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Abstract. We propose an alternative method to generate samples of a spatially correlated ran-
dom field with applications to large-scale problems for forward propagation of uncertainty. A classical
approach for generating these samples is the Karhunen-Loève (KL) decomposition. However, the KL
expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for
large-scale problems. Sampling methods based on stochastic partial differential equations provide a
highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent.
We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sam-
pling based on solving a mixed finite element formulation of a stochastic reaction-diffusion equation
with a random, white noise source function. Numerical experiments are presented to demonstrate the
scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations
for a subsurface porous media flow application using the proposed sampling method.
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1. Introduction. Generating spatially correlated Gaussian random fields with
specific statistical properties is an important component and active topic of research
in a diverse array of application areas such as ecology, meteorology and geology
[10, 15, 22]. Gaussian random fields are collections of random variables indexed by el-
ements from a multidimensional space with the property that their joint distribution
is Gaussian. These types of fields are specified by expectations and positive semi-
definite covariance functions and are generally good models for many phenomena;
see, e.g., [5].

In this paper we focus on geophysics applications where the spatially correlated
random field represents the permeability of a porous medium. Specifically, we consider
subsurface flow in a specified domain, D ⊂ Rd, governed by Darcy’s law,

q(x) + k(x)∇p(x) = 0,(1)

div q(x) = f(x),(2)

where q(x) is the fluid velocity, p(x) is the fluid pressure and k(x) the hydraulic
conductivity, measuring the transmissibility of the fluid through the porous medium.

In practice, only small portions of the hydraulic conductivity are known via noisy
data measurements and this contributes a large source of uncertainty into the Darcy
model. Understanding the effects that such uncertainties introduce into the model, or
forward propagation uncertainty quantification (UQ) [21, 37], is quite important. To
quantify this uncertainty we consider Monte Carlo methods, in particular multilevel
Monte Carlo methods (MLMC), where equations (1)-(2) are solved repeatedly using
different realizations of the hydraulic conductivity field. In multilevel Monte Carlo
methods, more accurate (and expensive) simulations are run with fewer samples, while
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less accurate (and inexpensive) simulations are run with a larger number of samples.
At the end of these simulations, quantities of interest depending on the velocity and/or
pressure, such as the effective permeability, can be computed. Since a large number
of Monte Carlo simulations are needed to produce accurate quantities of interest, it is
essential to have efficient algorithms to rapidly generate these different realizations.

A standard way of modeling the hydraulic conductivity is as a log-normal field,
k(x, ω) = eθ(x,ω), where θ(x, ω) is a random field with a specified covariance structure
[13, 18]. A classical, and well-studied approach for generating these samples with the
desired statistical properties is the Karhunen-Loève decomposition. This sampling
technique amounts to solving an eigenvalue problem with the dense covariance ma-
trix. The samples are then different (random) linear combinations of the eigenvectors.
However, sampling in this manner suffers from a significant computational cost and
high memory requirement. In fact, the computational complexity for solving a dense
eigenvalue problem grows cubically with the size of the covariance matrix and the
memory necessary to store all the eigenvectors in the Karhunen-Loève decomposi-
tion scales quadratically, making such methods prohibitively expensive for large-scale
problems of interest. New approaches based on randomized methods and hierarchical
semi-separable matrices can drastically reduce the cost of solving the eigenvalue prob-
lem (see e.g. [36]), however they allow to compute only the dominant eigenmodes of
the Karhunen-Loève expansion and, therefore, introduce bias in the sampling.

A different approach for generating random field samples is by solving a stochastic
partial differential equation (SPDE) with a white noise source function [29, 39, 40]. To
use the inverse of an elliptic differential operator as covariance function is a common
approach for the solution of large-scale Bayesian inverse problem governed by PDE
forward models, see e.g. [11, 38], as it allows for efficient evaluation of the covariance
operator using a fast and scalable multigrid solver. The authors in [29] provide a link
between Karhunen-Loève sampling from a Matérn distribution and SPDE sampling,
further motivating the SPDE approach. For example, one can solve the following
reaction-diffusion equation

(3) −∆θ(x, ω) + κ2θ(x, ω) =W(x, ω)

where θ(x, ω) is the logarithm of the hydraulic conductivity, κ2 is a constant depend-
ing on the correlation length, and W(x, ω) is a white noise function. This sampling
approach has two significant benefits: the first is avoiding the computational cost in-
curred by solving a dense eigenvalue problem and the second is that optimal solution
methods for solving sparse linear systems arising from the finite element discretiza-
tion of (3) can be applied. Despite the benefits of this approach, it is not without
imperfections as generated samples contain artificial boundary effects.

Compared to the work in [29], three new ideas are introduced in this paper: i)
a mixed discretization of the SPDE, ii) a hierarchical version of the sampler, and
iii) mitigation of boundary artifacts using embedded domains. Specifically, given
a general unstructured fine grid, we construct a hierarchy of algebraically coarsened
grids and finite element spaces using the element-based algebraic multigrid techniques
(AMGe) presented in [26, 27], which provide coarse spaces with improved approxima-
tion properties than the ones from the original work [34]. Then we generate random
field samples at each level of the hierarchy by solving linear systems arising from
the mixed discretization of (3). This allows us to compute our (piecewise constant)
samples in a hierarchical fashion (as needed in MLMC simulations), while leveraging
existing scalable methods and software for solving deterministic PDEs. We remark
that while a hierarchical sampler can be constructed in a similar way for the primal
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formulation of the SPDE using geometric multigrid hierarchies, our framework offers
more flexibility with respect to the geometry of the physical domain (since it does
not require a sequence of nested grids). In addition, the computational advantages of
resorting to the mixed formulation are twofold. First, the finite element discretiza-
tion of the SPDE (3) requires the assembly of the square root of a mass matrix. In
[29], the use of a continuous Galerkin (CG) finite element space in the discretization
of the primal formulation leads to a non-diagonal mass matrix and mass lumping is
used to make computation of the square-root tractable at the cost of accuracy. On
the contrary, the finite element pair of lowest Raviart-Thomas and piecewise constant
functions in the mixed formulation leads to a diagonal mass matrix for the variable
θ. Second, in the AMGe framework, the construction of L2 and H(div)-conforming
spaces (required in the mixed formulation) on agglomerated meshes is simpler than
the one of H1-conforming spaces (required by the primal formulation), and also leads
to sparser, i.e. faster to apply, grid transfer operators.

