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Abstract. Prior distributions for Bayesian inference that rely on the l1-norm of the parameters are of considerable
interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities
and blockiness). These l1-type priors include the total variation (TV) prior and the Besov space Bs

1,1 prior, and in
general yield non-Gaussian posterior distributions. Sampling from these posteriors is challenging, particularly in the
inverse problem setting where the parameter space is high-dimensional and the forward problem may be nonlinear.
This paper extends the randomize-then-optimize (RTO) method, an optimization-based sampling algorithm developed
for Bayesian inverse problems with Gaussian priors, to inverse problems with l1-type priors. We use a variable
transformation to convert an l1-type prior to a standard Gaussian prior, such that the posterior distribution of the
transformed parameters is amenable to Metropolized sampling via RTO. We demonstrate this approach on several
deconvolution problems and an elliptic PDE inverse problem, using TV or Besov space Bs

1,1 priors. Our results show
that the transformed RTO algorithm characterizes the correct posterior distribution and can be more efficient than
other sampling algorithms. The variable transformation can also be extended to other non-Gaussian priors.
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1. Introduction. Inverse problems are encountered in many fields of science and engineering—
whenever unknown parameters in mathematical models of physical phenomena must be estimated
from noisy, incomplete, and indirect measurements. While inverse problems can be solved using a
variety of approaches [48], the Bayesian statistical approach [23, 47] is particularly attractive as it
offers a coherent framework for quantifying parameter uncertainty, while naturally accommodating
different types of data and rich models of prior information.

We begin our discussion of the Bayesian approach to inverse problems by considering a para-
metric statistical model of the form

(1.1) y = f(θ) + ε,

where y ∈ Rm is a vector of measurements, f : Rn → Rm is the forward model (also known as the
“parameter-to-observable map”) relating the unknown parameters θ ∈ Rn to the measurements y,
and ε ∈ Rm is the measurement error. We assume that the error ε is a Gaussian random vector with
mean zero and covariance matrix Γobs ∈ Rm×m, i.e., ε ∼ N (0,Γobs). We will consider both linear
and nonlinear forward models f .

Next, define a prior probability density,

p(θ) ∝ exp(−λJ(θ)),

that encapsulates all a priori information on the parameters θ. Here, λ ∈ R is a hyperparameter
and J : Rn → R is a prescribed function. Through Bayes’ rule, the prior density and the likelihood
function defined by (1.1) together yield the posterior probability density of the parameters θ:

(1.2) p(θ|y) ∝ p(y|θ)p(θ) ∝ exp

(
−1

2

∥∥f(θ)− y
∥∥2

Γ−1
obs

− λJ(θ)

)
.
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Solving the inverse problem in the Bayesian setting amounts to characterizing the posterior
distribution (1.2), e.g., computing posterior moments or other posterior expectations. A flexible way
to do so is via sampling, which has been a topic of research in Bayesian inverse problems for decades
(see, e.g., [4, 23, 39, 47]). A widely used class of algorithms for sampling from the posterior is Markov
chain Monte Carlo (MCMC); see, e.g., [13, 43, 28, 15, 11] for a general introduction. Most MCMC
algorithms build on the Gibbs [12] or general Metropolis-Hastings [34, 20, 17] constructions. For
example, [24, 23] implement Gibbs samplers for use on large-scale nonlinear inverse problems, while
[19, 18] introduce adaptive Metropolis algorithms that work well on parameter inference problems
of small to medium dimension. The need for adaptive algorithms underscores the idea that efficient
MCMC sampling requires proposal distributions that capture the local or global structure of the
target (posterior) distribution. Accordingly, the Metropolis-adjusted Langevin algorithm (MALA)
[45] uses gradients of the target density to guide samples towards regions of higher probability, while
[30] approximates local Hessians of the log-target density to construct Gaussian proposals for large-
scale problems. Riemannian manifold MCMC [16] may use even higher-order derivative information,
along with Hamiltonian Monte Carlo (HMC) [38, 21] proposals. Another issue, particularly relevant
to Bayesian inverse problems where θ represents the discretization of a distributed parameter, is
that most MCMC algorithms have mixing rates that deteriorate as the discretization is refined [44,
33, 32]. Recent work [6] has introduced Metropolis algorithms with discretization-invariant mixing
properties. Dimension-independent likelihood-informed (DILI) samplers then combine discretization
invariance with proposals informed by Hessians and other descriptors of the posterior geometry [7].
With the exception of HMC, however, even these relatively sophisticated samplers produce Gaussian
proposals at each step. From a computing perspective, we also note that most MCMC algorithms
are sequential in nature and may not scale well to massively parallel settings (e.g., via multiple
chains) [14].

This paper builds on recent work that explores the potential for optimization methods to improve
sampling. Broadly, these methods facilitate simulation from non-Gaussian proposal distributions
that capture important aspects of posterior structure. Notable examples include randomized maxi-
mum likelihood [41], implicit sampling [5, 35], and randomize-then-optimize (RTO) [3]. Our focus in
this work is on the RTO approach. RTO uses repeated solutions of a randomly perturbed optimiza-
tion problem to produce samples from a non-Gaussian distribution, which is used as a Metropolis
independence proposal. Although it is more expensive to implement per sample than many simpler
Gaussian proposals, it often yields better MCMC mixing. In addition, because the proposals can
be generated independently and in parallel, RTO can easily take advantage of large-scale parallel
computing environments. However, RTO is only defined for certain classes of problems; in the
case of Bayesian inverse problems, it is defined for problems with Gaussian priors and Gaussian
measurement error.

The main contribution of this paper is to extend RTO to non-Gaussian priors, and to understand
the efficiency of the resulting posterior sampling algorithm. We will focus on the case of l1-type
priors, but the approach can be used on other priors as well. In using l1-type priors, we assume that
there is a deterministic invertible matrix D ∈ Rn×n, such that the elements of the vector Dθ are a
priori independent and endowed with identical Laplace distributions. Thus, the prior is of the form

(1.3) p(θ) ∝ exp

(
−λ

n∑
i=1

|(Dθ)i|

)
,

where λ ∈ R is a hyperparameter. This choice yields a posterior of the form

(1.4) p(θ|y) ∝ exp

(
−1

2
‖f(θ)− y‖2

Γ−1
obs

− λ
n∑
i=1

|(Dθ)i|

)
.

For what is perhaps the most common l1-type prior used in Bayesian inverse problems, D is the
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discrete one-dimensional derivative (or difference) matrix. This choice yields the total variation (TV)
prior, which is related to the well-known regularization functional that penalizes the variation of a
signal in order to promote a blocky, discontinuous solution [46, 49]. The TV prior can be derived from
the assumption that the increments (i.e., the differences between neighboring parameter node values)
are i.i.d. Laplace random variables [2], and it has the form (1.3) only when θ is the discretization of
a one-dimensional signal. Another common class of l1-type priors are the Besov space Bs1,1 priors
[26], where D is now a matrix representing a discrete wavelet transform [9]; for the use of Besov
priors on large-scale imaging test cases, see [10, 37]. These priors have the advantage that even in
two or more dimensions, they retain the form (1.3) and hence the techniques of this paper can be
used. Besov priors (with suitable parameters) have been shown to be discretization invariant [26, 8],
in that they yield posterior means that converge under mesh refinement.

