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Abstract

Motivated by big data applications, first-order methods have been extremely popular in

recent years. However, naive gradient methods generally converge slowly. Hence, much efforts

have been made to accelerate various first-order methods. This paper proposes two accelerated

methods towards solving structured linearly constrained convex programming, for which we

assume composite convex objective that is the sum of a differentiable function and a possibly

nondifferentiable one.

The first method is the accelerated linearized augmented Lagrangian method (LALM). At

each update to the primal variable, it allows linearization to the differentiable function and also

the augmented term, and thus it enables easy subproblems. Assuming merely weak convexity, we

show that LALM owns O(1/t) convergence if parameters are kept fixed during all the iterations

and can be accelerated to O(1/t2) if the parameters are adapted, where t is the number of total

iterations.

The second method is the accelerated linearized alternating direction method of multipliers

(LADMM). In addition to the composite convexity, it further assumes two-block structure on

the objective. Different from classic ADMM, our method allows linearization to the objective

and also augmented term to make the update simple. Assuming strong convexity on one block

variable, we show that LADMM also enjoys O(1/t2) convergence with adaptive parameters.

This result is a significant improvement over that in [Goldstein et. al, SIIMS’14], which requires

strong convexity on both block variables and no linearization to the objective or augmented

term.

Numerical experiments are performed on quadratic programming, image denoising, and sup-

port vector machine. The proposed accelerated methods are compared to nonaccelerated ones

and also existing accelerated methods. The results demonstrate the validness of acceleration

and superior performance of the proposed methods over existing ones.
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1 Introduction

In recent years, motivated by applications that involve extremely big data, first-order methods with

or without splitting techniques have received tremendous attention in a variety of areas such as

statistics, machine learning, data mining, and image processing. Compared to traditional methods

like the Newton’s method, first-order methods only require gradient information instead of the much

more expensive Hessian. Splitting techniques can further decompose a single difficult large-scale

problem into smaller and easier ones. However, in both theory and practice, first-order methods

often converge slowly if no additional techniques are applied. For this reason, lots of efforts have

been made to accelerate various first-order methods.

In this paper, we consider the linearly constrained problem

min
x
F (x), s.t. Ax = b, (1)

where F is a proper closed convex but possibly nondifferentiable function. We allow F to be

extended-valued, and thus in addition to the linear constraint, (1) can also include the constraint

x ∈ X if part of F is the indicator function of a convex set X .

The augmented Lagrangian method (ALM) [2] is one most popular approach to solve constrained

optimization problems like (1). Let

Lβ(x, λ) = F (x)− 〈λ,Ax− b〉+
β

2
‖Ax− b‖2 (2)

be the augmented Lagrangian function. Then ALM for (1) iteratively performs the updates

xk+1 ∈ arg min
x

Lβ(x, λk), (3a)

λk+1 = λk − β(Axk+1 − b). (3b)

In general, the subproblem (3a) may not have a solution or have more than one solutions, and

even if a unique solution exists, it could be difficult to find the solution. We will assume certain

structures of F and also modify the updates in (3) to have well-defined and easier subproblems.

1.1 Linearized ALM for linearly constrained composite convex problems

We first assume the composite convexity structure, i.e., the objective in (1) can be written as:

F (x) = f(x) + g(x), (4)

where f is a convex Lipschitz differentiable function, and g is a proper closed convex but possibly

nondifferentiable function. Hence, the problem (1) reduces to the linearly constrained composite

convex programming:

min
x
f(x) + g(x), s.t. Ax = b. (5)
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Usually, g is simple such as the indicator function of the nonnegative orthant or `1-norm, but the

smooth term f could be complicated like the logistic loss function.

Our first modification to the update in (3a) is to approximate f by a simple funtion. Typically, we

replace f by a quadratic function that dominates f around xk, resulting in the linearized ALM as

follows:

xk+1 ∈ arg min
x
〈∇f(xk)−A>λk, x〉+ g(x) +

β

2
‖Ax− b‖2 +

1

2
‖x− xk‖2P , (6a)

λk+1 = λk − β(Axk+1 − b), (6b)

where the weight matrix P is positive semidefinite (PSD) and can be set according to the Lipschitz

constant of ∇f . Choosing appropriate P like ηI−βA>A, we can also linearize the augmented term

and have a closed form solution if g is simple.

The linearization technique here is not new. It is commonly used in the proximal gradient method,

which can be regarded as a special case of (6) by removing the linear constraint Ax = b. It has also

been used in the linearized alternating direction method of multipliers (ADMM) [26] and certain

primal-dual methods (e.g., [6, 10,11]).

Our second modification is to adaptively choose the parameters in the linearized ALM and also

linearize f at a point other than xk to accelerate the convergence of the method. Algorithm 1

summarizes the proposed accelerated linearized ALM. The idea of using three point sequences

for acceleration is first adopted in [21], and recently it is used in [26] to accelerate the linearized

ADMM.

Algorithm 1: Accelerated linearized augmented Lagrangian method for (5)

1 Initialization: choose x̄1 = x1 and set λ1 = 0.

2 for k = 1, 2, . . . do

3 Choose parameters αk, βk, γk and P k and perform updates:

x̂k = (1− αk)x̄k + αkx
k, (7)

xk+1 ∈ arg min
x
〈∇f(x̂k)−A>λk, x〉+ g(x) +

βk
2
‖Ax− b‖2 +

1

2
‖x− xk‖2Pk , (8)

x̄k+1 = (1− αk)x̄k + αkx
k+1, (9)

λk+1 = λk − γk(Axk+1 − b). (10)

if A stopping condition is satisfied then

4 Return (xk+1, x̄k+1, λk+1).
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1.2 Linearized ADMM for two-block structured problems

In this section, we explore more structures of F . In addition to the composite convexity structure,

we assume that the variable x and accordingly the matrix A can be partitioned into two blocks,

i.e.,

x = (y, z), A = (B,C), (11)

and the objective can be written as

F (x) = f(y) + g(z) + h(z), (12)

where f and g are proper closed convex but possibly nondifferentiable functions, and h is a convex

Lipschitz differentiable function. Hence, the problem (1) reduces to the linearly constrained two-

block structured problem:

min
y,z

f(y) + g(z) + h(z), s.t. By + Cz = b. (13)

ADMM [9, 13] is a popular method that explores the two-block structure of (13) by alternatingly

updating y and z, followed by an update to the multiplier λ. More precisely, it iteratively performs

the updates:

yk+1 ∈ arg min
y
Lβ(y, zk, λk), (14a)

zk+1 ∈ arg min
z
Lβ(yk+1, z, λk), (14b)

λk+1 = λk − β(Byk+1 + Czk+1 − b), (14c)

where Lβ is given in (2) with the notation in (11) and (12). It can be regarded as an inexact

ALM, in the sense that it only finds an approximate solution to (3a). If (14a) and (14b) are run

repeatedly before updating λ, a solution to (3a) would be found, and thus the above update scheme

reduces to that in (3). However, one single run of (14a) and (14b), followed by an update to λ, is

sufficient to guarantee the convergence. Thus ADMM is often perferable over ALM on solving the

two-block structured problem (13) since updating y and z separately could be much cheaper than

updating them jointly.

Usually f and g are simple, but the smooth term h in (13) could be complicated and thus make the

z-update in (14b) difficult. We apply the same linearization technique as in (6a) to (14b) and in

addition adaptively choose the parameters to accelerate the method. Algorithm 2 summarizes the

accelerated linearized ADMM. If f and g are simple, we can have closed form solutions to (15a)

and (15b) by choosing appropriate P k and Qk to linearize the augmented terms.

1.3 Related works

It appears that [23] is the first accelerated gradient method for general smooth convex programming.

