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Equilibrium Pricing Under Relative Performance Concerns∗

Jana Bielagk† , Arnaud Lionnet‡ , and Gonçalo Dos Reis§

Abstract. We investigate the effects of the social interactions of a finite set of agents on an equilibrium pricing
mechanism. A derivative written on nontradable underlyings is introduced to the market and priced
in an equilibrium framework by agents who assess risk using convex dynamic risk measures expressed
by backward stochastic differential equations (BSDEs). Each agent not only is exposed to financial
and nonfinancial risk factors, but she also faces performance concerns with respect to the other
agents. Within our proposed model we prove the existence and uniqueness of an equilibrium whose
analysis involves systems of fully coupled multidimensional quadratic BSDEs. We extend the theory
of the representative agent by showing that a nonstandard aggregation of risk measures is possible
via weighted-dilated infimal convolution. We analyze the impact of the problem’s parameters on the
pricing mechanism, in particular how the agents’ performance concern rates affect prices and risk
perceptions. In extreme situations, we find that the concern rates destroy the equilibrium while the
risk measures themselves remain stable.

Key words. financial innovation, equilibrium pricing, social interactions, performance concerns, representative
agent, g-conditional risk measure, multidimensional quadratic BSDE, entropic risk
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1. Introduction. The importance of relative concerns in human behavior has been em-
phasized both in economic and sociological studies; making a 1 EUR profit when everyone
else made 2 EUR “feels” distinctly different had everyone else lost 2 EUR. A diverse literature
handling problems dealing with some form of strategic and/or social interaction in the form
of relative performance concerns exists. In both [35] and [56] the social interaction component
appears in the form of peer-based underperformance penalties known as “minimum return
guarantees”; the comparison is usually done via tracking a relevant market index, something
quite standard in pension fund management. Another type of performance concerns arises
in problems where the agents’ consumption is taken into account. The utility functions used
there exhibit a “keeping up with the Joneses” behavior as introduced in [16] and developed by
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[1], [2] (see further [29], [12], [32], and [64]); in other words, the benchmark for the standard
of living is the averaged consumption of the population and one computes the individual’s
consumption preferences in relation to that benchmark. Another type of concern criterion, an
internal one, uses the past consumption of the agent as a benchmark for the current consump-
tion; Ryder and Heal [45] introduced this “habit formation” approach. A more mathematical
finance approach, as well as a literature overview, can be found in [22] or [27]. These last two
papers are the inspiration for this one.

In this paper we study the effects of social interaction between economic agents on a market
equilibrium, the efficiency of a securitization mechanism, and the global risk. We consider a
finite set A of N agents having access to an incomplete market consisting of an exogenously
priced liquidly traded financial asset. The incompleteness stems from a nontradable external
risk factor, such as the amount of rain or the temperature, to which those agents are exposed.
In an attempt to reduce the individual and overall market risks, a social planner introduces to
the market a derivative written on the external risk source, allowing the agents in A to reduce
their exposures by trading on it. The question of the actual completeness of the resulting
market has been addressed in some generality in the literature, and we refer, for instance,
to [60]. Questions about pricing and benefits of such securities written on nontradable assets
have been approached in the literature many times; we refer in particular to [37], where the
new derivative is priced within an equilibrium framework according to supply and demand
rules, and more generally to [3]. Equilibrium analysis of incomplete markets is commonly
confined to certain cases such as single agent models [34], [30], multiple agent models where
markets are complete in equilibrium [17], [37], [46], or models with particular classes of goods
[43] or preferences [11]. For a good overview of equilibrium issues stemming from the market
incompleteness as well as some solutions, we point the reader to [47] and references therein.

Although we follow ideas similar to those in [37], our goal is to understand how such a
pricing mechanism and risk assessments are affected when the agents have relative performance
concerns with respect to each other. Each agent a ∈ A has an endowment Ha over the time
period [0, T ] depending on both risk factors. Her investment strategy πa in stock and the
newly introduced derivative induce a gains process (V a

t (πa))t∈[0,T ]. For a given performance
concern rate λa ∈ [0, 1] the agent seeks to minimize the risk

ρa

Ha +
(
1− λa

)
V a
T (πa) + λa

V a
T (πa)− 1

N − 1

∑
b∈A\{a}

V b
T

(
πb
) ,(1.1)

where ρa is a risk measure (ρa is further described below). The first two terms inside ρa

correspond to the classical situation of an isolated agent a trading optimally in the market
to profit from market movements and to hedge the financial risks inherent to Ha. The last
term is the relative performance concern and corresponds to the difference between her own
trading gains and the average trading gains achieved by her peers. Intuitively, as λa ∈ [0, 1]
increases, the agent is less concerned with the risks associated to her endowment Ha and more
concerned with how she fares against the average performance of the other agents in A. For
instance, given no endowments, if λa = 1/2 and agent a made 1 EUR from trading while the
others all made 2 EUR, then she perceives no gain at all.
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EQUILIBRIUM PRICING UNDER RELATIVE PERFORMANCE CONCERNS 437

Each agent a ∈ A uses a monetary convex risk measure ρa. The theory of monetary,
possibly convex, possibly coherent, risk measures was initiated by [5] and later extended
by [25] and [28]. One special class of risk measures, the so-called g-conditional risk measures,
which are closely related to the so-called g-conditional expectations (see [31]), are those defined
through backward stochastic differential equations (BSDEs); see [57], [20], and [7]. Our use of
BSDEs is motivated by two general aspects. The first is that it generically allows us to solve
stochastic control problems away from the usual Markovian setup where one uses the HJB
approach in combination with PDE theory; see, e.g., [62]. The second is that optimization can
be carried out in closed sets of constraints without the assumption of convexity for which one
usually uses duality theory; see [38].

The form of relative performance concern we use and its study using BSDEs can be traced
back to [21] and [22]. Their setting is quite different from that presented here; the authors show
the existence of a Nash equilibrium for a pure-interaction game of optimal investment without
idiosyncratic endowments to hedge (Ha = 0 for all agents), and where the agents optimize, in
a Black–Scholes stock market, the expected utility of the gains they make from trading under
individual constraints. These two works are followed by [27], where a general discussion on
the existence of equilibrium, with endowments, is given, including counterexamples to such
existence.

Methodology and content of the paper. All agents optimize their respective functional
given by (1.1) and, as the derivative is priced endogenously via an equilibrium framework, the
market price of external risk is also part of the problem’s solution. Equilibrium in our game
is a set of investment strategies and a market price of external risk giving rise to a certain
martingale measure.

In the first part of this work, we show the existence of the Nash equilibrium in our problem
and how to compute it for general risk measures induced by BSDEs. The analysis is carried out
in two steps. The first involves solving the individual optimization problem for each agent given
the other agents’ actions, the so-called best response problem. The second consists in showing
that it is possible to find all best responses simultaneously in such a way that supply and
demand for the derivative match, which, in turn, yields the market price of external risk. (We
generally think of a market with a zero net supply of the derivative; however, the methodology
allows us to treat cases where some agents who were allowed to trade in the derivative left the
market such that the (active) agents in A hold together a nonzero position). We then verify
that the market price of external risk associated to the best responses satisfies the necessary
conditions.

This last step is more complex. Since the agents assess their risks using dynamic risk
measures given by BSDEs, the general equilibrium analysis leads to a system of fully coupled
nonlinear multidimensional BSDEs (possibly quadratic). We proceed by extending the repre-
sentative agent approach (see [54]) where aggregation of the agents into a single economy and
optimal Pareto risk sharing are equivalent to simultaneous individual optimization. From the
works of [6] and [7], we extend their infimal convolution (short inf-convolution) technique to
agents with interdependent utility functions. This approach yields a single risk measure that
encompasses the risk preferences for each agent and through which it is possible to find a
single representative economy. We point out that in order to cope with the cross dependence
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induced by the performance concern rates, standard inf-convolution techniques do not lead to
a single representative economy. We use the technique in a nonstandard fashion via weighted
dilations of each agent’s risk measure ρa (see section 3.2 in [7] and section 4 below); to the
best of our knowledge this type of analysis is new and of independent interest. The closest
reference to this is [59], where some form of weighted inf-convolution appears.

The second part of this work focuses on the case of agents using entropic risk measures,
which can be treated more explicitly and allows for an in-depth study of the impact of the
concern rates. In identifying the Nash equilibrium, we are led to a system of fully coupled
multidimensional quadratic BSDEs whose analysis is, in general, quite involved. Based on the
works of [21] and [22], the authors of [27] give several counterexamples to the existence of
solutions; nonetheless, positive results do exist, although none are very general; see, e.g., [61],
[13], [26], [49], [39], [63], [42], and [51]. In our case we are able to solve the system.

Findings. Within the case of entropic risk measures, we study in detail a model of two
agents a and b with opposite exposures to the external risk factor, so that one has incentives
to buy the derivative while the other has incentive to sell. In this model we are able to specify
the structure of the equilibrium. Using both analytical methods and numerical computations,
when the analytics are not tractable, we explore the behavior of the agents as the model
parameters vary. We give particular attention to how the relative performance concern rates,
and thereby the strength of the coupling between the agents, deviate from the standard case
of noninteracting agents (when λa = λb = 0).

We find that as either agent’s risk tolerance increases, their risk lowers. If any concern rate
λ increases, then the agents engage in less trading of the derivative. This is because every unit
of derivative bought by one is a unit sold by the other and hence the gains of one are the losses
of the other. Consequently, if an agent is more concerned about the relative performance, she
will tend to trade less with the others. Also, as expected, we find that if it is the buyer of
derivatives whose concern rate increases, the derivative’s price decreases, while it increases in
the case of the seller.

Very interestingly, we find that the risk of a single agent increases if the other agents
become more concerned with their relative performance but that it decreases as this agent
becomes more concerned. Consequently, if the agents were to play this game repeatedly and
their concern rate were to vary over time, they would both find it more advantageous to
become more concerned (or jealous). As they both do so, the trading activity in the derivative
decreases, but their activity in the stock increases and explodes—the equilibrium does not
exist anymore. Surprisingly, this behavior is not captured at all by the risk measures! This non-
trivial, and perhaps not desirable, behavior of the system after introduction of the derivative is
not without similarities with what is found in the models of [9] and [14]. It is a reminder that,
when evaluating the benefits of financial innovation, one should not focus of the economy of
an individual agent (who sees clear benefits in the form of a risk reduction) but really should
have a systemic view of the impact of the new instrument.

Organization of the paper. In section 2, we define the general market, agents, optimiza-
tion problem, and equilibrium that we consider. Sections 3 and 4 are devoted to solving the
general optimization problem for a set of agents having arbitrary risk measures. In the for-
mer we solve the optimization problem for each agent, given the strategies of all others. In
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the latter we deal with the aggregation of individual risk measures and identification of the
representative agent, and we solve the equilibrium for the whole system. Sections 5 and 6
contain the particular case where the agents use entropic risk measures. In this more tractable
setting, section 5 explores theoretically the influence of various parameters on the global risk,
while section 6 focuses on a model with two agents with opposite risk profiles and thoroughly
explores the influence of the concern rates, in particular, on the individual behaviors, risks,
and consequences for the whole system. We also present numerical results. Section 7 concludes
the study.

2. The model. We consider a finite set A of N agents, without loss of generality A =
{1, 2, . . . , N}, with random endowments Ha, a ∈ A, to be received at a terminal time T <
∞. They trade continuously in the financial market which comprises a stock and a newly
introduced structured security (called derivative), aiming to minimize their risk. For simplicity
we assume that money can be lent or borrowed at the risk-free rate zero. Stock prices follow
an exogenous diffusion process and are not affected by the agents’ demand. In contrast, the
derivative is traded only by the agents from A and priced endogenously such that demand
matches supply. We point the reader to Appendix A for a full overview of the notation and
stochastic setup.

2.1. The market.

Sources of risk and underlyings. Throughout this paper t ∈ [0, T ]. In our model, there are
two independent sources of randomness, represented by a two-dimensional standard Brownian
motion W = (WS ,WR) on a standard filtered probability space (Ω, (Ft)Tt=0,P), where (Ft) is
the filtration generated by W and augmented by the P-null sets. The Brownian motion WR

drives the external and nontradable risk process (Rt), which is thought of as a temperature
process or a precipitation index. For analytical convenience we assume that (Rt) follows a
Brownian motion with drift being a stochastic process µR : Ω × [0, T ] → R and constant
volatility b > 0, i.e.,

dRt = µRt dt+ bdWR
t with R0 = r0 ∈ R.(2.1)

The Brownian motion WS drives the stock price process (St) according to

dSt = µSt St dt+ σSt St dWS
t(2.2)

= µSt St dt+ 〈σt,dWt〉 with σt := (σSt St, 0) ∈ R2 and S0 = s0 > 0.

We assume throughout this work that the stochastic processes µR, µS , σS : Ω× [0, T ]→ R are
(Ft)-adapted with σS > 0.

Market price of risk: Financial and external. We recall (see, e.g., [36]) that any linear
pricing scheme on the set L2(P) of square-integrable random variables with respect to P can
be identified with a two-dimensional predictable process θ such that the exponential process
(Eθt ) defined by

(2.3) Eθt := E
(
−
∫ ·
0
〈θs, dWs〉

)
t

= exp

{
−
∫ t

0
〈θs, dWs〉 −

1

2

∫ t

0
|θs|2ds

}
, t ∈ [0, T ],
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is a uniformly integrable martingale. This ensures that the measure Pθ defined by having den-
sity EθT against P is indeed a probability measure (the pricing measure), and the present price
of a random terminal payment X is then given by Eθ[X], where Eθ denotes the expectation
with respect to Pθ. For any such θ, we introduce the Pθ-Brownian motion

W θ
t = Wt +

∫ t

0
θs ds, t ∈ [0, T ].

The first component θS of the vector θ := (θS , θR) is the market price of financial risk.
Under the assumption that there is no arbitrage, S must be a martingale under Pθ and, from
the exogenously given dynamics of S, θS is necessarily given by θSt = µSt /σ

S
t . The process

θR on the other hand is unknown. It is the market price of external risk and will be derived
endogenously by the market clearing condition (or constant net supply condition; see below).

The agents’ endowments and the derivative’s payoffs. The agents a ∈ A receive at time
T the income Ha which depends on the financial and external risk factors. While the agents
are able to trade in the financial market to hedge away some of their financial risk, a basis risk
remains originating in the agent’s exposure to the nontradable risk process R. A derivative
with payoff HD at maturity time T is externally introduced in the market. By trading in the
derivative HD, the agents now have a way to reduce their basis risk.

We give general conditions on the endowments, derivative payoff, and coefficients appear-
ing in the dynamics of S and R (see Appendix A for notation). Throughout the rest of this
work the following assumption stands for all results.

Assumption 2.1 (standing assumption on the data of the problem). The processes µR, µS,
σS, and θS := µS/σS are bounded (belong to S∞). The random variables HD and Ha, a ∈ A,
are bounded (belong to L∞(FT )).

Price of the derivative, trading in the market, and the agent’s strategies. Assuming
no arbitrage opportunities, the price process (Bθ

t ) of HD is given by its expected payoff under
Pθ; in other words Bθ

· = Eθ
[
HD|F·

]
. Since HD is bounded, writing the Pθ-martingale as a

stochastic integral against the Pθ-Brownian motion W θ (with the martingale representation
theorem) yields a two-dimensional square-integrable adapted process κθ := (κS , κR) such that
for t ∈ [0, T ]

Bθ
t = Eθ[HD] +

∫ t

0

〈
κθs,dW

θ
s

〉
= Eθ[HD] +

∫ t

0

〈
κθs, dWs

〉
+

∫ t

0

〈
κθs, θs

〉
ds.(2.4)

Note that we have (B, κ) ∈ S∞×HBMO(Pθ). We denote by πa,1t and πa,2t the number of units
agent a ∈ A holds in the stock and the derivative at time t ∈ [0, T ], respectively. Using a self-
financing strategy πa := (πa,1, πa,2) valued in R2, her gains from trading up to time t ∈ [0, T ],
under the pricing measure Pθ inducing the prices (Bθ

t ) for the derivative, are given by

V a
t = Vt(π

a) =

∫ t

0
πa,1s dSs +

∫ t

0
πa,2s dBθ

s

=

∫ t

0

〈
πa,1s σs + πa,2s κθs, θs

〉
ds+

∫ t

0

〈
πa,1s σs + πa,2s κθs,dWs

〉
.
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We require that the trading strategies be integrable against the prices, πa ∈ L2
(
(S,Bθ),Pθ

)
(i.e., Eθ [〈 V·(πa) 〉T ] < ∞), so that the gains processes are square-integrable martingales
under Pθ.

2.2. Preferences, risk minimization, and equilibrium.

The agents’ measure of risk. The agents assess their risk using a dynamic convex time-
consistent risk measure ρa· induced by a BSDE. This means that the risk ρat (ξ

a) which agent
a ∈ A associates at time t ∈ [0, T ] with an FT -measurable random position ξa is given by Y a

t ,
where (Y a, Za) is the solution to the BSDE

−dY a
t = ga(t, Zat )dt− 〈Zat ,dWt〉 with terminal condition Y a

T = −ξa.