We extend RTO to the problem of sampling from (1.4) by introducing a multivariate “prior
transformation.” This transformation deterministically couples a random variable with an l1-type
prior to one with a Gaussian prior, and thus enables the use of RTO. A similar transformation
for a scalar parameter θ has been suggested in [40]. The present multivariate transformation is
more general, however. To the best of our knowledge, it has not been previously proposed, nor has
its impact on sampling been investigated. After modifying the RTO algorithm to incorporate the
transformation, we conduct a simple comparison of the resulting method with other algorithms, and
then focus on numerically exploring the factors that influence its efficiency.

More broadly, variable transformations have been used to improve sampling in [22, 42]. For
instance, [42] learns a parameterized multivariate transformation, designed to approximately Gaus-
sianize an arbitrary target distribution, adaptively during MCMC. [22] introduces fixed isotropic
(i.e., ‖θ‖–dependent) transformations to obtain target distributions with super-exponentially light
tails, so that random-walk Metropolis sampling is geometrically ergodic. In a similar fashion, we
use our prior transformation to obtain a posterior distribution to which we can apply RTO. We
also describe extensions of our approach to more general priors: first, when any exact (e.g., closed-
form) coupling between the prior and a standard Gaussian is available, and second, when the prior
transformation is only approximate. In the latter case, we modify the Metropolis step of our RTO
sampler to correct for error in the prior transformation.

The remainder of the paper is organized as follows. We begin in Section 2 with a description of
the RTO algorithm [3]. Then, in Section 3, we describe prior transformations that turn (1.4) into
a target density amenable to RTO sampling. Finally, in Section 4, we present several numerical
examples and comparisons of our method with other MCMC algorithms.

2. Randomize-then-optimize. In the context of Bayesian inverse problems, the randomize-
then-optimize (RTO) [3] algorithm can be used to sample from the posterior distribution if the prior
distributions on the parameters θ and the measurement error ε are both Gaussian. It generates
proposal samples through optimization, and then “corrects” these samples using either importance
sampling or Metropolis-Hastings. Here, we briefly review the original RTO algorithm; for simplicity,
we use notation slightly different from that of [3].

2.1. Form of the target distribution. RTO requires that the target distribution be of a
specific form; in particular, it requires that the target density (which for the purposes of this paper
is the posterior density of θ) be written as

(2.1) p(θ|y) ∝ exp

(
−1

2

∥∥F (θ)
∥∥2
)
,

where F (θ) is a vector-valued function of the parameters θ.
Given a Gaussian prior and Gaussian measurement errors, we can, without loss of generality,

use linear transformations to “whiten” the prior and the error model so that the inverse problem
has the form

(2.2) y = f(θ) + ε, ε ∼ N(0, Im), θ ∼ N(θ0, In),
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where θ0 ∈ Rn is the prior mean; and In and Im are identity matrices of size n and m, respectively.
The resulting posterior density is given by

p(θ|y) ∝ exp

(
− 1

2

∥∥∥∥ [ θ
f(θ)

]
−
[
θ0

y

] ∥∥∥∥2
)
.

This density is in the form (2.1), where F (θ) =

[
θ − θ0

f(θ)− y

]
and F : Rn → Rn+m.

2.2. The RTO–Metropolis-Hastings algorithm. We now outline how to use RTO to sam-
ple from a posterior of the form (2.1). First, a linearization point θ̄ is found and fixed throughout
the algorithm. In [3], θ̄ is set to be the posterior mode, though this is not the only possible or useful
choice. To obtain the posterior mode, we solve

(2.3) θ = arg min
θ

1

2

∥∥F (θ)
∥∥2
.

Second, the Jacobian of F , which we denote as JF , is evaluated at θ, and an orthonormal basis
Q ∈ R(m+n)×n for the column space of JF (θ), which we denote as col(JF (θ)), is computed through
a thin-QR factorization of JF (θ). Third, independent samples ξ(i) are drawn from an n-dimensional

standard Gaussian, and proposal points θ
(i)
prop are found by solving the optimization problem

(2.4) θ(i)
prop = arg min

θ

1

2

∥∥∥Q>F (θ)− ξ(i)
∥∥∥2

for each sample ξ(i). Under conditions described in [3] and listed in Assumption B.1, the points

θ
(i)
prop are distributed according to the proposal density

(2.5) q(θprop) = (2π)−
n
2

∣∣∣Q>JF (θprop)
∣∣∣ exp

(
−1

2

∥∥∥Q>F (θprop)
∥∥∥2
)
,

where |·| denotes the absolute value of the matrix determinant. We focus on using this distribution
as an independence proposal in Metropolis-Hastings, though it can also be used in importance
sampling. The Metropolis-Hastings acceptance ratio, for a move from a point θ(i−1) to the proposed

point θ
(i)
prop, is

p(θ
(i)
prop|y)q(θ(i−1))

p(θ(i−1)|y)q(θ
(i)
prop)

=
w(θ

(i)
prop)

w(θ(i−1))
,

where w(θ) are

(2.6) w(θ) :=
∣∣∣Q>JF (θ)

∣∣∣−1

exp

(
−1

2

∥∥F (θ)
∥∥2

+
1

2

∥∥∥Q>F (θ)
∥∥∥2
)
.

The resulting MCMC method, which we call RTO–Metropolis-Hastings (RTO-MH), is summarized
in Algorithm 2.1.

Remark 2.1. Other choices for the matrix Q used in (2.4) and (2.5) are possible, provided
that Assumption B.1, which leads to the sampling density q(θ) in (2.5), is satisfied. Also, in the

computation of the Metropolis acceptance ratio, one can use a factorization of JF (θ) or Q
>
JF (θ) and

take advantage of properties of the log function; e.g., if QθRθ = Q
>
JF (θ) is the QR factorization of

Q
>
JF (θ), then

log
∣∣∣Q>JF (θ)

∣∣∣ =

n∑
i=1

log[Rθ]ii.
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Algorithm 2.1 RTO-MH

1: Find θ (e.g., the posterior mode) using (2.3)
2: Determine JF (θ), the Jacobian of F at θ
3: Compute Q, whose columns are an orthonormal basis for col(JF (θ))
4: for i = 1, . . . , nsamps do in parallel
5: Sample ξ(i) from a standard n-dimensional Gaussian

6: Solve for a proposal sample θ
(i)
prop using (2.4)

7: Compute w(θ
(i)
prop) from (2.6)

8: end for
9: Set θ(0) = θ

10: for i = 1, . . . , nsamps do in series
11: Sample v from a uniform distribution on [0,1]

12: if v < w(θ
(i)
prop)

/
w(θ(i−1)) then

13: θ(i) = θ
(i)
prop

14: else
15: θ(i) = θ(i−1)

16: end if
17: end for

3. RTO-MH with a prior transformation. The previous section showed how Bayesian
inverse problems with Gaussian priors and Gaussian measurement errors yield posterior densities
that can be written in the form (2.1), as required by RTO. Now we propose a technique that uses
RTO to sample from a posterior resulting from a Gaussian measurement model and a non-Gaussian
prior. This is accomplished via a change of variables that transforms the non-Gaussian prior defined
on the physical parameter θ ∈ Rn to a standard Gaussian prior defined on a reference parameter
u ∈ Rn. The caveat is that the transformed forward model, now viewed as a function of u, is the
original forward model composed with the nonlinear mapping function, and hence the transformation
adds complexity to f .