However, according to the google citation, the work does not really attract much attention until
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Algorithm 2: Accelerated linearized alternating direction method of multipliers for (13)

1 Initialization: choose (y1, z1) and set λ1 = 0.

2 for k = 0, 1, 2, . . . do

3 Choose parameters βk, γk, P
k and Qk and perform updates:

yk+1 = arg min
y

f(y)− 〈λk, By〉+
βk
2
‖By + Czk − b‖2 +

1

2
‖y − yk‖2Pk , (15a)

zk+1 = arg min
z

g(z) + 〈∇h(zk)− C>λk, z〉+
βk
2
‖Byk+1 + Cz − b‖2 +

1

2
‖z − zk‖2Qk ,

(15b)

λk+1 = λk − γk(Byk+1 + Czk+1 − b). (15c)

if A stopping condition is satisfied then

4 Return (yk+1, zk+1, λk+1).

late 2010’s. One possible reason could be that the problems people encountered before were not too

large so second-order methods can handle them very efficiently. Since 2009, accelerated gradient

methods have become extremely popular partly due to [1, 24] that generalize the acceleration idea

of [23] to composite convex optimization problems and also due to the increasingly large scale

problems arising in many areas. Both [1,24] achieve optimal rate for first-order methods, but their

acceleration techniques look quite different. The former is essentially based on an extrapolation

technique while the latter relies on a sequence of estimate functions with adaptive parameters. The

recent work [29] studies a few accelerated methods from a continuous-time perspective. It is unclear

how to apply that idea to primal-dual methods.

Although the methods in [1,24] can conceptually handle constrained problems, they require simple

projection to the constraint set. Hence, they are not really good choices if we consider the structured

linearly constrained problem (5) or (13). However, the acceleration idea can still be applied. The

ALM method in (3) is accelerated in [15] by using an extrapolation technique similar to that

in [1] to the multiplier λ. While [15] requires the objective to be smooth, [20] extends it to

general convex problems, and [19] further reduces the requirement of exactly solving subproblems

by assuming strong convexity of the objective. All these accelerated ALM methods do not consider

any linearization to the objective or the augmented term. One exception is [17] that linearizes the

augmented term and requires strong convexity of the primal problem in its analysis. Therefore,

towards finding a solution to (5), they may need to solve difficult subproblems if the smooth term

f is complicated.

The extrapolation technique in [1] has also been applied to accelerate the ADMM method in [14] for

solving two-block structured problems like (13). It requires both f and g+h to be strongly convex,

and the extrapolation is performed to the multiplier and the secondly updated block variable. In

addition, [14] does not consider linearization to the smooth term h or the augmented term, and
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hence its applicability is restricted. Although the acceleration is observed empirically in [14] for

weakly convex problems, no convergence rate has been shown. A later work [18] accelerates the

nonlinearized ADMM by renewing the second updated block variable again after extrapolating

the multiplier. It still requires strong convexity on both f and g + h. Without assuming any

strong convexity to the objective function, [26] achieves partial acceleration on linearized ADMM

for solving problems in the form of (13). It shows that the decaying rate related to the gradient

Lipschitz constant Lh can be O(1/t2) while the rate for other parts remains O(1/t), where t is the

number of iterations. Without the linear constraint, the result in [26] matches the optimal rate of

first-order methods.

Different from the extrapolation technique used in the above mentioned accelerated ALM and

ADMM methods, [26] follows the work [21] and uses three point sequences and adaptive parameters.

Algorithm 1 employs the same idea, and our result indicates that the acceleration to the linearized

ALM method is not only applied to the gradient Lipschitz constant but also to other parts, i.e.,

full acceleration. To gain full acceleration to Algorithm 2, we will require either f or g + h to be

strongly convex, which is strictly weaker than that assumed in [14]. This assumption is also made

in several accelerated primal-dual methods for solving bilinear saddle-point problems, e.g., [3–5,16].

The outstanding work [4] presents a framework of primal-dual method for the problem:

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F (y), (16)

where G and F are both proper closed convex functions, and K is a bounded linear operator. It is

shown in [4] that the method has O(1/t2) convergence if either F or G is strongly convex. As shown

in [10], the primal-dual method presented in [4] is a special case of linearized ADMM applied to

the dual problem of (16) about y. Hence, it can fall into one case of Algorithm 2. However, [4] sets

parameters in a different way from what we use to accelerate the more general linearized ADMM

method; see the example in section 3.2. On solving (16), the Douglas-Rachford splitting method has

recently been applied and also accelerated in [3] by assuming one of F and G to be strongly convex.

In addition, [7] generalizes the work [4] to multi-block structured problems, and the generalized

method still enjoy O(1/t2) convergence if strong convexity is assumed. Without assuming strong

convexity, [5] proposes a new primal-dual method for the saddle-point problem (16) and achieves

partial acceleration similar to what achieved in [26].

Acceleration techniques have also been applied to other types of methods to different problems

such as in coordinate descent methods (e.g., [8, 22, 31]) and stochastic approximation methods

(e.g., [12, 21]). Extending our discussion to these methods will be out of the scope of this paper.

Interested readers are referred to those papers we mention here and the references therein.

1.4 Contributions

We summarize our main contributions below.

• We propose an accelerated linearized ALM method for solving linearly constrained composite
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convex programming. By linearizing the possibly complicated smooth term in the objective,

the method enables easy subproblems. Our acceleration strategy follows [26] that considers

accelerated linearized ADMM method. Different from partial acceleration achieved in [26],

we obtain full acceleration and achieve the optimal O(1/t2) convergence rate by assuming

merely weak convexity.

• We also propose an accelerated linearized ADMM method for solving two-block structured

linearly constrained convex programming, where in the objective, one block variable has

composite convexity structure. While [14] requires strong convexity on both block variables

to achieve O(1/t2) convergence for nonlinearized ADMM, we only need strong convexity on

one of them. Furthermore, linearization is allowed to the smooth term in the objective and also

to the augmented Lagrangian term, and thus the method enables much easier subproblems

than those for nonlinearized ADMM.

• We test the proposed methods on quadratic programming, total variation regularized image

denoising problem, and the elastic net regularized support vector machine. We compare them

to nonaccelerated methods and also two other accelerated first-order methods. The numer-

ical results demonstrate the validness of acceleration and also superiority of the proposed

accelerated methods over other accelerated ones.

1.5 Outline

The rest of the paper is organized as follows. In section 2, we analyze Algorithm 1 and Algorithm 2

with both fixed and adaptive parameters. Numerical experiments are performed in section 3, and

finally section 4 concludes the paper and presents some interesting open questions.

2 Convergence analysis

In this section, we analyze the convergence of Algorithms 1 and 2. Assuming merely weak con-

vexity, we show that Algorithm 1 with adaptive parameters enjoys a fast convergence with rate

O(1/t2), where t is the number of total iterations. For Algorithm 2, we establish the same order of

convergence rate by assuming strong convexity on the z-part.

2.1 Notation and preliminary lemmas

Before proceeding with our analysis, let us introduce some notation and preliminary lemmas.

We denote X ∗ as the solution set of (1). A point x∗ is a solution to (1) if there exists λ∗ such that
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the KKT conditions hold:

0 ∈ ∂F (x∗)−A>λ∗, (17a)

Ax∗ − b = 0, (17b)

Together with the convexity of F , the conditions in (17) implies that

F (x)− F (x∗)− 〈λ∗, Ax− b〉 ≥ 0, ∀x. (18)

For any vector v and any symmetric matrix W of appropriate size, we define ‖v‖2W = v>Wv. Note

this definition does not require positive semidefiniteness of W .