The driver ga encodes the risk preferences of the agent. We assume that ga has the following
properties.

Assumption 2.2. The map ga : [0, T ]× R2 → R is a deterministic continuous function. Its
restriction to the space variable, z 7→ ga(·, z), is continuously differentiable and strictly convex
and attains its minimum.

For any fixed (t, ϑ) ∈ [0, T ]× R2, the map z 7→ ga(t, z)− 〈z, ϑ〉 is also strictly convex and
attains its unique minimum at the point where its gradient vanishes. With this in mind we
can define Za : [0, T ] × R2 → R2, (t, ϑ) 7→ Za(t, ϑ), where Za(t, ϑ) is the unique solution, in
the unknown Z, to the equation

∇zga(t,Z) = ϑ.(2.5)

The agents’ risk measure given by the above BSDE is strongly time consistent, convex,
and translation invariant (or monetary). We do not give many details on the class of risk
measures described by BSDEs; instead, we point the interested reader to [6, 31, 7].

For convenience, we recall the relevant properties of the risk measures that play a role
in this work: (i) translation invariance: for any m ∈ R and any t ∈ [0, T ] it holds that
ρat (ξ

a +m) = ρat (ξ
a)−m; (ii) time-consistency of the process

(
ρat (ξ

a)
)
: for any t, t+ s ∈ [0, T ]

it holds that ρat (ξ
a) = ρat (ρ

a
t+s(ξ

a)); and (iii) convexity : for any t ∈ [0, T ] and for ξa, ξ̂a FT -

measurable and α ∈ [0, 1] we have ρat
(
αξa + (1− α)ξ̂a

)
≤ αρat (ξa) + (1− α)ρat (ξ̂

a).

The individual optimization problem. Agent a’s position ξa at maturity is given by the
sum of her terminal income Ha and the trading gains V a

T over the time period [0, T ]. However,
the agent compares her trading gains V a

T = VT (πa) with the average gains of all other agents.
Thus, we define the perceived total wealth ξa(πa, π−a) of each of the N agents a ∈ A in the
market at time t = T as

ξa =
(
Ha +

(
1− λa

)
VT (πa)

)
+ λa

VT (πa)− 1

N − 1

∑
b∈A\{a}

VT (πb)


= Ha + VT (πa)− λ̃a

∑
b∈A\{a}

VT (πb), where λ̃a :=
λa

N − 1

and λa ∈ [0, 1] is the concern rate (or jealousy factor) of agent a ∈ A (compare with (1.1)).
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We make the following assumption on the concern rates λ·, whose justification will become
clear later on in section 3.3.5.

Assumption 2.3 (performance concern rates1). We have λa ∈ [0, 1] for each agent and∏
a∈A λ

a < 1.

For notational convenience we introduce the
(
R2
)(N−1)

-valued vector π−a := (πb)b6=a and

V̄ −at :=
∑

b∈A\{a}

Vt(π
b) = Vt(π̄

−a), where π̄−a :=
∑

b∈A\{a}

πb.(2.6)

The risk associated with the self-financing strategy πa evolves according to the BSDE

−dY a
t = ga (t, Zat ) dt− 〈Zat ,dWt〉 and(2.7)

Y a
T = −ξa(πa, π−a) = −

(
Ha + VT (πa)− λ̃aVT (π̄−a)

)
.

Now, we introduce a notion of admissibility for our problem.

Definition 2.4 (admissibility). Let a ∈ A, and let π−a = (πb)b∈A\{a} be integrable strategies
for the other agents. The R2-valued strategy process πa is called admissible with respect to the
market price of risk (MPR) θ if Eθ [〈 V·(πa) 〉T ] < ∞, where 〈V·(πa)〉 denotes the quadratic
variation of

(
Vt(π

a)
)
t∈[0,T ] and BSDE (2.7) has a unique solution. The set of admissible

trading strategies for agent a ∈ A is denoted by Aθ(π−a).
We point out that in full generality each agent could have her own trading constraints, as

in [22] or [27]. Here we assume that the agents have no trading constraints, aside from their
strategies being integrable against the prices and leading to well-defined risk.

Each agent a ∈ A solves the following risk-minimization problem:

min{Y a
0 (πa, π−a) | πa ∈ Aθ(π−a)}.

Notice that, a priori, the risk for agent a and the strategy chosen depend on the strategies
of all other players, π−a. This interdependence is an ever-present feature of our model. For
the sake of presentation we leave it implicit whenever possible and we write the solution to
the BSDE giving the risk for Agent a as (Y a, Za) instead of

(
Y a(πa, π−a), Za(πa, π−a)

)
. We

will use the latter when the situation requires it.

Competitive equilibrium, equilibrium MPR, and endogenous trading. We denote by
n ∈ R the number of units of derivative present in the market. While each unit of derivative
pays HD at time T , the agents are free to buy and underwrite contracts for any amount of
HD, so that n is not necessarily an integer. We think essentially of the case n = 0, where every
derivative held by an agent has been underwritten by another agent in A, entailing essentially
that agents share their risks with each other (see [6], [7], or [36]). Building upon [37] allows
for a bit more flexibility as n 6= 0 is possible.2 In any case, over [0, T ], only the agents in our

1The case of λa > 1 is, as we show in section 3.3.5, not necessarily intractable, but the analysis of such a
situation is beyond the scope of this paper.

2The situation n 6= 0 would be possible if, prior to time t = 0, another agent a0 /∈ A was on the derivatives
market and then stopped her activity; for instance, a0 might have had as objective to buy m > 0 units,
according to her own specific criteria, in which case n = −m < 0.
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set A, with trading objectives as described above, are active in the market and so the total
number n of derivatives present is constant over time.

We assume that each agent seeks to minimize her risk measure independently, without
cooperation with the other agents, so we are interested in Nash equilibria.

Definition 2.5 (equilibrium and equilibrium MPR). For a given MPR θ = (θS , θR), we call
π∗ = (π∗,a)a∈A an equilibrium if for all a ∈ A , π∗,a ∈ Aθ(π∗,−a) and for any admissible
strategy πa it holds that Y a

0 (π∗,a, π∗,−a) ≤ Y a
0 (πa, π∗,−a), i.e., individual optimality given the

strategies of the other agents. We call θ the equilibrium MPR (EMPR) and θR the equilibrium
market price of external risk (EMPeR) if

1. θ = (θS , θR) makes Pθ a true probability measure (equivalently, Eθ from (2.3) is a
uniformly integrable martingale);

2. there exists a unique equilibrium π∗ for θ;
3. π∗ satisfies the market clearing condition (or fixed-supply condition) for the derivative
HD (where Leb denotes the Lebesgue measure):∑

a∈A
π∗,a,2t =

∑
a∈A

π∗,a,20 = n P⊗ Leb− a.e.(2.8)

3. The single agent’s optimization and unconstrained equilibrium. In this section and
the one following, we study the solvability of the problem and the structure of the equilibrium
for general risk measures induced by a BSDE. Finding an EMPeR is, essentially, an optimiza-
tion under the fixed-supply constraint. So, prior to looking whether such an equilibrium MPR
exists (postponed to section 4), we start by fixing an arbitrary MPR θ ∈ HBMO and solve for
the behavior of the system of agents given that MPR, without the fixed-supply constraint. For
this, we first solve for the behavior of the individual agents given that the others have chosen
their strategies (the so-called best response problem), and then solve for the Nash equilibrium
for the system of agents.

3.1. Optimal response for one agent. In this subsection, in addition to an MPR θ being
fixed, we assume given the strategies π−a = (πb)b∈A\{a} of the other agents, for a fixed agent
a ∈ A, and we study the investment problem for a single agent whose preferences are encoded
by ga.

Optimizing the residual risk. To solve the optimization problem for agent a, we first recall
from [37] that, at each time t ∈ [0, T ], the strategy chosen must minimize the residual risk: the
additivity of the risk measure implies (writing VT = (VT − Vt) + Vt and using the translation
invariance) that

Y a
t = ρat

(
Ha + V a

T − λ̃aV̄ −aT

)
= ρat

(
Ha + (V a

T − V a
t )− λ̃a

(
V̄ −aT − V̄ −at

) )
−
(
V a
t − λ̃aV̄ −at

)
.

This suggests applying the following change of variables to (2.7) (using (2.6)):

Ỹ a
t := Y a

t +
(
V a
t − λ̃aV̄ −at

)
,

Z̃at := Zat + ζat , where ζat =
(
πa,1t σt + πa,2t κθt

)
− λ̃a

(
π̄−a,1t σt + π̄−a,2t κθt

)
∈ R2.

(3.1)
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If the strategies are not clear from the context, we also write ζa = ζa(π) = ζa(πa, π−a). Direct
computations yield a BSDE for (Ỹ a, Z̃a) given by

−dỸ a
t = g̃a

(
t, πat , π

−a
t , Z̃at

)
dt−

〈
Z̃at , dWt

〉
with terminal condition Ỹ a

T = −Ha,(3.2)

where the driver g̃a : Ω× [0, T ]× R2 × (R2)N−1 × R2 → R is defined as

g̃a(t, πat , π
−a
t , za) : = ga

(
t, za − ζat

)
− 〈ζat , θt〉(3.3)

= ga
(
t, za −

((
πa,1t − λ̃aπ̄

−a,1
t

)
σt +

(
πa,2t − λ̃aπ̄

−a,2
t

)
κθt

))
(3.4)

−
〈(
πa,1t − λ̃aπ̄

−a,1
t

)
σt +

(
πa,2t − λ̃aπ̄

−a,2
t

)
κθt , θt

〉
.

Each individual agent a ∈ A seeks to minimize Ỹ a
0 , the solution to (3.2), via her choice of

investment strategy πa ∈ Aθ(π−a); in other words she aims at solving

min
πa∈Aθ(π−a)

Ỹ a
0 (πa, π−a).(3.5)

Before we solve the individual optimization, we assume that the derivative HD does indeed
complete the market. This must then be verified a posteriori (once the solution is computed)
and case by case depending on the specific model.

Assumption 3.1. Assume that κRt 6= 0 for any t ∈ [0, T ], P-a.s.

The pointwise minimizer for the single agent’s residual risk. In (3.2), the strategy πa

appears only in the driver g̃a. The comparison theorem for BSDEs suggests that in order to
minimize Ỹ a

0 (πa) over πa one needs only to minimize the driver function g̃a over πat for each
fixed ω, t, π−at , and za. We define such pointwise minimizer as the random map

Πa(ω, t, π−at , z) := arg min
πa∈R2

g̃a(ω, t, πa, π−at , z), (ω, t, π−at , z) ∈ Ω× [0, T ]× (R2)N−1 × R2,

and G̃a(t, π−at , za) := g̃a
(
t,Πa(t, π−a, za), π−at , za

)
as the minimized driver.

The pointwise minimization problem has, under Assumption 2.2, a unique minimizer which
is characterized by the first order conditions (FOC) for g̃a, i.e., ∇πa g̃a(t, πa, π−at , za) = 0.
Recall that σ = (σSS, 0). Using (3.4), the FOC is equivalently written as

∂πa,1 g̃
a(t, πa, π−a, za) = 0⇔ 〈(∇zga)(t, za − ζa),−σ〉 − 〈σ, θ〉 = 0

⇔ gaz1(t, za − ζa) = −θS ,(3.6)

∂πa,2 g̃
a(t, πa, π−a, za) = 0⇔

〈
(∇zga)(t, za − ζa),−κθ

〉
−
〈
κθ, θ

〉
= 0

⇔ −θS κS + gaz2(t, za − ζa)κR = −κSθS − κRθR

⇔ gaz2(t, za − ζa) = −θR,(3.7)

where we used (3.6) to obtain (3.7) under Assumption 3.1.
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With Za from (2.5), the FOC system (3.6)–(3.7) is equivalent to za − ζat = Za(t,−θt).
The expression for ζ in (3.1) and elementary rearrangements allow us to rewrite za − ζat =
Za(t,−θt) as

Πa,1(t, π−at , za)− λ̃aπ̄−a,1t =
za,1 −Za,1(t,−θt)

σSSt
− za,2 −Za,2(t,−θt)

κRt

κSt
σSSt

,

Πa,2(t, π−at , za)− λ̃aπ̄−a,2t =
za,2 −Za,2(t,−θt)

κRt
.

(3.8)

Plugging za − ζat = Za(t,−θt) into (3.3) yields an expression for the minimized (random)
driver

G̃a(t, π−at , za) = ga
(
t,Za(t,−θt)

)
+ 〈Za(t,−θt), θt〉 − 〈za, θt〉 =: G̃a(t, za).(3.9)

Since ga is generic at this point, the process Za(t,−θt) in not known precisely. Nonetheless, the
general structure of Πa and the minimized driver G̃a are determined. We stress two important
things. First, G̃a is an affine driver with stochastic coefficients. Second, G̃a does not depend
at all on π−a. This means that while the optimal strategy π∗,a (see below) depends on the
strategies of the other agents, the minimized risk does not. In [37], the authors did not obtain
this general form for the minimized driver.

Single-agent optimality. Since G̃a is an affine driver, and since ∇zG̃a = −θ ∈ HBMO, we
have a unique solution to the BSDE with driver G̃a and terminal condition −Ha provided
that the process (ω, t) 7→ G̃a(t, 0) = ga

(
t,Za(t,−θt)

)
+ 〈Za(t,−θt), θt〉 is integrable enough,

which we assume. Let then (Ỹ a, Z̃a) be the solution to BSDE (3.2) with driver (3.9) and define
the strategy π∗,a· := Πa(·, π−a· , Z̃a· ). We now prove that the above methodology indeed yields
the solution to the individual risk minimization problem, in other words the so-called best
response.

Theorem 3.2 (optimality for one agent). Assume the MPR θ = (θS , θR) ∈ HBMO and let
Assumption 3.1 hold. Fix an agent a ∈ A and a set of integrable strategies πb for b ∈ A \ {a}.
Assume further that

• for G̃a given by (3.9), |G̃a(·, 0)|
1
2 ∈ HBMO, and

• π∗,a· = Πa(·, π−a· , Z̃a· ) is admissible .
Then the BSDE with driver (3.9) and terminal condition −Ha has a unique solution (Ỹ a, Z̃a) ∈
S∞×HBMO. Moreover, Ỹ a

0 is the value of the optimization problem (3.5) (i.e., the minimized
risk) for agent a and π∗,a is the unique optimal strategy.

Proof. Given the structure of G̃a in (3.9) and the integrability assumption made, the
existence and uniqueness of the BSDE’s solution (Ỹ a, Z̃a) in S∞ ×HBMO is straightforward.

We first use the comparison theorem to prove the minimality of Ỹ a and hence the opti-
mality of π∗,a. Let t ∈ [0, T ]. Take any strategy πa ∈ Aθ(π−a). First, from the definition of G̃a

as a pointwise minimum, we naturally have that G̃a(t, za) = g̃a
(
t,Πa(t, π−at , za), π−at , za

)
≤

g̃a(t, πat , π
−a
t , za) for all t and za, that is, G̃a(·, ·) ≤ g̃a(·, πa· , π−a· , ·). Second, G̃a is affine and

thus Lipschitz, with Lipschitz coefficient process −θ ∈ HBMO. By the comparison theorem,
we therefore have, for any t ∈ [0, T ] and in particular for t = 0, that Ỹ a

t = Ỹ a
t (π∗,a, π−a) ≤
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Ỹ a
t (πa, π−a). As this holds for any πa ∈ Aθ(π−a), this proves the minimality of Ỹ a

0 =
ρa0
(
ξa(π∗,a, π−a)

)
and thus the optimality of π∗,a.

We now argue the uniqueness of the optimizer π∗,a. Let πa be an admissible strategy and
let (Ỹ a(πa), Z̃a(πa)) be the corresponding risk, i.e., solution to the BSDE (3.2) with strategy
πa. We compute the difference Ỹ a

t (πa) − Ỹ a
t (π∗,a), adding and substracting in the Lebesgue

integral

g̃a
(
t,Πa

(
t, π−at , Z̃at (πa)

)
, π−at , Z̃at (πa)

)
= G̃a

(
t, Z̃at (πa)

)
,

and using the affine form of G̃a :

Ỹ a
t (πa)− Ỹ a

t (π∗,a)(3.10)

=

∫ T

t

[
g̃a
(
s, πas , π

−a
s , Z̃as (πa)

)
− G̃a

(
s, Z̃as (π∗,a)

)]
ds

−
∫ T

t

[
Z̃as (πa)− Z̃as (π∗,a)

]
dWs

=

∫ T

t

[
g̃a
(
s, πas , π

−a
s , Z̃as (πa)

)
− g̃a

(
s,Πa

(
s, π−as , Z̃as (πa)

)
, π−as , Z̃as (πa)

)]
ds

−
∫ T

t

[
Z̃as (πa)− Z̃as (π∗,a)

]
dW θ

s .