3.1. Transformations for l1-type priors. In the following subsections, we exemplify this
approach for l1-type priors. First, we describe the transformation of single parameter endowed with a
Laplace prior (Section 3.1.1). We then extend that example to construct a transformation of multiple
parameters for any l1-type prior (Section 3.1.2). Finally, we discuss general prior transformations
and summarize the algorithm for performing RTO with a prior transformation (Section 3.2).

3.1.1. Single parameter with a Laplace prior. In this subsection, we consider an inverse
problem of the form (1.1) but with only a single parameter and a single observation, n = m = 1:

y = f(θ) + ε, ε ∼ N(0, σ2
obs),

where σobs ∈ R+ is the standard deviation of the error. Instead of a Gaussian prior on θ, we use a
Laplace prior

p(θ) ∝ exp (−λ|θ|) .

Then, the posterior has the form

(3.1) p(θ|y) ∝ exp

(
−1

2

(
f(θ)− y
σobs

)2

− λ|θ|

)
.

Due to the Laplace prior, p(θ|y) cannot directly be written in the form (2.1).
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Let us construct an invertible mapping function g1D : R→ R that relates a Gaussian reference
random variable u ∈ R to the Laplace-distributed physical parameter θ ∈ R, such that θ = g1D(u).
A monotone transformation that achieves this goal is

(3.2) g1D(u) ≡ L−1 (ϕ(u)) = − 1

λ
sign (u) log

(
1− 2

∣∣∣∣ϕ(u)− 1

2

∣∣∣∣),
where L is the cumulative distribution function (cdf) of the Laplace distribution and ϕ is the cdf of
the standard Gaussian distribution. To prove that the reference random variable is in fact standard
Gaussian, we calculate its cdf as:

P(u < u0) = P(g−1
1D(θ) < u0) = P(θ < g1D(u0))

= L(g1D(u0)) = L ◦ L−1 ◦ ϕ(u0) = ϕ(u0).

Hence, this mapping function indeed transforms a standard Gaussian reference random variable u
to the Laplace-distributed parameter θ, and thus p(u) ∝ exp

(
− 1

2u
2
)
.

The mapping function g1D and its derivative are depicted in Figure 3.1. The function is mono-
tone, bijective, and continuously differentiable. Its derivative is

g′1D(u) =
ϕ′(u)

λϕ(−|u|)
,

where ϕ′(u) = 1√
2π

exp
(
− 1

2u
2
)

is the probability density function of the standard Gaussian distri-

bution.

u
-4 0 4

0

0.50 0.5

3

-4

0

4

Transformation 3 = g1D(u)

(a) Construction of g1D from densities.

-5 0 5

g
1D

(u
)

-20

-10

0

10

20

u
-5 0 5

g
1D

'(u
)

0

2

4

6

(b) g1D and its derivative.

Fig. 3.1. Left: transformation from the standard Gaussian to a Laplace distribution (with λ = 1). The probability
mass between the two vertical lines is equal to that between the horizontal lines. Right: Mapping function g1D and
its derivative. The mapping function is continuously differentiable.

Now we can solve Bayesian inverse problems on u and transform the posterior samples of u to
posterior samples of θ using the mapping function. The form of the transformed posterior density,
i.e., the posterior density of u, is given in the following lemma and proven in Appendix A.
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Lemma 3.1. Let (3.1) specify the posterior density of a Bayesian inference problem with param-
eter θ ∈ R. Given the variable transformation θ = g1D(u) defined in (3.2), the posterior density of
u has the form:

(3.3) p(u|y) ∝ exp

(
−1

2

(
f ◦ g1D(u)− y

σobs

)2

− 1

2
u2

)
.

After the transformation, the prior over the new variables simplifies to a standard Gaussian,
and the forward model becomes more complex. In particular, the transformed forward model is the
original forward model composed with the nonlinear mapping. The new posterior appears with a
Gaussian prior and observational noise, and can be cast in the form (2.1). The resulting structure
allows us to use RTO.

3.1.2. Multiple parameters with an l1 prior. Now we build on the previous section in order
to construct a prior transformation for a multivariate l1-type prior. Starting from an inverse problem
of the form (1.1), we allow for multiple unknown parameters, n ≥ 1, and multiple observations,
m ≥ 1. We impose the following l1-type prior on θ:

p(θ) ∝ exp
(
− λ‖Dθ‖1

)
= exp

(
−λ

n∑
i=1

|(Dθ)i|

)
,

where D ∈ Rn×n is an invertible matrix and (Dθ)i denotes the ith element of vector Dθ. The
posterior on θ is then

(3.4) p(θ|y) ∝ exp

[
−1

2
(f(θ)− y)>Γ−1

obs(f(θ)− y)

]
exp

(
− λ‖Dθ‖1

)
.

Reference random variables that are a priori i.i.d. Gaussian can be transformed to each Laplace-
distributed element of Dθ using the one-dimensional transformation g1D defined in (3.2). Then,
Dθ = g(u), where g : Rn → Rn and

g(u) :=
[
g1D(u1), . . . , g1D(un)

]>
.

Thus, a prior transformation for the l1-type prior is

(3.5) θ = D−1g(u),

resulting in the requirement that D be invertible. Then, the Jacobian of the transformation is
D−1Jg, where Jg : Rn → Rn×n is the Jacobian of g given by

(3.6) Jg(u) =


g′1D(u1)

g′1D(u2)
. . .

g′1D(un)

 ,
and g1D is defined in (3.2).

Using this transformation, one can derive the posterior density over u by following the same
steps as in the single variable case, with D−1g(u) in place of g1D(u), to obtain

p(u|y) ∝ exp

(
−1

2

(
f
(
D−1g(u)

)
− y
)>

Γ−1
obs

(
f
(
D−1g(u)

)
− y
)
− 1

2
u>u

)
.

The transformed posterior is in the form (2.1) and is amenable to RTO sampling. Figure 3.2
illustrates the effect of the transformation on an inverse problem with two unknown parameters,
D = I2, and a linear forward model; comparing the second and third columns, we note that the
transformed prior becomes a standard Gaussian, while the transformed likelihood becomes non-
Gaussian.
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Fig. 3.2. Densities in illustrative inverse problems with two parameters. The plots depict the log-prior density,
log-likelihood function, and log-posterior density. The three cases shown are a Gaussian prior with a linear forward
model (left), l1-type prior with the same forward model (middle), and transformed l1-type prior with transformed
likelihood (right). The transformation changes the prior to a Gaussian and makes the likelihood more complex. The
rightmost posterior is smooth and can be written in the form (2.1).

