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Abstract

This paper is devoted to a detailed study of nowhere-zero flows on signed eulerian
graphs. We generalise the well-known fact about the existence of nowhere-zero 2-
flows in eulerian graphs by proving that every signed eulerian graph that admits an
integer nowhere-zero flow has a nowhere-zero 4-flow. We also characterise signed
eulerian graphs with flow number 2, 3, and 4, as well as those that do not have an
integer nowhere-zero flow. Finally, we discuss the existence of nowhere-zero A-flows
on signed eulerian graphs for an arbitrary abelian group A.
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1 Introduction

A nowhere-zero flow is an assignment of an orientation and a nonzero value from an
abelian group A to each edge of a graph in such a way that the Kirchhoff current law is
fulfilled at each vertex: the sum of in-flowing values equals the sum of out-flowing values.
This concept was introduced by Tutte [10] in 1949 and has been extensively studied by
many authors. There is an analogous concept of a nowhere-zero flow that uses bidirected
edges instead of directed ones, first systematically developed by Bouchet [2] in 1983. A
bidirected edge is an edge consisting of two half-edges which receive separate orientations;
a bidirected graph is one where each edge has been bidirected. A nowhere-zero flow on a
bidirected graph is formed by valuating each edge with a nonzero element of A in such a
way that, for every vertex v, the sum of values on the half-edges directed to v equals the
sum of values on the half-edges directed out of v. If the half-edges of each edge of G are
aligned, G essentially becomes a directed graph, which implies that the bidirected variant
of a flow is more general than the simply directed one.

It is obvious that the choice of an orientation in the simply directed case is immaterial:
it is always possible to reverse an edge and change its flow value to the opposite value.
The same is true in the bidirected case as long as both half-edges of an edge are reversed at
once, leaving the partition into aligned and non-aligned edges unaltered. It is somewhat
less obvious that the flow on a bidirected graph can be preserved even if this edge-partition
is disturbed by reversing all the half-edges around a vertex. If we keep the flow values
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intact, the Kirchhoff law will not be violated. This indicates that the invariance of flows on
bidirected graphs is best understood in terms of signed graphs where the aligned edges are
positive, non-aligned edges are negative, and the just described operation is the familiar
vertex-switching from signed graph theory. To summarise, the existence of a flow is a
property of a signed graph invariant under switching equivalence and independent of its
particular bidirection. An easy switching argument further shows that the simply directed
case corresponds to the case of balanced signed graphs, those where every circuit has an
even number of negative edges.

The study of flows on signed (or, equivalently, bidirected) graphs seems to have its
roots in the study of embeddings of graphs in nonorientable surfaces. Signed graphs
provide a convenient language for description of such embeddings and bidirected graphs
arise naturally as duals of directed graphs. In 1968, Youngs [13, 14] employed nowhere-
zero flows on signed cubic graphs with values in cyclic groups, combined with surface
duality, to construct nonorientable triangular embeddings of certain complete graphs. A
duality relationship between local tensions and flows on graphs embedded in nonorientable
surfaces was the main motivation for Bouchet’s work [2] on integer flows in signed graphs.
As in the unsigned case, the fundamental problem here is to find, for a given signed graph,
a nowhere-zero flow with the smallest maximum absolute edge-value. If this value is k−1,
we speak of a nowhere-zero k-flow. In the same paper Bouchet showed that every graph
that admits a nowhere-zero integer flow has a nowhere-zero 216-flow. He also proposed
the following conjecture that has become an incentive for much of the current research in
the area.

Conjecture. (Bouchet’s 6-Flow Conjecture) Every signed graph with a nowhere-zero in-
teger flow has a nowhere-zero 6-flow.

The present status of this conjecture can be summarised as follows. Bouchet’s 216-flow
theorem was improved in 1987 by Zýka [18] to a nowhere-zero 30-flow, and very recently
by DeVos [3] to a nowhere-zero 12-flow, which is currently the best general approximation
of Bouchet’s conjecture. In 2005, the existence of a nowhere-zero 6-flow was established by
Xu and Zhang [12] for every 6-edge-connected signed graph with a nowhere-zero integer
flow. In 2011, Raspaud and Zhu [8] proved that every 4-edge-connected signed graph
admitting an integer nowhere-zero flow has a nowhere-zero 4-flow, which is best possible.
Recently, Wu et al. [11] proved that every 8-edge-connected signed graph admitting an
integer nowhere-zero flow has a nowhere-zero 3-flow.

In spite of these results, very little is known about exact flow numbers for various
classes of signed graphs. Surprisingly, the situation is open even for signed eulerian
graphs, although Xu and Zhang [12, Proposition 1.4] proved that a signed eulerian graph
with an even number of negative edges has a nowhere-zero 2-flow. The purpose of the
present paper is to strengthen this result by proving the following theorem which provides
a classification of signed eulerian graphs according to their flow numbers. The smallest
example in each of the four resulting classes is displayed in Figure 1.

Main Theorem. Let G be a signed eulerian graph and let Φ(G) denote the flow number
of G. Then

(a) G has no nowhere-zero flow if and only if G is unbalanced and G− e is balanced for
some edge e;

(b) Φ(G) = 2 if and only if G has an even number of negative edges;

(c) Φ(G) = 3 if and only if G can be decomposed into three eulerian subgraphs, with an
odd number of negative edges each, that share a common vertex;
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(d) Φ(G) = 4 otherwise.
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Figure 1: Examples of signed eulerian graphs from Main Theorem

Our paper is organised as follows. The next section gives a brief introduction to signed
graphs collecting the concepts and results to be used later in this paper; for more infor-
mation on signed graphs we refer the reader to [15, 16, 17]. The third section concentrates
on the problem of the existence of nowhere-zero integer flows in signed graphs and pro-
vides a characterisation of graphs that admit a nowhere-zero integer flow. A corollary
of this characterisation states that a signed eulerian graph has no nowhere-zero integer
flow if and only if its signature is switching-equivalent to one with a single negative edge.
In Section 4 we prove that all other eulerian graphs admit a nowhere-zero 4-flow and in
Section 5 we characterise those with flow number 3. Finally, the last section deals with
the existence of nowhere-zero A-flows on signed eulerian graphs for an arbitrary abelian
group A.