Finally, we can not stress enough that performing realistic simulations with
MLMC requires a considerable computational cost. To make the method more fea-
sible in practice, parallelism must be fully exploited. Our work focuses solely on
parallelism across the spatial domain in computing realizations of the input random
field, then performing the subsequent solve of the model of interest. Further paral-
lelism could be added using the scheduling approaches suggested in [20], where the
authors investigate the complex task of scheduling parallel tasks within and across
levels of MLMC.

The paper is structured as follows. In Section 2 we give an overview of both the
classical KL expansion and the SPDE sampling approach. The hierarchical SPDE
sampling procedure is introduced and examined in Section 3. Section 4 contains a
brief review of the multilevel Monte Carlo method (MLMC), a scalable alternative
to standard Monte Carlo methods that uses the solution of the PDE on a hierarchy
of grid to effectively reduce the variance of the estimator. Here, we also present our
numerical results when our proposed sampling technique is used inside the MLMC
method. Lastly, Section 5 contains our concluding remarks.

2. Sampling from Gaussian Random Fields. In this section we review two
ways of generating samples of a log-normal random field. These are collections of
random variables, {θ(x, ω) : x ∈ D, ω ∈ Ω}, where Ω is the sample space for the
probability space (Ω,F ,P). For a fixed point, x0 ∈ D, θ(x0, ω) is a random variable.
For a fixed ω0 ∈ Ω, θ(x, ω0) is a deterministic function called a realization or sample
of the random field.

Random fields with a particular covariance functions are used to model the corre-
lation between points in spatial data. In geostatistical applications, the logarithm of
the hydraulic conductivity, θ(x, ω) = log (k(x, ω)) is modeled as a random field with
a specific class of covariance function.

In particular, we consider a stationary isotropic Gaussian field with the widely
used class of Matérn covariance functions [32], given by

(4) cov(x,y) =
σ2

2ν−1Γ(ν)
(κ‖y − x‖)νKν(κ‖y − x‖),

where σ2 is the marginal variance, ν > 0 determines the mean-square differentiability
of the underlying process, κ > 0 is a scaling factor inversely proportional to the
correlation length, Γ(ν) is the gamma function, and Kν is the modified Bessel function
of the second kind. When ν = 1

2 (4) reduces to the common exponential covariance
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function, given by

(5) cov(x,y) = σ2e−κ‖y−x‖.

In this section we consider two ways for generating such realizations or samples of ran-
dom fields. The first method we consider is the classical Karhunen-Loève expansion.
The second is based on solving a particular stochastic reaction-diffusion equation with
a white-noise source function.

2.1. The Karhunen-Loève Expansion. The Karhunen-Loève (KL) expansion
of a second-order random field 1 provides a series representation using the orthonormal
basis provided by the eigenfunctions of the underlying covariance operator [30]. For
a bounded regular domain D we define the convolution operator

Cv(x) =

∫
D

cov(x,x′)v(x′)dx′.

Since C is a compact operator, the eigenvalue problem

(6) (q, Cv)D = λ(q, v)D ∀q ∈ L2(D),

admits a countable sequence of eigenpairs (λi, vi) where limi→∞ λi = 0. A Gaussian
random field can be expanded as

θ(x, ω) =

∞∑
i=0

ξi(ω)
√
λivi(x), ξi(ω) ∼ N(0, σ2) i.i.d.

In practice, a discrete version of the eigenvalue problem (4) is computed. A
triangulation of the domain Th ⊂ D is generated with the discrete function space
Θh ⊂ L2(D) of piecewise constant functions. Then, we can compute realizations of
the Gaussian field with a Karhunen-Loève expansion truncated after Mh terms as

(7) θh(ω) =

Mh∑
i=0

ξi(ω)
√
λh,ivh,i(x), ξi(ω) ∼ N(0, σ2) i.i.d,

where the pairs (λi, vi) solve the generalized eigenvalue problem:

(qh, Chvh,i)h = λh,i(qh, vh,i)h

with inner product defined as (r, s)h =
∫
Th r s dx for r, s ∈ Θh.

One of the main reasons for sampling using this approach is that any truncation
of the KL expansion gives a sample with the minimal mean square error, see e.g. [24].
However, this method is not computationally feasible due to the high computational
cost for solving a dense eigenvalue problem. On a mesh with N degrees of freedom,
the cost to factor a dense covariance matrix is O(N3). This makes generating samples
in this manner impractical for finely resolved meshes where the number of degrees of
freedom could be of the order of millions. This motivates other sampling methods
that do not suffer from such a complexity cost.

1 A random field θ(x, ω) is second-order if for each x ∈ D the random variable θ(x) has finite
variance.
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2.2. Stochastic PDE Sampling. An important link between Gaussian fields
and Gaussian Markov random fields is established in [29], where a random process on
Rd with a Matérn covariance function can be obtained as the solution of a particular
stochastic partial differential equation (SPDE). This provides an alternative method
for computing the desired samples of a Gaussian random field via a SPDE, as opposed
to the computationally intensive KL expansion.