3.2. RTO-MH with a general prior transformation. Given an inverse problem in the
form (1.1) with a general non-Gaussian prior supported on Rn, suppose that we can construct an
invertible and continuously differentiable prior transformation T : Rn → Rn that couples a standard
Gaussian random variable u to our non-Gaussian random variable θ. Both g1D in (3.2) and D−1g
in (3.5) are examples of such transformations T . Then the transformed posterior density is

p(u|y) ∝ exp

(
−1

2

(
f ◦ T (u)− y

)>
Γ−1

obs

(
f ◦ T (u)− y

)
− 1

2
u>u

)
(3.7)

= exp

(
−1

2

∥∥f̃(u)− ỹ
∥∥2 − 1

2
‖u‖2

)
:= exp

(
−1

2

∥∥∥F̃ (u)
∥∥∥2
)
,

where f̃(u) = Γ
−1/2
obs f ◦ T (u) is the transformed forward model, ỹ = Γ

−1/2
obs y is the whitened data,

and F̃ (u) =

[
u

f̃(u)− ỹ

]
. We can use RTO to sample from the transformed posterior defined by

(3.7).
To perform the optimization steps in RTO and to evaluate the proposal density of RTO, we
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need the Jacobian of F̃ , which has the form

(3.8) JF̃ (u) =

[
I

Jf̃ (u)

]
.

Here, Jf̃ (u) is the Jacobian of the transformed forward model f̃ and is given by

(3.9) Jf̃ (u) = Γ
−1/2
obs Jf (T (u)) JT (u),

where Jf : Rn → Rm×n is the Jacobian of the original forward model f and JT : Rn → Rn×n is the
Jacobian of the prior transformation T . The final algorithm, incorporating a prior transformation
in RTO-MH, is summarized in Algorithm 3.1.

Algorithm 3.1 RTO-MH with a Prior Transformation

1: Determine the prior mapping function T : Rn → Rn such that u = T−1(θ) has a standard
Gaussian distribution

2: Find the mode u ∈ Rn of transformed posterior density p(u|y) defined by (3.7)
3: Calculate Q ∈ Rn×m+n, whose columns are an orthonormal basis for the column space of JF̃ (u),

as defined in (3.8)–(3.9)
4: for i = 1, . . . , nsamps do in parallel
5: Draw a standard Gaussian sample ξ(i) ∼ N (0, In)

6: Compute RTO samples via u
(i)
prop = arg minu

∥∥Q̄>F̃ (u)− ξ(i)
∥∥2

and weights

w
(
u

(i)
prop

)
=
∣∣Q̄>JF̃ (u(i)

prop

)∣∣−1
exp

(
− 1

2

∥∥F̃ (u(i)
prop

)∥∥2
+ 1

2

∥∥Q̄>F̃ (u(i)
prop

)∥∥2
)

7: end for
8: for i = 1, . . . , nsamps do in series
9: Sample v from a uniform distribution on [0,1]

10: if v < w
(
u

(i)
prop

)/
w(u(i−1)) then

11: u(i) = u
(i)
prop

12: else
13: u(i) = u(i−1)

14: end if
15: end for
16: for i = 1, . . . , nsamps do in parallel
17: Define θ(i) = T (u(i)), the desired samples from p(θ|y)
18: end for

The computational cost of Algorithm 3.1 is dominated by that of Step 6, where repeated opti-
mization problems are solved and the weights are calculated. Typically, within each optimization
iteration, f̃ is evaluated once and Jf̃ is applied to multiple vectors; after optimization, the weight

w(u
(i)
prop) must be evaluated, which requires an evaluation of Jf̃ (u

(i)
prop) and an O(n3) computation

of the log-determinant.
Under certain conditions on F̃ , given in Assumption B.1 (substituting F̃ for F ), the samples

uprop generated by Steps 1–7 of Algorithm 3.1 are i.i.d. draws from the following probability density:

(3.10) q(uprop) = (2π)−
n
2

∣∣∣Q>JF̃ (uprop)
∣∣∣ exp

(
−1

2

∥∥∥Q>F̃ (uprop)
∥∥∥2
)
.

When the original forward model is linear, i.e., f(θ) = Aθ, and the prior transformation in
Section 3.1.2 is applied, the transformed problem automatically satisfies these conditions. This
result is stated in the following theorem and proven in Appendix B.
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Theorem 3.2. Let (3.4) specify the posterior density of a Bayesian inference problem with pa-
rameters θ ∈ Rn, and let the forward model in (3.4) be linear, f(θ) = Aθ. After the prior transfor-
mation (3.5), the RTO algorithm described by Steps 1–7 of Algorithm 3.1 generates proposal samples
with probability density given in (3.10).
The proof of the theorem simply checks that the transformed problem satisfies the assumptions under
which the RTO proposal density holds. For nonlinear forward models f , we leave these conditions
as an assumption.

3.3. RTO-MH with an approximate prior transformation. The previous section ad-
dressed cases where an exact prior transformation T is known—i.e., where, if θ is distributed ac-
cording to the prior, then T−1(θ) has a standard Gaussian distribution. In some cases, determining
such an exact transformation might not be feasible. Nonetheless we can still use approximate
transformations—that is, transformations which only approximately “Gaussianize” the prior—to
construct an RTO-MH algorithm.

Consider a transformation T̂ : Rn → Rn that couples a reference random variable u to our prior-
distributed random variable θ. But now suppose that the distribution of the reference u = T̂−1(θ)
is only approximately Gaussian. (To be clear, the expressions below will not require any Gaussian
assumption on u; the degree to which u departs from a standard Gaussian will affect the efficiency,
not the correctness, of the following Metropolis-Hastings scheme.) These transformations can often
be constructed numerically. For example, [36, 42, 31] describe how to construct parameterized maps
from samples or unnormalized density evaluations of any atomless distribution. We can modify our
method to work for approximate prior transformations such as these.