We conclude this section with a few terminological and notational remarks. All our
graphs are finite and may have multiple edges and loops. A graph is called eulerian if it
is connected, with vertices of even valency. A circuit is a connected 2-regular graph, and
a cycle is a graph that has a decomposition (possibly empty) into edge-disjoint circuits.
A set of edges is often identified with the subgraph it induces; this should not cause any
confusion. Each walk is understood to be directed from its initial to its terminal vertex.
The walk obtained from W by reversing the direction will be denoted by W−1. If x and y
are two vertices of W listed in the order of their appearance on W , we let W [x, y] denote
the portion of W initiating at x and terminating at y. Finally, if W1 is a u-v-walk and
W2 is a v-w-walk, then W1W2 denotes the u-w-walk where the traversal of W1 is followed
by the traversal of W2.

2 Fundamentals of signed graphs

A signed graph is a graph G endowed with a signature, a mapping that assigns +1 or
−1 to each edge. In our notation, the signature is usually implicit in the notation of the
graph itself; only when needed, it will be denoted by σG, or simply by σ, if G is clear from
the context. As most graphs considered here will be signed, the term graph will usually
be used to mean a signed graph, and the adjective signed will be added only for emphasis.
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An unsigned graph will be regarded as a signed graph having the all-positive signature
σG ≡ +1.

The actual distribution of edge signs in a signed graph is not very important. What is
fundamental is the product of signs on each of its circuits. This constitutes the concept of
a balance in a signed graph: Let F be a subgraph or a set of edges of a signed graph G. We
define the sign of F , denoted by σG(F ), as the product of the signs of all edges in F . Thus,
every subgraph or set of edges can either be positive or negative, depending on whether
its sign is +1 or −1. A closed walk, in particular a circuit, is said to be balanced if its
sign is +1; otherwise it is unbalanced. A graph is balanced if it contains no unbalanced
circuit. The collection of all balanced circuits of a signed graph is its most fundamental
characteristic: signed graphs that have the same underlying graphs and the same sets of
balanced circuits are considered to be identical, irrespectively of their actual signatures.
Signatures of identical signed graphs are called equivalent.

Let G be a signed graph and let v be a vertex of G. It is clear that if we interchange the
signs of all non-loop edges incident with v, the set of balanced circuits will not change. This
operation, called switching at v, thus produces an equivalent signature. More generally,
for a set U of vertices of G we define switching at U as the interchange of signs on all
edges with exactly one end-vertex in U . It is easy to see that switching the signature at U
has the same effect as switching at all the vertices of U in a succession. Furthermore, it is
not difficult to prove that two signatures are equivalent if and only if they are switching-
equivalent, that is, if they can be turned into each other by a sequence of vertex switchings
[16, Proposition 3.2]. In particular, a signed graph is balanced if and only if its signature
is switching-equivalent to the all-positive signature.

The following characterisation of balanced graphs due to Harary [5] has the same spirit
as the well-known characterisation of bipartite graphs.

Theorem 2.1. (Harary’s Balance Theorem [5]) A signed graph is balanced if and only if
its vertex set can be partitioned into two sets (either of which may be empty) in such a
way that each edge between the sets is negative and each edge within a set is positive.

The partition of the vertex set of a signed into two sets mentioned in the previous
theorem will be called a balanced bipartition. It is useful to realise that the balanced
bipartition of a signed graph depends on the chosen signature. However, once a signature
is fixed and the graph is connected, the balanced bipartition is uniquely determined.

A signed graph G is said to be antibalanced if replacing its signature σG with −σG
makes it balanced. This definition immediately implies that a signed graph is antibalanced
if and only if its signature is equivalent to the all-negative signature. Hence, a circuit of
an antibalanced graph is balanced precisely when it has an even length. Consequently, an
antibalanced graph is balanced if and only if its underlying unsigned graph is bipartite.

The following is a direct consequence of Harary’s Balance Theorem.

Corollary 2.2. A signed graph is antibalanced if and only if its vertex set can be parti-
tioned into two sets (either of which may be empty) in such a way that each edge between
the sets is positive and each edge within a set is negative.

The partition of the vertex set of a signed into two sets mentioned in the previous
corollary will be called an antibalanced bipartition.

3 Flows and flow-admissible signed graphs

The aim of this section is to introduce the concepts related to flows in signed graphs and
to characterise signed graphs that admit a nowhere-zero integer flow.
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As in the case of unsigned graphs, the definition of a flow calls for an orientation of
the underlying graph. The signed version, however, requires a bidirection of edges rather
than just a usual orientation. For this purpose we regard each edge e, including loops, as
consisting of two half-edges, each half-edge being incident with only one end-vertex of e.
An edge is bidirected if each of its two half-edges is individually directed from or to its
associated end-vertex. Thus every edge has four possible orientations which fall into two
types:

• Two of the four orientations have one half-edge directed from and the other half-
edge towards its end-vertex. Such bidirected edges will be identified with the usual
directed edges and called ordinary edges.

• The other type of bidirection has either both half-edges directed from or both half-
edges oriented towards their end-vertices. In the former case, the edge is said to
be extroverted, and in the latter case it is said to be introverted. Extroverted and
introverted edges are collectively called broken edges.

A bidirected edge e incident with a vertex v is said to be directed out of v if its half-
edge incident with v is directed out of v. Similarly, e is said to be directed to v if its
half-edge incident with v is directed to v. For an arbitrary vertex v, the set of all edges
directed out of v is denoted by Eout(v), and the set of all edges directed to v is denoted
by Ein(v); the set of all edges incident with v is denoted simply by E(v).

Every bidirected edge e has a well-defined reverse e−1 obtained by reversing the orien-
tation of both constituting half-edges. In particular, if e is an ordinary edge, then e−1 is
also ordinary but with the reversed order of its end-vertices; if e is extroverted, then e−1

is introverted, and vice versa.
Given a signed graph G, an orientation of G is an assignment of a bidirection to each

edge in such a way that the following compatibility rule is fulfilled: every positive edge
receives an orientation that turns it into an ordinary edge, while every negative edge
receives an orientation that turns it into a broken edge. Thus, endowing G with an ori-
entation makes G a bidirected graph. Conversely, every bidirected graph can be regarded
as a signed graph in which ordinary edges are positive and broken edges are negative.
In other words, a bidirected graph and a signed graph endowed with an orientation are
equivalent concepts.