Realizations of a Gaussian random field with an underlying Matérn covariance,
θ(x, ω), solve the following linear stochastic PDE:

(8) (κ2 −∆)α/2θ(x, ω) = gW(x, ω) x ∈ Rd, α = ν +
d

2
, κ > 0, ν > 0,

for some other realization of the standard Gaussian white noise function W with
scaling factor g, [39, 40]. The scaling factor is chosen to be

g = (4π)d/4κν

√
Γ (ν + d/2)

Γ(ν)
,

to impose unit marginal variance of θ(x, ω) [10].
It is worth noting that if ν = 1 in two dimensions, and ν = 1

2 in three dimensions,
then (8) reduces to the following standard reaction-diffusion equation,

(9) (κ2 −∆)θ(x, ω) = gW(x, ω).

Additionally in three dimensions, realizations of a Gaussian random field with ex-
ponential covariance are solutions of (9). Thus a scalable sampling alternative is
equivalent to efficiently solving the stochastic reaction-diffusion equation given by (9)
where we are able to leverage existing scalable solution strategies. We remark that,
as explained in [29], samples from Matérn distributions with ν = 2k + 1 (in two
spatial dimensions) and from Matérn distributions with ν = 2k + 1

2 (in three spatial
dimensions), can be obtained by recursively solving (κ2 −∆)θi+1(x, ω) = θi(x, ω) for
i = 1, . . . , k, where θ0(x, ω) is the solution of (9).

Equation (9) is discretized using a mixed finite element method, [9, 17].
Following standard notation, for scalar functions θ, q ∈ L2(D) and vector func-

tions u,v ∈ L2(D) = [L2(D)]d, we define the inner products:

(θ, q) =

∫
D

θ q dx and (u,v) =

∫
D

u · v dx.

We also define the functional spaces R and Θ as

R = H(div;D) :=
{
u ∈ L2(D) | div u ∈ L2(D) and u · n = 0 on ∂D

}
and

Θ = L2(D).

Finally, we introduce the bilinear forms

m(u,v) := (u,v) ∀u,v ∈ R,
w(θ, q) := (θ, q) ∀ θ, q ∈ Θ,
b(u, q) := (div u, q) ∀u ∈ R, q ∈ Θ,

and the linear form

FW(q) := (W, q) ∀ q ∈ Θ.

5



Following standard finite element techniques, let Rh ⊂ R denote the lowest order
Raviart-Thomas finite element space and Θh ⊂ Θ denote the finite element space of
piecewise constant functions. Then, a mixed finite element discretization of (9) reads

Problem 2.1. Find (uh, θh) ∈ Rh ×Θh such that

(10)
m(uh,vh) + b(vh, θh) = 0 ∀vh ∈ Rh

b(uh, qh)− κ2 w(θh, qh) = −g FW(qh) ∀qh ∈ Θh.

with essential boundary conditions uh · n = 0.

Remark. The choice of a low order finite element discretization is optimal with
respect to the regularity of the solution. For example, in 3D space and for ν = 1

2
the realizations of a Gaussian random field with Matérn covariance are only almost
surely Hölder continuous with any exponent β < 1

2 , see e.g. [12].

In the following, we denote the discrete linear algebra representations of the bi-
linear forms m, b, and w with the matrices Mh, Wh, and Bh where Mh is the mass
matrix for the space Rh, Wh is the mass matrix for the space Θh, and Bh stems
from the divergence operator. Particular care must be taken for the linear algebra
representation of the stochastic right hand side FW(qh). This requires recalling the
following two properties of Gaussian white noise defined on a domain D. For any set
of test functions

{
qi ∈ L2(D), i = 1, . . . , n

}
, the expectation and covariance measures

are given by

E[(qi,W)] = 0,(11)

cov ((qi,W), (qj ,W)) = (qi, qj).(12)

By taking qi, qj as piecewise constants so that qi, qj ∈ Θh, the second equation implies
that the covariance measure over a region of the domain is equal to the area of that
region [29].

As a result of these properties, the computation of the discrete stochastic linear
functional amounts to computing

fh = W
1
2

h ξh(ω),

where the coefficients of ξh(ω) in the finite element expansion form a random vector
drawn from N (0, I). It should be noted that the mass matrix Wh for the space
Θh is diagonal, hence its square root can be computed cheaply. This is not the
case in the original primal formulation presented in [29] since they employ piecewise
linear continuous elements. The authors suggest then using mass lumping to make
computation feasible at the cost of accuracy.

Then the discrete mixed finite element problem can be written as the linear sys-
tem,

(13) AhUh =

[
Mh BTh
Bh −κ2Wh

] [
uh
θh

]
=

[
0

−g fh(ω)

]
= Fh,

where fh(ω) ∼ N (0,Wh). An efficient iterative solution method of (13), required to
scalably generate the desired Gaussian field realizations, is described in the following
section.

It is worth noticing that the lowest order Raviart-Thomas spaces allow us to define
a discrete gradient ∇h : Θh 7→ Rh such that the identity w(∇hθh,vh) = −b(vh, θh)
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holds for all θh ∈ Θh and all vh ∈ Rh with zero normal trace on ∂D. Specifically,
we define ∇h = −M−1

h BTh . Then, the Schur complement of (13) with respect to θh
can be viewed as a non-local discontinuous Galerkin (interior penalty) discretization
of the original PDE (9), cf., [35]. Namely, we have

m(∇hθh, ∇hqh) + κ2 w(θh, qh) = gFW (qh), ∀ qh ∈ Θh.

The above formulation allows us to apply the theory in [29] to show convergence of
θh to θ, however a detailed analysis of the convergence of the mixed system (10) is
outside the scope of this work.

