistence of such densely filled invariant three-tori when ε
becomes non-zero.

Our main result in this section is the following:

Theorem 7.1 Consider the system (3.2), and define the function

Z(ϕ) = 〈H2(·, ϕ, ·, 0)〉 ≡ 1

(2π)3

∫
T3

H2(Ψ, ϕ, θ, 0)dΨdθ

Let ϕ0 be such that Z(ϕ0) = 0, and α = Z ′(ϕ0) 6= 0. Define the real numbers ω1 and ω2

as the components of the two-dimensional vector Rϕ0V and suppose that Ω = (ω1, ω2, 1)
satisfies a Diophantine condition such as in Definition 4.1. Then for all ε > 0 sufficiently
small, (3.2) has an invariant three-torus

ϕ = L (Ψ, θ, ε), L (Ψ, θ, ε)→ ϕ0, as ε→ 0.

This invariant three-torus is locally asymptotically stable (resp. unstable) if α < 0 (resp.
α > 0).

Proof The proof follows closely that of Theorem 5.1 of [12], with minor changes accounting
for the additional angular variable θ. Therefore, we only give a sketch of the main points.
First, we make the change of variables

ϕ→ ϕ0 +
√
ε ϕ

and perform a Taylor expansion of (3.2) to get

Ψ̇ = Rϕ0V +
√
εR′ϕ0

V ϕ+ ε(Rϕ0H1(Ψ, ϕ0, θ, 0) + 1
2
R′′ϕ0

V ϕ2) + ε
3
2Q1(Ψ, ϕ, θ, ε)

ϕ̇ =
√
εH2(Ψ, ϕ0, θ, 0) + εH2,ϕ(Ψ, ϕ0, θ, 0)ϕ) + ε

3
2 (1

2
H2,ϕϕ(Ψ, ϕ0, θ, 0)ϕ2 +H2,ε(Ψ, ϕ0, θ, 0))

+ε2S1(Ψ, ϕ, θ, ε)

θ̇ = 1,
(7.2)

for smooth functions Q1 and S1. Since the function H2(Ψ, ϕ0, θ, 0) has zero mean value, i.e.
〈H(·, ϕ0, ·, 0)〉 = Z(ϕ0) = 0, then it follows from Proposition 4.2 that there exists a smooth
function Y1(Ψ, θ) such that

DΨY1(Ψ, θ)Rϕ0V +DθY1(Ψ, θ) = H2(Ψ, ϕ0, θ, 0).

We now perform, in succession, the following changes of variables
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• ϕ→ ϕ+
√
εY1(Ψ, θ)

• ϕ→
√
εϕ

• ϕ→ ϕ+ ε(Y2(Ψ, θ) + ϕY3(Ψ, θ))

• Ψ→ Ψ + εY4(Ψ, θ),

where Y2,3,4 are suitably chosen (via Proposition 4.2) to annihilate certain terms in the ODE.
Equation (7.2) then becomes

Ψ̇ = Rϕ0V + ε(R′ϕ0
V ϕ+ κ) +O(ε

3
2 )

ϕ̇ = ε(αϕ+ c) +O(ε
3
2 )

θ̇ = 1,

(7.3)

where α is as in the statement of the Theorem, and

κ = 〈Rϕ0H1(·, ϕ0, ·, 0)〉,

c = 〈H2,ε(·, ϕ0, ·, 0) +H2,ϕ(·, ϕ0, ·, 0)Y1(·, ·)−DΨY1(·, ·)(Rϕ0H1(·, ϕ0, ·, 0) +R′ϕ0
V Y1(·, ·)〉.

A simple translation of the variable ϕ in (7.3) renders the equation in the proper form to
apply Theorem 2.3, §VII.2 of [18] and get the conclusion.

Interpretation: In fully SE(2) symmetric dynamical systems (such as (1.4) with ε = 0),
modulated travelling waves are not structurally stable. This is illustrated in figure 1 of [8],
where modulated travelling waves occur only on a line (dashed curve) in the β−τ parameter
space of (1.4) with ε = 0 and γ = 0.5. Ashwin, Melbourne and Nicol [5] explain this as a
codimension 1 drift bifurcation on group orbits of solutions to SE(2)-equivariant dynamical
systems.