If a signed graph G is bidirected, switching its signature at an arbitrary vertex or
set of vertices must cause the change of its orientation so that the compatibility rule
remains fulfilled. Therefore we define switching at an arbitrary set U of vertices as an
operation that reverses the orientation of each half-edge incident with a vertex in U and
consequently changes the sign of each edge with exactly one end in U .

We now proceed to the definition of a flow on a signed graph. Let G be a signed
graph which has been endowed with an arbitrary compatible orientation. A mapping
ξ : E(G) → A with values in an abelian group A is called an A-flow on G provided that
the following continuity condition, the Kirchhoff law, is satisfied at each vertex v of G:∑

e∈Eout(v)

ξ(e) −
∑

e∈Ein(v)

ξ(e) = 0.

An A-flow ξ is said to be nowhere-zero if ξ(e) 6= 0 for each edge e of G. A nowhere-zero
k-flow is a Z-flow that takes its values from the set {±1, . . .± (k − 1)}. Clearly, a signed
graph that has a nowhere-zero k-flow also has a nowhere-zero (k + 1)-flow. The smallest
integer k for which a signed graph G has a nowhere-zero k-flow is called the flow number
of G and is denoted by Φ(G).
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Take an arbitrary flow ξ on a signed graph G. It is obvious that if we reverse the
orientation of an arbitrary edge e of G – that is, if we replace e with e−1 – and set
ξ(e−1) = −ξ(e), Kirchhoff’s law remains satisfied. Similarly, if we switch the signature
at some vertex v of G, we change the bidirection of each edge e incident with v to a
well defined new bidirection e′ whose type differs from that of e. At the same time we
interchange the roles of the sets Eout(v) and Ein(v). It follows that if we set ξ(e′) = ξ(e),
Kirchhoff’s law will continue to hold at each vertex of G. The conclusion is that any flow
on a signed graph G is essentially independent of the chosen orientation and the particular
signature and only depends on the switching class of the signed graph itself. This makes
the definition of a flow on a signed graph completely analogous to the definition of a flow
on an unsigned graph.

In spite of this apparent similarity of definitions, flows on signed graphs can sometimes
have a rather unexpected behaviour. For example, the following useful property has no
analogue in unsigned graphs.

Lemma 3.1. For any flow on a signed graph, the sum of values on negative edges taken
in the extroverted orientation is zero.

Proof. Take a flow on a signed graph G, redirect each negative edge of G to make it
extroverted, and change the flow values accordingly. By the Kirchhoff law, the total
outflow from every vertex is zero, so the sum of all outflows is again zero. Each edge
contributes to this sum twice, a positive edge with opposite signs while a negative edge
with the same sign. Ignoring the values on positive edges, which sum to zero, we infer
that the doubled sum of values on the negative edges equals zero. The result follows.

It is well known that an unsigned graph admits a nowhere-zero flow if and only if it is
bridgeless, irrespectively of the group employed. In contrast, the existence of a nowhere-
zero flow on a signed graph may depend on the chosen group, and exceptional graphs are
less straightforward to describe. In the present section we focus on graphs that admit a
nowhere-zero integer flow and call them flow-admissible. Other groups will be discussed
in Section 6.

Consider a signed graph G. If G is balanced, then a simple switching argument
shows that each flow on G corresponds to a flow on the corresponding unsigned graph.
Therefore a balanced signed graph is flow-admissible if and only if it is bridgeless. In
contrast, an unbalanced bridgeless signed graph may fail to be flow-admissible while a
graph having a bridge may happen to be flow admissible. For example, Bouchet in [2,
Lemma 2.4] observed that a 2-edge-connected graph with a single negative edge is never
flow-admissible.

Our next aim is to characterise unbalanced flow-admissible signed graphs. Before
proceeding to the result, some preparations are in order.

We describe a simple technique which is useful for construction of nowhere-zero flows
on signed graphs. Consider a pair of adjacent edges e and f sharing a vertex v in a
bidirected signed graph. We say that the walk ef is consistently directed at v if exactly
one of the two half-edges incident with v is directed to v. A trail P is said to be consistently
directed if all pairs of consecutive edges of P are consistently directed. Now let G be a
signed graph carrying an A-flow φ, and let P be a u-v-trail in G; if φ has not been specified,
we are assuming that φ = 0. By sending a value b ∈ A from u to v along P we mean
the modification of φ into a new valuation φ′ : E(G) → A defined as follows. We keep
the values of φ everywhere except on the edges of P . On P we change the orientation of
edges in such a way that the initial edge is directed from u, and P is consistently directed
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at each internal vertex; we change the flow values accordingly. Finally, for each edge e on
P we replace the current value φ(e) with φ(e) + b.

Under the new valuation φ′, Kirchhoff’s law will be satisfied at each inner vertex of P .
Moreover, if P is closed – that is if u = v – and the number of negative edges on P is
even, Kirchhoff’s law will be satisfied at u as well. Thus sending any value along a closed
trail with an even number of negative edges will turn an A-flow into another A-flow.

Define a signed circuit as a signed graph of any of the following three types:

(1) a balanced circuit,

(2) the union of two unbalanced circuits that meet at a single vertex, or

(3) the union of two disjoint unbalanced circuits with a path that meets the circuits
only at its ends,

A signed circuit falling under item (2) or (3) will be called an unbalanced bicircuit.
Observe that every signed circuit admits a nowhere-zero integer-flow. Indeed, a signed

circuit S satisfying (1) or (2) constitutes a closed trail with an even number of negative
edges, so sending value 1 along the trail produces a nowhere-zero 2-flow on S. If S is
an unbalanced bicircuit satisfying (3) and consisting of unbalanced circuits C1 and C2

joined by a path P , we switch the signature of S to make P all-positive and construct a
nowhere-zero 3-flow as follows. We send value 1 along C1 from the end-vertex of P , value
−1 along C2 from the other end-vertex of P , and value −2 along P from the end-vertex
in C1 to the end-vertex in C2. Since Kirchhoff’s law is satisfied at every vertex of the
bicircuit, the result is a nowhere-zero 3-flow.