2.3. SPDE Sampler Numerical Solution. The sparse large matrix Ah ad-
mits the following block UL decomposition

(14) Ah =

[
Ah BTh
0 −κ2Wh

] [
I 0

−κ−2W−1
h Bh I

]
,

where the blocks Ah = Mh + κ−2BThW
−1
h Bh and −κ−2W−1

h Bh are both sparse since
Wh is diagonal. Then solving the large sparse linear system (13) amounts to first
finding uh such that

(15) Ahuh = −gκ−2BTh fh(ω),

and then to set

(16) θh = κ−2W−1
h (Bhuh + g fh(ω)) .

It is worth noting that Ah in (15) is symmetric positive definite and stems from the
matrix representation of the weighted H(div) inner product,

a(uh,vh) := (uh,vh) + κ−2(div uh,div vh),

thanks to the particular choice of the spaces Rh and Θh, see e.g. [6, 7]. Then to solve
the linear system (15), we use the conjugate gradient (CG) method preconditioned by
the Auxiliary Space AMG preconditioner for H(div) problems in [25], which ensures
a mesh independent convergence and robustness with respect to the choice of the
correlation length κ. In particular, for our numerical results, we use hypre’s HypreADS
preconditioner [1].

This approach allows for scalable sampling, but the parametrization of θh(ω) is
mesh-dependent. This is not suitable for MLMC where the same realization of the
Gaussian field needs to be computed at a fine and a coarse spatial resolution. In
Section 3, we detail our proposed method that allows for hierarchical sampling based
on a multilevel decomposition of the stochastic field.

2.4. Boundary artifacts and embedded domains. As noted in [29], the
SPDE sampling method introduces errors on the boundary resulting in a larger
marginal variance of the random field close to the boundary of the domain. These
errors are due to the introduction of artificial boundary conditions where the SPDE
is defined globally, yet must be discretized on a finite domain. To mitigate this is-
sue we embed the original mesh into a larger mesh. Equation (8) is discretized on
the larger domain D where a corresponding linear system of the form (13) is solved
and the corresponding random field realization is restricted to the original domain
D. A rule of thumb proposed in [28] suggests the boundary effect is negligible at
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a distance equal to the correlation length from the boundary. Figure 1 shows the
sample marginal variance of 2000 Gaussian field samples with correlation length 0.01,
marginal variance σ2 = 1 generated by the SPDE sampler. In Figure 1a, the samples
were computed using the original circular mesh with diameter equal 0.2, whereas in
Figure 1c the SPDE given by (8) is solved on the original mesh embedded in a larger
square domain with sides of length 0.3 shown in Figure 1b. Thus, mesh embedding
alleviates the issue of the error on the boundary.

(a) Sample Computed
with Original Mesh

(b) Original Mesh Em-
bedded in Square

(c) Samples Computed
with Mesh Embedding

Fig. 1: Sample marginal variance with 2000 samples of a Gaussian field with Matérn co-
variance function with correlation length 0.01, marginal variance σ2 = 1 computed using
the SPDE sampling technique. (a) shows the marginal variance with the original circular
mesh with diameter 0.2. (b) shows the original circular mesh embedded in a square with
sides of length 0.3, and (c) shows the marginal variance when the mesh embedding procedure
is used, noting that the boundary effect is negligible at a distance equal to the correlation
length from the boundary. The error on the boundary from the artificial boundary conditions
is mitigated when the domain is embedded in a larger mesh.

3. Multilevel, Hierarchical Sampling. In this section we describe our pro-
posed hierarchical sampling technique based on a multilevel decomposition of the
stochastic field for sampling Gaussian fields based on solving the SPDE given by (9).
We first briefly describe the agglomeration process of a fine grid into a sequence of
coarser levels, introducing the necessary finite element spaces and inter-level opera-
tors that will be used. After introducing the multilevel structure of the stochastic
field, the implementation details of the proposed method are described, followed by
numerical results demonstrated the scalability of the method.

3.1. Multilevel Structure. Using methodology from element-based algebraic
multigrid (AMGe), we are able to construct operator-dependent coarse spaces with
guaranteed approximation properties on general, unstructured grids, see [26, 27, 34]
for further details.

Let T0 denote a fine grid discretization of the domain D. This fine grid is ag-
glomerated into a hierarchy of L coarser algebraic levels, {T`}L`=1 where L denotes
the coarsest grid. Agglomerates are formed by grouping together fine-grid elements.
Based upon this hierarchy, we have the sequence of spaces R`,Θ` for ` = 0, . . . , L, that
are the discrete analogues for H(div, D) and L2(D) respectively on the discretizations
{T`}L`=0. The space R0 is discretized by lowest order Raviart-Thomas finite elements
and Θ0 is discretized by piecewise constant finite elements.

In addition, we will define the following interpolation operators from the coarse
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space Θ`+1 to fine space Θ` where,

(17) Pθ : Θ`+1 → Θ` for ` = 0, . . . , L− 1.

We also define the operators from the coarse space R`+1 to the fine space R` as

(18) Pu : R`+1 → R` for ` = 0, . . . , L− 1.

Details on the construction and properties of the interpolation operators Pθ and Pu

using AMGe techniques are given in [26, 27, 34]. Here we limit our discussion to ob-
serve that such operators reduce to the canonical interpolation operators of geometric
multigrid when a nested hierarchy of uniformly refined meshes is given (in our case
of constant PDE coefficients). In addition, we define

P =

[
Pu 0
0 Pθ

]
,

as the block interpolation operator for the matrix A`. Using this hierarchical notation,
a discrete realization of a Gaussian random field on level ` corresponding to the T`
discretization will be denoted as θ`.

3.2. Hierarchical SPDE Sampler. We now propose a multilevel, decomposi-
tion of the random field and show that the coarse representation is a realization of
the Gaussian random field on the coarse space Θ`+1.