By construction of Πa as a minimizer, the difference in (3.10) is always positive. In particular,
taking Pθ-expectation w.r.t. Ft implies that Ỹ a

t (πa)− Ỹ a
t (π∗,a) ≥ 0 for all t ∈ [0, T ]. Assume

that πa is an optimal strategy. Then Ỹ a
0 (πa) = Ỹ a

0 (π∗,a) and the left-hand side (LHS) for t = 0
vanishes. Under Pθ-expectation, the stochastic integral on the right-hand side (RHS) also
vanishes and we can conclude that the integrand in (3.10) is zero Pθ ⊗Leb-a.e. Consequently,
we obtain Ỹ a(πa) = Ỹ a(π∗,a) and hence Z̃a(πa) = Z̃a(π∗,a). By uniqueness of the minimizer,
we then have πa· = Πa

(
·, π−a· , Z̃a· (π

a)
)

= Πa
(
·, π−a· , Z̃a· (π

∗,a)
)

= π∗,a· .

Remark 3.3. While Theorem 3.2 is stated as the optimal response of a single agent a in
the system A with the other strategies π−a being fixed, it is clear that it can more generally
describe the optimal investment of an agent with preferences described by ga (equivalently,
ρa· ) who trades in the assets S and B, which have the given MPR θ (one can think of making
A = {a}, or doing λa = 0). Following the same methods, the result could be generalized to a
higher number of assets, with price processes given exogenously. This applies similarly to an
agent trading in fewer assets, by setting the respective components to zero—see Theorem 4.5.

We now state a characterization of the optimal strategy via the FOC.

Lemma 3.4. Under the assumptions of Theorem 3.2, let π̂a be an admissible strategy and
(Ŷ a, Ẑa) be the associated risk process, solution to the BSDE with driver g̃a(t, π̂at , π

−a
t , ·) and

terminal condition −Ha. Assume that they satisfy the FOC (3.6)–(3.7) in the sense that

∇zga
(
t, Ẑat − ζ̂at

)
= −θt, where ζ̂at =

(
π̂a,1t σt + π̂a,2t κθt

)
− λ̃a

(
π̄−a,1t σt + π̄−a,2t κθt

)
.

Then (Ŷ a, Ẑa) = (Ỹ a, Z̃a) and π̂a = π∗,a.
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Proof. By the assumptions on ga, ∇zga(t, Ẑat −ζ̂at ) = −θt means that Ẑat −ζ̂at = Za(t,−θt),
or equivalently π̂t = Πa(t, π−at , Ẑat ). Therefore g̃a(t, π̂at , π

−a
t , Ẑat ) = G̃a(t, Ẑat )—recall (3.3). By

uniqueness of the solution to the BSDE with driver G̃a(t, ·) and terminal condition −Ha,
we have (Ŷ a, Ẑa) = (Ỹ a, Z̃a). Consequently, by the uniqueness of the FOC’s solution, π̂at =
Πa(t, π−at , Ẑat ) = Πa(t, π−at , Z̃at ) = π∗,at .

3.2. The unconstrained Nash equilibrium. Having solved the optimization problem for
one agent, we now look at the existence and uniqueness of a Nash equilibrium, still for the MPR
θ ∈ HBMO fixed at the beginning of this section, and still with no fixed-supply constraint.

Assume π∗ = (π∗,a)a∈A is a Nash equilibrium. Fix an agent a ∈ A. From the uniqueness
of the optimal strategy, given by Theorem 3.2, one must have

π∗,at = Πa
(
t, π∗,−at , Z̃at

)
, t ∈ [0, T ],

where (Ỹ a, Z̃a) is the solution to the BSDE with terminal condition −Ha and driver G̃a given
in (3.9). From the characterization (3.8) of Πa, we therefore have, for all a ∈ A and t ∈ [0, T ],

π∗,a,1t − λ̃aπ̄∗,−a,1t =
Z̃a,1t −Za,1(t,−θt)

σSSt
− Z̃a,2t −Za,2(t,−θt)

κRt

κSt
σSSt

=: Ja,1t ,

π∗,a,2t − λ̃aπ̄∗,−a,2t =
Z̃a,2t −Za,2(t,−θt)

κRt
=: Ja,2t .

(3.11)

Note that, for any a ∈ A, the process (Ỹ a, Z̃a) does not depend on π∗,−a nor π∗,a, seeing as
neither −Ha nor G̃a does. Therefore, Jat is also independent of the unknown π∗t , which is only
present in the LHS of (3.11).

Conversely, assume we can solve for π∗ in (3.11) and that π∗ is integrable against the
prices. Then, since π∗,at = Πa(t, π∗,−at , Z̃at ) by (3.8), Theorem 3.2 guarantees that π∗,a is the
best response to π∗,−a, and we therefore have a Nash equilibrium.

So, the existence and uniqueness of a Nash equilibrium π∗ is equivalent to the existence
and uniqueness of solutions to (3.11).

Define the matrix AN ∈ RN×N by3

AN =


1 − λ1

N − 1
. . .

− λN

N − 1
1

 ,(3.12)

i.e., the jth line has the entries −λ̃j = −λj/(N − 1), everywhere but for the jth one, which
is 1. Equation (3.11) can be rewritten as

AN π∗,·,i = J ·,i,(3.13)

where π∗,·,i = (π∗,a,i)a∈A and J ·,i = (Ja,i)a∈A, for i ∈ {1, 2}.
3Recall the notation that for sums and products over certain subsets of A we identify A with the set

{1, 2, . . . , N}, where N ∈ N is the fixed finite number of agents.
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Theorem 3.5. Assume the MPR θ = (θS , θR) ∈ HBMO, that Assumptions 3.1 and 2.3 hold,
that, for all a ∈ A, Ja is integrable against the prices, and |G̃a(·, 0)|1/2 ∈ HBMO.

Then there exists a unique Nash equilibrium π∗ = (π∗,a)a∈A associated with the MPR θ,
which is given by the unique solution to (3.13).

Proof. The determinant of the AN is

det(AN ) = 1−
∑
i<j

λ̃iλ̃j − 2
∑
i<j<k

λ̃iλ̃j λ̃k − 3
∑

i<j<k<l

λ̃iλ̃j λ̃kλ̃l − · · · − (N − 1)
N∏
i=1

λ̃i,

where the sums run over indices i, j, k, l from A = {1, . . . , N}. If λa = 1 for all a ∈ A, then
det(AN ) = 1 −

∑N
k=2

k−1
(N−1)k

(
N
k

)
= 0, so the matrix is not invertible. The determinant is

strictly decreasing in each λ̃a (a ∈ A) and therefore also in λa. Hence, if λa ∈ [0, 1] for all
a ∈ A and the product

∏
a∈A λ

a < 1, then at least one factor must be strictly smaller than
one and the determinant must be strictly positive (i.e., det(AN ) > 0). The invertibility of AN
follows. This guarantees that one can solve system (3.11) (or, equivalently, (3.13)) for each
i ∈ {1, 2} to obtain (π∗,·,i). The integrability of π∗ follows from fact that each component π∗,a

is a linear combination of the integrable Ja’s. Finally, the Nash optimality of π∗ was argued
in the identification of (3.11).

We can now comment on Assumption 2.3. If λb = 0 for all b ∈ A\{a}, then AN is invertible
independent of λa, i.e., in particular for λa = 1. This shows that the condition that λa ∈ [0, 1)
for all a ∈ A is not necessary, but merely a sufficient condition. Finally, if we were to allow for
λa > 1, then

∏
a λ

a < 1 is not sufficient for invertibility of AN , e.g., in the case N = 3 take
λa = λb = 2 and λc = 0.

From now on we assume the agents’ optimization problems have a solution so that it
makes sense to discuss the notion of EMPR.

Remark 3.6. Notice that at this point, as θ is given exogenously, we do not yet have a
system of coupled BSDEs. For each a ∈ A, we obtain the value process (Ỹ a, Z̃a) as the solution
to a BSDE where the terminal condition −Ha and driver G̃a, which does not depend on the
strategies and only takes Z̃a as argument. These processes are then used to solve for the Nash
equilibrium of strategies π∗, and so (Ỹ a, Z̃a)a∈A is the value process of the Nash equilibrium.
This feature (no coupling of the BSDEs when solving for the optimal values), as well as the
fact that solving for the optimizers π∗ of the Nash equilibrium reduces to solving a linear
system (for which existence and uniqueness of the solution is equivalent to the invertibility
of a matrix), is a consequence of the structure of the problem, i.e., the form of the concerns
over the relative performance. In particular, it does not depend on the specific form of the
individual risk measures ρa (or equivalently, the drivers ga). Finding the EMPR, later on in
section 4, leads to multidimensional quadratic BSDEs.

3.3. An example: The entropic risk measure case. We now illustrate the methodology
and result of Theorem 3.2 for a particular risk measure and prepare the ground for the model
we study in sections 5 and 6. We give a sequence of examples, in increasing order of complexity,
that show how the structure of the optimal strategies is changing as features are added. As
in the above, the examples do not yet take into account the market clearing condition but
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rather assume that an MPR θ = (θS , θR) ∈ HBMO is given. Nonetheless they give a flavor for
the next section, where the EMPR is derived.

Each agent a ∈ A is assessing her risk using the entropic risk measure ρa0 for which the
driver ga : R2 → R if given by

ga(z) :=
1

2γa
|z|2, where γa > 0 is agent a’s risk tolerance,

and 1/γa is agent a’s risk aversion. This choice of ga relates to exponential utilities, and we
have (see, e.g., [10], [24], [38], or [58])

ρa0(ξ) = Y a
0 = γa lnE

[
e−ξ/γa

]
= γa ln

(
− Uγa(ξ)

)
with Uγa(ξ) = E

[
−e−ξ/γa

]
,

so that, equivalently, the agents are maximizing their expected (exponential) utility.
In what follows, the optimal strategies were computed using the techniques described so

far and hence we omit the calculations. They boil down to finding the map Za arising from
(2.5), then injecting it in (3.8) and (3.9) to obtain G̃a. We denote throughout by π∗,a (for
a ∈ A) the optimal Nash equilibrium strategy.

3.3.1. The reference case of a single agent. For comparison, we first give the optimal
strategy for a single agent who could trade liquidly in the stock of price S and the derivative of
price B with (arbitrary and exogenously given) MPR θ = (θS , θR). She aims at minimizing her
risk, with terminal endowment and trading gains ξa = Ha+V a

T (πa). Here, other agents do not
play a role. Since ga

zi
(z) = zi/γa, it is easily found that Za(t,−θt) = (−γaθSt ,−γaθRt ) = −γaθt.

Injecting this in (3.9) yields the minimized driver G̃a,

G̃a(t, za) = −γa
2
|θt|2 − 〈za, θt〉 , t ∈ [0, T ].

The minimized risk is then given by Y a
0 = Ỹ a

0 , where (Ỹ a, Z̃a) is the solution to the BSDE

with terminal condition −Ha and driver G̃a, while the optimal strategy is then given by

π∗,a,1 =
Z̃a,1 + γaθ

S

σSS
− Z̃a,2 + γaθ

R

κR
κS

σSS
and π∗,a,2 =

Z̃a,2 + γaθ
R

κR
.

This result is expected and in line with canonical mathematical finance results. The particular
structure of the optimal strategy follows from the fact that the second asset is correlated to
the first when κS 6= 0, and the inversion of the volatility matrix for the two-dimensional price
(S,B), [

σSS 0
κS κR

]
.

The market faced by a is complete, the driver for the minimized residual risk Ỹ a is affine, and
we have the explicit solution

Ỹ a
0 = Eθ

[
−Ha − γa

2

∫ T

0
|θu|2du

]
= −E

[
E−θT ·

(
Ha +

γa
2

∫ T

0
|θu|2du

)]
.
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The minimized-risk measure is affine with respect to Ha: the trend (θ 6= 0) in the prices leads
to a constant risk reduction and the completeness of the market leads to an affine dependence
on Ha.

Remark 3.7. Note that G̃a(t, 0) = −γa
2 |θt|

2. Therefore, since θ ∈ HBMO, the assumption

we made in Theorems 3.2 and 3.5 that |G̃a(t, 0)|1/2 ∈ HBMO is satisfied, ensuring the well-
posedness of the minimized-risk BSDEs.

3.3.2. The reference case of a single agent that cannot trade in the derivative. It
is also instructive, and will be useful later on, to look at the case where this single agent
cannot trade in the derivative and hence faces an incomplete market. We first enforce πa,2 = 0
on (3.4), then we optimize over πa,1 (see Remark 3.3). The minimized driver following the
calculations is

G̃a(t, z) = −γa
2

(θSt )2 − z1 θSt +
1

2γa
(z2)2, t ∈ [0, T ].

Notice that G̃a is affine in the variable z1 but retains the quadratic term in z2. The minimized
risk is then given by Y a

0 = Ỹ a
0 , where (Ỹ a, Z̃a) is the solution to the BSDE with terminal

condition −Ha and the above driver G̃a, while the optimal strategy is

π∗,a,1 =
Z̃a,1 + γaθ

S

σSS
and π∗,a,2 = 0.

3.3.3. The case of multiple agents without relative performance concerns. We return
to the full set of agents A and take λa = 0 for all a ∈ A; this is the setting covered in [37]. We
find the minimized-risk driver for agent a to be

G̃a(t, za) = −γa
2
|θt|2 − 〈za, θt〉 , t ∈ [0, T ].

The minimized risk is given by Y a
0 = Ỹ a

0 , where (Ỹ a, Z̃a) solves the BSDE with terminal

condition −Ha and minimized driver G̃a, while the optimal strategies are given by

πλ=0,a,1 :=
Z̃a,1 + γaθ

S

σSS
− Z̃a,2 + γaθ

R

κR
κS

σSS
and πλ=0,a,2 :=

Z̃a,2 + γaθ
R

κR
.(3.14)

Observe that in this case the strategy πλ=0,a followed by a does not depend directly on the
strategies of the other agents; its structure is the same as for the single agent case. However,
when the price dynamics of the derivative is not fixed but emerges from the equilibrium, later
on, the other agents’ strategies will appear indirectly via θR and κ.

3.3.4. The case of multiple agents without relative performance concerns in zero net
supply. If one would want to take into account the endogenous trading of the derivative in
the particular situation of pure risk trading, where one takes n = 0 in (2.8), then the market
price of external risk θR must be endogenously computed instead of being fixed arbitrarily as
we have done so far.

It is not difficult to see, summing the last equation in (3.14) over a ∈ A and imposing the
zero net supply condition,

∑
a π

λ=0,a,2 = 0, that this requires that θR = −
∑

a Z̃
a,2/

∑
a γa.
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However, the Z̃ ·,2s are themselves found by solving a system of N BSDEs which involve θR.
Replacing θR by the expression above in the said system of equations leads to a fully coupled
system of quadratic BSDEs that is hard to solve in general. We solve this problem with an
alternative tool in section 4.

3.3.5. The general case: Multiple agents with performance concerns. In the general
case (not assuming λa = 0 for all a), we obtain the minimal driver as being still

G̃a(t, za) = −γa
2
|θt|2 − 〈za, θt〉 , t ∈ [0, T ].(3.15)

The minimized risk is then given by Y a
0 = Ỹ a

0 , where (Ỹ a, Z̃a) is the solution to the BSDE

with terminal condition −Ha and driver G̃a, while the optimal strategies π∗ = (π∗,a)a∈A are
given by

π∗,a,1 − λ̃a
∑

b∈A\{a}

π∗,b,1 =
Z̃a,1 + γaθ

S

σSS
− Z̃a,2 + γaθ

R

κR
κS

σSS
,(3.16)

π∗,a,2 − λ̃a
∑

b∈A\{a}

π∗,b,2 =
Z̃a,2 + γaθ

R

κR
.(3.17)

The general invertibility of the systems (3.16) and (3.17) given θ is guaranteed by Proposi-
tion 3.5.

3.3.6. The general case: Multiple agents with performance concerns in zero net supply.
If one imposes (2.8) with n = 0, implying that

∑
b∈A\{a} π

∗,b,2 = −π∗,a,2, then the linear
system (3.17) for the investment in the derivative simplifies greatly and its solution is explicitly
given by

π∗,a,2 =
1

1 + λ̃a

Z̃a,2 + γaθ
R

κR
∀a ∈ A.(3.18)

Notice how the structure of the optimal investment strategy for the derivative in (3.18) is that
of (3.14), scaled down by the factor (1 + λ̃a)−1. In section 6 we study a model with two agents
and computations will be done explicitly for the investment in the stock (i.e., the inversion of
the system (3.16)).

3.4. Reduction to zero net supply. We now give an auxiliary result allowing us to simplify
the condition (2.8). We show how the initial holdings πa,2

0− = πa,20 6= 0 before/at the beginning

of the game can be reduced to the case where πa,2
0− = πa,20 = 0. This allows us to apply (2.8)

with n = 0, which will prove crucial in later computations. The reduction to n = 0 is based
on the monotonicity of the risk measures and the following lemma, stated from the point of
view of one agent a ∈ A. The result is based on Lemma 3.9 in [37].