Theorem 7.1 implies that under certain conditions, it is possible for a lattice symmetry-
breaking perturbation in (1.4) to render modulated travelling waves structurally stable.
Figure 15 appears to illustrate this phenomenon. In this figure, we show the meander paths
for three numerical simulations of (1.4) using the same kinetic parameters as those of Figure
5 (homogeneous case), but with inhomogeneity data (1.5) given by

ε = 0.01, A1 = −0.6, A2 = −0.4, B1 = −0.00005, B2 = 0.00007, C1 = −3, C2 = −2
(7.4)

and same initial condition for all three simulations. This figure should be compared and
contrasted to Figure 5.
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Figure 15: Superposition of meander paths for three simulations of (1.4) with inhomogeneity
data given by (7.4) and same initial condition in all three cases. These paths are consistent
with a structurally stable modulated travelling wave, as predicted by Theorem 7.1. Param-
eter values are τ = 0.26, γ = 0.5 and β = 0.793 (green), β = 0.79275 (blue), β = 0.792875
(red). The parallel black arrows on both sides of the meander paths have been added to the
figure to guide the eye, and the red squares and black crosses represent the lattice and dual
lattice points, respectively.
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8 Discussion

Discrete spatial structures are arguably the fundamental building blocks of nature. In elec-
trophysiological tissue, these structures are arrays of excitable cells coupled together through
gap junctions. In many instances, treating these structures as a homogeneous continuum,
and deriving partial differential equations based on this assumption (using homogenization
techniques) is a reasonable low-order approximation, and leads to many successful predictions
about the system being modelled. However, if the solutions we are interested in studying
display features that are of a size comparable in order to the cellular structure, then the
continuum assumption may not be of sufficient complexity to capture the dynamical proper-
ties of these solutions. Furthermore, numerical simulations of spiral waves in homogeneous
RDPDEs using coarse spatial discretization may introduce spurious dynamical properties,
which are inconsistent with a homogeneous model. This paper is an attempt to characterize
certain generic, qualitative phenomenological effects that a lattice structure may induce on
meandering spiral waves in two-dimensional excitable media. As was the case in previous
studies [10, 12, 23, 25], we have shown that a weak lattice perturbation has stabilizing (in
physical space) effects on the meandering motion, alters the spatio-temporal symmetry prop-
erties of the meander path, and can lead to phase-locked solutions. We also presented what
we believe to be a previously undocumented case for spiral wave meandering: the so-called
“fattened” `-petal flower which originates in a Hopf bifurcation from a phase-locked `-petal
epicyclic meandering wave.

As we mentioned in the Introduction, one could make a compelling case that perhaps
different geometries of lattices would be more appropriate in certain arrangements of ex-
citable cells (e.g. hexagonal). However, the purpose of this paper was not to describe any
one physical situation in particular, but to gain an understanding of how spatially organized
discrete structures may affect spiral wave dynamics. Certainly, one could repeat the analysis
of this paper, replacing the square lattice by a hexagonal lattice. We expect that the number
theoretical aspects of which meander paths get anchored at lattice points, as well as spatio-
temporal symmetries would change, but we don’t expect any fundamentally new qualitative
results. One could also adopt a purely discrete approach, for example studying spirals in
lattice dynamical systems (LDS) [29]. But then one would lose the aspect that much of the
observed spiral wave dynamics are driven by and originate in Euclidean symmetry. This is
one of the advantages of our forced symmetry-breaking approach: we are in a sense studying
systems that interpolate the fully Euclidean continuum RDPDE, and completely discrete
LDS. We thus expect that the results presented herein will be important in the as of yet
largely unexplored study of meandering spiral waves in two-dimensional LDS.