Proposition 1. The Gaussian random field θ`(ω) given by[
u`
θ`(ω)

]
= A−1

`

[
0

−gW 1/2
` ξ`(ω)

]
admits the following two-level decomposition:

(19) θ`(ω) = Pθθ`+1(ω) + δθ`(ω),

where θ`+1(ω) is a coarse representation of a Gaussian random field from the same
distribution, and

(20)

[
A` A`P
PTA` 0

] [
δU`
U`+1

]
=

[
F`
0

]
,

with the block expressions given by

δU` =

[
δu`
δθ`(ω)

]
, U`+1 =

[
u`+1

θ`+1(ω)

]
, and F` =

[
0

−gW 1/2
` ξ`(ω)

]
.

Proof. We start with a block LU factorization of the operator in (20)[
A` A`P
PTA` 0

] [
δU`
U`+1

]
=

[
A` 0
PTA` −S

] [
I` P
0 I`+1

] [
δU`
U`+1

]
=

[
F`
0

]
,

where I` and I`+1 are the identity matrices at level ` and ` + 1. Here the Schur
complement operator S is defined as

S := (PTA`)A−1
` (A`P) = PTA`P = A`+1,
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where, by definition of the prolongation operator, A`+1 is the coarse operator stem-
ming from the discretization of the SPDE operator at level ` + 1. Recalling the
definition of U`, the above LU factorization implies

(21)
A`U` = F`
A`+1U`+1 = PTA`U` = PTF`
δU` + PU`+1 = U`.

,

To show that θ`+1(ω) is a realization of a Gaussian random field on the coarse
space Θ`+1, we observe that θ`+1(ω) satisfies

A`+1

[
u`+1

θ`+1(ω)

]
= PT

[
0

−gW 1/2
` ξ`(ω)

]
=

[
0

−gW 1/2
`+1ξ`+1(ω)

]
where W`+1 = PTθ W`Pθ is the mass matrix on the coarser level ` + 1. The random

forcing term is defined as ξ`+1(ω) := W
−1/2
`+1 PTθ W

1/2
` ξ`(ω). We note that ξ`+1(ω) is a

multivariate Gaussian vector with zero mean and covariance matrix

cov(ξ`+1(ω)) = E[ξ`+1(ω)ξ`+1(ω)T ]

= (W
−1/2
`+1 PTθ W

1/2
` )E[ξ`(ω)ξ`(ω)T ](W

−1/2
`+1 PTθ W

1/2
` )T

= W
−1/2
`+1 PTθ W`PθW

−1/2
`+1 = I,

where we have exploited the fact that ξ`(ω) ∼ N (0, I).
The two-level decomposition (19) then follows from (21)3 by noticing that θ`+1(ω)

is the solution of the SPDE (9) discretized at level ` + 1 with random forcing term
ξ`+1(ω) ∼ N (0, I).

Thus given ξ`(ω) ∼ N (0, I) we are able to efficiently sample the Gaussian random
field on both the fine and upscaled discretization using the SPDE sampler.

3.3. Hierarchical SPDE Sampler Numerical Solution. We now describe
the solution procedure that we employ for the hierarchical SPDE sampler. Starting
with an unstructured mesh, a coarse problem is constructed by grouping together fine-
grid elements using the graph partitioner METIS [23] and the coarse finite element
spaces are computed as described in detail in [26, 27]. The same procedure is applied
recursively so that a nested hierarchy of agglomerated meshes and coarse spaces is
constructed. We will present results on general unstructured meshes, however the
technique immediately translates to the case of nested refined meshes generated with
uniform refinement by choosing the canonical interpolators.

Given ξ`(ω), we compute the realizations of the Gaussian field at levels ` and `+1
as follows. First we compute the sample for level ` + 1 by solving the saddle point
system

A`+1U`+1 = PT
[

0

−gW 1/2
` ξ`

]
,

using the methodology described in Section 2.3. Then we compute the sample for
level ` by iteratively solving (13) with PU`+1 as the initial guess.

We conclude this section with a remark on the independence of different realiza-
tions of the random field for a particular spatial resolution generated by the hierar-
chical SPDE sampler. Specifically, two realizations θ`(ωi) and θ`(ωj) are independent
if and only if ξ`(ωi) and ξ`(ωj) are independent. This is of extreme importance for
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MLMC and requires the use of a quality random number generator. In our numer-
ical experiments, we use Tina’s Random Number Generator Library [4] which is a
pseudo-random number generator with dedicated support for parallel, distributed en-
vironments [8].

3.4. Numerical Results. The numerical results in this section are used to
demonstrate the effectiveness of our SPDE sampling approach. For the simulations,
an absolute stopping criteria of 10−12 and a relative stopping criteria of 10−6 is used
for the linear solver. For the results presented in this and the following sections, we
use the C++ finite element library MFEM [2] to assemble the discretized problems.

First we consider the performance of the sampler in two space dimensions.
The physical domain D = (0, 1200) × (0, 2200) is embedded in a larger domain
D = (−100, 1300) × (−100, 2300) to decrease the effect of the artificial Neumann
boundary condition, see Section 2.4. The computational domain is then discretized
using a structured quadrilateral mesh with 294,400 elements in the physical domain.
Then a hierarchy of unstructured agglomerated meshes is constructed using the graph
partitioner METIS [23] with a coarsening ratio of 8 elements per agglomerate, see Fig-
ure 2. Note that, on coarse levels, agglomerated elements have irregular shapes and
an arbitrary number of neighboring elements. Coarse faces are also not flat. Figure
3 shows a sequence of computed Gaussian random field samples θ(x, ω) on different
levels with correlation length b = 100. Observe the similarity in the fields generated
on the algebraically coarsened levels. Locations of the essential features of the fine
grid sample are preserved, however contours are blurred and boundaries are spread
out due to the irregular shape of the agglomerated elements.