Lemma 2.1 For any two vectors u, v and a symmetric matrix W , we have

2u>Wv = ‖u‖2W + ‖v‖2W − ‖u− v‖2W . (19)

Lemma 2.2 Given a function φ and a fixed point x̃, if for any λ, it holds that

F (x̃)− F (x∗)− 〈λ,Ax̃− b〉 ≤ φ(λ), (20)

then for any ρ > 0, we have

F (x̃)− F (x∗) + ρ‖Ax̃− b‖ ≤ sup
‖λ‖≤ρ

φ(λ). (21)

This lemma can be found in [10]. Here we provide a simple proof.

Proof. If Ax̃ = b, then it is trivial to have (21) from (20). Otherwise, let λ = −ρ(Ax̃−b)
‖Ax̃−b‖ in both

sides of (20) and the result follows by noting

φ

(
−ρ(Ax̃− b)
‖Ax̃− b‖

)
≤ sup
‖λ‖≤ρ

φ(λ).

�

Lemma 2.3 For any ε ≥ 0, if

F (x̃)− F (x∗) + ρ‖Ax̃− b‖ ≤ ε, (22)

then we have

‖Ax̃− b‖ ≤ ε

ρ− ‖λ∗‖
and − ‖λ∗‖ε

ρ− ‖λ∗‖
≤ F (x̃)− F (x∗) ≤ ε, (23)

where (x∗, λ∗) satisfies the KKT conditions in (17), and we assume ‖λ∗‖ < ρ.

Proof. From (18), we have

F (x̃)− F (x∗) ≥ −‖λ∗‖ · ‖Ax̃− b‖,

which together with (22) implies the first inequality in (23). The other two inequalities follow

immediately. �
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2.2 Analysis of the accelerated linearized ALM

In this subsection, we show the convergence of Algorithm 1 under the following assumptions.

Assumption 1 There exists a point (x∗, λ∗) satisfying the KKT conditions in (17).

Assumption 2 The function f has Lipschitz continuous gradient with constant Lf , i.e.,

‖∇f(x)−∇f(x̃)‖ ≤ Lf‖x− x̃‖, ∀x, x̃. (24)

The inequality in (24) implies that

f(x̃) ≤ f(x) + 〈∇f(x), x̃− x〉+
Lf
2
‖x̃− x‖2, ∀x, x̃. (25)

We first establish a result of running one iteration of Algorithm 1. The proof follows that in [26].

Lemma 2.4 (One-iteration result) Let {(xk, x̄k, λk)}k≥1 be the sequence generated from Algo-

rithm 1 with 0 ≤ αk ≤ 1, ∀k. Then for any (x, λ) such that Ax = b, we have[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− (1− αk)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
≤− αk

2

[
‖xk+1 − x‖2Pk − ‖xk − x‖2Pk + ‖xk+1 − xk‖2Pk

]
+
α2
kLf
2
‖xk+1 − xk‖2

+
αk
2γk

[
‖λk − λ‖2 − ‖λk+1 − λ‖2 + ‖λk+1 − λk‖2

]
− αkβk

γ2k
‖λk+1 − λk‖2, (26)

where F is given in (4).

Proof. From (25), it follows that

f(x̄k+1) ≤ f(x̂k) + 〈∇f(x̂k), x̄k+1 − x̂k〉+
Lf
2
‖x̄k+1 − x̂k‖2.

Substituting x̄k+1 = (1−αk)x̄k +αkx
k+1 and also noting x̄k+1− x̂k = αk(x

k+1−xk), we have from

the above inequality that

f(x̄k+1) ≤f(x̂k) + (1− αk)〈∇f(x̂k), x̄k − x̂k〉+ αk〈∇f(x̂k), xk+1 − x̂k〉+
α2
kLf
2
‖xk+1 − xk‖2

=(1− αk)
[
f(x̂k) + 〈∇f(x̂k), x̄k − x̂k〉

]
+ αk

[
f(x̂k) + 〈∇f(x̂k), x− x̂k〉

]
+ αk〈∇f(x̂k), xk+1 − x〉+

α2
kLf
2
‖xk+1 − xk‖2

≤(1− αk)f(x̄k) + αkf(x) + αk〈∇f(x̂k), xk+1 − x〉+
α2
kLf
2
‖xk+1 − xk‖2, (27)
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where the second inequality follows from the convexity of f . Hence,[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− (1− αk)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
=
[
f(x̄k+1)− (1− αk)f(x̄k)− αkf(x)

]
+
[
g(x̄k+1)− (1− αk)g(x̄k)− αkg(x)

]
− αk〈λ,Axk+1 − b〉

≤αk〈∇f(x̂k), xk+1 − x〉+
α2
kLf
2
‖xk+1 − xk‖2 + αk[g(xk+1)− g(x)]− αk〈λ,Axk+1 − b〉, (28)

where the equality follows from the fact x̄k+1 = (1−αk)x̄k+αkx
k+1, and in the inequality, we have

used (27) and the convexity of g.

On the other hand, from the update rule of xk+1, we have the optimality condition:

0 = ∇f(x̂k) + ∇̃g(xk+1)−A>λk + βkA
>(Axk+1 − b) + P k(xk+1 − xk),

where ∇̃g(xk+1) is a subgradient of g at xk+1. Hence, for any x such that Ax = b, it holds

0 =
〈
xk+1 − x,∇f(x̂k) + ∇̃g(xk+1)−A>λk + βkA

>(Axk+1 − b) + P k(xk+1 − xk)
〉

≥
〈
xk+1 − x,∇f(x̂k)−A>λk + βkA

>(Axk+1 − b) + P k(xk+1 − xk)
〉

+ g(xk+1)− g(x)

=

〈
xk+1 − x,∇f(x̂k)−A>λk +

βk
γk
A>(λk − λk+1) + P k(xk+1 − xk)

〉
+ g(xk+1)− g(x)

=
〈
xk+1 − x,∇f(x̂k)

〉
+ g(xk+1)− g(x) +

〈
xk+1 − x, P k(xk+1 − xk)

〉
+

〈
A(xk+1 − x),−λk +

βk
γk

(λk − λk+1)

〉
=
〈
xk+1 − x,∇f(x̂k)

〉
+ g(xk+1)− g(x) +

〈
xk+1 − x, P k(xk+1 − xk)

〉
+

〈
Axk+1 − b, λ− λk +

βk
γk

(λk − λk+1)

〉
− 〈λ,Axk+1 − b〉

=
〈
xk+1 − x,∇f(x̂k)

〉
+ g(xk+1)− g(x)− 〈λ,Axk+1 − b〉+

〈
xk+1 − x, P k(xk+1 − xk)

〉
+

〈
1

γk
(λk − λk+1), λ− λk +

βk
γk

(λk − λk+1)

〉
(29)

where the inequality follows from the convexity of g.

Combining (28) and (29) together gives[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− (1− αk)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
≤
α2
kLf
2
‖xk+1 − xk‖2 − αk

〈
xk+1 − x, P k(xk+1 − xk)

〉
− αk

〈
1

γk
(λk − λk+1), λ− λk +

βk
γk

(λk − λk+1)

〉
.

Now apply (19) to complete the proof. �

Below, we specify the values of the parameters αk, βk, γk and P k and establish the convergence rate

of Algorithm 1 through (26).
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2.2.1 Constant parameters

In this subsection, we fix the parameters αk, βk, γk and P k during all the iterations and show O(1/t)

convergence of Algorithm 1. The result is summarized in the following theorem. Note that this

result is not totally new. Similar result is indicated by several previous works; see [10, 11] for

example. However, this special case seems to be overlooked in the literature. In addition, we notice

that our result allows more flexible relation between β and γ. Previous works usually assume β = γ

because they consider problems with at least two block variables.