We also note that the reduction of the infinite-dimensional problem (2.3) into the finite-
dimensional center-bundle equations (2.4) requires a spectral gap condition in Hypothesis 2.2.
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While this hypothesis holds for a large variety of spirals (such as decaying amplitude spirals),
there is also a large family of spirals for which they don’t, including Archimedean spirals.
See [36] for a thorough discussion on these spectral issues. Even if the spiral does not decay
(e.g. Archimedean spirals), the center bundle ODEs apparently still describe remarkably well
many of the experimentally observed dynamics of the wave. Thus, the study of Euclidean-
equivariant ODEs on finite-dimensional non-compact manifolds, and their perturbations, is
a central idea in the study of the dynamics and bifurcations of spiral waves, and it is the
one we have adopted here.

As a final remark, we note that one of the strengths of our approach in this paper is
also perhaps one of its weaknesses, depending on one’s purpose. By adopting a model-
independent approach as we have done here (i.e. computations and analysis driven mostly
by symmetry considerations), we capture some robust generic features of the effects of lattice
symmetry-breaking for a large class of mathematical models, without much consideration for
the finer details of the models. The most important requirement is that we have a mathemat-
ical model where spiral waves are known to exist, and the model is weakly heterogeneous in
space, with heterogeneities on a lattice. So in this sense, our results are potentially broad in
applicability. However, one can imagine situations where it may be important, when study-
ing a specific model (e.g. RDPDE such as (1.4)), to know the explicit link between the model
parameters (e.g. τ , β, γ, ε, g1 and g2) and the quantities which arise in the center-bundle
equations (2.4). As mentioned earlier in this paper in Remark 2.4(a), although such a link
theoretically exists, it is in practice usually unfeasible to explicitly compute this link, unless
one has explicit knowledge of the mathematical representation (e.g. algebraic formula) for
the spiral wave.
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Appendix

A Proofs of Propositions 3.1 and 3.2

The proofs for both these Propositions follow one another closely except for some subtle
technical differences. We will first give the proof of Proposition 3.1, and then indicate the
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modifications which need to be made in order to prove Proposition 3.2.
The function h2(θ) in (2.4) satisfies (2.5). We recall the definition of the rotation matrix

Rφ in (2.1), and that J = R−π/2. We note that
d

dφ
Rφ = −JRφ.

If we define
K(θ) = R∫ θ

0 h2(s)ds
h1(θ), (A.1)

then it is easy to show that K(θ) is 2π-periodic in θ. We then have

Lemma A.1 If ω is not an integer, then there exists a 2π-periodic function M(θ) such that

d

dθ
M(θ)− ωJM(θ) = K(θ). (A.2)

Proof Write K(θ) and M(θ) as Fourier series K(θ) =
∑
k∈Z

RkθB̂k, M(θ) =
∑
k∈Z

RkθÂk,

where the coefficients Âk and B̂k are in R2. Then (A.2) is satisfied provided Âk and B̂k

satisfy the algebraic equation

−(k + ω)JÂk = B̂k =⇒ Âk =
1

k + ω
JB̂k.

Uniform convergence of the series for M follows from the uniform convergence of the series
for K.

Lemma A.2 Let M(θ) be as in Lemma A.2. Define S(θ) = R−
∫ θ
0 h2(s)ds

M(θ) and Q(ϕ, θ) =

RϕS(θ). Then Q is 2π-periodic in both ϕ and θ, and satisfies the linear partial differential
equation

(ω + h2(θ))
∂Q
∂ϕ

+
∂Q
∂θ

= Rϕh1(θ).

Proof The periodicity properties are obvious. Using the fact that M satisfies (A.2) and
(Rφ)′ = −JRφ, we compute

∂S
∂θ

= h1(θ) + (ω + h2(θ))JS(θ),

from which it follows that

∂Q
∂ϕ

= −JRϕS(θ) and
∂Q
∂θ

= Rϕ[h1(θ) + (ω + h2(θ))JS(θ)].
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The conclusion now follows from a simple computation.

Now, setting
Ψ̂ = Ψ−Q(ϕ, θ)(modulo T2), (A.3)

and using the above lemmas, the system (2.4) becomes (upon dropping the hats)

Ψ̇ = εRϕM1(Ψ, ϕ, θ, ε)
ϕ̇ = ω + h2(θ) + εM2(Ψ, ϕ, θ, ε)

θ̇ = 1,

where

M1(Ψ, ϕ, θ, ε) = F1(Ψ +Q(ϕ, θ), ϕ, θ, ε) + JS(θ)F2(Ψ +Q(ϕ, θ), ϕ, θ, ε)

and
M2(Ψ, ϕ, θ, ε) = F2(Ψ +Q(ϕ, θ), ϕ, θ, ε).