Now we are in position to present a characterisation of unbalanced flow-admissible
graphs. Much of the result has been previously known: the equivalence (a)⇔ (b) follows
from the combination of Bouchet’s Proposition 3.1 in [2] with Zaslavsky’s characterisation
of circuits in the signed graphic matroid [16, Theorem 5.1 (e)]; a direct graph-theoretical
proof can be found in [6, Corollary 3.2]. The implication (a)⇒ (c) is a strengthening of
Lemma 2.5 from [2], and a special case of the equivalence (a)⇔ (c) for antibalanced signed
graphs has been proved by Akbari et al. in [1, Theorem 1] using a different terminology.
Nevertheless, to our best knowledge the complete statement and the proof have never
appeared in the literature.

Theorem 3.2. The following statements are equivalent for every connected unbalanced
signed graph G.

(a) G admits a nowhere-zero integer flow.

(b) The edges of G can be covered by signed circuits.

(c) For each edge e, the graph G− e contains no balanced component.

Proof. We only prove that (a)⇔ (c). For the proof of (a)⇔ (b) see [2] or [6].

(a) ⇒ (c) Let ξ be a nowhere-zero integer flow on G, and suppose that, for some
edge e, the graph G− e has a balanced component H. Switch the signature of G to make
each edge of H positive. If e was a bridge in G, then, as in the unsigned case, the sum
of outflows from the vertices of H would force ξ(e) = 0, which is impossible. Therefore
G−e is connected and e is the only negative edge of G. However, by Lemma 3.1, the sum
of values on the negative edges taken with the extroverted orientation is 0, so ξ(e) = 0,
and we have a contradiction again.
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(c) ⇒ (a) Assume that for every edge e the graph G − e contains only unbalanced
components. To see that G is flow-admissible we first show that each edge of G belongs to
either a balanced circuit or to a weak unbalanced bicircuit. We define a weak unbalanced
bicircuit as a signed graph consisting of two edge-disjoint unbalanced circuits C1 and C2,
not necessarily vertex-disjoint, joined with a path P , which may be trivial, with no edge
in C1 ∪ C2.

Let e be an arbitrary edge of G, and suppose that it is not contained in a balanced
circuit. If e is a bridge, then both components of G − e contain an unbalanced circuit.
We take one in each component and connect the circuits with a path, thus creating a
weak unbalanced bicircuit containing e. If e is not a bridge, then it is contained in an
unbalanced circuit, say C1. The graph G− e is connected and unbalanced, so it contains
an unbalanced circuit C2. If C1 and C2 are edge-disjoint, then joining C1 and C2 with a
path yields a weak unbalanced bicircuit containing e. Therefore assume that C1 and C2

have an edge in common, and consider the modulo 2 sum C1 ⊕ C2 of C1 and C2. Since
C1⊕C2 is an edge-disjoint union of circuits and e is contained in C1⊕C2, there is a circuit
D1 ⊆ C1 ⊕ C2 containing e. As there is no balanced circuit through e, the circuit D1 is
unbalanced. However, σ(C1⊕C2) = +1, so C1⊕C2 has to contain an unbalanced circuit
D2 that is edge-disjoint from D1. By connecting D1 and D2 with a path we obtain a weak
unbalanced bicircuit containing e. Thus every edge of G belongs to either a balanced
circuit of a weak unbalanced bicircuit.

Now let {B1, B2, . . . , Bt} be a covering of the edges of G such that each Bi is either a
balanced circuit or a weak unbalanced bicircuit. If Bi is a balanced circuit, then it admits
a nowhere-zero 2-flow. If Bi is a weak unbalanced bicircuit, then it is easy to see that it
has a nowhere-zero 3-flow. In both cases, there exists a nowhere-zero 3-flow φi on each Bi.
Regarding each φi as a flow on the entire G with zero values outside Bi we can form the
function φ =

∑t
i=1 3i−1φi which is easily seen to be a nowhere-zero 3t-flow on G.

We say that a signed graph G is tightly unbalanced if it is unbalanced and there is an
edge e such that G− e is balanced.

Corollary 3.3. A 2-edge-connected unbalanced signed graph is flow-admissible if and only
if it is not tightly unbalanced.

The following immediate corollary establishes part (a) of our Main Theorem.

Corollary 3.4. A signed eulerian graph is flow-admissible if and only if it is not tightly
unbalanced.

We conclude this section with another result concerning eulerian graphs that easily
follows from general results presented in this section. It is due to Xu and Zhang [12] and
implies part (b) of Main Theorem. Here we provide a simple proof.

Call a signed eulerian graph even if it has an even number of negative edges and odd
otherwise. Note that the parity of the number of negative edges in an eulerian graph is
clearly preserved by every vertex switching. Hence, the property of being even or odd is
an invariant of the switching class of an eulerian graph.

Theorem 3.5. (Xu and Zhang [12]) A connected signed graph G admits a nowhere-zero
2-flow if and only if G is an even eulerian graph.

Proof. The condition is clearly sufficient, because sending the value 1 along any eulerian
trail produces a nowhere-zero 2-flow. For the converse, assume that G is a connected
graph that admits a nowhere-zero 2-flow ξ. At every vertex, the values of all incident
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edges are either +1 or −1 and must sum to zero, so the valency is even. By Lemma 3.1,
the sum of values on negative edges with extroverted orientation is 0. Again, all the
summands are +1 or −1, so G must have an even number of negative edges.

4 Nowhere-zero 4-flows

In this section we show that every flow-admissible signed eulerian graph admits a nowhere-
zero 4-flow. By Theorem 3.5, this is true for all even eulerian graphs, so we can restrict
here to odd eulerian graphs. In fact, for odd eulerian graphs we prove a stronger result
providing several equivalent statements one of which is the existence of a nowhere-zero
4-flow.

Before proceeding to the result we need a simple lemma. Let G and H be two signed
graphs with intersecting vertex sets and assume that G ∩H is equally signed in both G
and H. Then G ∪H will denote the signed graph where edges inherit their signs from G
and H. If G and H are balanced graphs, we say that G∩H is a consistent subgraph of G
and H whenever G∩H has a balanced bipartition that extends to a balanced bipartition
of G as well as to a balanced bipartition of H.

Lemma 4.1. Let G and H be balanced signed graphs. If G ∩H is a consistent subgraph
of G and H, then G ∪H is balanced.