To avoid a notational overload, we omit explicit dependencies on π−a in this subsection.

Lemma 3.8. For a given MPR θ and admissible strategies π−a = (πb)b∈A\{a}, consider the
dynamics of the residual risk BSDE

−dỸ a
t (πa) = g̃a

(
t, πat , Z̃

a
t (πa)

)
dt−

〈
Z̃at (πa), dWt

〉
(3.19)
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associated with the preferences of agent a using an admissible strategy πa. Assume further that
(3.19) has a unique solution for any given FT -measurable bounded terminal condition ỸT . Let
ν ∈ R. Then,
• if πa := (πa,1, πa,2) minimizes the solution Ỹ0(π

a) to (3.19) for a terminal condition
−Ha, then π̌a := (πa,1, πa,2 − ν) is optimal for the terminal condition −(Ha + νHD);
• if πa := (πa,1, πa,2) minimizes the solution Ỹ0(π

a) for a terminal condition −(Ha +
νHD), then π̂a := (πa,1, πa,2 + ν) is optimal for the terminal condition −Ha.

Proof. We prove only the first assertion, as the second is equivalent. Let t ∈ [0, T ]. Assume
that π∗,a ∈ Aθ(π−a) is optimal for (3.19) with Ỹ a

T := −Ha, i.e., for any πa ∈ Aθ one has

Ỹ a
0 (π∗,a) ≤ Ỹ a

0 (πa). Define further, for any πa ∈ Aθ, the strategies

π̌a := πa − (0, ν) = (πa,1, πa,2 − ν) and π̌∗,a := π∗,a − (0, ν).

To show that Y a
0 (π̌∗,a) ≤ Y a

0 (π̌a) for any π̌a where Y a solves (3.19) with Y a
T = −(Ha + νHD)

we first show an identity result between the BSDEs with different terminal conditions. The
second step is the optimality.

Step 1. We show that the process (Y (π̌a), Z(π̌a)) := (Ỹ a(πa)− νBθ, Z̃a(πa)− νκθ) solves
BSDE

Yt(π̌
a) = −(Ha + νHD) +

∫ T

t
g̃a (s, π̌as , Zs(π̌

a)) ds−
∫ T

t
〈Zs(π̌a), dWs〉.(3.20)

To this end, we reformulate (2.4) as a BSDE:

Bθ
t = HD −

∫ T

t
〈κθs, θs〉ds−

∫ T

t
〈κθs, dWs〉.(3.21)

The difference between (3.19) and ν times (3.21) yields

Ỹt(π
a)− νBθ

t = −(Ha + νHD) +

∫ T

t

[
g̃a
(
s, πas , Z̃

a
s (πa)

)
+ ν

〈
κθs, θs

〉]
ds

−
∫ T

t

〈
Z̃as (πa)− νκθs,dWs

〉
⇔ Yt(π̌

a) = −(Ha + νHD)−
∫ T

t
〈Zs(π̌a), dWs〉

+

∫ T

t

[
g̃a
(
s, π̌as + (0, ν), Zs(π̌

a) + νκθs

)
+ ν〈κθs, θs〉

]
ds.

In view of (3.4), we can manipulate the terms inside driver g̃a above and obtain

g̃a
(
·, π̌a + (0, ν), Za(π̌a) + νκθ

)
+ ν

〈
κθ, θ

〉
= ga

(
·, (Za(π̌a) + νκθ)− π̌a,1σ − (π̌a,2 + ν)κθ + λ̃a

(
π̄−a,1σ + π̄−a,2κθ

))
− π̌a,1 〈σ, θ〉 − (π̌a,2 + ν)

〈
κθ, θ

〉
+ λ̃a

〈
π̄−a,1σ + π̄−a,2κθ, θ

〉
+ ν

〈
κθ, θ

〉
= g̃a

(
·, π̌a, Za(π̌a)

)
.

Given the assumed uniqueness of BSDE (3.19) the assertion follows.
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Step 2. Given that (Y (π̌a), Z(π̌a)) solve (3.20) and that π∗,a is the minimizing strategy
for πa 7→ Ỹ a(πa), then manipulating Y (π̌a) = Ỹ a(πa)− νBθ, we have

Y0(π̌
a) = Ỹ a

0 (πa)− νBθ
0 ≥ Ỹ a

0 (π∗,a)− νBθ
0 = Y0(π̌

∗,a),

and hence π̌∗,a := π∗,a − (0, ν) is optimal for BSDE (3.19) with terminal condition −(Ha +
νHD).

This lemma intuitively states that an agent a, owning at time t = 0 a portion νa = πa,2
0− =

πa,20 of units of HD, can be regarded as being in fact endowed with Ȟa = Ha + νaHD. One
then looks only at the relative portfolio π̌a,2 = πa,2− νa, which counts the derivatives bought
and sold only from time t = 0 onward: the optimization problem is equivalent. The argument
can be extended to all other agents. We note that this reduction is possible only because we do
not consider trading constraints in this work, so that the strategies πa,2 and π̌a,2 are equally
admissible.

For the rest of this work we assume that each agent receives at t = T a portion4 n/N of
the derivative HD. By doing so, the market clearing condition in Definition 2.5 transforms
into ∑

a∈A
πa,2t = 0 P⊗ Leb-a.e.,

and we refer to it as the zero net supply condition.
For clarity, we recall that agent a ∈ A now assesses her risk by solving the dynamics

provided by BSDE (2.7) with terminal condition

Y a
T = −

Ha +
n

N
HD + V a,θ

T (πa)− λ̃a
∑

b∈A\{a}

V b,θ
T (πb)

(3.22)

(instead of that in (2.7)). Moreover, by applying the change of variables (3.1) to BSDE (2.7)
with terminal condition (3.22), we reach

−dỸ a
t = g̃a

(
t, πat , π

−a
t , Z̃at

)
dt−

〈
Z̃at ,dWt

〉
, Ỹ a

T := −
(
Ha +

n

N
HD

)
,(3.23)

with g̃a given by (3.4) (and (Ỹ a, Z̃a) relates to (Y a, Za) via the change of variables (3.1)).
It is straightforward to recompile the results of section 3.3 under the zero net supply

condition. It entails no changes in the strategies or drivers; only the terminal condition of the
involved BSDEs needs to be updated from −Ha to −(Ha + n

NH
D) as in (3.23).

4Many possibilities for this reduction to zero net supply exist, including endowing one agent with the total
amount n of derivatives HD or endowing each agent with their initial portions of the derivative νa. We make
the judicious choice of n/N for simplicity.
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4. The EMPeR. In the previous section we saw how to compute the Nash equilibrium
for a given MPR θ = (θS , θR), without the global constraint on trading (market clearing
condition). In this section we solve the equilibrium problem, as posed by Definition 2.5, by
finding the EMPeR θR.

The literature contains many results on equilibria in complete markets that link competi-
tive equilibria to an optimization problem for a representative agent, and this is the approach
we use here. The preferences of the representative agent are usually given by a weighted av-
erage of the individual agents’ preferences with the weights depending on the competitive
equilibrium to be supported by the representative agent; see [54]. This dependence results
in complex fixed point problems, which renders the analysis and computation of equilibria
quite cumbersome. The many results on risk sharing under translation invariant preferences,
in particular [6], [44], [23], suggest that when the preferences are translation invariant, then
all the weights are equal. This was an effective strategy in [37] and it would be so here if, for
all a ∈ A, λa = 0, or λa = λ ∈ [0, 1).

In a market without performance concerns, [37] and [7] show that the infimal convolution
of risk measures gives rise to a suitable risk measure for the representative agent which, for
g-conditional risk measures, corresponds to infimal convolution of the drivers. Due to the
performance concerns, we use a weighted-dilated infimal convolution, and in Theorem 4.5 we
show that indeed minimizing the risk of our representative agent is equivalent to finding a
competitive equilibrium in our market.

4.1. The representative agent.

Aggregation of risks and aggregation of drivers. Inspired by the above mentioned results
and having in mind [59] (see Remark 4.9 below) we deal with the added interdependency
arising from the fixed-supply condition and the additional unknown θR (see examples in
sections 3.3.4 and 3.3.6) by defining a new risk measure ρw0 . For a set of positive weights
w = (wa)a∈A satisfying

∑
a∈Aw

a = 1, we define

ρw0 (X) = inf

{∑
a∈A

waρa0
(
Xa
) ∣∣∣∣ (Xa) ∈ (L∞)N :

∑
a∈A

waXa = X

}
for any X ∈ L∞.(4.1)

In the case of risk measures induced by BSDEs, [6] shows that the measure defined by inf-
convolution of risk measures (ρa0)a∈A is again induced by a BSDE, whose driver is simply the
inf-convolution of the BSDE drivers ga for the risk measures (ρa0)a∈A. For the set of weights
w = (wa)a∈A, we define the driver gw as the weighted-dilated inf-convolution of the drivers ga

for (t, z) ∈ [0, T ]× R2,

gw(t, z) = �w

(
(ga)a∈A

)
(t, z) = inf

{∑
a∈A

waga(t, za)

∣∣∣∣ (za) ∈ (R2)N s.t.
∑
a∈A

waza = z

}
,

(4.2)

where the notation �
(
(ga)a∈A

)
is that of the standard inf-convolution.
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Lemma 4.1 (properties of gw). The map gw : [0, T ]× R2 → R defined by (4.2) is a deter-
ministic continuous function, strictly convex and continuously differentiable. Moreover, there
exists a unique solution of ∇zgw(t,Z) = −ϑ in Z.

For a zA = (za) such that
∑

aw
aza = z, one has gw(t, z) =

∑
aw

aga(t, za) if and only
if there exists ϑ ∈ R2 such that, for all a ∈ A, ∇zga(t, za) = −ϑ. In that case, one has
∇zgw(t, z) = −ϑ.

Proof. The weighted inf-convolution transfers the properties of the ga’s to gw, in particular
continuity, strict convexity, and differentiability. We do not show these as they follow from a
simple adaptation of known arguments; see [6, 7, 37].

Since the function being minimized (zA = (za) 7→
∑

aw
aga(za)) is convex and the function

defining the constraint (zA 7→
∑

aw
aza) is also convex, because affine, the minimization

defining gw is equivalent to finding a critical point for the associated Lagrangian, L(zA, ϑ) =∑
aw

aga(za) + ϑ(
∑

aw
aza − z). Therefore, for a zA = (za) such that

∑
aw

aza = z, zA is a
minimizer if and only if there exists ϑ ∈ R2 such that, for all a ∈ A, ∇zga(t, za) = −ϑ. Then,
∇zgw(t, z) = −ϑ, where ϑ is the Lagrange multiplier associated with z.

The risk of the random terminal wealth ξw, measured through ρw0 , is given by ρw0 (ξw) :=
Y w
0 , where (Y w, Zw) is the solution to the BSDE

−dY w
t = gw(t, Zwt )dt− 〈Zwt ,dWt〉 with terminal condition Y w

T = −ξw.(4.3)

Since the weights (wa)a∈A are required to satisfy
∑

aw
a = 1, the risk measure ρw0 associated

to the BSDE with the above driver is a monetary risk measure. Translation invariance and
monotonicity follow from the fact that the driver gw is independent of y. Convexity follows
from the convexity of gw, which in turns follows from that of the ga’s by the envelope theorem.

Remark 4.2. Notice that (4.2) can be rewritten

gw(t, z) = inf

{∑
a∈A

waga
(
t,
za

wa

) ∣∣∣∣ ∑
a∈A

za = z

}
.

In this way, gw is seen as the usual w-weighted infimal convolution of the wa-dilated drivers
ga, in the terminology from [7, p. 137]. For more on dilated risk measures, see Proposition 3.4
in [7].

Example 4.3 (entropic risk measure). For entropic agents, i.e., with drivers ga(za) = |za|2
2γa

,
one obtains

gw(z) =
|z|2

2γR
with γR :=

∑
a∈A

waγa.(4.4)

Trading and the risky position of the representative agent. Having defined the aggre-
gated risk measure ρw0 and the associated driver gw, we now introduce a strategy πw and
associated trading gains V·(π

w) =
∫ ·
0 π

w,1
t dSt +

∫ ·
0 π

w,2
t dBt for a representative agent whose

preferences are described by gw. Direct computations from (4.1) entail that we assign to the
representative agent the terminal gains
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ξw :=
∑
a∈A

waξa =
∑
a∈A

wa
(
Ha +

n

N
HD + V a

T − λ̃aV̄ −aT

)

=
∑
a∈A

wa
(
Ha +

n

N
HD

)
+
∑
a∈A

wa

((
1 + λ̃a

)
V a
T − λ̃a

∑
b∈A

V b
T

)

=
∑
a∈A

wa
(
Ha +

n

N
HD

)
+
∑
a∈A

V a
T

((
1 + λ̃a

)
− λ̃a

∑
b∈A

wbλ̃b

)
= Hw + VT (πw),

where ca := wa(1 + λ̃a)−
∑

b∈Aw
bλ̃b, πw =

∑
a∈A c

aπa is the representative agent’s portfolio,
VT (πw) =

∑
a∈A c

aVT (πa) is the representative agent’s wealth process, and

Hw :=
∑
a∈A

wa
(
Ha +

n

N
HD

)
=

n

N
HD +

∑
a∈A

waHa(4.5)

is defined as the representative agent’s terminal endowment.
We now choose the weights (wa)a∈A such that ca = c for any a ∈ A for some c ∈ (0,+∞),

i.e.

(4.6) wa :=
1

Λ(1 + λ̃a)
∀a ∈ A, where Λ :=

∑
a∈A

1

1 + λ̃a
.

Direct verification yields
∑

aw
a = 1 and, furthermore, for all a ∈ A,

ca = c :=
1

Λ
− 1

Λ

∑
b∈A

λ̃b

1 + λ̃b
.

Notice that πw,2 =
∑

a∈A c
aπa,2 = c

∑
a∈A π

a,2. In other words, the zero net supply condition
for the individual agents (i.e.,

∑
a∈A π

a,2 = 0) is equivalent to the representative agent not
investing in HD (i.e., πw,2 = 0). From now on, the family of weights w is fixed and is given
by (4.6).

The pointwise minimizer for the representative agent’s residual risk. We now show that
the approach by aggregated risk and representative agent, as motivated above, allows us to
identify the equilibrium MPR as a by-product of minimizing the risk of the representative
agent. This risk is given by the solution to BSDE (4.3) with terminal condition Y w

T = −ξw =
−Hw−VT (πw), for admissible strategies πw of the form πw = (πw,1, 0). The R2-valued strategy
process πw is said to be admissible (πw ∈ Aw) if Eθ [〈 V·(πw) 〉T ] < ∞ and the BSDE (4.3)
has a unique solution. Following section 3 we introduce the residual risk processes

Ỹ w
t := Y w

t + V w
t and accordingly Z̃wt := Zwt +

(
πw,1t σt + 0

)
.

The pair (Ỹ w, Z̃w) satisfies the BSDE with terminal condition Ỹ w
T = −Hw and random driver

g̃w, defined for (ω, t, πwt , z) ∈ Ω× [0, T ]× R2 × R2, by

g̃w(t, πwt , z) := gw
(
t, z − ζwt

)
− 〈ζwt , θt〉 ,
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where ζw = πw,1σ + 0 (compare with (3.1)–(3.4)). Since Ỹ w
0 = Y w

0 , the representative agent

then equivalently aims at solving for min{Ỹ w
0 (πw)|πw ∈ Aw}.

Following the methodology used for the single agent in section 3, we first look at minimizing
the driver g̃w pointwise. We define Πw,1(t, z) as the optimizer for min

{
g̃w(t, (p, 0), z) | p ∈ R

}
,

setting Πw,2(t, z) = 0 as to enforce the zero net supply condition. Since gw is strictly convex,
so is the function g̃w, and the minimum is characterized by the solution of the FOC

gwz1
(
t, z −Πw,1(t, z)σt

)
= −θSt .

We denote the minimized (random) driver by

G̃w(t, z) = g̃w
(
t,Πw(t, z), z

)
.(4.7)

Remark 4.4 (the structure for the optimized driver (4.7) under a separation assumption).
Here, unlike for the optimization of individual agents who trade in S and B under a fixed
MPR θ = (θS , θR), we do not have a nice structure like in (3.9) for G̃w in all generality on gw

(hence on the ga’s).
Assume that for some g1,w, g2,w : [0, T ] × R → R we have gw(t, z) = g1,w(t, z1) +

g2,w(t, z2); then the FOC would translate to g1,w
z1

(
t, z1 −Πw,1(t, z)σSSt

)
= −θSt . Denoting

by Zw,1(t,−θSt ) the solution in Z1 ∈ R to the equation g1,w
z1

(
t,Z1

)
= −θSt , the structure for

Πw,1 is given by

Πw,1(t, z) =
z1 −Zw,1(t,−θSt )

σSSt

and the structure for the optimized driver G̃w is given by

G̃w(t, z) = gw
(
t,
(
Zw,1

(
t,−θSt

)
, z2
))

+ Zw,1(t,−θSt )θSt − z1θSt
=
[
g1,w

(
t,Zw,1

(
t,−θSt

))
+ Zw,1

(
t,−θSt

)
θSt
]
− z1θSt + g2,w(t, z2).