The functions M1,2 satisfy the symmetry properties (2.6) since the functions F1,2 satisfy
these properties, and

Q(ϕ+ π/2, θ) = Rϕ+π/2S(θ) = Rπ/2RϕS(θ) = −JQ(ϕ, θ).

Finally, setting ϕ̂ = ϕ−
∫ θ

0
h2(s)ds (modulo T1) and dropping the hat, we obtain equations

(3.1), where

G1(Ψ, ϕ, θ, ε) = R∫ θ
0 h2(s)ds

M1(Ψ, ϕ+
∫ θ

0
h2(s)ds, θ, ε),

G2(Ψ, ϕ, θ, ε) = M2(Ψ, ϕ+
∫ θ

0
h2(s)ds, θ, ε)

also satisfy the symmetry properties (2.6). This ends the proof of Proposition 3.1

To prove Proposition 3.2, we define K(θ) as in (A.1). Let j ∈ Z be such that ω = −j. If

the Fourier series for K(θ) is K(θ) =
∑
k∈Z

RkθB̂k, then define

K̃(θ) =
∑

k∈Z,k 6=j

RkθB̂k

so that
K(θ) = K̃(θ) +RjθB̂j.

We then have
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Lemma A.3 If ω = −j ∈ Z, then there exists a 2π-periodic function M̃(θ) such that

d

dθ
M̃(θ)− ωJM̃(θ) = K̃(θ),

whose proof follows exactly like that of Lemma A.2, considering that the Fourier series for
K̃ is such that the term for k = j vanishes, so we can set Aj = 0 in the Fourier series for M̃ .

Lemma A.2 is replaced by

Lemma A.4 Let M̃(θ) be as in Lemma A.3. Define S̃(θ) = R−
∫ θ
0 h2(s)ds

M̃(θ) and Q̃(ϕ, θ) =

RϕS̃(θ). Then Q̃ is 2π-periodic in both ϕ and θ, and satisfies the linear partial differential
equation

(ω + h2(θ))
∂Q̃
∂ϕ

+
∂Q̃
∂θ

= Rϕ[h1(θ)−R− ∫ θ
0 h2(s)ds

RjθBj]

Performing the change of variables Ψ̂ = Ψ− Q̃(ϕ, θ) on (2.4) yields (upon dropping the
hats)

Ψ̇ = RϕRjθ−
∫ θ
0 h2(s)ds

Bj + εRϕN1(Ψ, ϕ, θ, ε)

ϕ̇ = ω + h2(θ) + εN2(Ψ, ϕ, θ, ε)

θ̇ = 1,

where

N1(Ψ, ϕ, θ, ε) = F1(Ψ + Q̃(ϕ, θ), ϕ, θ, ε) + J S̃(θ)F2(Ψ + Q̃(ϕ, θ), ϕ, θ, ε)

and
N2(Ψ, ϕ, θ, ε) = F2(Ψ + Q̃(ϕ, θ), ϕ, θ, ε).

The functions N1,2 satisfy the symmetry properties (2.6) since the functions F1,2 satisfy these
properties, and

Q̃(ϕ+ π/2, θ) = Rϕ+π/2S̃(θ) = Rπ/2RϕS̃(θ) = −JQ̃(ϕ, θ).

Finally, setting ϕ̂ = ϕ−
∫ θ

0
h2(s)ds+ jθ in the above system and dropping the hats gives us

(3.2), where V ≡ B̂j and

H1(Ψ, ϕ, θ, ε) = R∫ θ
0 h2(s)ds

R−jθN1(Ψ, ϕ+
∫ θ

0
h2(s)ds− jθ, θ, ε)

H2(Ψ, ϕ, θ, ε) = N2(Ψ, ϕ+
∫ θ

0
h2(s)ds− jθ, θ, ε),

which satisfy the symmetry properties (2.6). This ends the proof of Proposition 3.2.
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