We now investigate the performance of the hierarchical sampler under weak scal-
ing, i.e. when the number of mesh elements is proportional to the number of processes.
Structured coarsening is used to create the hierarchy of agglomerated meshes with a
coarsening ratio of 4 elements per agglomerate, that is, the original mesh is uniformly
refined to build the hierarchy of levels. The code was executed on Sierra at Lawrence
Livermore National Laboratory consisting of a total of 1,944 nodes where each node
has two 6-core Xeon EP X5660 Intel CPUs (2.8 Ghz), and 24GB of memory. We use
8 MPI processes per node. Figure 4 shows the number of MPI processes versus the
average time to generate a realization of the Gaussian field for 1000 samples. The
number of MPI processes ranges from 8 to 512 and size of the stochastic dimension on
the fine grid ranges from 3.7 to 235 million. The proposed sampling method exhibits
the optimal near linear scaling as the number of processes increases for all levels in
the hierarchy.

As a second example, we consider the generation of large-scale 3D spacially corre-
lated random fields. The computational domain is inspired by one from the SAIGUP
benchmark, [16], and represents a realistic geometry of a shallow marine hydrocarbon
reservoirs. The computational domain roughly covers an area of 3000 × 9000 square
meters, and the difference (in depth) between the highest and the lowest point in the
domain is 930 meters. The original mesh consists of 78720 hexahedral elements and
it is uniformly refined several times to build the hierarchy of levels. We note that in
this example, we have not used embedding of the computational domain into a larger
domain, since at this point we are only interested in the scalability of computing a
single sample which is done by a scalable multilevel method.

Figure 5 shows a sequence of computed Gaussian random field samples θ(x, ω)
on different levels (the finer level is obtained by uniformly refining the original mesh
twice). To model θ(x, ω) we prescribe the exponential covariance function (5) with
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(a) Level ` = 0 (b) Level ` = 1 (c) Level ` = 2 (d) Level ` = 3

Fig. 2: Nested hierarchy of agglomerated meshes of the domain D = (0, 1200)×(0, 2200).

(a) Level ` = 0,
Size of Stochas-
tic Dimension =
200K

(b) Level ` = 1,
Size of Stochastic
Dimension = 27K

(c) Level ` = 2,
Size of Stochas-
tic Dimension =
3.5K

(d) Level ` = 3,
Size of Stochastic
Dimension = 501

Fig. 3: Realizations of Gaussian random fields on the domain D = (0, 1200)×(0, 2200)
obtained by using our hierarchical sampling technique for 4 levels with Matérn co-
variance with correlation length b = 100.

the correlation length b = 100 meters and unitary marginal variance. Observe the
similarity in the fields generated at the different levels. The weak scalability of the
proposed sampling method is demonstrated in Figure 6. The number of MPI processes
ranges from 48 to 3072 and the total number of degree of freedom (i.e. the number of
unknowns in the mixed system (13)) on the fine grid ranges from 2.1 to 134 million.
The proposed sampling method exhibits fairly scalable behavior as the number of
processors increases.

4. Multilevel Monte Carlo Methods. In this section we briefly describe the
Monte Carlo method, and then its extension to the multilevel Monte Carlo method.
Finally, we present results with MLMC simulations for subsurface porous media flow
using our hierarchical SPDE sampling method.
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Fig. 4: Weak scalability of the hierarchical SPDE sampler on the domain D =
(0, 1200) × (0, 2200) where the size of the stochastic dimension per process is fixed.
The size of the stochastic dimension of the finest level ranges from 3.7 to 235 million
and the number of MPI processes ranges from 8 to 512. The average time to compute
a realization using the sampling method exhibits the desired near linear scaling for
all levels.

(a) Level ` = 0, Size
of Stochastic Dimension =
5M

(b) Level ` = 1, Size
of Stochastic Dimension =
630K

(c) Level ` = 2, Size
of Stochastic Dimension =
78K

Fig. 5: Realizations of Gaussian random fields on the SAIGUP domain obtained by
using our hierarchical sampling technique for 3 levels with exponential covariance
function and correlation length b = 100.

In Monte Carlo methods, one is interested in approximating the expected value
of some quantity of interest, Q(ω) = BU(x, ω) where U(x, ω) is the solution of a
PDE with random input coefficients. In our case, Q represents some functional of
the solution (q, p) to (1)-(2). In general, the quantity of interest, Q, is inaccessible
so an approximation, Qh, is computed. The standard Monte Carlo estimator for the
quantity of interest is then

(22) E[Q] ≈ Q̂MC
h =

1

N

N∑
i=1

Qih,

where Qih is the ith sample of Qh and N is the number of (independent) samples.
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Fig. 6: Weak scalability test of the hierarchical SPDE sampler for the 3D SAIGUP
domain. The method exhibits good scaling properties for all levels. #DOF denotes
the total number of degree of freedom in the mixed system (13).

The mean square error of the method is given by

(23) E[(Q̂MC
h − E[Q])2] =

1

N
V[Qh] + (E[Qh −Q])2.

For the root mean square error (RMSE) to be below a prescribed tolerance, ε, both
terms should be smaller than ε2/2.

The first term is the estimator variance and the second term is the estimator bias.
The estimator bias measures the discretization error and is controlled by the spatial
resolution of the approximate solution. For sufficiently fine spatial discretizations, the
estimator bias is small and reducing the mean square error amounts to reducing the
estimator variance. The estimator variance is then reduced by increasing the number
of samples, N . Thus, the standard MC method RMSE converges in O(1/

√
N). This

is favorable as the convergence rate in independent of the stochastic dimension of
the problem, yet when high accuracy is necessary the number of samples required
can be a prohibitive expense as the samples must be computed with a fine mesh.
For this reason, standard MC methods are not a scalable approach for the forward
propagation of uncertainties when the forward problem is a PDE, due to the high cost
of computing samples with a fine spatial discretization.

