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Abstract

In this paper we consider the composite self-concordant (CSC) minimization problem,

which minimizes the sum of a self-concordant function f and a (possibly nonsmooth) proper

closed convex function g. The CSC minimization is the cornerstone of the path-following

interior point methods for solving a broad class of convex optimization problems. It has

also found numerous applications in machine learning. The proximal damped Newton (PDN)

methods have been well studied in the literature for solving this problem that enjoy a nice

iteration complexity. Given that at each iteration these methods typically require evaluating

or accessing the Hessian of f and also need to solve a proximal Newton subproblem, the cost

per iteration can be prohibitively high when applied to large-scale problems. Inspired by the

recent success of block coordinate descent methods, we propose a randomized block proximal

damped Newton (RBPDN) method for solving the CSC minimization. Compared to the PDN

methods, the computational cost per iteration of RBPDN is usually significantly lower. The

computational experiment on a class of regularized logistic regression problems demonstrate

that RBPDN is indeed promising in solving large-scale CSC minimization problems. The

convergence of RBPDN is also analyzed in the paper. In particular, we show that RBPDN

is globally convergent when g is Lipschitz continuous. It is also shown that RBPDN enjoys a

local linear convergence. Moreover, we show that for a class of g including the case where g

is smooth (but not necessarily self-concordant) and ∇g is Lipschitz continuous in its domain,

RBPDN enjoys a global linear convergence. As a striking consequence, it shows that the

classical damped Newton methods [22, 40] and the PDN [31] for such g are globally linearly

convergent, which was previously unknown in the literature. Moreover, this result can be used

to sharpen the existing iteration complexity of these methods.

Keywords: Composite self-concordant minimization, damped Newton method, proximal

damped Newton method, randomized block proximal damped Newton method.

AMS subject classifications: 49M15, 65K05, 90C06, 90C25, 90C51

1 Introduction

In this paper we are interested in the composite self-concordant minimization:

F ∗ = min
x
{F (x) := f(x) + g(x)} , (1.1)
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where f : ℜN → ℜ̄ := ℜ ∪ {∞} is a self-concordant function with parameter Mf ≥ 0 and

g : ℜN → ℜ̄ is a (possibly nonsmooth) proper closed convex function. Specifically, by the standard

definition of a self-concordant function (e.g., see [25, 22]), f is convex and three times continuously

differentiable in its domain denoted by dom(f), and moreover,

|ψ′′′(0)| ≤Mf (ψ
′′(0))3/2

holds for every x ∈ dom(f) and u ∈ ℜN , where ψ(t) = f(x + tu) for any t ∈ ℜ. In addition, f is

called a standard self-concordant function if Mf = 2.

It is well-known that problem (1.1) with g = 0 is the cornerstone of the path-following interior

point methods for solving a broad class of convex optimization problems. Indeed, in the seminal

work by Nesterov and Nemirovski [25], many convex optimization problems can be recast into the

problem:

min
x∈Ω
〈c, x〉, (1.2)

where c ∈ ℜN , Ω ⊆ ℜN is a closed convex set equipped with a self-concordant barrier function B,

and 〈·, ·〉 denotes the standard inner product. It has been shown that an approximate solution of

problem (1.2) can be found by solving approximately a sequence of barrier problems:

min
x
{ft(x) := 〈c, x〉+ tB(x)} ,

where t > 0 is updated with a suitable scheme. Clearly, these barrier problems are a special case

of (1.1) with f = ft and g = 0.

Recently, Tran-Dinh et al. [30] extended the aforementioned path-following scheme to solve the

problem

min
x∈Ω

g(x),

where g and Ω are defined as above. They showed that an approximate solution of this problem

can be obtained by solving approximately a sequence of composite barrier problems:

min
x
tB(x) + g(x),

where t > 0 is suitably updated. These problems are also a special case of (1.1) with f = tB.