The special case of entropic drivers, which falls in this category, is discussed below in
Example 4.6.

Optimimality for the representative agent and the EMPeR. We assume that the BSDE
with driver G̃w defined in (4.7) and terminal condition −Hw has a unique solution (Ỹ w, Z̃w)
in S∞×HBMO. Define the strategy π∗,w by π∗,wt :=

(
Πw,1(ω, t, Z̃wt ), 0

)
. Like for the individual

agents in section 3, the following theorem asserts that π∗,w is the optimal strategy and Ỹ w
0

is the minimized risk for the representative agent. Moreover, the theorem relates the EMPR
θ = (θS , θR) (recall Definition 2.5) to the solution of the representative agent’s optimization
problem. Recall the family of weights w given by (4.6).

Theorem 4.5. Assume that
• the BSDE with driver G̃w, (4.7), and Ỹ w

T = −Hw has a unique solution (Ỹ w, Z̃w) in
S∞ ×HBMO;
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• the comparison theorem holds for the BSDE with driver G̃w;
• π∗,w· =

(
Πw,1(ω, ·, Z̃w· ), 0

)
is integrable against the prices S and B;

then Ỹ w
0 is the minimized risk for the representative agent and π∗,w is the unique optimal

strategy that minimizes his risk.
If, for the process θ∗ = (θS , θR), with θR defined by

gwz2
(
t, Z̃wt − π

∗,w,1
t σt

)
= −θRt ,(4.8)

the conditions of Theorem 3.5 hold, then θ∗ is the unique EMPR for the agents in A.
Additionally, the minimized aggregated risk Ỹ w is linked to the individual minimized risks

(Ỹ a)a∈A through the identity Ỹ w =
∑

aw
aỸ a (the same holds for Z̃). Moreover, the Nash

equilibrium for the agents in A satisfies π∗,w = c
∑

a π
∗,a.

Example 4.6 (the entropic case). In the entropic case, we have found gw(z) = |z|2
2γR

, so we

have Zw,1(t,−θSt ) = −γRθSt . The minimized driver is then

G̃w(t, z) = −γR
2

(θSt )2 − z1θSt +
1

2γR
(z2)2,

as was found in subsection 3.3. This driver is quadratic and regular, and the terminal condition
−Hw is bounded. From [48, 41] there is a unique solution (Ỹ w, Z̃w) in S∞ ×HBMO and the
comparison theorem applies (see [48, 52]). The optimal strategies are

π∗,w,1 =
Z̃w,1 + γRθ

S

σSS
and π∗,w,2 = 0.

With Z̃w ∈ HBMO and θS bounded, π∗,w,1 is integrable against S. This verifies the first
three assumptions of the theorem. Furthermore, with (4.8) and since Z̃w ∈ HBMO and θS is
bounded, we find that

(4.9) θR = − Z̃
w,2

γR
and θ∗ = (θS , θR) ∈ HBMO.

Following on Remark 3.3, the optimality of π∗,w and (Ỹ w, Z̃w), for an agent w with prefer-
ences described by gw and trades in S, is obtained exactly in the same way as the optimality
for a single agent a ∈ A in Theorem 3.2. So we prove only the claims of Theorem 4.5 related
to the EMPR θ∗. First, however, we state a counterpart to Lemma 3.4 to the case when no
trading in B is possible.

Lemma 4.7. Under the assumptions of Theorem 4.5, let π̂w = (π̂w,1, 0) be an admissible
strategy and (Ŷ w, Ẑw) be the associated risk process, i.e., the solution to the BSDE with driver
g̃w(t, π̂wt , ·) and terminal condition −Hw. Assume that the FOC holds for these processes, i.e.,

gwz1
(
t, Ẑwt − ζ̂wt

)
= −θSt , where ζ̂wt = π̂w,1t σt.

Then (Ŷ w, Ẑw) = (Ỹ w, Z̃w) and π̂w = π∗,w.

D
ow

nl
oa

de
d 

10
/1

2/
18

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EQUILIBRIUM PRICING UNDER RELATIVE PERFORMANCE CONCERNS 459

Proof. Recalling the properties of gw (see Lemma 4.1) and the definition of Πw,1, the con-
dition gwz1(t, Ẑwt −π̂

w,1
t σt) = −θSt means that π̂w,1t = Πw,1(t, Ẑwt ). We have then g̃w(t, π̂wt , Ẑ

w
t ) =

G̃w(t, Ẑwt ) (recall (4.7)). By the assumed uniqueness of the solution to the BSDE with driver
G̃w(t, ·) and terminal condition −Hw, we have (Ŷ w, Ẑw) = (Ỹ w, Z̃w). Consequently, by the
uniqueness of the FOC’s solution, π̂w,1t = Πw,1(t, Ẑwt ) = Πw,1(t, Z̃wt ) = π∗,w,1t . Since both
strategies have second component equal to zero, we have therefore π̂w = π∗,w.

The next result, to be used in the proof of Theorem 4.5, states that aggregating the
solutions to the individual optimization problems leads to an optimum for the aggregated
preference gw and identifies the BSDE of the aggregation with the weighted sum of the agents’
BSDEs.

Lemma 4.8. Let ϑ ∈ HBMO be an MPR and assume the conditions of Theorem 3.5. Let
then (π∗,a)a∈A be the unconstrained Nash equilibrium associated with ϑ, and let (Ỹ a, Z̃a) be
the solution to the minimized-risk BSDE for each agent a ∈ A (BSDE (3.2) with driver (3.9)).
Define (Ŷ w, Ẑw) :=

∑
aw

a(Ỹ a, Z̃a) and π̂w :=
∑

a c
aπ∗,a = c

∑
a π
∗,a.

Then (Ŷ w, Ẑw) and π̂w are the minimal risk and optimal strategy for a single agent whose
preferences are given by gw, who can invest in (S,B) (without trading constraints).

Proof. First, we sum the individual risk BSDEs to obtain (Ŷ w, Ẑw) and its BSDE. We
have Ŷ w

T = −
∑

aw
aHa = −Hw and also

dŶ w
t = −

[∑
a∈A

wa
{
ga
(
t, Z̃at − ζat (π∗)

)
− 〈ζat (π∗), ϑt〉

}]
dt+

∑
a∈A

wa
〈
Z̃at ,dWt

〉
= −

[∑
a∈A

waga
(
t, Z̃at − ζat (π∗)

)
−
〈
ζ̂wt , ϑt

〉]
dt+

〈
Ẑwt , dWt

〉
,

where ζ̂w = π̂w,1σ + π̂w,2κ =
∑

aw
aζa(π∗). We remark that, on the one hand,∑

a

wa
(
Z̃at − ζat (π∗)

)
=
∑
a

waZ̃at −

(∑
a

caπ∗,a,1σt +
∑
a

caπ∗,a,2κt

)
= Ẑwt − ζ̂wt ,

and, on the other hand, for all a ∈ A, by the optimality of π̃a and (Ỹ a, Z̃a)

∇zga
(
t, Z̃at − ζat

)
= −ϑt.

Therefore, we know by Lemma 4.1 that gw(t, Ẑwt − ζ̂wt ) =
∑

aw
aga(t, Z̃at − ζat ). This implies

that

dŶ w
t = −

[
gw
(
t, Ẑwt − ζ̂wt

)
−
〈
ζ̂wt , ϑt

〉]
dt+

〈
Ẑwt ,dWt

〉
= −g̃w

(
t, π̂wt , Ẑ

w
t

)
dt+

〈
Ẑwt ,dWt

〉
.

Second, by Lemma 4.1, we also know that ∇zgw
(
t, Ẑwt − ζ̂wt

)
= −ϑt.

Therefore, by Lemma 3.4, we obtain that (Ŷ w, Ẑw) is the solution to the minimized-risk
BSDE for an agent with preferences given by gw from (3.9), terminal condition −Hw, who
trades in S and B under the given MPR ϑ with π̂w as the optimal strategy.
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Proof of Theorem 4.5. The first part of the proof of the theorem, the optimization for the
representative agent, follows through arguments similar to those used in the single agent case;
see Theorem 3.2 and Remark 3.3. Hence we omit it.

Existence of the EMPR. Here we prove that θ∗ = (θS , θR), defined through (4.8), is indeed
an EMPR. Since θ∗ ∈ HBMO and the conditions of Theorem 3.5 hold, let (π∗,a)a∈A be the
unique unconstrained Nash equilibrium under the MPR θ∗, and let (Ỹ a, Z̃a) be the solution to
the minimized-risk BSDE for each agent a ∈ A. Our goal now is to prove that

∑
a π
∗,a,2 = 0.

Let us introduce (Ŷ w, Ẑw) :=
∑

aw
a(Ỹ a, Z̃a) and π̂w :=

∑
a c

aπ∗,a = c
∑

a π
∗,a. From

Lemma 4.8, π̂w and Ŷ w are the optimal strategy and risk for a single agent with risk preferences
encoded by gw trading S and B under θ∗ without trading constraints.

Meanwhile, we defined π∗,w = (π∗,w,1, 0) as the optimal strategy for an agent w with
preferences encoded by gw and who can only invest in S (with MPR θS). By construction of
θR, we have

∇zgw
(
t, Z̃wt − ζwt

)
= −θ∗t , where ζwt = π∗,w,1t σt.

It results from Lemma 3.4 that π∗,w is also the optimal strategy for an agent with preferences
gw and who can invest in S and B, with given MPR θ∗. By the uniqueness in Lemma 3.4
we therefore have π̂w = π∗,w. This implies in particular that

∑
a π
∗,a,2 = π̂w,2 = π∗,w,2 = 0.

We have therefore proved that the Nash equilibrium associated with θ∗ satisfies the zero net
supply condition, hence the constructed θ∗ is an EMPR.

Uniqueness of the EMPR. Assume that ϑ = (θS , ϑR) is also an EMPR and let (π∗,a,ϑ)a∈A
be the associated Nash equilibrium for which, by definition of EMPR, the zero net supply
condition

∑
a π
∗,a,ϑ,2 = 0 is satisfied. Let also (Ỹ a,ϑ, Z̃a,ϑ) be the solution to the minimized-

risk BSDE for each agent a ∈ A. As above, we define (Ŷ w,ϑ, Ẑw,ϑ) :=
∑

aw
a(Ỹ a,ϑ, Z̃a,ϑ)

and π̂w,ϑ :=
∑

a c
aπ∗,a,ϑ = c

∑
a π
∗,a,ϑ. By Lemma 4.8, we obtain that (Ŷ w,ϑ, Ẑw,ϑ) and π̂w,ϑ

are optimal for an agent w who trades in S and B under the given MPR ϑ for a single
agent economy. Consequently, using the characterization between the optimizer and the FOC
condition, we have

gwz1
(
t, Ẑw,ϑt − π̂w,ϑ,1t σt

)
= −θSt and gwz2

(
t, Ẑw,ϑt − π̂w,ϑ,1t σt

)
= −ϑRt ,

where π̂w,ϑ,2 = 0 as ϑ is an EMPR. By Lemma 4.7, the first equation guarantees that
(Ŷ w,ϑ, Ẑw,ϑ) and π̂w,ϑ are optimal for an agent with preferences gw who trades in S. By the
construction of (Ỹ w, Z̃w) and π∗,w (for the MPR θ∗), and the uniqueness recalled in Lemma
4.7, we have (Ŷ w,ϑ, Ẑw,ϑ) = (Ỹ w, Z̃w) and π̂w = π∗,w. As a consequence, we have from the
second FOC equation

−ϑRt = gwz2
(
t, Ẑw,ϑt − π̂w,ϑ,1t σt

)
= gwz2

(
t, Z̃wt − π

∗,w,1
t σt

)
= −θRt ,

hence the uniqueness of the EMPR θ∗.

From Theorem 4.5 we point out that θ∗ is only an MPR for the representative agent’s
economy as the representative agent trades in an incomplete market where she is not able to
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trade the risk from (Rt)—recall (2.1). Nonetheless, θ∗ is the only MPR leading to a complete
market for the agents where the Nash equilibrium they form satisfies the zero net supply
condition. We close this remark by adding that the representative agent approach for complete
market leads to Arrow–Debreu equilibria for the acting agents (see [37, 47] and references
therein).

Remark 4.9. In [59] a “weighted minimal convolution” of risk measures is introduced via

(∧
ρi

)
γ

(X) := inf

{
N∑
i=1

γiρi(Xi); X1, . . . , XN ∈ Lp,
N∑
i=1

Xi = X

}

(see p. 271, equation (11.25) in [59]) for γ = (γi) ∈ RN>0 and for some p ≥ 1.
Observe that aggregation in our context would not work without the dilation weights 1/wa

in the argument of the driver. This can be seen in Step 2 of the proof of Theorem 4.5. The
reason is that G̃a is the sum of ga with the strategies plugged in as arguments and of an
additional term with the strategies multiplied by the weights. For the aggregation as a single
strategy this adjustment is necessary.

4.2. A shortcut to the EMPeR in the case of entropic risk measures. In the previ-
ous subsection we gave a result on the existence and uniqueness of the EMPR via the inf-
convolution of the risk measures, for general preferences. In the particular case of the entropic
risk measure, the general computations are considerably simpler and an easier path allows us
to compute what the EMPeR θR is (if it exists) without the representative agent. Although the
BSDE for the representative agent derived above will appear in the following computations,
with only these computations one cannot show that the computed θ is indeed an EMPR.
This shorter path consists, as was hinted in section 3.3.4, in a direct linear combination of the
BSDEs (3.2) with the minimized driver G̃a given by (3.15).

Following the computations from section 3.3.5, we see that the market clearing condition
requires

0 =
∑
a∈A

π∗,a,2t =
∑
a∈A

1

1 + λ̃a

Z̃a,2t + γaθ
R
t

κRt
⇔ θRt = −

∑
a∈A

Z̃a,2t
(1+λ̃a)∑

a∈A
γa

(1+λ̃a)

= −
∑

a∈Aw
aZ̃a,2t

γR
,

if we define γR =
∑

a∈Aw
aγa, with wa = 1/(Λ(1+ λ̃a)) and Λ =

∑
a∈A 1/(1 + λ̃a). Notice that

here we do not need to normalize the family w = (wa) so that
∑

a∈Aw
a = 1, since we are not

considering an aggregated risk measure. Any rescaling Λ′ of w would give the same θR. We
present it in this way for consistency with the general case.

Now, replacing the term θR by the above value in the minimized driver given by (3.15),
we find that the optimal risk processes for each agent solve the BSDEs with driver given by

G̃a
(
t, Z̃A

t

)
= −γa

2

(
θSt
)2 − Z̃a,1t θSt +

1

γR
Z̃a,2t

(∑
b∈A

wbZ̃b,2t

)
− γa

2γ2R

(∑
b∈A

wbZ̃b,2t

)2

.(4.10)

The BSDEs with these drivers form a system of N coupled BSDEs with quadratic growth,
which, in general, are difficult to solve; see [22], [21], [27] or more recently [26], [49]. Fortunately,
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one can take advantage of the structure of (4.10) and find a simpler BSDE for the process
(Ŷ w, Ẑw) =

∑
a∈Aw

a(Ỹ a, Z̃a). It is easily seen that Ŷ w
T = −

∑
a∈Aw

a(Ha+nHD/N) = −Hw,
as in (4.5). Linearly combining the BSDEs (3.2) with drivers expressed as in (4.10), we find

−dŶ w
t =

[
−γR

2

(
θSt
)2 − Ẑw,1t θSt +

1

2γR

(
Ẑw,2t

)2]
dt−

〈
Ẑwt ,dWt

〉
with Ŷ w

T = −Hw.

(4.11)

This is exactly the same BSDE as in Example 4.6. Given that Hw and θS are bounded, this
BSDE falls in the standard class of quadratic growth BSDE and the existence and uniqueness
of (Ŷ w, Ẑw) is easily guaranteed. This allows one to compute θR as −Ẑw,2/γR and in turn
one can finally solve the BSDEs giving the minimized-risk processes for each agents, using the
driver G̃a as given by (3.15).

Remark 4.10 (no trade-off between risk tolerance and performance concern rate). Each agent’s
individual preferences are specified by the parameters γa and λa, i.e., risk tolerance and per-
formance concern, respectively. One may ask whether a parametric relation between those
parameters exists such that an agent with (γa, λ

a) and another agent with (γb, λ
b) would ex-

hibit the same behavior and have the same optimal strategies. Indeed, in most formulas the
two parameters appear as coupled. However, one can see that the terminal condition Hw is
independent of the risk tolerance parameter γ·; hence by changing λa and γa of any one fixed
agent a ∈ A, one cannot obtain the same outcome.