This motivates the multilevel Monte Carlo (MLMC) method, see e.g. [14, 19],
which is an effective variance reduction technique based on hierarchical sampling
which aims to alleviate the burden of standard MC by computing samples on a hier-
archy of spatial discretizations.

Consider the sequence of spatial discretizations ` = {0, 1, . . . L}, with level ` =
0 denoting the finest spatial discretization, and level ` = L the coarsest used to
approximate Q` where Q0 = Qh.

The idea behind MLMC is to estimate the correction with respect to the next
coarser level, E[Q` − Q`+1] rather than estimating E[Q`] directly. Linearity of the
expectation gives the following expression for E[Qh] on the finest level,

(24) E[Qh] = E[QL] +

L−1∑
`=0

E[Q` −Q`+1] =

L∑
`=0

E[Y`],
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where we have defined Y` = Q` −Q`+1 for i = 0, . . . L− 1 and YL = QL.
Similarly, one computes the estimator for Y`,

(25) Ŷ` =
1

N`

N∑̀
i=1

(
Q

(i)
` −Q

(i)
`+1

)
,

and then the multilevel Monte Carlo estimator is defined as

(26) Q̂ML
h =

L∑
`=0

Ŷ`.

Consequently, the mean square error for the MLMC method becomes

(27) e(Q̂ML
h )2 =

1

NL
V[QL] +

L−1∑
`=0

1

N`
V[Y`] + (E[Qh −Q])2.

The three terms in the right hand side of (27) represent, respectively, the variance on
the coarsest level, the variance of the correction with respect to the next coarser level,
and lastly the discretization error. For a prescribed level of accuracy, the number of
realizations at the coarsest level, NL, still needs to be large, but samples are much
cheaper to obtain on the coarser level, and the number of realizations required for
levels (` < L) given by N` is much smaller, since V[Q` −Q`+1]→ 0 as h` → 0. Thus,
fewer samples are needed for the finest, most computationally expensive level. To
minimize the overall cost of the MLMC algorithm (e.g. the computational time to
reach a desired MSE), the optimal number of samples of each level N` is given by

N` ∝

√
V[Y`]

C`
,

where C` is the cost of computing one sample at level `. We refer to [14] for additional
details.

4.1. Numerical Experiments. In this section we include standard results from
MLMC computations using our proposed SPDE sampler. The forward model is the
mixed Darcy equations given by

(28)
1

k(x,ω)q(x, ω) +∇p = 0 in D

∇ · q = 0 in D,

with homogeneous Neumann boundary conditions q · n = 0 on ΓN and Dirichlet
boundary conditions p = pD on ΓD. Here, ΓN ∈ ∂D, ΓD ∈ ∂D are a non overlapping
partition of ∂D, and n denotes the unit normal vector to ∂D.

We use the mixed finite element method to discretize the model problem (28),
specifically we choose the lowest order Raviart-Thomas element for the flux q and
piecewise constant functions for the pressure p. Then, for each input realization
k(x, ω), we write the resulting discretized saddle point problem as

(29) Ak,h
[
qh
ph

]
=

[
fh
0

]
, where Ak,h =

[
Mk,h BTh
Bh 0

]
.

Here fh stems from the discretization of the Dirichlet boundary condition p = pD on
ΓD. The large sparse indefinite linear system (29) is solved using MINRES precondi-
tioned with a block diagonal preconditioner based on the pressure Schur Complement,
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namely the L2 − H1 preconditioner described in [31]. Specifically, we consider the
symmetric positive definite preconditioner

Nk,h =

[
Hk,h 0

0 Σ̃k,h

]
,

where Hk,h = diag(Mk,h) and Σ̃k,h = BhH
−1
k,hB

T
h .

It is well-known that Nk,h is a robust preconditioner for (29) as long as Mk,h is
not too anisotropic. In fact, as shown in [33], Nk,h is an optimal preconditioner for

Ãk,h,

Ãk,h =

[
Hk,h BTh
Bh 0

]
,

and Ãk,h is spectrally equivalent to Ak,h, since the Raviart-Thomas finite element
matrix Mk,h is spectrally equivalent to its diagonal Hk,h.

In the computations, we use BoomerAMG from hypre [1] to precondition the

Schur complement Σ̃k,h which is explicitly available and sparse. It should be noted

that the AMG preconditioner of Σ̃k,h is recomputed for each input realization. For
the simulations, an absolute stopping criteria of 10−12 and a relative stopping criteria
of 10−6 is used for the linear solver.

4.1.1. Top Layer of SPE10 Dataset. First we show experiments incorporat-
ing data from the Tenth SPE Benchmark (SPE10) [3]. We consider a 2D slice of the
dataset of dimension 1200× 2200 ft2 divided into cells of size 20× 10 ft2 resulting in
a mesh with 60 × 220 quadrilateral elements. The PDE coefficient on each slice is a
scalar function. The original 60× 220 quadrilateral mesh corresponds to the coarsest
one in our MLMC experiments. To produce the other (finer) levels, we uniformly
refine the initial 2D mesh several times.

We have D = (0, 1200)×(0, 2200) and assume the random conductivity coefficient
k(x, ω) is modeled as a log-normal random field. A realization of k(x, ω) is generated
by computing the exponential of a realization of a Gaussian random field. In partic-
ular, we assume that the mean of the Gaussian random field is the logarithm of the
top horizontal slice from the SPE10 dataset.

Figure 7c shows a particular realization of the random conductivity coefficient
k(x, ω) modeled as a log-normal field where k(x, ω) = exp [log[kSPE10slice(x)] + θ(ω)]
where θ(ω) is a realization of the Gaussian random field generated with our sampler
shown in Figure 7b and kSPE10slice(x) is shown in Figure 7a.