Theorem 2.5 Under Assumptions 1 and 2, let {(xk, x̄k, λk)}k≥1 be the sequence generated from

Algorithm 1 with parameters set to

∀k : αk = 1, βk = β > 0, γk = γ ∈ (0, 2β), Pk = P � LfI. (30)

Then x̄k = xk, ∀k, and {(xk, λk)}k≥1 is bounded and converges to a point (x∞, λ∞) that satisfies

the KKT conditions in (17). In addition,

|F (x̃t+1)− F (x∗)| ≤ 1

t

(
1

2
‖x1 − x∗‖2P +

2‖λ∗‖2

γ

)
, (31a)

‖Ax̃t+1 − b‖ ≤ 1

t‖λ∗‖

(
1

2
‖x1 − x∗‖2P +

2‖λ∗‖2

γ

)
, (31b)

where (x∗, λ∗) is any point satisfying the KKT conditions in (17), and

x̃t+1 =

∑t
k=1 x

k+1

t
.

Proof. It is trivial to have x̄k = x̂k = xk from (7) and (9) as αk = 1, ∀k. With the parameters

given in (30) and x = x∗, the inequality in (26) reduces to

F (xk+1)− F (x∗)− 〈λ,Axk+1 − b〉

≤ − 1

2

[
‖xk+1 − x∗‖2P − ‖xk − x∗‖2P + ‖xk+1 − xk‖2P

]
+
Lf
2
‖xk+1 − xk‖2

+
1

2γ

[
‖λk − λ‖2 − ‖λk+1 − λ‖2 + ‖λk+1 − λk‖2

]
− β

γ2
‖λk+1 − λk‖2 (32)

Let λ = λ∗ in the above inequality, and from (18), we have

‖xk+1 − x∗‖2P + ‖xk+1 − xk‖2P−Lf I
+

1

γ
‖λk+1 − λ∗‖2 +

1

γ

(
2β

γ
− 1

)
‖λk+1 − λk‖2

≤‖xk − x∗‖2P +
1

γ
‖λk − λ∗‖2. (33)

Since P � LfI and γ < 2β, (33) implies the nonincreasing monotonicity of {‖xk − x∗‖2P + 1
γ ‖λ

k −
λ∗‖2}, and thus {(xk, λk)}k≥1 must be bounded. Summing (33) from k = 1 to ∞ gives

∞∑
k=1

(
‖xk+1 − xk‖2P−Lf I

+
1

γ

(2β

γ
− 1
)
‖λk+1 − λk‖2

)
<∞,
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and thus

lim
k→∞

(xk+1, λk+1)− (xk, λk) = 0. (34)

Let (x∞, λ∞) be a limit point of {(xk, λk)}k≥1 and assume the subsequence {(xk, λk)}k∈K converges

to it. From Axk+1 − b = 1
γ (λk − λk+1)→ 0 as k →∞, we conclude that

Ax∞ − b = 0. (35)

In addition, letting K 3 k →∞ in (8) and using (34) gives

x∞ = arg min
x
〈∇f(x∞)−A>λ∞, x〉+ g(x) +

β

2
‖Ax− b‖2 +

1

2
‖x− x∞‖2P ,

and thus we have the optimality condition

0 ∈ ∇f(x∞) + ∂g(x∞)−A>λ∞ + βA>(Ax∞ − b).

Together with (35) implies

0 ∈ ∇f(x∞) + ∂g(x∞)−A>λ∞,

and thus (x∞, λ∞) satisfies the KKT conditions in (17). Hence, (33) still holds if (x∗, λ∗) is replaced

by (x∞, λ∞), and we have

‖xk+1 − x∞‖2P +
1

γ
‖λk+1 − λ∞‖2 ≤ ‖xk − x∞‖2P +

1

γ
‖λk − λ∞‖2.

Since (x∞, λ∞) is a limit point of {(xk, λk)}k≥1, the above inequality implies the convergence of

(xk, λk) to (x∞, λ∞).

To prove (31), we sum up (32) from k = 1 through t and note P � LfI and γ < 2β to have

t∑
k=1

[
F (xk+1)− F (x∗)− 〈λ,Axk+1 − b〉

]
≤ 1

2
‖x1 − x∗‖2P +

1

2γ
‖λ1 − λ‖2,

which together with the convexity of F implies

F (x̃t+1)− F (x∗)− 〈λ,Ax̃t+1 − b〉 ≤ 1

2t
‖x1 − x∗‖2P +

1

2γt
‖λ1 − λ‖2. (36)

Noting that λ1 = 0 and x∗ is an arbitrary optimal solution, we therefore apply Lemmas 2.2 and

2.3 with ρ = 2‖λ∗‖ to complete the proof. �

2.2.2 Adaptive parameters

In this subsection, we let the parameters αk, βk, γk and P k be adaptive to the iteration number k

and improve the previously established O(1/t) convergence rate to O(1/t2), which is optimal even

without the linear constraint.
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Theorem 2.6 Under Assumptions 1 and 2, let {(xk, x̄k, λk)}k≥1 be the sequence generated from

Algorithm 1 with parameters set to

∀k : αk =
2

k + 1
, γk = kγ, βk ≥

γk
2
, P k =

η

k
I, (37)

where γ > 0 and η ≥ 2Lf . Then

|F (x̄t+1)− F (x∗)| ≤ 1

t(t+ 1)

(
η‖x1 − x∗‖2 +

4‖λ∗‖2

γ

)
, (38a)

‖Ax̄t+1 − b‖ ≤ 1

t(t+ 1)‖λ∗‖

(
η‖x1 − x∗‖2 +

4‖λ∗‖2

γ

)
, (38b)

where (x∗, λ∗) is any point satisfying the KKT conditions in (17).

Proof. With the parameters given in (37), we multiply k(k + 1) to both sides of (26) to have

k(k + 1)
[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− k(k − 1)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
≤− η

[
‖xk+1 − x‖2 − ‖xk − x‖2 + ‖xk+1 − xk‖2

]
+

1

γ

[
‖λk − λ‖2 − ‖λk+1 − λ‖2 + ‖λk+1 − λk‖2

]
− 2kβk

γ2k
‖λk+1 − λk‖2 +

2kLf
k + 1

‖xk+1 − xk‖2

≤− η
[
‖xk+1 − x‖2 − ‖xk − x‖2

]
+

1

γ

[
‖λk − λ‖2 − ‖λk+1 − λ‖2

]
. (39)

Summing (39) from k = 1 through t, we have

t(t+ 1)
[
F (x̄t+1)− F (x)− 〈λ,Ax̄t+1 − b〉

]
≤ η‖x1 − x‖2 +

1

γ
‖λ1 − λ‖2. (40)

Letting x = x∗ in the above inequality and then applying Lemmas 2.2 and 2.3, we obtain the

desired result. �

Remark 2.1 With a positive definite matrix P k, the subproblem (8) becomes strongly convex and

thus has a unique solution. One drawback of Theorem 2.6 is that the setting in (37) does not

allow linearization to the augmented term. The coexistence of the possibly nonsmooth term g and

the augmented term ‖Ax − b‖2 can still cause difficult subproblems. In that case, we can solve

the subproblem inexactly. Theoretically we will lose the fast convergence shown in Theorem 2.6.

However, empirically we still observe fast convergence even subproblems are solved to a medium

accuracy; see the experimental results in section 3.1. To linearize the augmented term and retain

O(1/t2) convergence, we need assume strong convexity of the objective; see Theorem 2.9 below.

2.3 Analysis of the accelerated linearized ADMM

In this subsection, we establish the convergence rate of Algorithm 2. In addition to Assumption 1,

we make the following assumptions to the objective function of (13).
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Assumption 3 The function h has Lipschitz continuous gradient with constant Lh, and g and h

are strongly convex with modulus µg and µh that satisfy µg + µh > 0.

Note that without strong convexity, O(1/t) convergence rate can be shown; see [11,26] for example.

Also note that the O(1/t2) rate has been established in [14] if both f and g+h are strongly convex

and no linearization is performed.

Similar to the analysis in the previous subsection, we first establish a result of running one iteration

of Algorithm 2.