5. Further results on the entropic risk measure case. In this section we investigate
further the entropic case. We introduce a structure that allows us to use the theory developed
in the previous section and, moreover, to design HD such that Assumption 3.1 holds true.
The ultimate goal of this section is to understand how the concern rates λ affect prices and
risks. The first two parts of the section verify that Assumption 3.1 holds, and the third sheds
light on the behavior of the aggregated risk and derivative price as the parameters vary.

We now make further assumptions (commented below) on the structure of the random
variables introduced section 2. Namely, we assume that the endowments Ha for a ∈ A and
the derivative HD have the form

Ha = ha(ST , RT ) and HD = hD(ST , RT )(5.1)

for some deterministic functions h·. This structure for the derivative and endowments is in-
terpreted as each agent receiving a lump sum at maturity time T .

To ease the analysis we will assume throughout a Black–Scholes market (i.e., µS , σS are
constants). Such an assumption is not strictly necessary for the results we obtain here, but
we wish to focus on the qualitative analysis and not on obfuscating mathematical techniques.
Throughout the rest of this section the next assumption holds.

Assumption 5.1. Let Assumption 2.1 hold. Let σS ∈ (0,∞) and µR, µS ∈ R (and hence
also θS ∈ R). For any a ∈ A the functions hD, ha ∈ C1

b (R2;R) are strictly positive, and
their derivatives are uniformly Lipschitz continuous w.r.t. the nonfinancial risk and satisfy
(∂x2h

D)(x1, x2) 6= 0 for any (x1, x2) ∈ R× R.

D
ow

nl
oa

de
d 

10
/1

2/
18

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EQUILIBRIUM PRICING UNDER RELATIVE PERFORMANCE CONCERNS 463

The assumption concerning the strict positivity of the involved maps or that ∂x2h
D 6= 0

is the key in proving that Assumption 3.1 is indeed verified for the example we present. The
assumption on the form of Ha and HD reduces the BSDE to the Markovian case, giving
us access to the many existing BSDE regularity results, which we will use below in their full
scope. It would be possible (this is left open to future research) to remain in the non-Markovian
setting of general FT -measurable HD and Ha and use the link between non-Markovian BSDE
and path-dependent PDEs (see, e.g., [18]). Indeed, tools on general Malliavin differentiability
of BSDE solutions in the non-Markovian setting can be found in [4] or in more generality in
[15, 53].

We recall that our goal, in the example below, is to analyze the impact of the parameters
λ·, n, γ· on the risk processes (single and representative agent), derivative price process, and
EMPeR.

Remark 5.2 (on notation for the section). In this section we work mainly with the repre-
sentative agent BSDE (see Example 4.6 or (4.11)) and the derivative price BSDE (3.21).

To avoid a notation overload in what the BSDE for the representative agent is concerned,
we drop the tilde notation and define (Y w, Zw) as the solution to the mentioned BSDE, not
to be confused with (4.3), which plays no role here. The solution to the derivative price BSDE
is denoted by (B, κ).

5.1. The aggregated risk. The BSDE (4.11) is not difficult to analyze given the existing
literature on BSDEs of quadratic growth. Recall that θS ∈ S∞ and Y w

T ∈ L∞ (since it is
a weighted sum of bounded random variables). We shortly recall that D1,2 is the space of
first-order Malliavin differentiable processes and D denotes the Malliavin derivative operator;
we point the reader to Appendix A.1 for further Malliavin calculus references.

Theorem 5.3. The BSDE (4.11) has a unique solution (Y w, Zw) ∈ (S∞∩D1,2)× (HBMO∩
D1,2). Moreover, there exists a strictly negative function uw ∈ C0,1([0, T ] × R2,R) such that
for any t ∈ [0, T ]

Y w
t = uw(t, St, Rt) and Zw,2t = (∂x2u

w)(t, St, Rt)b, P-a.s.

(i) For any r, u ∈ [0, t], t ∈ [0, T ] it holds that

DWR

u Y w
t = DWR

r Y w
t P-a.s. and DWR

u Zwt = DWR

r Zwt P⊗ Leb-a.e.

and in particular DWR

t Yt = Zwt P-a.s. for any t ∈ [0, T ].
(ii) There exists a constant C > 0 such that |Zw,2t | ≤ C for any t ∈ [0, T ], i.e., Zw,2 ∈ S∞

and ∂x2u
w ∈ Cb. Moreover, θR ∈ S∞.

(iii) The process DWR

· Zw belongs to HBMO.

Proof. Let a ∈ A and 0 ≤ u ≤ t ≤ T . Existence and uniqueness of the SDEs (2.1) and
(2.2) follow from Proposition A.3.

By assumption we have Y w
T ∈ L∞ and θS ∈ S∞, which allows us to quote Theorem 2.6 in

[41] and hence that (Y w, Zw) ∈ S∞×HBMO. Moreover, given that Y w
T < 0, a strict comparison

principle for quadratic BSDEs (see, e.g., [52, Property (5)]) yields easily that Y w
t < 0 for any

t ∈ [0, T ] and hence that uw < 0.
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Proposition A.3 ensures that the payoffsHD andHa, and henceHw, are Malliavin differen-
tiable with bounded Malliavin derivatives. Combining this further with θS ∈ R, the Malliavin
differentiability of (4.11) follows from Theorem 2.9 in [41]. Under Assumption 5.1 the results
in [41] (or Chapter 4 of [15]) along with Theorem 7.6 in [4] yield the Markov property for Y w

and the parametric differentiability result for the (quadratic) BSDE.
Proof of (i). Since uw ∈ C0,1 by direct application of the Malliavin differential we have for

0 ≤ u ≤ t ≤ T
DWR

u Y w
t = DWR

u

(
uw(t, St, Rt)

)
= (∂x2u

w)(t, St, Rt)(D
WR

u Rt) = (∂x2u
w)(t, St, Rt)b = DWR

t Y w
t .

It now follows that DWR

t Y w
t = DWR

u Y w
t = Zwt for any 0 ≤ u ≤ t ≤ T P-a.s.

Proof of (ii). Define now the probability measure Q (equivalent to P) as

dQ
dP

= E

(
−
∫ T

0

〈(
θSs ,−

Zw,2s

γR

)
, dWs

〉)
.(5.2)

The measure Q is well defined since θS ∈ S∞ and Zw,2 ∈ HBMO. Then for 0 ≤ u ≤ t ≤ T we
have (Theorem 2.9 in [41])

DWR

u Y w
t = DWR

u Y w
T +

∫ T

t

[
−θSsDWR

u Zw,1s +
1

γR
Zw,2s DWR

u Zw,2s

]
ds−

∫ T

t

〈
DWR

u Zws , dWs

〉(5.3)

⇒ DWR

u Y w
t = EQ

[
DWR

u Y w
T |Ft

]
.

The results in Proposition A.3 and the definition of Y w
T imply that |DWR

u Y w
t | < C. Path

regularity results for BSDEs along with their usual representation formulas (see [41]) yield

that (DWR

t Yt) = (Z2
t ) ∈ S∞; the boundedness of ∂x2u

w follows in an obvious way. As a
consequence, θR ∈ S∞ since Zw,2 ∈ S∞ and (4.9) holds.

Proof of (iii). Using now the fact that θS , Zw,2 ∈ S∞, we apply Theorem 2.6 in [41] to

(5.3) and obtain that DWR

· Zw ∈ HBMO. The BMO norm of DWR
Zw depends only on some

real constants and T , γR, supu ‖DWR

u Y w
T ‖L∞ , and ‖(θS , Zw,2)‖S∞×S∞ (see again Theorem 2.6

in [41]).

In the next result we show that the mapping x2 7→ (∂x2u
w)(t, x1, x2) is Lipschitz. Denote

by R and R̃ the solutions to (2.1) with R0 = r0 and R0 = r̃0 respectively; denote as well
by (Y,Z) and (Ỹ , Z̃) the solutions to BSDE (4.11) for the underlying processes R and R̃,
respectively.

Proposition 5.4. For any (t, x1) ∈ [0, T ] × R the map R 3 x2 7→ (∂x2u
w)(t, x1, x2) is Lip-

schitz continuous uniformly in t and x1. In particular the process DWR
Zw is P-a.s. bounded.

Proof. Let 0 ≤ u ≤ t ≤ T and define δDY := DWR
Y w −DWR

Ỹ w, δDZi := DWR
Zw,i −

DWR
Z̃w,i for i ∈ {1, 2} and (intuitively) δDZ := (δDZ1, δDZ2). Then, following from (5.3)

written under Q from (5.2), we have

δDuYt = δDuYT −
∫ T

t
〈δDuZs, dW

Q
s 〉+

∫ T

t

1

γR

(
Zw,2s − Z̃w,2s

)
DWR

u Zw,2s ds.
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Define now the process

et := exp

{∫ t

0

1

γR
DWR

u Zw,2s ds

}
, t ∈ [0, T ] with (et) ∈ Hp ∀p > 1,(5.4)

where the Hp integrability of (et) follows from Lemma A.1. Observe next that by the results of
Theorem 5.3 one has δDuYt = δDtYt = Zw,2t −Z̃w,2t . Applying Itô’s formula to (etδD·Yt), using
the just mentioned identity, and taking Q-conditional expectations it follows at u = t = 0
that

|(∂x2uw)(0, s0, r0)− (∂x2u
w)(0, s0, r̃0)| =

1

b

∣∣∣(Zw,20 − Z̃w,20

)∣∣∣ =

∣∣∣∣1bEQ [eT δD0YT ]

∣∣∣∣ ≤ C|r0 − r̃0|.
The last line is a consequence of Proposition A.3 combined with the fact that EQ[epT ] (for

all p > 1) is finite due to the BMO properties of DWR
Zw,2; see Lemma A.1. The constant

C is independent of u, r0, r̃0, and s0. Although DWR
Zw,2 is a BMO martingale under P, the

integrability still carries under Q; this is the same argument as in the final step of the proof
of Lemma 3.1 in [41] (see also Lemma 2.2 and Remark 2.7 of the cited work).

The extension of the above result to the whole time interval [0, T ] follows via the Markov
property of the BSDE solution. This relates to the close link between BSDEs of the Markovian
type and certain classes of quasi-linear parabolic PDEs (see, e.g., section 4 in [19]).

Finally, the boundedness of DWR
Zw follows from the Lipschitz property of x2 7→ (∂x2u

w)

(·, ·, x2) and the boundedness of DWR
R; see Proposition A.3(ii).

5.2. The EMPR and the derivative’s BSDE. We next show that Assumption 5.1 implies
Assumption 3.1 holds for the model with entropic risk.

Theorem 5.5 (market completion). The derivative HD completes the market, i.e., κR 6= 0
P-a.s. for any t ∈ [0, T ]. Moreover, κR ∈ S∞ and sgn(κRt ) = sgn(b∂x2h

D) for any t ∈ [0, T ].

Before proving the above result we need an intermediary one. Recall that BSDE (3.21)
describes the dynamics of the price process Bθ, that HD ∈ L∞ and θ ∈ S∞ × (HBMO ∩D1,2)
(following from Assumption 5.1 and Theorem 5.3).

Proposition 5.6. The pair (B, κ) belongs to (S∞∩D1,2)×(HBMO∩D1,2) and their Malliavin
derivatives satisfy for 0 ≤ u ≤ t ≤ T the dynamics

DWR

u Bθ
t = DWR

u HD −
∫ T

t
κRs D

WR

u θRs +
〈
θs, D

WR

u κθs

〉
ds−

∫ T

t

〈
DWR

u κθs, dWs

〉
.(5.5)

The representation DWR

t Bθ
t = κRt holds P-a.s. for any 0 ≤ t ≤ T .

Proof. Let 0 ≤ u ≤ t ≤ T . Observe that BSDE (3.21) is a BSDE with a linear driver
and a bounded terminal condition. The existence and uniqueness of a solution follow from the
results of [19]. Moreover, the estimation techniques used in [41] yield that (B, κ) ∈ S∞×HBMO

(see Theorem 2.6 in [41]). The Malliavin differentiability of (B, κ) follows from Proposition
5.3 in [19] and the remark following it since (θS , θR) ∈ R × (S∞ ∩ D1,2) (see Theorem 5.3).

The quoted result and Proposition A.3 yield (5.5) for DWR
Bθ. Moreover, from Theorem 2.9

in [41] we have limu↗tD
WR

u Bθ
t = κRt for 0 ≤ u ≤ t ≤ T P⊗ Leb-a.e.
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We now prove a finer result on B and κ, namely, that DWR

t Bθ
t = κRt holds P-a.s. for any

0 ≤ t ≤ T instead of just P⊗Leb-a.e. This is done by showing that (u, t) 7→ DWR

u Bθ
t is jointly

continuous.
Note that the map t 7→ DWR

u Bθ
t for u ≤ t is given by (5.5) and hence it is continuous

in time (for all t ∈ [u, T ]). Note now that Propositions 5.4 and A.3 yield that DWR
Zw,2 is

bounded and DWR

u Zw,2t = DWR

r Zw,2t = DWR

0 Zw,2t for any 0 ≤ u, r ≤ t ≤ T . These properties
hold as well for θR via the identity −γRθR = Zw,2.

Using the measure Pθ (introduced in (2.3)) that DWR
θS = 0 and the identity −γRθR =

Zw,2, one can rewrite (5.5) as

DWR

u Bθ
t = DWR

u HD +
1

γR

∫ T

t
κRs D

WR

u Zw,2s ds−
∫ T

t

〈
DWR

u κθs, dW
θ
s

〉
.(5.6)

Writing the same BSDE as above, but for a parameter v (instead of u) we have

DWR

v Bθ
t = DWR

v HD +
1

γR

∫ T

t
κRs D

WR

v Zw,2s ds−
∫ T

t

〈
DWR

v κθs, dW
θ
s

〉
= DWR

u HD +
1

γR

∫ T

t
κRs D

WR

u Zw,2s ds−
∫ T

t

〈
DWR

v κθs, dW
θ
s

〉
,

where we used the results of Proposition A.3. Since the solution to (5.6) is unique and the
BSDE just above has exactly the same parameters as (5.6), we must conclude that for any

t ∈ [0, T ] and for 0 ≤ u, r ≤ t it holds that DWR

u Bθ
t = DWR

r Bθ
t . From the continuity of

t 7→ DWR

· Bθ
t follows now the joint continuity of (u, t) 7→ DWR

u Bθ
t in its time parameters and

hence the representation DWR

t Bθ
t = κRt holds P-a.s. for any 0 ≤ t ≤ T .

We can now prove Theorem 5.5.

Proof of Theorem 5.5. We proceed in the same way as in the proof of Proposition 5.4.
The argument goes as follows: define the process (et) just like in (5.4); apply Itô’s formula to

(etD
WR

· Bθ
t ) and write the resulting equation under Pθ (just like (5.6)); take Pθ conditional

expectations. At this point a remaining Lebesgue integral is still in the dynamics:

DWR

u Bθ
t = (et)

−1Eθ
[
eTD

WR

u HD +
1

γR

∫ T

t
es

(
κRs −DWR

u Bθ
s

)
DWR

u Zw,2s ds|Ft
]

= (et)
−1Eθ

[
eTD

WR

u HD|Ft
]
,

where from the first to the second line we used Proposition 5.6, i.e., that κRs = DWR

s Bθ
s =

DWR

u Bθ
s P-a.s. for any 0 ≤ u ≤ s ≤ T .

Recalling HD = hD(ST , RT ) and the dynamics of R given by (2.1), we see that (by the

chain rule) DWR

u HD = b∂x2h
D. Since b∂x2h

D is either always positive or always negative and

since κRt = DWR

t Bθ
t P-a.s. for any t ∈ [0, T ], it follows that κR 6= 0 P-a.s. for all t ∈ [0, T ].
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More precisely, depending on the sign of b∂x2h
D, κR is P-a.s. either always positive or always

negative,5 giving sgn(κR· ) = sgn(b∂x2h
D).

5.3. Parameter analysis. It is possible to justify at a theoretical level some of the pre-
dictable behavior of the processes Y w, Bθ, and θR with relation to the problem’s parameters:
n, γR, λa, and γa for a ∈ A.

Theorem 5.7. Let θ be the EMPR. The process (Y w, Zw) solving BSDE (4.11) is differen-
tiable with relation to λa for any a ∈ A, n and γR (see (4.4) and (4.6)).

Fix agent a ∈ A. If the differences

γR − γa and Eθ
[(∑

b∈A
wbHb

)
−Ha

]
(5.7)

are positive (negative, respectively), then ∂
λ̃a
Y w
t is negative (positive, respectively) for any

t ∈ [0, T ].
For any a ∈ A we have P-a.s. that

∂γRY
w
t < 0, ∂γaY

w
t < 0 ∀t ∈ [0, T ).

Furthermore, P-a.s

∂nY
w
t < 0, sgn(∂nθ

R
t ) = sgn(b∂x2h

D) ∀t ∈ [0, T ] and ∂nB
θ
t < 0 ∀t ∈ [0, T ).