Proof. Let G ∩ H be a consistent subgraph of G and H and let U1 ∪ U2 be a balanced
bipartition of G ∩H that can be extended to a balanced bipartition V1 ∪ V2 of G and to
a balanced bipartition W1 ∪W2 of H. Without loss of generality we may assume that
U1 ⊆ V1 and U1 ⊆ W1. Then every negative edge in G ∪H is between the sets V1 ∪W1

and V2 ∪W2 implying that G ∪H is a balanced graph.

Here is the main result of this section.

Theorem 4.2. The following statements are equivalent for every signed eulerian graph
G with an odd number of negative edges.

(a) G is flow-admissibble;

(b) G admits a nowhere-zero 4-flow;

(c) G contains two edge-disjoint unbalanced circuits;

(d) G is a union of two even eulerian subgraphs;

(e) G can be decomposed into three edge-disjoint odd eulerian subgraphs.

Proof. (a) ⇒ (c) Assume that G is a flow-admissible odd eulerian graph. We show that
G contains two edge-disjoint unbalanced circuits.

Choose any unbalanced circuit N of G, and set G0 = G−E(N). If G0 is unbalanced,
then it contains an unbalanced circuit, which together with N provides two required
edge-disjoint unbalanced circuits of G. Henceforth we can assume that G0 is balanced.

Let us switch the signature of G in such a way that G0 becomes all-positive, and
consider a fixed component M of G0. The vertices of M divide the circuit N into segments,
pairwise edge-disjoint paths whose first and last vertex is in M and all inner vertices lie
outside M . A multisegment is a portion of N formed by a chain of segments. Depending
on the product of signs, segments can be either positive or negative. Observe that if a
segment J is negative, then M ∪ J is unbalanced, and vice versa.
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Claim 1. Every component of G0 determines an odd number of negative segments on N .

Proof of Claim 1. The product of signs of all segments determined by a component of
G0 clearly equals the sign of N . Since N is unbalanced, the number of negative segments
must be odd. Claim 1 is proved.

We now consider two cases.

Case 1. G0 is connected. By Claim 1, G0 determines at least one negative segment
on N . Let S1, S2, . . . , Sk be all the segments of N , negative or not. Suppose first that
only one of them is negative, say S1. Then for each Si with i ≥ 2 the graph G0 ∪ Si is
balanced, and hence, by Lemma 4.1, the graph G0∪S2∪S3 . . .∪Sk is also balanced. Since
G0 ∪ S1 is unbalanced, every unbalanced circuit in G traverses S1. But then for every
edge e of S1 the graph G− e is balanced, contradicting Corollary 3.3.

Thus G0 determines at least three negative segments on N . We pick two of them,
say Si and Sj. Clearly, there is an unbalanced circuit Ci in G0 ∪ Si and an unbalanced
circuit Cj in G ∪ Sj. Nevertheless, Ci and Cj may have a common edge within G0. In
order to handle this problem, we extend Si and Sj into negative multisegments S+

i and
S+
j , respectively, with a vertex in common and construct two unbalanced edge-disjoint

circuits by utilising S+
i and S+

j rather than Si and Sj.
Clearly, Si and Sj have at most one vertex in common. If Si and Sj do have a vertex

in common, we can set S+
i = Si and S+

j = Sj. Otherwise we can express N as SiU1SjU2

for suitable multisegments U1 and U2. If any of them, say U1, is negative, then we set
S+
i = Si and S+

j = U1. So we may assume that both U1 and U2 are positive, and then we
may set S+

i = Si and S+
j = U1Sj. In each case we have found negative multisegments S+

i

and S+
j sharing precisely one common vertex.

Let a and b be the end-vertices of S+
i and let b and c the end-vertices of S+

j . Since
G0 is eulerian, it can be traversed by an eulerian trail T . The trail T encounters each of
vertices a, b, and c at least once. It follows that T = T1T2T3 where T1 is an a-b-subtrail
and T2 is an b-c-subtrail of T . Then S+

i T
−1
1 and S+

j T
−1
2 are two edge-disjoint unbalanced

closed trails. Each of them contains an unbalanced circuit, so G contains two edge-disjoint
unbalanced circuits.

Case 2. G0 is disconnected. If G0 has a component M that produces at least three
negative segments, we proceed as in Case 1. We may therefore assume that each compo-
nent of G0 determines exactly one negative segment on N .

If G0 has two components M1 and M2 that determine disjoint negative segments S1

and S2, respectively, then each of M1 ∪ S1 and M2 ∪ S2 contains an unbalanced circuit,
and we are done. Consequently, we may assume that the negative segments coming from
any two components of G0 intersect. Clearly, their intersection will consist of either one
or two paths. Since distinct components are disjoint, these paths must be nontrivial. Let
M1,M2, . . . ,Mn be the components of G0, let Sj be the negative segment of N determined
by Mj, and for j = 1, 2, . . . , n let S ′j be the complementary path on N with the same
end-vertices as Sj. We call S ′j the cosegment of Mj.

Claim 2. The cosegments cover all of N .

Proof of Claim 2. Suppose, to the contrary, that there exists an edge e of N that does
not belong to any cosegment. Then e belongs to every segment Sj for i = 1, 2, . . . , k. Let
Qj = (Mj ∪ Sj) − e and let Rj = Q1 ∪ Q2 ∪ . . . ∪ Qj. Clearly, each Qj is balanced. By
induction on j we next show that each Rj is balanced, and using this fact we derive a
contradiction. Since R1 = Q1, the basis of induction is verified. Assume inductively that
Rj is balanced for some j with 1 ≤ j ≤ n − 1. To prove that Rj+1 is balanced we apply
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Lemma 4.1 to the graphs Rj and Qj+1. Obviously, Qj+1 ∩ Rj is equally signed in both
Qj+1 and Rj. Furthermore, Qj+1 ∩ Rj is contained in N − e and consists of two paths,
each having one end-vertex of the edge e. Since Rj and Qj+1 are balanced but Rj + e and
Qj+1 + e are not, the ends of e in both Rj and Qj+1 either belong to the same partite
set or to different partite sets. This immediately implies that Qj+1 ∩ Rj is a consistent
subgraph of Qj+1 and Rj, and by Lemma 4.1, Qj+1 ∪ Rj = Rj+1 is a balanced graph.
Thus Rj is balanced for each j = 1, 2, . . . , n. This means, however, that G − e = Rn is
balanced, contradicting Corollary 3.3. The proof of Claim 2 is complete.