Lemma 2.7 (One-iteration result) Let {(yk, zk, λk)}k≥1 be the sequence generated from Algo-

rithm 2. Then for any (y, z, λ) such that By + Cz = b, it holds

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ −
〈

1

γk
(λk − λk+1), λ− λk +

βk
γk

(λk − λk+1)

〉
+ βk

〈
1

γk
(λk − λk+1)− C(zk+1 − z), C(zk+1 − zk)

〉
+
Lh
2
‖zk+1 − zk‖2 − µh

2
‖zk − z‖2 − µg

2
‖zk+1 − z‖2

− 〈yk+1 − y, P k(yk+1 − yk)〉 − 〈zk+1 − z,Qk(zk+1 − zk)〉, (41)

where F is given in (12).

Proof. From the update (15a), we have the optimality condition

0 = ∇̃f(yk+1)−B>λk + βkB
>(Byk+1 + Czk − b) + P k(yk+1 − yk),

where ∇̃f(yk+1) is a subgradient of f at yk+1. Thus for any y,

0 =
〈
yk+1 − y, ∇̃f(yk+1)−B>λk + βkB

>(Byk+1 + Czk − b) + P k(yk+1 − yk)
〉

≥f(yk+1)− f(y) +
〈
yk+1 − y,−B>λk + βkB

>(Byk+1 + Czk − b) + P k(yk+1 − yk)
〉

=f(yk+1)− f(y) +
〈
yk+1 − y,−B>λk + βkB

>(Byk+1 + Czk+1 − b)− βkB>C(zk+1 − zk)
〉

+
〈
yk+1 − y, P k(yk+1 − yk)

〉
=f(yk+1)− f(y) +

〈
B(yk+1 − y),−λk +

βk
γk

(λk − λk+1)

〉
− βk

〈
B(yk+1 − y), C(zk+1 − zk)

〉
+
〈
yk+1 − y, P k(yk+1 − yk)

〉
, (42)

where in the last equality, we have used the update rule (15c). Similar to (27), we have

h(zk+1) ≤ h(z) + 〈∇h(zk), zk+1 − z〉+
Lh
2
‖zk+1 − zk‖2 − µh

2
‖zk − z‖2. (43)

From the update rule of zk+1, we have the optimality condition:

0 = ∇̃g(zk+1) +∇h(zk)− C>λk + βkC
>(Bxk+1 + Czk+1 − b) +Qk(zk+1 − zk).
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Hence, for any z, it holds

0 =
〈
zk+1 − z, ∇̃g(zk+1) +∇h(zk)− C>λk + βkC

>(Byk+1 + Czk+1 − b) +Qk(zk+1 − zk)
〉

≥g(zk+1)− g(z) +
µg
2
‖zk+1 − z‖2 + 〈zk+1 − z,∇h(zk)〉

+
〈
zk+1 − z,−C>λk + βkC

>(Byk+1 + Czk+1 − b) +Qk(zk+1 − zk)
〉

=g(zk+1)− g(z) +
µg
2
‖zk+1 − z‖2 +

〈
zk+1 − z,∇h(zk)

〉
+
〈
zk+1 − z,Qk(zk+1 − zk)

〉
+

〈
C(zk+1 − z),−λk +

βk
γk

(λk − λk+1)

〉
, (44)

where the inequality follows from the convexity of g.

Since (y, z) is feasible, summing (42), (43) and (44) gives

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ −
〈
B(yk+1 − y),−λk +

βk
γk

(λk − λk+1)

〉
−
〈
C(zk+1 − z),−λk +

βk
γk

(λk − λk+1)

〉
− 〈λ,Byk+1 + Czk+1 − b〉+ βk〈B(yk+1 − y), C(zk+1 − zk)〉

+
Lh
2
‖zk+1 − zk‖2 − µh

2
‖zk − z‖2 − µg

2
‖zk+1 − z‖2

− 〈yk+1 − y, P k(yk+1 − yk)〉 − 〈zk+1 − z,Qk(zk+1 − zk)〉

which implies (41) by noting the update rule (15c). �

When constant parameters are used in Algorithm 2, one can sum up (41) from k = 1 through t and

use (19) to show an O(1/t) convergence result. This has already been established in the literature;

see [11] for example. Hence, we state the result here without proof, and note that the result does

not require any strong convexity of the objective.

Theorem 2.8 Assume the existence of (x∗, λ∗) = (y∗, z∗, λ∗) satisfying (17) and the gradient Lip-

schitz continuity of h. Let {(yk, zk, λk)}k≥1 be the sequence generated from Algorithm 2 with pa-

rameters set to

βk = γk = γ > 0, P k = P � 0, Qk = Q � LhI, ∀k. (45)

Then ∣∣F (ỹt+1, z̃t+1)− F (y∗, z∗)
∣∣ ≤ 1

2t

(
4‖λ∗‖2

γ
+ ‖y1 − y∗‖2P + ‖z1 − z∗‖2Q+C>C

)
‖Bỹt+1 + Cz̃t+1 − b‖ ≤ 1

2t‖λ∗‖

(
4‖λ∗‖2

γ
+ ‖y1 − y∗‖2P + ‖z1 − z∗‖2Q+C>C

)
,

where

ỹt+1 =

∑t
k=1 y

k+1

t
, z̃t+1 =

∑t
k=1 z

k+1

t
.
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Adapting the parameters, we can accelerate the rate to O(1/t2) as shown below.

Theorem 2.9 Under Assumptions 1 and 3, let {(yk, zk, λk)}k≥1 be the sequence generated from

Algorithm 2 with parameters set to

βk = γk = (k + 1)γ, ∀k ≥ 1, (46a)

P k =
P

k + 1
I, ∀k ≥ 1, (46b)

Qk = (k + 1)
(
Q− γC>C

)
+ LhI, ∀k ≥ 1, (46c)

where P � 0 and ηγC>C � Q � µg+µh
2 I with η ≥ 1. Let

k0 =

⌈
1 +

2(Lh − µh)

µg + µh

⌉
. (47)

Then we have

‖zk − z∗‖2Q ≤
2φ1(y

∗, z∗, λ∗)

k(k + k0)
, ‖zk − z∗‖2 ≤ 2φ1(y

∗, z∗, λ∗)

(k + k0)(Lh + µh + 2µg)
, (48)

and

|F (ỹt+1, z̃t+1)− F (y∗, z∗)| ≤ 2

t(t+ 2k0 + 3)
φ1(y

∗, z∗, 2λ∗) (49a)

‖Bỹt+1 + Cz̃t+1 − b‖ ≤ 2

t(t+ 2k0 + 3)‖λ∗‖
φ1(y

∗, z∗, 2λ∗) (49b)

where

ỹt+1 =

∑t
k=1(k + k0 + 1)yk+1∑t
k=1(k + k0 + 1)

, z̃t+1 =

∑t
k=1(k + k0 + 1)zk+1∑t
k=1(k + k0 + 1)

,

and

φk(y, z, λ) =
k + k0

2k
‖yk − y‖2P +

k + k0
2

(
k‖zk − z‖2Q + (Lh + µg)‖zk − z‖2

)
+
k + k0
2γk

‖λ− λk‖2.

(50)

In addition, if P � 0 and η > 1, then {(yk, zk, λk)}k≥1 is bounded, and

‖Byk+1 + Czk+1 − b‖ ≤ o
(

1

k + 1

)
, (51a)

|F (yk+1, zk+1)− F (y∗, z∗)| ≤ O
(

1

k + 1

)
. (51b)

Remark 2.2 Note that if Q is a diagonal matrix in (46c), then the augmented term in (15b) is

also linearized. If f = 0 and B = 0, the problem (13) reduces to (5). Therefore, Theorem 2.9

implies that we can further linearize the augmented term in the subproblem of the linearized ALM

and still obtain O(1/t2) convergence if the objective is strongly convex.