Part of the results are in some way expected. Introducing more derivatives leads to an overall
risk reduction, and as more derivatives are placed in the market, the derivative is worth less
(per unit). If γR is interpreted as the representative agent’s risk tolerance, then as γR increases
we have a decrease in risk (Y w decreases) since it represents an increase in the single agents’
risk tolerance (i.e., γa ↗).

The main message of the above theorem is that the effect of the performance concern of
one agent on the aggregate risk depends essentially on how the agent is positioned with respect
to the others, in terms of both risk tolerance as well as the personal endowments. If the agent’s
risk tolerance γa is higher than the aggregate risk tolerance γR and her endowment position
dominates by the aggregate endowment position, then an increase in the agent’s concern rate
leads to an increase of the aggregate risk.

Before proving the above result we remark that condition (5.7) simplifies under certain
conditions; such simplifications are summarized in the below corollary. All results follow by
direct manipulation of the involved quantities.

Corollary 5.8. Let the conditions of Theorem 5.7 hold.
If γa = γ for all a ∈ A, then γR − γa = γ

(∑
aw

a − 1
)

= 0.
If N = 2, then wa + wb = 1⇔ wb = 1− wa and hence(∑
c∈A

wcHc

)
−Ha = −wb(Ha −Hb) and

(∑
c∈A

wcHc

)
−Hb = wa(Ha −Hb).

5For any positive random variable X (X > 0 P-a.s.) one has EP[X|F ] > 0 for any sigma-field F . Since
the measure change is done for a strictly positive density function, the inequality for the new conditional
expectation is still strict.
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Similarly γR − γa = −wb(γa − γb) and γR − γb = wa(γa − γb). Moreover, it holds that

sgn (∂λaY
w
t ) = −sgn (∂λbY

w
t ) P-a.s. for any t ∈ [0, T ].(5.8)

Proof of Theorem 5.7. Let a ∈ A and t ∈ [0, T ]. Theorem 3.1.9 in [15] (see also Theorem
2.8 in [41]) ensures the differentiability of BSDE (4.11) with respect to γR, γa, λ

a, and n.
The derivative of Y w in γR. Applying ∂γR to BSDE (4.11) and writing it under the

probability measure Q defined in (5.2) yields the dynamics

∂γRY
w
t = 0 +

∫ T

t

[
−1

2

(
θSs
)2 − 1

2γ2R

(
Zw,2s

)2]
ds−

∫ T

t

〈
∂γRZ

w
s , dW

Q
s

〉
.

Taking Q-conditional expectations and noticing that the Lebesgue integral term is strictly
negative for any t ∈ [0, T ), we have then ∂γRY

w
t < 0 for any t ∈ [0, T ).

The derivative of Y w in γa. This case follows from the previous one as γR is defined by
(4.4) and the weights w· (see (4.6)) are independent of γ·.

γR :=
∑
a∈A

waγa implies ∂γaγR = wa > 0,

and finally ∂γaY
w = ∂γRY

w · ∂γa(γR). The statement follows.

The derivatives of Y w in λ̃a. We compute only the derivatives with respect to λ̃a in order
to present simplified calculations as λ̃a := λa/(N − 1). Calculating the involved derivatives
leads to

∂
λ̃a

1

1 + λ̃a
= −(Λwa)2, ∂

λ̃a
1

Λ
= (wa)2, ∂

λ̃a
wa = (wa)2Λ(wa − 1), ∂

λ̃a
wb = (wa)2Λwb,

∂
λ̃a
γR = ∂

λ̃a

∑
b∈A

wbγb = (wa)2Λ(γR − γa), and ∂
λ̃a
Hw = (wa)2Λ

((∑
b∈A

wbHb

)
−Ha

)
.

Combining the above results with the BSDE for ∂
λ̃a
Y w under the Q-measure (just as in the

previous two steps) yields

∂
λ̃a
Y w
t = −(wa)2ΛEQ

[((∑
b∈A

wbHb

)
−Ha

)
+ (γR − γa)

∫ T

t

[
1

2
(θSs )2 +

1

2γ2R

(
Zw,2s

)2]
ds

∣∣∣∣Ft
]
.

Since Q is equivalent to P, the statement follows.
The derivative of Y w in n. Applying ∂n to BSDE (4.11) and writing it under the probability

measure Q defined in (5.2) yields the dynamics

∂nY
w
t = ∂nY

w
T −

∫ T

t
〈∂nZws ,dWQ

s 〉 ⇒ ∂nY
w
t = EQ[∂nY

w
T |Ft] = −EQ[HD|Ft]

N

∑
a∈A

wa < 0,

where the last sign follows from the definition of Y w
T and HD.
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The derivative of θR in n. The analysis of Zw,2 and hence of θR with respect to n and γR
follows from the analysis of (5.3). Given representation (4.9), applying ∂n to BSDE (5.3) and
writing it under the probability measure Q defined in (5.2) yields the dynamics

∂nD
WR

u Y w
t = ∂nD

WR

u Y w
T −

∫ T

t
〈∂nDWR

u Zws , dW
Q
s 〉+

∫ T

t

[
1

γR
DWR

u Zw,2s ∂nZ
w,2
s

]
ds

⇔ ∂nZ
w,2
t = ∂nD

WR

u Y w
T −

∫ T

t
〈∂nDWR

u Zws ,dW
Q
s 〉+

∫ T

t

[
1

γR
DWR

u Zw,2s ∂nZ
w,2
s

]
ds

⇔ ∂nZ
w,2
t = (et)

−1EQ
[
eT∂nD

WR

u Y w
T |Ft

]
,

where (et) is as in (5.4) and the argumentation is similar to that back there. Notice now that
with the terminal condition YT = −

∑
a∈Aw

a(Ha + nHD/N) we have

∂nD
WR

t Y w
T = − 1

N

(∑
a∈A

wa

)
DWR

t HD = − 1

N

(∑
a∈A

wa

)
b(∂x2h

D)(ST , RT ).

Given Assumption 5.1, we are able to conclude that sgn(Zw,2t ) = −sgn(b∂x2h
D) and hence

from (4.9) that sgn(∂nθ
R
t ) = sgn(b∂x2h

D).
The derivative of Bθ in n. We use justifications similar to those used in Proposition 5.6

and hence we do not give all the details. Recall (3.21), apply the ∂n-operator to the equation,
and do the usual change of measure (with Pθ) to obtain

∂nB
θ
t = 0−

∫ T

t
κRs ∂nθ

R
s ds−

∫ T

t
〈∂nκθs,dW θ

s 〉 ⇒ ∂nB
θ
t = −Eθ

[∫ T

t
κRs ∂nθ

R
s ds

]
.

By the previous result we have sgn(∂nθ
R
t ) = sgn(b∂x2h

D) and from Theorem 5.5 we have
sgn(κRt ) = sgn(b∂x2h

D). It easily follows that ∂nB
θ
t < 0.

Unfortunately the conditions used above do not allow for similar results on the behavior of,
say, γR 7→ θR or (γR, n, λ) 7→ Ỹ a. The conditions required for such results are too restrictive
to be of any usefulness. Nonetheless, we will investigate them in section 6 via numerical
simulation.

6. Study of a particular model with two agents. In this section, we investigate a model
economy consisting of two agents using entropic risk measures and having opposed exposures
to the external nonfinancial risk. We give particular attention to the impact of the relative
performance concern rates on the equilibrium related processes. The model is simple enough
to allow extended tractability, when compared with sections 3, 4, and 5, and nonetheless
still sufficiently general as to produce a rich set of results and interpretations. In particu-
lar, we explicitly describe the structure of the equilibrium. Using numerical simulations, we
are able to explore the dependence of individual quantities (such as the optimal portfolios
π∗a and minimized risks Y a

0 ) on the various parameters, thus complementing the results in
Theorem 5.7.
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6.1. The particular model and numerical methodology. We consider a stylized market
consisting of two agents. We argue that a larger set of N agents with certain exposures to the
external risk R can be clustered in two groups, those profiting from the high values of R and
those profiting from the low values of R, and we can apply the weighted aggregation technique
used in section 4 to each group. Our two agents can therefore be thought of as representative
agents for each group. The external risk process is taken to be the temperature affecting the
two agents, who also have access to a stock market.

Temperature and stock models. We study one period of one month (T = 1). We study
one period of T = 1 month where the temperatures follow an SDE (2.1) with constant coeffi-
cients,

Rt = r0 + µR t+ bWR
t ,

and for the stock we take a standard Black–Scholes model,

dSt
St

= µSdt+ σSdWS
t ,

where the coefficients are r0 = 18, µR = 2, and b = 4 for the temperature process and S0 = 50,
µS = −0.2, and σS = 0.25 (so θS = µS/σS = −0.8) for the stock price process.

Agents’ parameters, endowments, and the derivative. Define I(x) := 1
π arctan(x)+ 1

2 ∈
[0, 1]. The agents’ endowments, Ha and Hb, are taken to be

Ha = 5 + I
(
2
(
RT − 24

))
· 15,

Hb = 5 + I
(
2
(
16−RT

))
·
(
15 + 5 I

(
ST − 40

))
.

Agent a profits from higher temperatures while agent b profits from lower ones. The derivative
has a payoff HD that does not depend on the stock S, and is given by

HD = I(RT − 20),

so that it allows to transfer purely the external risk. All functions satisfy Assumptions 2.1 and
5.1. Given the agents’ opposite exposures to RT and the design of HD, agent a will act as a
seller while agent b will act as the buyer, thus establishing a viable market for the derivative.

We assume throughout that the total supply of derivative is zero, n = 0, i.e., every unit of
derivative one agent owns is underwritten by the other. The risk tolerance coefficients of the
agents are fixed at γa = γb = 1 unless we are analyzing some behavior with respect to them.
Similarly, unless otherwise specified, the concern rates are fixed to be λa = λb = 0.25 unless
we are analyzing some behavior with respect to them.

The numerical procedure. The simulation of the processes involves a time discretization
and Monte Carlo simulations. We use directly the forward processes’ explicit solutions; all
BSDEs are solved numerically. Regarding their time discretization, we use a standard back-
ward Euler scheme (see [8]), and we complement the time-discretization procedure with the
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control variate technique stated in section 5.4.2 of [50]. The approximation of the conditional
expectations in the backward induction steps is done via projection over basis functions; see
the least-squares Monte Carlo method used in [33].

We follow sections 3 and 4. First, we solve the representative agent’s BSDE (4.11). This
yields via (4.9) the EMPeR process θR. Once this is obtained, we solve the BSDE for the
price Bθ of the derivative, (3.21), obtaining (κS , κR) in the process. Finally, we solve the
BSDE (3.23) with driver (3.15) for each agent a ∈ A and compute the optimal strategies
π∗,a = (π∗,a,1, π∗,a,2) via (3.16) and (3.17). We note that in the case of two agents, the system
(3.16) is easily inverted.

All plots are computed using 200, 000 simulated paths along a uniform time-discretization
grid of 20 time-steps, except the plot of Figure 1, which uses 30 time-steps.

6.2. Analysis of the behavior in the model. Figure 1 shows a realization of the behavior
of the agents over the trading period. One can see that the price of the derivative moves
like the temperature, and in particular it is never constant (over a time interval where the
temperature has changed). This means that the derivative does indeed complete the market by
providing the agents full exposure to R, or equivalently to WR—Assumption 3.1 is satisfied.
Agent b is always long in the derivative and a always short (the latter following from the
former since her position is the opposite of that of b). The fact that both agents only go short
in the stock is due to its decreasing trend (θS < 0) and the fact that the endowments depend
little on S: it is in mainly an optimal investment in the stock that is observed. However, agent
b’s endowment is higher for lower stock prices, hence she does not go as short in the stock as
agent a, to hedge this variability.
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time
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,2ag. a

ag. b

Figure 1. Sample paths of the several processes. Stock price on the top left, the temperature and the derivative
price on the top right, the investment strategy in the stock on the bottom left, and that in the derivative on the
bottom right, for each agent. Here λa = 0.25 and λb = 0.0.

D
ow

nl
oa

de
d 

10
/1

2/
18

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

472 JANA BIELAGK, ARNAUD LIONNET, AND GONÇALO DOS REIS

Trading activity. The optimal investment strategies for the derivative were seen in section
3.3.6 and are given by

π∗,a,2 =
1

1 + λa
Z̃a,2 + γaθ

R

κR
and π∗,b,2 =

1

1 + λb
Z̃b,2 + γbθ

R

κR
.

The optimal investment strategies in the stock follow easily by inverting A2 from (3.12). This
yields

 π
∗,a,1

π∗,b,1

 =


1

1− λaλb
λa

1− λaλb
λb

1− λaλb
1

1− λaλb



Z̃a,1 + γaθ

S

σSS
− Z̃a,2 + γaθ

R

κR
κS

σSS

Z̃b,1 + γbθ
S

σSS
− Z̃b,2 + γbθ

R

κR
κS

σSS

 .
Remark 6.1 (on the structure of the equilibrium). The structure of the optimal strategy

in the stock’s investment is clear in view of the examples treated in section 3.3. Each agent
computes her strategy as a weighted sum of the way both would compute their strategy as
if there were no relative performance concern (compare with section 3.3.3), using the weights

( 1
1−λaλb ,

λa

1−λaλb ) for a and ( λb

1−λaλb ,
1

1−λaλb ) for b.
These weights can be understood from (3.16) with A = {a, b}: each agent’s best response

is to invest in the stock according to her natural strategy plus λi times the strategy played by
the other. Assume now that each agent was initially planning to compute her optimal position
using

π(0),i,1 =
Z̃i,1 + γiθ

S

σSS
− Z̃i,2 + γiθ

R

κR
κS

σSS
, i ∈ {a, b} ,

and that they are shown, in turn, the strategy that the other is about to play, so that they
can update theirs, yielding a sequence of strategies π(1),a,1, π(1),b,1, π(2),a,1, π(2),b,1, π(3),a,1, . . .
for each agent (starting with a’s update). Because they both update their strategy according
to (3.16), we observe agent a imitating part of agent b, imitating part of agent a, imitating
part of agent b, etc. Summing the corresponding series, agent a ends up investing according
to
∑

n(λaλb)n π(0),a,1 + λa
∑

n(λaλb)nπ(0),b,1, and similarly for b.
The structure of the optimal investment in the derivative is much different, following

fundamentally from the endogenous trading condition. If an agent is shown the strategy that
the other had decided to follow, she could not unilaterally change her strategy. From this
emerges the EMPeR θR—see below.

We now look at the behavior of the individual portfolios with respect to the rates of
relative performance concern. The intensity of the trading activity at time t = 0 on both the
stock (π∗,a,10 ) and the derivative (π∗,a,20 ) as maps of the concern rates λa, λb can be found in
Figure 2. The positions of agent b are similar in some sense: for the stock, the surface looks
very similar; for the derivative, it is the exact opposite (due to the zero net supply condition).
For readability we plot only the position of agent a.
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Figure 2. Initial number πa,10 and πa,20 of shares of stock (left) and derivative (right) held by agent a, as a
function of (λa, λb). For visualization purposes the axes on the left picture were inverted.

The observed behavior in Figure 2 is in line with the intuitive idea that the more the
agents are concerned (high λi) with their relative performance V i

T − V
j
T , j 6= i ∈ {a, b} (recall

(1.1)), the more they will invest in a way that neutralizes this source of risk. This is done by
adopting a trading strategy that is as close as possible to that of the other agent.

For the stock, we see from the formulas in Remark 6.1 that when λaλb < 1, the process
of a imitating b imitating a, etc., results in a finite position. But the volume increases with
both λa and λb and explodes as (λa, λb)→ (1, 1). In our example they would both (short-)sell
infinitely many shares of the stock. Note that this is possible only because the stock is assumed
to be exogenously priced and perfectly liquid. For the derivative, they cannot imitate each
other and position themselves in the same direction, as the zero net supply condition implies
that the agents must hold exactly opposite positions. Agent b’s gains on trading the derivative
will be exactly agent a’s losses. The only way to reduce the difference in performances for a
very concerned agent is to engage less (in volume) in the trading of the derivative. The market
clearing condition then forces the other agent to also trade less (in volume). This is seen from
the factor 1/(1+λi) in the formulas in Remark 6.1 and is confirmed in Figure 2 (on the right),
where agent a, identified as the seller, ends up selling fewer units of the derivative as either
concern rate increases. Due to the market clearing condition between the agents, no explosion
is possible.

Price of the derivative. Figure 3 shows an opposite dependence of the derivative’s price
Bθ

0 on the concern rates λa, λb, a behavior not captured by Theorem 5.7. One can make sense
of this effect by having in mind Figure 2. A higher λa implies that agent a wants to trade
less and, as she is the seller, this drives the price up. Symmetrically, a higher λb implies that
agent b wants to trade less and, as she is the buyer, this drives the price down.