As with the exact map, let T̂ be invertible and continuously differentiable. We can apply the

usual RTO procedure to obtain proposal samples u
(i)
prop by solving

u(i)
prop = arg min

u

∥∥∥∥∥Q>
[

u

Γ
− 1

2

obs

(
f ◦ T̂ (u)− y

)]− ξ(i)

∥∥∥∥∥
2

for Gaussian samples ξ(i). The proposed samples (in the reference space) will be distributed accord-
ing to the density

q̂(uprop) = (2π)−
n
2

∣∣∣Q>JF̂ (uprop)
∣∣∣ exp

(
−1

2

∥∥∥Q>F̂ (uprop)
∥∥∥2
)

where

F̂ (uprop) =

[
uprop

Γ
− 1

2

obs

(
f ◦ T̂ (uprop)− y

)] .
In order to obtain samples from the posterior, the RTO-MH algorithm must be modified to in-
corporate the density of the pullback of the true posterior under the map T̂ , which has the form

(3.11) p(u|y) ∝ exp

(
−1

2

∥∥∥f̂(u)− ỹ
∥∥∥2
) ∣∣JT̂ (u)

∣∣ pθ(T̂ (u)),

where pθ(·) is the prior density on θ, f̂(u) = Γ−1
obsf ◦ T̂ (u), and |JT̂ (·)| is the Jacobian determinant of

T̂ . Contrast (3.11) with (3.7); the key difference is that the standard Gaussian prior on u has been

replaced with the pullback of pθ under the map T̂ . If the prior transformation T̂ were exact, these
two expressions would be equivalent. This process gives an altered formula for the weights in Step
6 of Algorithm 3.1:

w(u(i)
prop) =

∣∣∣Q>JF̂ (u(i)
prop)

∣∣∣−1

exp

(
−1

2

∥∥∥f̂(u(i)
prop)− ỹ

∥∥∥2

+
1

2

∥∥∥Q>F̂ (u(i)
prop)

∥∥∥2
) ∣∣∣JT̂ (u(i)

prop)
∣∣∣ pθ(T̂ (u(i)

prop)).

The rest of the algorithm remains unchanged. In essence, the error in the approximate prior trans-
formation is handled by appropriately altering the Metropolis-Hastings acceptance ratio.

10



4. Numerical examples. We apply RTO-MH with prior transformations to three numerical
examples, labeled A, B, and C, all with l1-type priors. Examples A and B are (spatially) 1-D
deconvolution problems with linear forward models, while Example C is a (spatially) 2-D inverse
problem with a nonlinear forward model. In Example A, we use a TV prior and perform a simple
comparison of the efficiency of our method with that of other MCMC samplers, including the Gibbs
scheme proposed in [29] for linear inverse problems with l1-type priors. In Example B, we use a
Besov Bs1,1 space prior and examine the effects of parameter dimension n and hyperparameter λ
on the performance of RTO. Finally, in Example C, we infer the coefficient field of a linear elliptic
PDE; in this case, we use the 2-D Besov Bs1,1 space prior. This example is meant to test RTO on
a more difficult inverse problem, involving a nonlinear forward model and a parameter field in two
spatial dimensions.

4.1. One-dimensional deconvolution problems. Examples A and B involve the deconvo-
lution of a 1-D signal. We discretize a true signal, θtrue(x), defined on the domain x ∈ [0, 1], using
n grid points. The true signal is convolved with the function

(4.1) k(x) =

{
1 if − 1

64 < x < 1
64

0 otherwise,

and evaluated at m = 30 points to create measurements corresponding to integrals over interior
segments of the domain. The data y ∈ Rm are generated by adding i.i.d. Gaussian noise with
Γobs = σ2

obsI.

4.1.1. Example A: TV prior. In this example, the true signal is the square pulse,

θtrue(x) =

{
1 if 1

3 < x < 2
3

0 otherwise
,

which is also used in [27, 29]. Figure 4.1 depicts the true signal and the resulting data.
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Fig. 4.1. The true signal and noisy measurements for example A.

We use a TV prior, i.e., π(θ) ∝ exp (−λ‖Dθ‖1), with θ ∈ Rn , n = 63,

D =


1 1
−1 1

. . .
. . .

−1 1


n×n

,
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σobs = 1 · 10−3, and λ = 8. The first row of D imposes the condition that the sum of the boundary
values is zero, making D invertible, which is required for the prior transformation to be well-defined.

We generate MCMC chains using three different algorithms: RTO-MH with a prior transfor-
mation, MALA, and the Gibbs scheme of [29]. To compare computational costs, we count the
number of function evaluations used by each algorithm, with a Jacobian evaluation (used by MALA
and RTO) counted as a single function evaluation for this linear problem. For each algorithm, we
stopped the MCMC chain once the number of evaluations reached 4 · 106. The resulting MCMC
chains are shown in Figure 4.2. For RTO, we used the default settings of the nonlinear least-squares
solver lsqnonlin in MATLAB to perform all the optimizations. Our first attempt at MALA used
the adaptive (AMALA) scheme of [1]. The resulting chain did not reach stationarity after 4 · 106

evaluations, as seen in Figure 4.2. Note that the vertical axis of the figure showing the AMALA
chain is different from the others; the chain has not even located the region of high posterior proba-
bility. Instead, to obtain a convergent solution using MALA, we switched to a preconditioned MALA
scheme, where the preconditioner was prescribed to be the posterior covariance matrix estimated
from a converged MCMC chain generated by another algorithm (e.g., Gibbs sampling). Since finding
this covariance requires a full exploration of the posterior, this scheme is not something that could
be applied in practice; rather, it represents the “ideal” or endpoint of any AMALA scheme. But
we show these MALA results here simply for comparative purposes. As seen in Figures 4.3 and
4.4, the posterior mean (also called the conditional mean (CM)) and posterior covariance from all
three MCMC algorithms agree as we increase the maximum number of evaluations. This provides
numerical evidence that RTO-MH with a prior transformation generates samples from the correct
distribution.

Next, we assess effective sample size (ESS) per function/Jacobian evaluation and per CPU-
second, as two measures of computational efficiency. ESS is the number of effectively independent
samples in a Markov chain, i.e., the number of samples in a standard Monte Carlo estimator that
has the same variance as an estimator computed from the correlated samples of the MCMC chain.
It can be interpreted as a measure of the quality of the MCMC samples, where larger values of ESS
indicate better chain mixing [15]. An accurate way to calculate the ESS of an MCMC chain of a
single parameter is found in [50]; we do so for each component of our chains and report the mini-
mum, median, and maximum (across components) ESS per evaluation and ESS per CPU-second in
Table 4.1. The RTO method has a higher ESS per evaluation than the other benchmark algorithms.
However, since the optimization and calculation of the weights in RTO involves additional compu-
tational overhead, MALA using the “ideal” preconditioner has a higher ESS per CPU-second than
RTO-MH. As noted above, though, MALA with the “ideal” preconditioner is not a practically real-
izable algorithm. AMALA is a practical realization of preconditioned MALA, and the chain’s poor
mixing is reflected in low ESS per CPU-second values. Overall, these results suggest that RTO-MH
with a prior transformation is quite competitive for this test case, even without accounting for the
fact that RTO can be run in parallel.

Table 4.1
Example A: ESS per evaluation or per CPU-second. Each Jacobian evaluation is considered to be equivalent

in cost to one function evaluation. MALA (ideal) is preconditioned with the posterior covariance calculated from a
converged chain of another method.

Method
ESS per evaluation ESS per CPU-second

Minimum Median Maximum Minimum Median Maximum

RTO with transf. 2.48 ·10−3 7.43 ·10−3 8.72 ·10−3 4.77 ·10−1 1.43 ·100 1.67 ·100

AMALA 1.09 ·10−6 1.21 ·10−6 3.76 ·10−6 3.19 ·10−4 3.54 ·10−4 1.10 ·10−3

MALA (ideal) 1.08 ·10−3 1.24 ·10−3 1.48 ·10−3 1.39 ·101 1.60 ·101 1.90 ·101

Gibbs 9.60 ·10−6 7.06 ·10−5 1.26 ·10−4 1.96 ·10−2 1.44 ·10−1 2.57 ·10−1
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(d) Gibbs

Fig. 4.2. Example A: MCMC chains from various methods. Index 7 is plotted, which corresponds to the median
ESS for RTO. The chain for AMALA is not yet stationary. The horizontal axis (number of function and Jacobian
evaluations) reflects a common measure of computational cost for all methods.