Claim 3. Let S ′ be a minimal covering of N by cosegments. Then

(i) every component of the intersection of any two cosegments is a nontrivial path;

(ii) each edge of N is covered by either one cosegment or by two cosegments.

Proof of Claim 3. Part (i) is trivial. To prove (ii) suppose, to the contrary, that
there exists an edge of N that belongs to three cosegments J ′, K ′, and L′ from S ′. Then
J ′ ∪K ′ ∪ L′ is either a path or the whole of N . In the former case, the end-vertices are
in at most two of J ′, K ′, and L′. The remaining cosegment is therefore contained in the
union of the other two, implying the covering S ′ is not minimal. If J ′ ∪ K ′ ∪ L′ = N
and, say, J ′ ∪K ′ 6= N , then L′ must have a disconnected intersection with one of J ′ and
K ′, say J ′. But then K ′ ⊆ J ′ ∪ L′, again contradicting the minimality of S ′. This proves
Claim 3.

Fix a cyclic ordering of the vertices of N and let S ′ = {S ′1, S ′2, . . . , S ′m} where S ′i =
N [ui, vi] is the portion of N with end-vertices ui and vi following this cyclic ordering for
each i ∈ {1, 2, . . . ,m}. By Claim 2, we can assume that the members of S ′ are arranged
in such a way that each S ′i only intersects its predecessor S ′i−1 and its successor S ′i+1, and
the vertices ui and vi occur on N in the cyclic ordering u1, vm, u2, v1, . . . , um, vm−1, u1.

We now construct two edge-disjoint unbalanced circuits in G. Consider an arbitrary
component Mi with i ∈ {1, 2, . . . ,m}. We can arrange the edges of each Mi into two edge-
disjoint ui-vi-trails Xi and Yi such that XiY

−1
i is an eulerian trail of Mi. Since Mi ∪ S ′i is

balanced, we have

σ(Xi) = σ(Yi) = σ(S ′i) = σ(N [ui, vi]). (1)

If m is even, the following two closed trails T1 and T2 in G are clearly edge-disjoint:

T1 = X1N [v1, u3]X3N [v3, u5] . . . Xm−1N [vm−1, u1],

T2 = X2N [v2, u4]X4N [v4, u6] . . . XmN [vm, u2].

From (1) we get

σ(T1) = σ(N [u1, v1])σ(N [v1, u3])σ(N [u3, v3]) . . . σ(N [um−1, vm−1])σ(N [vm−1, u1])

= σ(N) = −1,

and similarly σ(T2) = −1. Hence both T1 and T2 are unbalanced, and therefore each
of them contains an unbalanced circuit. This provides the two required edge-disjoint
unbalanced circuits in G.

If m is odd, we have the following two edge-disjoint closed trails T1 and T2 in G:

T1 = X1N
−1[v1, u2]X2N [v2, u4]X4 . . . Xm−1N [vm−1, u1],

T2 = Y2N
−1[v2, u3]X3N [v3, u5]X5 . . . XmN [vm, u2].
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From (1) we obtain

σ(X1) = σ(N [u1, v1]) = σ(N [u1, u2])σ(N [u2, v1]),

σ(X2) = σ(N [u2, v2]) = σ(N [u2, v1])σ(N [v1, v2]).

Hence

σ(X1N
−1
1 [v1, u2]X2) = σ(N [u1, u2])σ(N [u2, v1])σ(N [v1, v2]) = σ(N [u1, v2]), (2)

and analogously,

σ(Y2N
−1[v2, u3]X3) = σ(N [u2, v3]). (3)

Employing equations (1)-(3) in a similar fashion as for m even we derive that σ(T1) =
σ(T2) = −1. Therefore each of T1 and T2 contains an unbalanced circuit, providing two
edge-disjoint unbalanced circuits in G, as required. This completes the proof of (a)⇒ (c).

(c) ⇒ (e) Let G be an odd eulerian graph containing two edge-disjoint unbalanced
circuits. We show that it can be decomposed into three edge-disjoint odd eulerian sub-
graphs.

Clearly, G admits a circuit decomposition K that contains the two unbalanced cir-
cuits as its members. Since G is odd, the decomposition K will have an odd number
of unbalanced circuits, and therefore at least three unbalanced circuits. Let us consider
the incidence graph J(K) of K; its vertices are the elements of K and edges join pairs of
elements that have a vertex of G in common. Since G is connected, so is J(K).

It is obvious that every connected induced subgraph of J(K), with vertex set a subset
L ⊆ K, uniquely determines an eulerian subgraph of G. The latter subgraph will have an
odd number of negative edges whenever L contains an odd number of unbalanced circuits.
Thus to finish the proof it is enough to show that K can be partitioned into three subsets,
each containing an odd number of unbalanced circuits and each inducing a connected
subgraph of J(K). In fact, we may assume that J(K) is a tree as the general case follows
immediately with the partition of K obtained from a spanning tree of J(K).

Thus, let J(K) = T be a tree. We may think of the vertices of T as being coloured
in two colours: black, if the corresponding circuit in K is unbalanced, and white, if the
corresponding circuit is balanced. In this terminology, it remains to prove the following.

Claim 4. Let T be a tree whose vertices are partitioned into two subsets, white vertices
and black vertices, such that the number of black vertices is odd and at least 3. Then the
vertex set of T can be partitioned into three subsets such that each contains an odd number
of black vertices and induces a subtree of T .

Proof of Claim 4. We proceed by induction on the number of vertices of T . The conclusion
is obvious if T has only three vertices, each of them black. This constitutes the basis of
induction. For the induction step we assume that T has four or more vertices. It follows
that at least two of them, say v1 and v2, are leaves of T . If both v1 and v2 are black, then
the set {{v1}, {v2}, V (T )−{v1, v2}} is the required decomposition. If one of them is white,
say v1, then by the induction hypothesis T−v1 has the required decomposition {V1, V2, V3}.
One of these sets, say V1, contains a neighbour of v1, and then {V1 ∪ {v1}, V2, V3} is the
required decomposition for T . This concludes the induction step and as well as the proof
the implication (c)⇒ (e).