Aggregated risk. Figure 4 confirms the analytical results of Theorem 5.7. First note that
γa = γb = 1 and so condition (5.7) simplifies (see Corollary 5.8). As predicted, the increase of
the risk tolerances lead to a decrease in the aggregated risk (see Figure 4, left picture). The
picture on the right shows clearly the cross behavior stated in (5.8).
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Figure 3. Initial price of the derivative, Bθ0 , as map of (λa, λb) on the left and as map of (γa, γb) on the right.
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Figure 4. Aggregated risk Y w0 as a function of (γa, γb) (left) and of (λa, λb) (right).

Risk of each agent. Theorem 5.7 does not capture the behavior of each agent’s risk assess-
ment as a function of the concern rates λ·. Figure 5 portrays the risk perceptions of each agent
as λa, λb change. Agent a’s risk Y a

0 increases in λb and decreases in λa. A possible explanation
for the latter behavior (Y a

0 decreases with λa) from the perspective of, say, a and having (1.1)
or (2.7) in mind is as follows. If a gives more importance to her relative performance concern,
then she weighs the term V a

T − V b
T more than the hedging of the random endowment or the

optimization of the personal performance and trades in a way that mimics more of what b
does. The net result of this seems to be the ability to neutralize more of the performance risk
(as a fluctuation around the mean) and less ability to neutralize the endowment risk. The
former apparently carries more weight as Y a

0 does indeed decrease with λa.
The explanation of the first behavior (Y a

0 increases with λb) seems more direct. As λb

increases, agent b engages in less trading of the derivative in order to reduce her relative
performance concern, and this affects agent a, in particular her ability to hedge Ha.
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Figure 5. Risk Y a0 (left) and Y b0 (right) as a function of (λa, λb).

6.3. Effect of introducing the derivative. We now comment on the effects of introducing
the derivative in this model market. Figure 6 displays the risks of the representative agent
and of agent a with respect to λa and λb when no derivative is available and when a market
for it is available.

We observe in the plot on the right that adding the derivative does not change the aggre-
gated risk. This is clear if one views it as the risk of the representative agent: being alone by
construction, the zero net supply condition means that she must keep a zero position in the
derivative and hence does not benefit from its presence (compare the agent of section 3.3.2
with Example 4.6).
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Figure 6. Left: risk Y a0 when the derivative is not available (flat surface) and when it is (tilted surface),
as a function of the concern rates (λa, λb). Right: same plot for the aggregated risk Y w0 (the two surfaces are
equal).
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For an individual agent (left plot), however, the availability of the derivative always leads
to a reduction of risk. We observe that in the absence of the derivative, the risk of agent a
does not depend on the concern rates. We can apply the methodology of sections 3 and 4 to
find that the optimal porfolios of the agents in this situation are given by

π∗,i,1t =
1

1− λaλb
γiθ

S + Z̃i,1t
σSSt

+
λi

1− λaλb
γjθ

S + Z̃j,1t
σSSt

for j 6= i ∈ {a, b},

while the minimized-risk equation is given by the BSDE

dỸ i
t = −

[
−1

2
γi
(
θS
)2 − Z̃i,1t θS +

1

2γi

(
Z̃i,2

)2]
dt+ 〈Z̃it , dWt〉 with Ỹ i

T = −H i(ST , RT ).

This shows analytically that the value of the problem, Y a
0 , depends on neither λa nor λb, while

the optimal strategy does, as was already observed in Proposition 4.1 in [27].

Playing the game repeatedly leads to disaster. The above study considers a one-period
model with (continuous-time) trading until the horizon T = 1 month. Imagine now the rep-
etition of this trading period over time and assume no significant changes to the agents’
endowments or the dynamics of the financial and external risks.

At the level of the agents’ preferences, with the sole exception of the concern rates, they
do not change with time. Specifically, we assume that their risk tolerances, and consequently
the entropic risk measures ρ·0 used to assess their risk in (1.1), are fixed throughout; however,
their concern rates λ· over their relative performance may vary. This can account for some
herding or other behavioral mechanism: after each period, each agent can review the results of
everyone’s performance, carry this information into the next period, and update their concern
rate accordingly.

Figure 5 sheds some light on the outcome of playing this game repeatedly. Indeed, each
agent benefits from a unilateral increase of their concern rate λ while they are worse off with
an increase in the other’s concern rate. So they have an incentive to increase λ, as the trading
periods are repeated, culminating in Assumption 2.3 being violated as (λa, λb)→ (1, 1).

It is interesting to note that this drifting toward the singularity of the model, (λa, λb) =
(1, 1), is not captured by the risk assessments. Figures 4 and 5 show that Y w

0 , Y a
0 , and Y b

0

remain bounded. At the level of the investment strategies, the trading activity in the deriva-
tive slows down but persists. The sharing of the external risk becomes less efficient, because
the agents are increasingly concerned about losing out to the other, but does not disappear.
However, the investment in the stock explodes (see Figure 2). We stress that this behavior
arises only after the derivative is introduced in the market. Indeed, as shown by Figure 6,
when the derivative is not available and the agents in A are only concerned with the relative
performance of their strategy over the market, they have no incentive to having increasingly
high concern rates. The particular shape of the surface (λa, λb) 7→ Y i

0 , risk decreasing with
λi but increasing with λj , appears only when the derivative is made available. In this situa-
tion, the agents are placed in direct interaction (by trading) in addition to the indirect one
(social): each agent makes now gains directly over the other. The final result is a potential
destabilization of the stock market.
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7. Conclusion. In this work, we analyzed the effect of a form of social interaction be-
tween agents on an equilibrium pricing mechanism. Specifically, we considered the pricing of
a (market-completing) derivative introduced to allow market participants to share the risk
associated with an external and nontradable risk factor. The social interaction here takes the
form of concerns over relative performance.

From a theoretical point of view, we have shown how to solve the problem for general
risk measures and a finite number of agents, when assuming that the derivative completes the
market. This involves solving a coupled system of quadratic BSDEs. Due to the heterogeneous
rates of concerns of the agents, the risks of the agents cannot be aggregated by the usual infimal
convolution technique, so we developed it further and introduced the weighted-dilated infimal
convolution variant.

We then focused on the particular case of the entropic risk measure and were able to
determine sufficient conditions to design a derivative that completes the market. In a market
model with two agents representing opposite profiles of exposure to the external risk, we
explored the impact of the social interactions on the benefit brought by financial innovation.

We found that the introduction of the derivative always reduces the risk, at the level
of individual agents. However, the particular distribution of this risk reduction means that
both agents have an incentive to become more concerned with their relative performance.
At the global level, while this merely decreases the volume of derivatives exchanged, this
leads to an explosion of the volumes traded in the previously existing financial asset. In
practice, the assumption that the agents are small and that the price dynamics of the stock
is independent of their actions fails to hold. Thus, although the stock price is fundamen-
tally independent of the external risk, introducing the derivative can lead to unintended
consequences on what was a stable stock market. We stress that this phenomenon is not
captured by the risk measures. Therefore one should not only use the performance of the
risk measure when evaluating the possible benefits of a new policy (the introduction of
the derivative, here). This also stresses the importance of having a systemic view: study-
ing the problem from the point of view of an individual investor shows that the availability
of the derivative is always beneficial, but at the global level the picture has strong nuances.
Strongly undesirable endogenous phenomena can emerge in the dynamics, arising essentially
from the interaction between the various agents and their possibility to adapt to the new
policy.

Appendix A. Stochastic analysis: Notation, spaces, and base results.

Spaces and notation. We define the following spaces for p > 1, q ≥ 1, n,m, d, k ∈ N:
C0,n([0, T ]×Rd,Rk) is the space of continuous functions endowed with the ‖·‖∞-norm that are
n-times continuously differentiable in the spatial variable; C0,n

b contains all bounded functions
of C0,n; the first superscript 0 is dropped for functions independent of time; Lp(Ft,Rd), t ∈
[0, T ], is the space of d-dimensional Ft-measurable random variables X with norm ‖X‖Lp =
E[ |X|p]1/p <∞; L∞ refers to the subset of essentially bounded random variables; Sp([0, T ]×
Rd) is the space of d-dimensional measurable F-adapted processes Y satisfying ‖Y ‖Sp =
E[supt∈[0,T ] |Yt|p]1/p <∞; S∞ refers to the subset of Sp(Rd) of essentially bounded processes;

Hp([0, T ] × Rd) is the space of d-dimensional measurable F-adapted processes Z satisfying
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‖Z‖Hp = E[
( ∫ T

0 |Zs|
2ds
)p/2

]1/p < ∞. For a probability measure Q, we denote HBMO(Q) as
the space of processes Z ∈ Hp(Q) for any p ≥ 2 such that for some constant KBMO > 0

sup
τ∈T[0,T ]

∥∥∥∥EQ
[∫ T

τ
|Zs|2ds

∣∣Fτ]∥∥∥∥
∞
≤ KBMO <∞,

where T[0,T ] is the set of all stopping times τ ∈ [0, T ]. As an easy consequence, if Z ∈ HBMO(Q),
then

∫
HdZ ∈ HBMO(Q) for any bounded adapted process H. Processes in HBMO have

very convenient properties. For the reference measure P we write directly HBMO instead of
HBMO(P).

For more information on BMO spaces and their relation with BSDEs see section 2.3 in
[41] or section 10.1 in [62]; we state, for reference’s sake, some of them in the next result.

Lemma A.1. Let Z ∈ HBMO and define Φ· :=
∫ ·
0 ZsdWs. Then we have as follows:

(1) The stochastic exponential E(ΦT ) is uniformly integrable.
(2) There exists a number r > 1 such that E(ΦT ) ∈ Lr. This property follows from the

reverse Hölder inequality. The maximal r with this property can be expressed explicitly
in terms of the BMO norm of Φ·. There exists as well an upper bound for ‖E(ΦT )‖rLr
depending only on T , r, and the BMO norm of Φ.

A.1. Basics of Malliavin’s calculus. We briefly introduce the main notation of the stochas-
tic calculus of variations also known as Malliavin’s calculus. For more details, we refer the
reader to [55]; for its application to BSDEs we refer to [40]. Let S be the space of random
variables of the form

ξ = F

((∫ T

0
h1,is dW 1

s

)
1≤i≤n

, . . . ,

(∫ T

0
hd,is dW d

s

)
1≤i≤n

)
,

where F ∈ C∞b (Rn×d), h1, . . . , hn ∈ L2([0, T ];Rd), n ∈ N. To simplify notation, assume that
all hj are written as row vectors. For ξ ∈ S, we define D = (D1, . . . , Dd) : S → L2(Ω× [0, T ])d

by

Di
θξ =

n∑
j=1

∂F

∂xi,j

(∫ T

0
h1tdWt, . . . ,

∫ T

0
hnt dWt

)
hi,jθ , 0 ≤ θ ≤ T, 1 ≤ i ≤ d,

and for k ∈ N its k-fold iteration by D(k) = (Di1 · · ·Dik)1≤i1,...,ik≤d. For k ∈ N, p ≥ 1 let Dk,p
be the closure of S with respect to the norm

‖ξ‖pk,p= E

[
‖ξ‖pLp +

k∑
i=1

‖|D(k)]ξ|‖p
(Hp)i

]
.

D(k) is a closed linear operator on the space Dk,p. Observe that if ξ ∈ D1,2 is Ft-measurable,
then Dθξ = 0 for θ ∈ (t, T ]. Further denote Dk,∞ = ∩p>1Dk,p. We also need Malliavin calculus
for Rm-valued smooth stochastic processes. For k ∈ N, p ≥ 1, denote by Lk,p(Rm) the set of
Rm-valued progressively measurable processes u = (u1, . . . , um) on [0, T ]× Ω such that
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(i) for Leb-a.a. t ∈ [0, T ], u(t, ·) ∈ (Dk,p)m;
(ii) [0, T ] × Ω 3 (t, ω) 7→ D(k)u(t, ω) ∈ (L2([0, T ]1+k))d×n admits a progressively measur-

able version;
(iii) ‖u‖pk,p= ‖u‖

p
Hp +

∑k
i=1 ‖Diu ‖p

(Hp)1+i <∞.

Note that Jensen’s inequality gives6 for all p ≥ 2

E

[(∫ T

0

∫ T

0
|DuXt|2dudt

) p
2

]
≤ T p/2−1

∫ T

0
‖DuX‖pHpdu.

We recall a result from [40] concerning the rule for the Malliavin differentiation of Itô integrals
which is of use in applications of Malliavin’s calculus to stochastic analysis.

Theorem A.2 (Theorem 2.3.4 in [40]). Let (Xt)t∈[0,T ] ∈ H2 be an adapted process and define

Mt :=
∫ t
0 XrdWr for t ∈ [0, T ]. Then, X ∈ L1,2 if and only if Mt ∈ D1,2 for any t ∈ [0, T ].

Moreover, for any 0 ≤ s, t ≤ T we have DsMt = Xs1{s≤t}(s) + 1{s≤t}(s)
∫ t
s DsXrdWr.

A.2. Basic Malliavin calculus results for SDEs. With relation to the Brownian mot-
ions WR and WS , we denote the Malliavin differential operators DWR

and DWS
; see

Appendix A.1.

Proposition A.3. Let Assumption 5.1 hold. Then SDEs (2.1) and (2.2) have a unique so-
lution R,S ∈ Sp for any p ≥ 2 and

(i) R,S ∈ D1,2. We have DWS

u Rt = DWR

u St = 0 for any t, u ∈ [0, T ] as well as

(A.1) DWR

u Rt = 1{u≤t}b and DWS

u St = 1{u≤t}σ
SSt, t, u ∈ [0, T ].

(ii) For any jointly measurable function ψ : [0, T ] × R × R → R that is Lipschitz (in the
second space variable), it holds that

DWR

u

(
ψ(t, St, Rt)

)
= DWR

r

(
ψ(t, St, Rt)

)
∀u, r ∈ [0, t], t ∈ [0, T ].(A.2)

Furthermore,
(
DWR

0 (ψ(·, S·, R·))
)
∈ S∞.

(iii) HD, Ha ∈ L1,2 ∩ S∞ for any a ∈ A (recall (5.1)) and there exists M > 0 for any

0 ≤ r, u ≤ T and any ζ ∈ A ∪ {D} such that DWR

u Hζ = DWR

r Hζ and 0 < |DWR

· Hζ | ≤M .

(iv) Let ζ ∈ A∪{D} and let r0 ∈ R. The mapping r0 7→ (DWR

u Hζ) is Lipschitz continuous
uniformly in u ∈ [0, T ] for any s0 ∈ (0,+∞).

Proof. Throughout let ζ ∈ A ∪ {D}. General results on SDEs follow from, e.g., section
2 in [41], standard Malliavin calculus, the fact that S is a geometric Brownian motion, and
µR ∈ C([0, T ],R).

Proof of (i) The identity DWS

u Rt = DWR

u St = 0 is trivial.
Proof of (ii) We prove (A.2): assume ψ to be differentiable; then for u, r ∈ [0, t]

6The reason behind this last inequality is that within the BSDE framework the usual tools to obtain a
priori estimates yield with much difficulty the LHS while with relative ease the RHS.
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DWR

u

(
ψ(t, St, Rt)

)
= (∂x2ψ)(t, St, Rt)b = DWR

r

(
ψ(t, St, Rt)

)
,

where we used (A.1). Now a standard approximation by mollification delivers the two results.
Proof of (iii) The form of the FT -measurable payoffs HD, Ha is quite specific and it is

clear that for 0 ≤ u ≤ T and ζ ∈ A ∪ {D}

DWR

u Hζ = DWR

u

(
hζ(ST , RT )

)
=
〈
(∇hζ)(ST , RT ), (0,1{u≤T}b)

〉
= b(∂x2h

ζ)(ST , RT ).(A.3)

The boundedness of DWR

· Hζ follows from the uniform boundedness of the derivatives of

hζ ∈ C2
b . We can then conclude that if ∂x2h

ζ 6= 0, then it follows that DWR

· Hζ 6= 0 and,

moreover, the identity DWR

u Hζ = DWR

r Hζ follows from (A.2).
Proof of (iv) We now close with the proof of the last statement. Take s0 ∈ (0,+∞) and

let r0, r̃0 ∈ R be two initial conditions for R (see (2.1)) and we denote the corresponding SDE
solutions R and R̃, respectively. We also denote Hζ and H̃ζ the random variables depending
on R and R̃, respectively. Due to the linear form of (2.1) it is immediate that Rt−R̃t = r0− r̃0
for any t ∈ [0, T ].

The properties of |DWR

u Hζ−DWR

u H̃ζ | follow from those of ∂x2h
ζ and (A.3). By assumption

hζ is twice continuously differentiable (in space) with bounded derivatives, hence, for some
K ≥ 0 ∣∣∣(∂x2hζ) (ST , RT )−

(
∂x2h

ζ
)(

ST , R̃T

)∣∣∣ ≤ K ∣∣∣RT − R̃T ∣∣∣ = K |r0 − r̃0| .

It follows that for some constant C ≥ 0 independent of the data u, s0, r0, and r̃0 one has, as
required, |DWR

u Hζ −DWR

u H̃ζ | ≤ C|r0 − r̃0|.
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