Remark 4.1. The CM estimate using a TV prior is in general not piecewise constant (i.e.,
blocky). In [27], it is proven that under refinement of parameter discretization, the CM estimate
using a TV prior will become smooth.

4.1.2. Example B: Besov space prior. This second example is also a deconvolution of a
1-D signal. Here, the true signal is taken to be

θtrue(x) =

1 if 2/ 15 < x < 7/ 15
1
2 if 10/ 15 < x < 13/ 15
0 otherwise

.

Figure 4.5 shows the true signal and resulting data.
This time, we use the Besov Bs1,1 prior with s = 1 and Haar wavelets, so that again π(θ) ∝

exp (−λ‖Dθ‖1), where θ ∈ Rn, D ∈ Rn×n, and λ ∈ R. In this case, the matrix D contains scaled
wavelet basis functions (see details in Appendix C), and n must be a power of 2. We set the
observational noise to be σobs = 1 · 10−3.

RTO with a prior transformation is used to sample from the posterior distributions. We perform
two studies: first by fixing the hyperparameter to λ = 32 and scanning through parameter dimensions
n ∈ {32, 64, 128, 258, 512}; and second, by fixing n = 64 and scanning through hyperparameter values
λ ∈ { 1

2 , 1, 2, 4, 8, 16, 32, 64, 128}. We use chain lengths of 1 · 104, and tabulate the total ESS and
the number of function and Jacobian evaluations. When we increase the dimension n, the posterior
mean converges, as in Figure 4.6. This is expected due to the discretization-invariant nature of the
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(b) Budget of 4 · 106 evaluations.

Fig. 4.3. Example A: Sample estimates of the posterior mean, computed with transformed RTO (red), MALA
(black), and Gibbs (blue).

Besov Bs1,1 prior [26, 8]. Next, as reported in Table 4.2, with each doubling of the dimension n, the
ESS does not really decrease and the number of function evaluations increases only slightly. This
is an important and encouraging result, as it is evidence of discretization invariance not only in the
problem formulation, but in the performance of the transformed RTO-MH sampling scheme. Finally,
as we increase the hyperparameter λ, the CM becomes smoother and the posterior standard deviation
decreases, as in shown Figure 4.7. The sampling efficiency of our algorithm also deteriorates with
increasing λ, as shown in Table 4.3. Overall, the results from these parameter studies indicate that
RTO-MH with a prior transformation is effective even when the parameter dimension n is in the
hundreds.

Remark 4.2. In Figure 4.6, the posterior standard deviation does not converge as the discretiza-
tion is refined (i.e., as n increases). This behavior is not unexpected, as the prior standard deviation
also does not converge under mesh refinement. In particular, the Bs1,1 Besov space prior with Haar
wavelets has finite pointwise variance only when s > 1, and not when s = 1. One can prove this
property by summing the variance contributions from each level of wavelets in the Besov prior, as
shown in Appendix D.

Remark 4.3. One possible reason for the decrease in sampling efficiency with higher λ is that
the posterior samples lie further in the tails of the Laplace prior. As a result, the transformation is
more nonlinear in the sense that the Hessian involving g′′1D is of higher magnitude.

Table 4.2
Example B: ESS and computational cost of RTO for various parameter dimensions, given chains of length 1 · 104.

n
Total ESS Total evaluations

Minimum Median Maximum Function Jacobian

32 2.68 ·103 3.86 ·103 4.61 ·103 4.26 ·105 4.26 ·105

64 2.63 ·103 3.65 ·103 4.44 ·103 4.55 ·105 4.55 ·105

128 2.10 ·103 3.53 ·103 5.07 ·103 4.59 ·105 4.59 ·105

256 2.89 ·103 3.69 ·103 4.43 ·103 4.61 ·105 4.61 ·105

512 2.06 ·103 3.65 ·103 4.41 ·103 4.65 ·105 4.65 ·105

4.2. Two-dimensional elliptic PDE inverse problem. Our next numerical example is an
elliptic PDE coefficient inverse problem on a two-dimensional domain. The forward model maps the
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(a) Estimated posterior covariance using RTO
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(b) Estimated posterior covariance using MALA
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(c) Estimated posterior covariance using Gibbs
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(d) Estimates of the posterior standard deviation

Fig. 4.4. Example A: Sample estimates of the posterior covariance (top row and bottom left) and pointwise
posterior standard deviation (bottom right), using a budget of 4 · 106 evaluations.

log-conductivity field of the Poisson equation to observations of the potential field,

−∇ ·
(

exp
(
θ(x)

)
∇s(x)

)
= h(x), x ∈ [0, 1]2,

where θ is the log-conductivity, s is the potential, and h is the forcing function. Neumann boundary
conditions

exp
(
θ(x)

)
∇s(x) · ~n(x) = 0

are imposed, where ~n(x) is the normal vector at the boundary. To complete the system of equations,
the average potential on the boundary is set to zero.

This PDE is solved using finite elements. The domain is partitioned into a
√
n×
√
n uniform grid

of square elements, and we use linear shape functions in both directions. The parameters θ ∈ Rn
to be inferred are the nodal values of θ(x). Independent Gaussian noise with standard deviation
σobs = 2 · 10−3 is added to the potential field s to give the observational data y.
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Fig. 4.5. Example B: True signal and noisy measurements.

Table 4.3
Example B: ESS and computational cost of RTO for varying prior hyperparameter values λ. Chains of length

1 · 104 are used.

λ
Total ESS Total evaluations

Minimum Median Maximum Function Jacobian

0.5 5.00 ·103 5.83 ·103 7.88 ·103 5.47 ·105 5.47 ·105

1 5.66 ·103 6.30 ·103 8.11 ·103 5.05 ·105 5.05 ·105

2 5.74 ·103 6.71 ·103 8.23 ·103 4.73 ·105 4.73 ·105

4 5.82 ·103 6.51 ·103 8.01 ·103 4.63 ·105 4.63 ·105

8 4.68 ·103 5.69 ·103 6.96 ·103 4.69 ·105 4.69 ·105

16 3.20 ·103 4.39 ·103 5.29 ·103 4.77 ·105 4.77 ·105

32 2.63 ·103 3.65 ·103 4.44 ·103 4.55 ·105 4.55 ·105

64 2.32 ·103 3.55 ·103 4.34 ·103 3.83 ·105 3.83 ·105

128 1.08 ·103 2.19 ·103 2.79 ·103 3.02 ·105 3.02 ·105

The forcing function h is a linear combination of thirteen Gaussian bumps: nine with weight 1
centered at the points (a, b), a, b ∈ {0.05, 0.5, 0.95}, and four with weight −9/4 centered at the
points (a, b), a, b ∈ {0.25, 0.75}. The true parameter field θtrue, forcing function, and resulting noisy
measurements are shown in Figure 4.8. A similar problem setup is found in [7].