(e) ⇒ (d) Assume that G has a decomposition {G1, G2, G3} into three odd eulerian
subgraphs. Without loss of generality we may assume that G1 and G2 share a vertex u
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and that G2 and G3 share a vertex v; possibly u = v. Then G1∪G2 and G2∪G3 are even
eulerian subgraphs that cover G.

(d) ⇒ (b) Assume that G is an odd eulerian graph that has a covering {H1, H2} by
two even eulerian subgraphs. By Theorem 3.5, there exists a nowhere-zero 2-flow φ1 on
H1 and a nowhere-zero 2-flow φ2 on H2. Regarding each φi as a flow on the entire G with
zero values outside Hi, we can set φ = φ1 + 2φ2. It is obvious that φ is a nowhere-zero
4-flow on G.

(b)⇒ (a) This implication is trivial.

Theorem 4.2 and Corollary 3.4 have the following interesting consequence.

Corollary 4.3. Let G be an signed eulerian graph with an odd number of negative edges.
If any two unbalanced circuits of G have an edge in common, then there exists an edge e
which is contained in all unbalanced circuits. In particular, G is tightly unbalanced.

5 Nowhere-zero 3-flows

The aim of this section is to establish part (c) of our Main Theorem. We have to show
that a signed eulerian graph G has flow number three if and only if it can be decomposed
into three odd eulerian subgraphs G1, G2, and G3 that have a vertex in common. If G
has such a decomposition, we say that it is triply odd. The decomposition {G1, G2, G3}
will itself be called triply odd. Obviously, a triply odd signed eulerian graph is odd.

It is immediate that a signed eulerian graph is triply odd if and only if its edges can be
arranged into three unbalanced closed trails originating at the same vertex. The following
fact is a direct consequence of this observation.

Proposition 5.1. Let G be a triply odd signed eulerian graph. Then Φ(G) = 3.

Proof. Let {G1, G2, G3} be a triply odd decomposition of G where G1, G2, and G3 share
a vertex v. For i ∈ {1, 2, 3} let Ti be an eulerian trail in Gi starting at v. If we send
from v the value 1 along T1 and T2, and the value −2 along T3, the resulting valuation
will clearly be a nowhere-zero 3-flow on G. Since G is odd, Theorem 3.5 implies that
Φ(G) ≥ 3. Hence Φ(G) = 3.

The rest of this section is devoted to proving the reverse implication. The proof has
two main ingredients: a reduction of the general case to antibalanced 6-regular graphs
and a verification that the result holds for connected antibalanced 6-regular graphs with
an odd number of edges (or equivalently, with an odd number of vertices). The latter
fact is nontrivial and can be derived from the following theorem which is the main result
of [7].

Theorem 5.2. Every connected 6-regular graph of odd order can be decomposed into
three eulerian subgraphs sharing a vertex such that each of them has an odd number of
edges.

As regards the reduction procedure, we begin with analysing signed eulerian graphs
that carry a special type of a 3-flow under which the same edge-value does not enter and
simultaneously leave any vertex. The formal definition uses an orientation where each
edge is assigned the direction with positive flow value. We call this orientation a positive
orientation of G with respect to a given nowhere-zero flow. Now let φ be a nowhere-zero
3-flow on a signed eulerian graph G, and let G be positively oriented with respect to φ.
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We say that φ is stable at a vertex v if for any two edges e and f incident with v such that
φ(e) = φ(f), either both e and f are directed towards v or both are directed out of v. A
nowhere-zero 3-flow φ is said to be stable if it is stable at every vertex.

Lemma 5.3. Let G be a signed eulerian graph that admits a stable nowhere-zero 3-flow.
Then G is antibalanced and the valency of every vertex is a multiple of 6.

Proof. Let φ be a stable nowhere-zero 3-flow on G which is positively oriented. Consider
an arbitrary vertex v of G. Clearly, all the edges from E(v) that carry the same value
a ∈ {1, 2} under φ have the same orientation with respect to v – either to or from v. Thus
the situation at v is that either all edges from E(v) with value 1 are directed to v and
those with value 2 are directed out of v (Type 1), or vice versa (Type 2).

By the Kirchhoff law, there must be an integer m such that E(v) has m edges with
value 2 and 2m edges with value 1. Hence, the valency of v equals 3m, but since 3m is
an even integer, we infer that the valency of v is 6n for some n.

Finally, observe that an edge joining two vertices of the same type is negative whereas
an edge joining two vertices of different types is positive. By Corollary 2.2, the partition
of the vertex set of G into the vertices of Type 1 and those of Type 2 is an antibalanced
bipartition. Hence, G is antibalanced, as claimed.

We are now in the position to prove the charactarisation of signed eulerian graphs
with flow number three.

Theorem 5.4. Let G be a connected signed eulerian graph. Then Φ(G) = 3 if and only
if G is triply odd.

Proof. In Proposition 5.1 we have proved that the condition is sufficient. It remains to
prove its necessity. Let G be a signed eulerian graph with Φ(G) = 3. By Theorem 3.5,
G is unbalanced and odd. To show that G is triply odd we proceed by induction on the
cycle rank β(G) of G. Recall that the cycle rank of a graph is the dimension its cycle
space, and that a graph G with k components has β(G) = |E(G)| − |V (G)|+ k.

If G contains a 2-valent vertex incident with edges e1 and e2, we may suppress the
vertex and form a new edge e whose sign equals the product of signs of e1 and e2. The
result is a signed eulerian graph G′ with same cycle rank and the same flow number.
This allows us to assume, whenever convenient, that the valency of each vertex of G is
at least 4. With this additional assumption we obtain that β(G) ≥ |V (G)| + 1, further
implying that up to a homeomorphism the only signed eulerian graph G with Φ(G) = 3
and β(G) ≤ 3 is the bouquet of three unbalanced loops. Its cycle rank is 3, and for this
graph the result clearly holds. This verifies the basis of induction.

For the induction step let G be a signed eulerian graph with Φ(G) = 3 and cycle rank
β(G) > 3, and assume that the assertion holds for all signed eulerian graphs with cycle
rank smaller than the cycle rank of G. Suppose to the contrary that for G the assertion
fails. Then G is a minimum counterexample, and our aim is to derive a contradiction
for G.