Also note that taking P = 0 and Q = γC>C leads to the standard ADMM with adaptive parameters.

Hence, we obtain the same order of convergence rate as that in [14] with strictly weaker conditions.

16



To show this theorem, we first establish a few inequalities.

Proposition 2.10 Let k0 be defined in (47). Then for any k ≥ 1,

(k + k0)
(
kQ+ (Lh + µg)I

)
� (k + k0 + 1)

(
(k + 1)Q+ (Lh − µh)I

)
. (52)

Proof. Expanding the left hand side of the inequality and using Q � µh+µg
2 I and (47) shows the

result. �

Proposition 2.11 Under the assumptions of Theorem 2.9, we have

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ − 1

2γ(k + 1)

[
‖λ− λk+1‖2 − ‖λ− λk‖2

]
− η − 1

2ηγ(k + 1)
‖λk − λk+1‖2 (53)

− 1

2(k + 1)

[
‖yk+1 − y‖2P − ‖yk − y‖2P + ‖yk+1 − yk‖2P

]
− 1

2

(
(k + 1)‖zk+1 − z‖2Q + (Lh + µg)‖zk+1 − z‖2

)
+

1

2

(
(k + 1)‖zk − z‖2Q + (Lh − µh)‖zk − z‖2

)
.

Proof. Since βk = γk, we use (19) and have from (41) that

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ − 1

2γk

[
‖λk − λk+1‖2 + ‖λ− λk+1‖2 − ‖λ− λk‖2

]
+
〈
λk − λk+1, C(zk+1 − zk)

〉
− γk

2

[
‖C(zk+1 − z)‖2 − ‖C(zk − z)‖2 + ‖C(zk+1 − zk)‖2

]
+
Lh
2
‖zk+1 − zk‖2 − µh

2
‖zk − z‖2

− µg
2
‖zk+1 − z‖2 − 1

2

[
‖yk+1 − y‖2Pk − ‖yk − y‖2Pk + ‖yk+1 − yk‖2Pk

]
− 1

2

[
‖zk+1 − z‖2Qk − ‖zk − z‖2Qk + ‖zk+1 − zk‖2Qk

]
. (54)

Note that from the parameter setting, we have〈
λk − λk+1, C(zk+1 − zk)

〉
− γk

2
‖C(zk+1 − zk)‖2 +

Lh
2
‖zk+1 − zk‖2 − 1

2
‖zk+1 − zk‖2Qk

=
〈
λk − λk+1, C(zk+1 − zk)

〉
− k + 1

2
‖zk+1 − zk‖2Q

≤
〈
λk − λk+1, C(zk+1 − zk)

〉
− ηγk

2
‖zk+1 − zk‖2C>C

≤ 1

2ηγk
‖λk − λk+1‖2. (55)

Plugging (55) and also the parameters in (46) into (54) gives (53). �

Now we are ready to show Theorem 2.9.
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Proof. [Proof of Theorem 2.9]

Letting (y, z) = (y∗, z∗) in (53) and rearranging terms gives[
F (yk+1, zk+1)− F (y∗, z∗)− 〈λ,Byk+1 + Czk+1 − b〉

]
+

1

2(k + 1)
‖y∗ − yk+1‖2P

+
1

2

(
(k + 1)‖zk+1 − z∗‖2Q + (Lh + µg)‖zk+1 − z∗‖2

)
+

1

2γ(k + 1)
‖λ− λk+1‖2

≤ 1

2(k + 1)
‖yk − y∗‖2P +

1

2

(
(k + 1)‖zk − z∗‖2Q + (Lh − µh)‖zk − z∗‖2

)
+

1

2γ(k + 1)
‖λ− λk‖2 − η − 1

2ηγ(k + 1)
‖λk − λk+1‖2. (56)

Multiplying k+ k0 + 1 to both sides of the above inequality and using notation φk defined in (50),

we have

(k + k0 + 1)
[
F (yk+1, zk+1)− F (y∗, z∗)− 〈λ,Byk+1 + Czk+1 − b〉

]
+ φk+1(y

∗, z∗, λ)

≤k + k0 + 1

2(k + 1)
‖yk − y∗‖2P +

k + k0 + 1

2

(
(k + 1)‖zk − z∗‖2Q + (Lh − µh)‖zk − z∗‖2

)
+
k + k0 + 1

2γ(k + 1)

(
‖λ− λk‖2 − η − 1

η
‖λk − λk+1‖2

)
≤k + k0

2k
‖yk − y∗‖2P +

k + k0
2

(
k‖zk − z∗‖2Q + (Lh + µg)‖zk − z∗‖2

)
+
k + k0
2γk

‖λ− λk‖2

− k + k0 + 1

2γ(k + 1)

η − 1

η
‖λk − λk+1‖2,

=φk(y
∗, z∗, λ)− k + k0 + 1

2γ(k + 1)

η − 1

η
‖λk − λk+1‖2, (57)

where in the second inequality, we have used (52) and the decreasing monotonicity of k+k0+1
k+1 with

respect to k.

Letting λ = λ∗ in (57) and using (18), we have

φk+1(y
∗, z∗, λ∗) ≤ φk(y∗, z∗, λ∗). (58)

In addition, note that

F (yk+1, zk+1)− F (y∗, z∗)− 〈λ∗, Byk+1 + Czk+1 − b〉
=F (yk+1, zk+1)− F (y∗, z∗)− 〈λ∗, B(yk+1 − y∗) + C(zk+1 − z∗)〉
=f(yk+1)− f(x∗)− 〈B>λ∗, yk+1 − y∗〉+ (g + h)(zk+1)− (g + h)(z∗)− 〈C>λ∗, zk+1 − z∗〉

≥µg + µh
2

‖zk+1 − z∗‖2,

where the inequality is from the convexity of f and g + h and also the KKT conditions in (17).

Hence, from (57) and (58), it follows that

(µg + µh)(k + k0 + 1)

2
‖zk+1 − z∗‖2 + φk+1(y

∗, z∗, λ∗) ≤ φ1(y∗, z∗, λ∗),
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and thus we obtain the results in (48). If P � 0, the above inequality indicates the boundedness of

{(xk, yk, λk)}

Again, letting λ = λ∗ in (57) and summing it from k = 1 through t, we conclude from (18) and

(58) that
t∑

k=1

k + k0 + 1

2γ(k + 1)

η − 1

η
‖λk − λk+1‖2 ≤ φ1(y∗, z∗, λ∗),

and thus letting t → ∞, we have λk − λk+1 → 0 from the above inequality as η > 1, and thus

(51a) follows from the update rule (15c). Furthermore, from the boundedness of {(yk, zk, λk)}, we

let λ = 0 in (56) to have F (yk+1, zk+1) − F (y∗, z∗) ≤ O
(

1
k+1

)
. Using (18) and (51a), we have

F (yk+1, zk+1)− F (y∗, z∗) ≥ −O
(

1
k+1

)
, and thus (51b) follows.

Finally, summing (57) from k = 1 through t and noting φk ≥ 0,∀k, we have

t∑
k=1

(k + k0 + 1)
[
F (yk+1, zk+1)− F (y∗, z∗)− 〈λ,Byk+1 + Czk+1 − b〉

]
≤ φ1(y∗, z∗, λ).

Then by the convexity of F , we have from the above inequality that for any λ,

F (ỹt+1, z̃t+1)− F (y∗, z∗)− 〈λ,Bỹt+1 + Cz̃t+1 − b〉 ≤ φ1(y
∗, z∗, λ)∑t

k=1(k + k0 + 1)

By Lemmas 2.2 and 2.3 and the initialization λ1 = 0, the above result implies the desired results

in (49). This completes the proof. �

3 Numerical results

In this section, we test the proposed accelerated methods on solving three problems: quadratic

programming, total variation regularized image denoising, and elastic net regularized support vector

machine. We compare them to nonaccelerated methods and also existing accelerated methods to

demonstrate their efficiency.