4.2.1. Example C: Besov space prior in 2-D. To complete the setup of the Bayesian
inverse problem, we impose a 2-D Besov Bs1,1 prior, with a tensorized Haar wavelet basis, on θ. This
l1-type prior is also written in the form (1.3). The columns of matrix D are Kronecker products of
the columns of the matrix from the 1-D Besov Bs1,1 space prior. The hyperparameter value is λ = 32
and the parameter dimension is set to n = 256, which gives rise to a 16× 16 grid. The observational
data are generated using a finer 128× 128 grid.

We ran RTO-MH with a prior transformation and generated an MCMC chain of length 2 ·
105. The computation used 9.3 · 106 function evaluations and 9.3 · 106 Jacobian evaluations to
produce an ESS of 4.5 · 102. The posterior mean, estimated from the MCMC samples, appears
similar to θtrue as shown in Figure 4.9. We also estimate the posterior standard deviation, shown
in Figure 4.9; lower uncertainty regions seem to coincide with smaller log-conductivities. It is also
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(b) Posterior standard deviation

Fig. 4.6. Example B: Posterior mean and standard deviation for different values of the parameter dimension n.
Hyperparameter λ is fixed to 32.

instructive to look at independent samples from the posterior, shown in Figure 4.10(a). They exhibit
small-scale roughness (consistent with the Besov prior) and sample-to-sample variability; however,
the corresponding samples from the posterior predictive distribution closely match the data, as in
Figure 4.10(b). The fact that wider variability among the parameter samples corresponds to much
narrower variability among the predictions reflects the smoothing properties of the forward operator
and the ill-posedness of the inverse problem. Collectively the posterior samples {θ(i)} characterize
uncertainty in the solution of the inverse problem.

We note that the Gibbs sampler of [29] does not extend to nonlinear inverse problems such as
this test case.

5. Concluding remarks. We have extended RTO, an optimization-based sampling algorithm,
to posterior distributions arising in Bayesian inverse problems with non-Gaussian priors. As a
concrete example, we consider l1-type priors such as TV and Besov Bs1,1 priors. To transform the
posterior into a form usable by RTO, we derive a deterministic map that transforms the prior to a
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Fig. 4.7. Example B: Posterior mean and standard deviation for different values of the hyperparameter λ.
Parameter dimension n is fixed to 64.
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Fig. 4.8. Example C: True signal, forcing function, and noisy measurements.

18



0 1
x1

1

0

x
2

2

2.5

3

3.5

4

4.5

5

5.5

6

(a) Posterior mean

0 1
x1

1

0

x
2

0

0.2

0.4

0.6

0.8

1

(b) Posterior standard deviation

Fig. 4.9. Example C: Posterior moments for the 2-D elliptic PDE problem.

standard Gaussian. We embed the RTO proposal into a Metropolis-Hastings algorithm to generate
asymptotically exact samples from the transformed posterior, and then apply the transformation to
obtain samples from the original posterior. Some assumptions are required for the probability density
of the RTO proposal samples to be known and computable. We prove that these assumptions are
satisfied for linear forward models and our transformation of l1 priors. Numerical studies suggest
that our method can be more efficient than standard MCMC algorithms, and that its sampling
performance does not deteriorate as the parameter discretization is refined. We also successfully
employ the algorithm for posterior sampling in a nonlinear inverse problem with a Besov Bs1,1 prior
in two spatial dimensions, suggesting that it is a promising and versatile computational approach
for challenging problems.

Acknowledgments. Z. Wang, A. Solonen, and Y. Marzouk acknowledge support from the
eni-MIT Alliance research program. J. Bardsley was funded by the National Security Technologies,
LLC, Site Directed Research and Development program.

Appendix A. Proof of Lemma 3.1. We now derive the posterior density on u. In this
appendix, we use more precise notation for clarity. Let πΘ(w) be the prior density on θ evaluated at
θ = w, πU (w) be the prior density on u evaluated at u = w, and so forth for the posterior densities.
First, note that

πΘ(g1D(u)) = πU (u)

∣∣∣∣ ∂∂θ g−1
1D(θ)

∣∣∣∣ ,
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(a) Posterior samples θ(i)

(b) Corresponding posterior predictive samples f(θ(i))

Fig. 4.10. Example C: Posterior samples and corresponding posterior predictive samples. The former have small-
scale roughness and sample-to-sample variability, while the latter closely match the potential field measurements.
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and thus

πU |Y (u|y) = πΘ|Y (g1D(u)|y)

|Jg1D |︷ ︸︸ ︷∣∣∣∣ ∂∂ug1D(u)

∣∣∣∣
∝ exp

[
−1

2

(
f ◦ g1D(u)− y

σobs

)2
]
πΘ(g1D(u))

∣∣∣∣ ∂∂ug1D(u)

∣∣∣∣
∝ exp

[
−1

2

(
f ◦ g1D(u)− y

σobs

)2
]
πU (u)

∣∣∣∣ ∂∂θ g−1
1D(θ)

∣∣∣∣︸ ︷︷ ︸
|J−1

g1D |

∣∣∣∣ ∂∂ug1D(u)

∣∣∣∣︸ ︷︷ ︸
|Jg1D |

∝ exp

[
−1

2

(
f ◦ g1D(u)− y

σobs

)2
]
πU (u)

∝ exp

[
−1

2

(
f ◦ g1D(u)− y

σobs

)2
]

exp

(
−1

2
u2

)
.

We note that in the third line, by the inverse function theorem,
∣∣ ∂
∂θg
−1
1D(θ)

∣∣ is the inverse of
∣∣ ∂
∂ug1D(u)

∣∣
and the two terms cancel.

Appendix B. RTO proposal density and proof of Theorem 3.2. First, we recall the
assumptions under which the RTO proposal density in (2.5) holds. Knowing the form of the proposal
density is important because it allows us to “correct” the proposed samples and thus achieve exact
sampling, for instance through the use of a Metropolis-Hastings scheme, or via importance sampling.
The theorem that describes the required assumptions is found in [3] and restated below.

Assumption B.1 (Conditions for validity of the RTO proposal density).
(i) p(θ|y) ∝ exp

(
− 1

2‖F (θ)‖2
)
, where θ ∈ Rn.

(ii) F : Rn → Rn+m is a continuously differentiable function with Jacobian JF .
(iii) JF (θ) ∈ R(n+m)×n has rank n for every θ in the domain of F .

(iv) The matrix Q
>
JF (θ) is invertible for all θ in the domain of F , where

JF (θ) = [Q, Q̃]

[
R
0

]
is the QR factorization of JF (θ), with θ fixed.

Theorem B.2 (Proposal density for RTO [3]). If Assumption B.1 holds, then the RTO algo-
rithm described by Steps 1–7 of Algorithm 2.1 generates proposal samples distributed according to
the probability density (2.5).