Claim 1. A nowhere-zero 3-flow on a minimum counterexample is stable.

Proof of Claim 1. Let φ be a nowhere-zero 3-flow on G. Suppose that there exists a vertex
v at which φ is not stable, and let G be positively directed with respect to φ. Then E(v)
contains a pair of edges e and f with φ(e) = φ(f) such that e is directed to v and f is
directed out of v.

If e and f coincide, then e must be a positive loop. It follows that G − e is an odd
eulerian graph carrying a nowhere-zero 3-flow, so Φ(G − e) = 3, by Theorem 3.5. Since
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β(G − e) < β(G), the graph G − e has a triply odd decomposition {G1, G2, G3}. By
adding e to any Gi we obtain a triply odd decomposition for G, a contradiction.

Now suppose that e and f are distinct edges. In this case we remove e and f from
G and replace the path ef with a single edge g whose sign equals the product of signs
of e and f . In the resulting graph G′, all vertices have an even valency and the number
of negative edges has the same parity as before. Due to the consistent orientation of the
inner half-edges of the path ef , the new edge g has a natural bidirection determined by the
outer half-edges of ef and this bidirection is consistent with the sign of g. Furthermore,
setting φ(g) = φ(e) = φ(f) turns φ into a nowhere zero 3-flow on G′.

If G′ is connected, then it is an odd eulerian graph, implying that Φ(G′) = 3. As
β(G′) < β(G), we can find a triply odd decomposition {G′1, G′2, G′3} of G′ with common
vertex v. One of the subgraphs contains the edge g; we may assume that this graph
is G1. Then G1 = (G′1 − g) ∪ {e, f} is an odd eulerian subgraph of G, and consequently
{G1, G

′
2, G

′
3} is a triply odd decomposition of G with common vertex v, a contradiction.

If G′ is disconnected, then it has exactly two components H and K, both eulerian,
one of which, say H, is odd. Since H carries a nowhere-zero 3-flow, we have Φ(H) = 3.
However, β(H) < β(G), so H has a triply odd decomposition {H1, H2, H3}. Reinserting
the vertex v into the edge g restores the edges e and f without changing the parity of
the number negative edges in the component of G′ containing g. It is therefore possible
convert the decomposition {H1, H2, H3} of H into a triply odd decomposition of G, a
contradiction again.

In all possible cases the assumption that the 3-flow φ is unstable produces a contra-
diction. It follows that φ is stable, as claimed.

Claim 2. A minimum counterexample is an antibalanced 6-regular graph.

Proof of Claim 2. Again, let G be a minimum counterexample. As we have just shown,
G carries a stable nowhere-zero 3-flow. By Lemma 5.3, G is antibalanced and the valency
of every vertex is a positive multiple of 6. It remains to prove G is 6-regular.

Suppose that G contains a vertex v of valency 6n for some n > 1. Replace v with two
new vertices v′ and v′′ and join the edges originally incident with v to the two new vertices
in such a way that v′ becomes 6-valent, v′′ becomes 6(n−1)-valent, and the resulting graph
G′ continues to carry a stable nowhere-zero 3-flow. This is clearly possible. Since G′ is
odd, we have Φ(G′) = 3.

If G′ is connected, then β(G′) < β(G), and by the induction hypothesis G′ has a triply
odd decomposition. This decomposition readily induces one for G, a contradiction. If G′

is disconnected, then it has two components G1 and G2, only one of which, say G1, is
odd. Since Φ(G1) = 3 and β(G1) < β(G), there exists a triply odd decomposition in G1.
By extending one of the subgraphs of the decomposition with G2 we obtain a similar
decomposition for G, a contradiction again.

All this shows that G cannot have a vertex of valency 6n for n > 1. Therefore G is
6-regular, and the proof of Claim 2 is complete.

Now we can finish the induction step. As above, let G be a minimum counterexample
with Φ(G) = 3. From Claim 2 we know that G is an antibalanced 6-regular graph. Since
G is odd, it has an odd number of edges, and hence an odd order. In this situation we
can apply Theorem 5.2 to infer that G is triply odd contradicting the assumption that
G is a counterexample. This concludes the induction step as well as the proof of the
theorem.
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6 Group-valued flows

We conclude this paper with a brief discussion of nowhere-zero flows with values in abelian
groups other than the group of integers. Our final result provides a complete character-
isation of signed eulerian graphs that admit a nowhere-zero A-flow for a given abelian
group A 6= 0.

Theorem 6.1. Let G be a signed eulerian graph and let A be a nontrivial abelian group.
The following statements hold true.

(a) If A contains an involution, then G admits a nowhere-zero A-flow.

(b) If A ∼= Z3, then G admits a nowhere-zero A-flow if and only if G is triply odd.

(c) Otherwise, G has a nowhere-zero A-flow if and only if G is not tightly unbalanced.

Proof. (a) If A contains an involution, then a nowhere-zero A-flow can be produced by
simply valuating each edge of G by the same involution.

(b) Assume that A ∼= Z3. By [12, Theorem 1.5], a 2-edge-connected signed graph
admits a nowhere-zero Z3-flow if and only if it admits a nowhere-zero 3-flow. Our Theo-
rem 5.4 now implies that G has a nowhere-zero A-flow if and only if it is triply odd.

(c) Assume that A contains no involution and is not isomorphic to Z3. Then either A
contains a subgroup B isomorphic to Z3×Z3 or has an element of order at least 4. If G is
an even eulerian graph, then sending any nontrivial element of A along an eulerian trail
of G will produce a nowhere-zero A-flow on G. Let G be odd but not tightly unbalanced.
By Theorem 4.2 (d), we can cover G with two even eulerian subgraphs, say T1 and T2.
If A contains B ∼= Z3 × Z3, we take any generating set {b1, b2} for B and send the value
b1 along an eulerian trail in T1 and the value b2 along an eulerian trail in T2. If A has
an element of order at least 4, say a, we proceed similarly with a in T1 and 2a in T2. In
both cases we get a nowhere-zero A-flow on G. Finally, let G be tightly unbalanced. It
is easy to see that the argument from the proof of Lemma 3.1 extends to any group with
no involution, and hence applies to A. It follows that G has no nowhere-zero A-flow, and
the proof is complete.
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