3.1 Quadratic programming

In this subsection, we test Algorithm 1 on quadratic programming. First, we compare the algorithm

with fixed and adaptive parameters, i.e., nonaccelerated ALM and accelerated ALM, on equality

constrained quadratic programming (ECQP):

min
x

F (x) =
1

2
x>Qx+ c>x, s.t. Ax = b. (59)
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Figure 1: Results by the nonaccelerated ALM (Algorithm 1 with fixed parameters) and the accel-

erated ALM (Algorithm 1 with adaptive parameters) on solving (59). Left: the distance of the

objective value to the optimal value |F (x)− F (x∗)|; Right: the violation of feasibility ‖Ax− b‖.

Note that ECQP can be solved in a direct way by solving a linear equation (c.f., [25, Section 16.1]),

so ALM may not be the best choice for (59). Our purpose of using this simple example is to validate

acceleration.

We set the problem size to m = 20, n = 500 and generate A ∈ Rm×n, b, c and Q ∈ Rn×n according

to standard Gaussian distribution, where Q is made to be a positive definite matrix. We set the

parameters of Algorithm 1 to αk = 1, βk = γk = m and P k = ‖Q‖2I, ∀k for the nonaccelerated

ALM, and αk = 2
k+1 , βk = γk = mk and P k = 2‖Q‖2

k I, ∀k for the accelerated ALM. Figure 1 plots

the objective distance to the optimal value |F (x)−F (x∗)| and the violation of feasibility ‖Ax− b‖
given by the two methods. We can see that Algorithm 1 with adaptive parameters performs

significantly better than it with fixed parameters, in both objective and feasibility measures.

Secondly, we test the accelerated ALM on the nonnegative linearly constrained quadratic program-

ming, which is formulated as follows:

min
x

F (x) =
1

2
x>Qx+ c>x, s.t. Ax = b, x ≥ 0. (60)

In the test, we set the problem size to m = 50 and n = 1000. We let Q = HH>, where H ∈
Rn×(n−100) and is generated according to standard Gaussian distribution. Hence, the objective is

only weakly convex. The elements of b and c follow identically independent uniform distribution

and standard Gaussian distribution, respectively. Thus, b ≥ 0. The matrix A ∈ Rm×n has the form

of [B, I] to make sure feasibility of the problem. We generate B according to both Gaussian and

uniform distribution. Note that the uniformly distributed B leads to more difficult problem.

We set the parameters of Algorithm 1 according to (37) with γ = m, η = 2‖Q‖2, and βk = γk, ∀k.

The most difficult step in Algorithm 1 is (8), which does not have a closed form solution with

the above setting. We solve the subproblem by the interior-point method to a tolerance subtol.

Since A only has 50 rows, each step of the interior-point method only needs to solve a 50 × 50

equation and do some componentwise multiplication. We notice that ALALM converges fast in the

beginning but slows down as it approaches the solution. Hence, we also test to restart it after a

fixed number of iterations, and in this test, we simply restart it every 50 iterations.
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Figure 2: Results by FISTA [1] and ALALM (Algorithm 1 with adaptive parameters) on solving

(60) where A = [B, I] and B is generated according to standard Gaussian distribution. Subproblems

for both methods are solved to a tolerance specified by subtol. First row: the absolute value of

objective value minus the optimal value |F (x) − F (x∗)|; second row: the violation of feasibility

‖Ax− b‖.

We compare ALALM to FISTA [1], which also has O(1/t2) convergence rate. At each iteration,

FISTA requires a projection to the constraint set of (60), and we solve it also by the interior-point

method to the tolerance subtol. Again, each step of the interior-point method only needs to solve

a 50 × 50 equation and do some componentwise multiplication. We also test restarted FISTA by

restarting it every 50 iterations. Note that a restarted FISTA is proposed in [27] by checking

the monotonicity of the objective value or gradient norm. However, since subproblems are solved

inaccurately, the restart scheme in [27] does not work here.

Figure 2 plots the results corresponding to Gaussian randomly generated matrix B and Figure 3

corresponding to uniformly random B. In both figures, subtol varies among {10−6, 10−8, 10−10}.
From the figures, we see that both FISTA and ALALM perform better when restarted periodically,

and ALALM performs more stably than FISTA to different subtol. Even if the subproblems are

solved inaccurately only to the tolerance 10−6, the restarted ALALM can still reach almost machine

accuracy. However, FISTA can reach an accurate solution only if the subproblems are solved to a

high accuracy such as subtol = 10−10 and B is Gaussian randomly generated.
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Figure 3: Results by FISTA [1] and ALALM (Algorithm 1 with adaptive parameters) on solving

(60) where A = [B, I] and B is generated according to uniform distribution. Subproblems for both

methods are solved to a tolerance specified by subtol. First row: the absolute value of objective

value minus the optimal value |F (x)− F (x∗)|; second row: the violation of feasibility ‖Ax− b‖.

3.2 Image denoising

In this subsection, we test the accelerated ADMM, i.e., Algorithm 2, on the total variation regu-

larized image denoising problem:

min
X

F (X) =
1

2
‖X −M‖2F + µ‖DX‖1, (61)

where M is a noisy two-dimensional image, D is a finite difference operator, and ‖Y ‖1 =
∑

i,j |Yij |.
Replacing DX by Y , we can write (61) equivalently to

min
X,Y

G(X,Y ) =
1

2
‖X −M‖2F + µ‖Y ‖1, s.t. DX = Y. (62)

Applying Algorithm 2 to (62) gives the updates:

Y k+1 = arg min
Y

µ‖Y ‖1 + 〈Λk, Y 〉+
βk
2
‖Y −DX‖2F +

1

2
‖Y − Y k‖2Pk , (63a)

Xk+1 = arg min
X

1

2
‖X −M‖2F − 〈Λk,DX〉+

βk
2
‖Y −DX‖2F +

1

2
‖X −Xk‖2Qk , (63b)

Λk+1 = Λk − γk(DXk+1 − Y k+1). (63c)

We test the algorithm with four sets of parameters, leading to four different methods listed below:
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• Nonaccelerated ADMM: βk = γk = 10, P k = 0, Qk = 0, ∀k;

• Accelerated ADMM: βk = γk = k+1
2‖D‖22

, P k = 0, Qk = 0, ∀k;

• Nonacclerated Linearized ADMM: βk = γk = 1
2‖D‖22

, P k = 0, Qk = I
2 −

D>D
2‖D‖22

, ∀k;

• Accelerated Linearized ADMM: βk = γk = k+1
20‖D‖22

, P k = 0, Qk = (k+1)I
20 − (k+1)D>D

20‖D‖22
, ∀k.

With P k = 0, the solution of (63a) can be written analyticly by using the soft thresholding or

shrinkage. We assume periodic boundary condition, and thus with Qk = 0, the solution of (63b)

can be easily obtained by solving a linear system that involves one two-dimensional fast Fourier

transform (FFT2) and one inverse FFT2 and some componentwise division [28]. For the linearized

ADMM, it is easy to write closed form solutions for both X and Y subproblems. We compare

Algorithm 2 with the above four settings to the accelerated primal-dual method in [4], which we

call Chambolle-Pock method by authors’ name. As shown in [10], Chambolle-Pock method is

equivalent to linearized ADMM applied to the dual reformulation of (61). It iteratively performs

the updates:

Zk+1 = arg min
|Zij |≤1,∀i,j

‖Z − Zk − σkDX̄k‖2F , (64a)

Xk+1 = arg min
X

τk
2µ
‖X −Xk‖2F +

1

2
‖X −Xk + τkD∗Zk+1‖2F , (64b)

X̄k+1 = Xk+1 + θk(X
k+1 −Xk) (64c)

with X̄1 = X1, τ1σ1‖D‖22 ≤ 1, and the parameters set to

θk =
1√

1 + 2γτk
, τk+1 = θkτk, σk+1 =

σk
θk
∀k.