We solve (28) with the following boundary conditions:


−p = 1 on Γin := (0, 1200)× {0}
−p = 0 on Γout := (0, 1200)× {2200}
q · n = 0 on Γs := ∂D \ (Γin ∪ Γout) .

The quantity of interest we use is the expected value of the effective permeability,
that is the (horizontal) flux through the “outflow” part of the boundary, defined as

(30) keff (ω) =
1

|Γout|

∫
Γout

q(·, ω) · n dS.
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(a) Top layer of SPE10 (b) Realization of Gaussian
random field θ(ω)

(c) Realization of conductiv-
ity coefficient k(x, ω)

Fig. 7: A log-normal realization of the random conductivity coefficient k(x, ω) shown
in (c) is computed as the product of the top layer of the SPE10 dataset and the expo-
nential of a realization of a Gaussian random field obtained by using our hierarchical
sampling technique (logarithmic scale).

Figure 8 contains four subplots relating to the multilevel estimator and perfor-
mance of the multilevel Monte Carlo method with hierarchical, SPDE sampling. The
target mean square error is ε2 = 8.73e-5 for Figures 8a-8c. The first figure, Figure
8a, displays the multilevel estimator where the blue line with circles represents the
expectation at each level E[Q`] and the green dashed line represents the expectation
of the difference in levels, E[Q` −Q`+1]. Figure 8b illustrates the multilevel variance
reduction. This plot contains two lines, the blue line represents the variance of the
particular level, whereas the green dashed line represents the variance of the difference
in levels. The plot shows the effectiveness of the MLMC method at reducing the vari-
ance as the number of unknowns increases. The average sampling time to generate the
required Gaussian field realizations and solve the forward model for each level is shown
in Figure 8c. This plot indicates near optimal scaling of the MLMC method with the
proposed hierarchical sampler. Figure 8d shows the number of samples required at
each level of the MLMC method for different prescribed mean square error tolerances.
The plot clearly shows that more samples are generated on the coarse levels (fewer
degrees of freedom) than on the finest levels (many degrees of freedom). This merely
confirms the MLMC theory with our proposed hierarchical sampling technique.

4.1.2. Unit Cube. In this section we present similar experiments for estimating
the expectation of the effective permeability, but for the unit cube domain D =
(0, 1)× (0, 1)× (0, 1).

We solve (28) with the following boundary conditions:


−p = 1 on Γin := (0, 1)× (0, 1)× {0}
−p = 0 on Γout := (0, 1)× (0, 1)× {1}
q · n = 0 on Γs := ∂D \ (Γin ∪ Γout) .

The quantity of interest is the expected value of the effective permeability defined in
(30). The original mesh consists of 64 hexahedral elements and is uniformly refined
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(a) Multilevel estimator (b) Multilevel variance reduction

(c) Average sample time versus number of un-
knowns

(d) Number of samples for each level for varying
MSE tolerances

Fig. 8: Using the SPE10 data with the computational domain D = (0, 1200) ×
(0, 2200), the effective permeability is estimated using MLMC. The plots (a)-(c) show
the MLMC estimator, variance reduction, and average sampling time to generate the
required Gaussian field realizations and solve the forward model for each level versus
the number of unknowns where the target mean square error is ε = 8.72e-5. The
number of samples N` per levels is shown in (d) for varying target MSE accuracy
levels.

several times to build the hierarchy of levels. We examine the performance of the
multilevel estimator for the unit cube in Figure 9 which contains four subplots. The
first figure, Figure 9a, displays the multilevel estimator where the blue line with circles
represents the expectation at each level E[Q`] and the green dashed line represents
the expectation of the difference in levels, E[Q` −Q`+1].

Figure 9b illustrates the multilevel variance reduction of the method, while Fig-
ure 9c shows the average sampling time required to generate the Gaussian random
field realizations and solve the forward model problem for each level. The method
with hierarchical, SPDE sampling exhibits near optimal scaling for the 3D problem
formulation. The number of samples required at each level of the MLMC method for
different prescribed mean square error tolerances is shown in 9d.

For both of the examined computational domains, the hierarchical, SPDE sampler
yields the expected results for MLMC variance reduction and displays the desired
scaling properties for the possibility of large-scale MLMC simulations.

18



(a) Multilevel estimator (b) Multilevel variance reduction

(c) Average sample time versus number of un-
knowns

(d) Number of samples for each level for varying
MSE tolerance.

Fig. 9: The effective permeability is estimated using MLMC with the unit cube as
the computational domain. The MLMC estimator, variance reduction, and average
sampling time to generate the Gaussian random field realizations and solve the forward
model problem for each level for the target mean square error of ε = 6.25e-5 are shown
in plots (a)-(c) and the number of samples for each level of the MLMC method for
varying target MSE is shown in plot (d).

5. Conclusions. Multilevel Monte Carlos simulations for PDEs with uncertain
input coefficients employ a hierarchy of spatial resolutions as a variance reduction
technique for the approximation of expected quantities of interest. A key component
in the multilevel Monte Carlo method is the ability to generate samples of a ran-
dom field at different spatial resolutions. The Karhunen-Loève expansion provides a
parametrization independent of the spatial discretization. However, both the compu-
tation and the memory requirements become infeasible at large-scale as the expansion
requires the ability to compute and store eigenpairs of a large, dense covariance ma-
trix. We suggest a sampling method based on the solution of a particular stochastic
PDE. This method is highly scalable, but the parametrization is mesh dependent. We
have proposed a multilevel decomposition of the stochastic field to allow for scalable,
hierarchical stochastic PDEs samplers. Numerical results are provided that suggest
the method possesses the desired scalability as the method leverages existing scalable
solvers. We also have applied the new sampling technique to MLMC simulations of
subsurface flow problems with over 10 million parameters in the stochastic dimension.
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