We now prove Theorem 3.2 by checking Assumptions B.1(i) to B.1(iv) for the transformed
forward model f̃(u).

Proof of Theorem 3.2. If f̃ is continuously differentiable, then F̃ is continuously differentiable.
Thus Assumptions B.1(i) and B.1(ii) are automatically satisfied. Assumption B.1(iii) is also satisfied
since

JF̃ (θ) =

[
I

Jf̃ (θ)

]
,

and regardless of Jf̃ (θ), the columns of JF̃ (θ) are linearly independent due to the identity matrix in
the first n rows of JF̃ (θ).
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To show that Assumption B.1(iv) holds, we use the form of the transformed forward model. Let
the original linear forward model be f(θ) = Aθ. Then the transformed forward model is

f̃(u) = f(D−1g(u)) = AD−1g(u).

Following the computations used to obtain (3.7), the posterior on u takes the form

p(u|y) ∝ exp

[
−1

2
(f̃(u)− y)>Γ−1

obs(f̃(u)− y)

]
exp

(
−1

2
u>u

)
= exp

(
−1

2

∥∥∥F̃ (u)
∥∥∥2
)
,

where

F̃ (u) =

[
u

Γ
−1/2
obs (f̃(u)− y)

]
, JF̃ (u) =

[
I

Γ
−1/2
obs AD−1Jg(u)

]
.

Assumption B.1(iv) requires that the matrix Q
>
JF̃ (u) be invertible for all u in the domain of

F̃ . For any u1 ∈ Rn and u2 ∈ Rn,

JF̃ (u1)>JF̃ (u2) = I + Jg(u1)D−>A>Γ−1
obsAD

−1Jg(u2)

= Jg(u1)
(
Jg(u1)−1Jg(u2)−1 +D−>A>Γ−1

obsAD
−1
)
Jg(u2).

Jg(u) is a positive diagonal matrix for any u, and D−>A>Γ−1
obsAD

−1 is symmetric positive semi-
definite. Then, the middle matrix is symmetric positive definite. Thus, JF̃ (u1)>JF̃ (u2) is the
product of three invertible matrices and is therefore invertible.

Q is obtained from the thin QR-decomposition of JF̃ (u), where u is the mode of the posterior

defined on u. It follows that JF̃ (u)>Q = JF̃ (u)>JF̃ (u)R
−1

is invertible for any u ∈ Rn. This shows
that Assumption B.1(iv) holds. Hence, Assumptions B.1(i) to B.1(iv) hold for the transformed
forward model f̃(u) and Theorem B.2 yields Theorem 3.2.

Appendix C. Besov space priors as l1-type priors. Following [25], we start with a
wavelet function ψ ∈ L2([0, 1]) defined such that the family of functions

ψj,k(x) = 2
j
2ψ
(
2jx− k

)
, j, k ∈ Z+, 0 ≤ k ≤ 2j − 1,

is an orthonormal basis for L2([0, 1]). One example of such a function is the Haar wavelet,

ψHaar =

{
1 when 0 < x < 1

2
−1 when 1

2 < x < 1
.

With a wavelet and corresponding basis, we can represent functions by the expansion

f(x) = c0 +

∞∑
j=0

2j−1∑
k=0

wj,kψj,k(x), c0 :=

∫ 1

0

f(x)dx, wj,k :=

∫ 1

0

f(x)ψj,k(x)dx.

The Besov space Bsp,q([0, 1]) contains functions over the interval [0, 1] with a finite Besov Bsp,q([0, 1])
norm, defined as

‖f‖Bs
p,q([0,1]) :=

|c0|q +

∞∑
j=0

2jq
(
s+ 1

2−
1
p

) 2j−1∑
n=0

|wj,k|p


q
p


1
q

,
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where s ∈ R and p, q ≥ 1 are properties of the space, and c0, wj,k ∈ R are the coefficients of the
expansion. The discrete Besov Bsp,q space norm, defined for a vector θ ∈ Rn of size n = 2l, is

‖θ‖Bs
p,q

:=

|ĉ0|q +

l∑
j=0

2jq
(
s+ 1

2−
1
p

) 2j−1∑
n=0

|ŵj,k|p


q
p


1
q

,

where ĉ0, ŵj,k ∈ R are the coefficients

ĉ0 =
1

n
θ>φ̂0,0, ŵj,k =

1

n
θ>ψ̂j,k,

φ̂0,0 = [1, · · · , 1]>, ψ̂j,k =

[
ψj,k

(
1

2n

)
, ψj,k

(
3

2n

)
, · · · , ψj,k

(
2n− 1

2n

)]>
.

Note that when θ ∈ Rn is a discretization of the continuous function f : [0, 1]→ R,

θ =

[
f

(
1

2n

)
, f

(
3

2n

)
, · · · , f

(
2n− 1

2n

)]>
.

Then, the discrete norm ‖θ‖Bs
p,q

is an approximation to the continuous norm ‖f‖Bs
p,q

. When p =
q = 1, the discrete Besov Bsp,q space norm becomes

‖θ‖Bs
1,1

= |ĉ0|+
l∑

j=0

2j−1∑
h=0

2j(s−
1
2 )|ŵj,k|

= ‖WBθ‖1,

where the matrix W ∈ Rn×n is diagonal with

W1,1 =
1√
n

and Wi,i =
1√
n

2j(s−
1
2 ) when 2j + 1 ≤ i ≤ 2j+1,

and the matrix B ∈ Rn×n is unitary with

B =
1√
n

[
φ̂0,0 ψ̂0,0 ψ̂1,0 ψ̂1,1 ψ̂2,0 · · ·

]>
.

Thus, we can write the Besov Bs1,1 space prior in the form of (1.3) by

p(θ) := exp
(
−λ‖θ‖Bs

1,1

)
= exp

(
− λ‖Dθ‖1

)
,

where D = WB, with W and B defined as above.

Appendix D. Pointwise variance of Besov priors with Haar wavelets. Let f be
a random function distributed according to the Besov Bs1,1 prior, using Haar wavelets. f can be
represented by the expansion

f(x) = c0 +

∞∑
j=0

2j−1∑
k=0

wj,hφj,h(x).

Fix any point x∗ and consider the random variable f(x∗). For each level j, there is only one basis,
φj,h∗ , that has a support containing x∗, where h∗ depends on both x∗ and j. Also, the magnitude

of φj,h∗ evaluated at x∗ is 2
j
2 . Thus,

f(x∗) = c0 +

∞∑
j=0

±2
j
2wj,h∗
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where, due to the Besov Bs1,1 space prior,

c0 ∼ Laplace(0, 1), wj,h∗ ∼ Laplace
(
0, 2−j(s−

1
2 )
)
.

We sum the variance contribution from each coefficient.

Var
[
f(x∗)

]
= 2 +

∞∑
j=0

2j
(
2 · 2−2j(s− 1

2 )
)

= 2

(
1 +

∞∑
j=0

2−2j(s−1)

)

Hence, the pointwise variance is finite when s > 1 and does not converge when s = 1.
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