We set τ1 = σ1 = 1/‖D‖2 and γ = 0.35/µ as suggested in [4].

In this test, we use the Cameraman image shown in Figure 4, and we add 10% Gaussian noise.

The regularization parameter is set to µ = 0.04. For Algorithm 2, we report the objective value

of (62) and the violation of feasibility and also the objective value of (61), and for Chambolle-

Pock method we only report the objective value of (61) since it solves the dual problem and does

not guarantee the feasibility of (62). Figure 5 plots the results in terms of iteration numbers.

Since the linearized ADMM and Chambolle-Pock methods has lower iteration complexity than

the nonlinearized ADMM, we also plot the results in terms of running time. From the figure, we

see that Algorithm 2 with adaptive parameters performs significantly better than that with fixed

parameters. The Chambolle-Pock method decreases the objective fastest in the beginning, and

later the accelerated ADMM with or without linearization catch up and surpass it.
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original image noisy image denoised image

Figure 4: The Cameraman images. Left: original one; Middle: noisy image with 10% Gaussian

noise, PSNR = 25.62; Right: denoised image by the accelerated ADMM running to 200 iterations,

PSNR = 33.29.
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Figure 5: Results by Algorithm 2 with adaptive parameters (accelerated ADMM) and constant

parameters (nonaccelerated ADMM) and also the Chambolle-Pock method on solving (61). Top

left: the absolute value of objective of (62) minus optimal value |G(X,Y )−G(X∗, Y ∗)|; Top right:

the violation of feasibility of (62) ‖DX − Y ‖F ; Bottom left: the absolute value of objective of (61)

minus optimal value |F (X) − F (X∗)| in terms of iteration; Bottom right: the absolute value of

objective of (61) minus optimal value |F (X)− F (X∗)| in terms of running time.
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3.3 Elastic net regularized support vector machine

We test Algorithm 2 on the elastic net regularized support vector machine problem

min
x
F (x) =

1

m

m∑
i=1

[1− bia>i x]+ + µ1‖x‖1 +
µ2
2
‖x‖2, (65)

where [c]+ = max(0, c), {(ai, bi)}mi=1 are the samples in p-dimensional space, and bi ∈ {+1,−1} is

the label of the ith sample. Let A = [a1, . . . , am] ∈ Rp×m and replace 1− bia>i x by yi for all i. We

obtain the equivalent formulation:

min
x
G(x, y) =

1

m
e>[y]+ + µ1‖x‖1 +

µ2
2
‖x‖2, s.t. Bx+ y = e, (66)

where e is the vector with all ones, and B = Diag(b)A.

The data is generated in the same way as that in [30]. One half of the samples belong to “+1”

class and the other to “-1” class. Each sample in “+1” class is generated according to Gaussian

distributionN (u,Σ), and each sample in “-1” class followsN (−u,Σ). The mean vector and variance

matrix are set to

u =

[
Es×1
0(p−s)×1

]
, Σ =

[
ρEs×s + ρIs×s 0s×(p−s)

0(p−s)×s I(p−s)×(p−s)

]
,

where Es×s is an s × s matrix with all ones, s is the number of features that are related to

classification, and ρ ∈ [0, 1] measures the correlation of the features (the larger it is, the harder the

problem is). In the test, we set m = 100, p = 500, s = 50, ρ = 0.5 and µ1 = µ2 = 0.01.

Applying Algorithm 2 to (66), we iteratively perform the updates:

yk+1 = arg min
y

1

m
e>[y]+ − 〈λk, y〉+

βk
2
‖Bxk + y − e‖2 +

1

2
‖y − yk‖2Pk , (67a)

xk+1 = arg min
x

µ1‖x‖1 +
µ2
2
‖x‖2 − 〈λk, Bx〉+

βk
2
‖Bx+ yk+1 − e‖2 +

1

2
‖x− xk‖2Qk , (67b)

λk+1 = λk − γk(Bxk+1 + yk+1 − e). (67c)

Again, we test two sets of parameters. The first one fixes the parameters during all iterations,

and the second one adapts the parameters. Since the coexistence of `1-norm and the least squares

term makes (67b) difficult to solve, we choose Qk to cancel the term x>B>Bx, i.e., we linearize

the augmented term. Specifically, we set the parameters in the same way as the previous test:

• Nonaccelerated Linearized ADMM: βk = γk = 1
2‖B‖22

, P k = 0, Qk = I
2 −

B>B
2‖B‖22

, ∀k;

• Accelerated Linearized ADMM: βk = γk = µ2(k+1)
20‖B‖22

, P k = 0, Qk = µ2(k+1)I
20 − µ2(k+1)B>B

20‖B‖22
, ∀k.
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Figure 6: Results by Algorithm 2 with adaptive parameters (accelerated linearized ADMM) and

constant parameters (nonaccelerated linearized ADMM) and also the classic nonlinearized ADMM

on solving (65). Left: the absolute value of objective of (66) minus optimal value |G(x, y) −
G(x∗, y∗)|; Middle: the violation of feasibility of (66) ‖Bx + y − e‖; Right: the absolute value of

objective of (65) minus optimal value |F (x)− F (x∗)|.

We also compare the linearized ADMM to the classic ADMM without linearization, which intro-

duces another variable z to split x from the `1-norm and solves the problem

min
x

1

m
e>[y]+ + µ1‖z‖1 +

µ2
2
‖x‖2, s.t. Bx+ y = e, x = z. (68)

We use the code from [32] to solve (68) and tune its parameters as best as we can.

Similar to the previous test, we measure the objective value and feasibility of (66) given by the

linearized ADMM and the objective value of (65) for all three methods. Figure 6 plots the results,

from which we see that the accelerated linearized ADMM performs significantly better than the

nonaccelerated counterpart, and the latter is comparable to the classic nonlinearized ADMM.

4 Conclusions

We have proposed an accelerated linearized augmented Lagrangian method (ALALM) and also an

accelerated alternating direction method of multipliers (ALADMM) for solving structured linearly

constrained convex programming. We have established O(1/t2) convergence rate for ALALM by

assuming merely weak convexity and for ALADMM by assuming strong convexity to one block

variable. Numerical experiments have been performed to demonstrate the validness of acceleration

and higher efficiency over existing accelerated methods.

To have the O(1/t2) convergence rate for the ALALM, our current analysis does not allow lin-

earization to the augmented term, and that may cause great difficulty on solving subproblems

if meanwhile we have a complicated nonsmooth term. It is interesting to know whether we can

linearize the augmented term and still obtain O(1/t2) convergence under the same assumptions.

We are unable to show this under the setting of Algorithm 1, so it may have to turn to other

acceleration technique. We leave this open question to interested readers.
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[8] O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM

Journal on Optimization, 25(4):1997–2023, 2015. 6

[9] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems

via finite element approximation. Computers & Mathematics with Applications, 2(1):17–40,

1976. 4

[10] X. Gao, Y. Xu, and S. Zhang. Randomized primal-dual proximal block coordinate updates.

arXiv preprint arXiv:1605.05969, 2016. 3, 6, 8, 11, 23

[11] X. Gao and S. Zhang. First-order algorithms for convex optimization with nonseparate objec-

tive and coupled constraints. Optimization online, 3:5, 2015. 3, 11, 14, 15

[12] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic

programming. Mathematical Programming, 156(1-2):59–99, 2016. 6

[13] R. Glowinski and A. Marrocco. Sur l’approximation, par eléments finis d’ordre un, et
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