In addition, numerous models in machine learning are also a special case of (1.1). For example,

in the context of supervised learning, each sample is recorded as (w, y), where w ∈ ℜN is a sample

feature vector and y ∈ ℜ is usually a target response or a binary (+1 or -1) label. A loss function

φ(x;w, y) is typically associated with each (w, y). Some popular loss functions include, but are not

limited to:

• squared loss: φ(x;w, y) = (y − 〈w, x〉)2;

• logistic loss: φ(x;w, y) = log(1 + exp(−y〈w, x〉).

A linear predictor is often estimated by solving the empirical risk minimization model:

min
x

1

m

m∑

i=1

φ(x;wi, yi) +
µ

2
‖x‖2

︸ ︷︷ ︸

f̃(x)

+g(x),

where m is the sample size and g is a regularizer such as ℓ1 norm. For stability purpose, the

regularization term µ‖x‖2/2, where µ > 0 and ‖ · ‖ is the Euclidean norm, is often included to

make the model strongly convex (e.g., see [40, 41]). It is easy to observe that when φ is the squared
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loss, the associated f̃ is self-concordant with parameter Mf̃ = 0. In addition, when φ is the logistic

loss, yi ∈ {−1, 1} for all i and µ > 0, Zhang and Xiao [40, 41] showed that the associated f̃ is

self-concordant with parameter Mf̃ = R/
√
µ, where R = maxi ‖wi‖. Besides, they proved that the

associated f̃ for a general class of loss functions φ is self-concordant, which includes a smoothed

hinge loss.

As another example, the graphical model is often used in statistics to estimate the conditional

independence of a set of random variables (e.g., see [39, 6, 9, 17]), which is in the form of:

min
X∈SN

++

〈S,X〉 − log det(X) + ρ
∑

i6=j

|Xij |,

where ρ > 0, S is a sample covariance matrix, and SN++ is the set of N × N positive definite

matrices. Given that − log det(X) is a self-concordant function in SN++ (e.g., see [22]), it is clear

to see that the graphical model is also a special case of (1.1).

When g = 0, problem (1.1) can be solved by a damped Newton (DN) method or a mixture of DN

and Newton methods (e.g., see [22, Section 4.1.5]). To motivate our study, we now briefly review

these methods for solving (1.1) with g = 0. In particular, given an initial point x0 ∈ dom(F ), the

DN method updates the iterates according to

xk+1 = xk +
dk

1 + λk
, ∀k ≥ 0,

where dk is the Newton direction and λk is the local norm of dk at xk, which are given by:

dk = −(∇2f(xk))−1∇f(xk), λk =
√

(dk)T∇2f(xk)dk. (1.3)

The mixture of DN and Newton first applies DN and then switches to the standard Newton method

(i.e., setting the step length to 1) once an iterate is sufficiently close to the optimal solution. The

discussion in [22, Section 4.1.5] has a direct implication that both DN and the mixture of DN and

Newton find an approximate solution xk satisfying λk ≤ ǫ in at most

O
(
F (x0)− F ∗ + log log ǫ−1

)

iterations. This complexity can be obtained by considering two phases of these methods. The first

phase consists of the iterations executed by DN for generating a point lying in a certain neigh-

borhood of the optimal solution in which the local quadratic convergence of DN or the standard

Newton method is ensured to occur, while the second phase consists of the rest of the iterations.

Indeed, O
(
F (x0)− F ∗) and O(log log ǫ−1) are an estimate of the number of iterations of these two

phases, respectively.

Recently, Zhang and Xiao [40, 41] proposed an inexact damped Newton (IDN) method for

solving (1.1) with g = 0. Their method is almost identical to DN except that the search direction

dk defined in (1.3) is inexactly computed by solving approximately the linear system

∇2f(xk)d = −∇f(xk).

By controlling suitably the inexactness on dk and considering the similar two phases as above, they

showed that IDN can find an approximate solution xk satisfying F (xk)− F ∗ ≤ ǫ in at most

O
(
F (x0)− F ∗ + log ǫ−1

)
(1.4)

iterations.

In addition, Tran-Dinh et al. [31] recently proposed a proximal damped Newton (PDN) method

and a proximal Newton method for solving (1.1). These methods are almost the same as the
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aforementioned DN and the mixture of DN and Newton except that dk is chosen as the following

proximal Newton direction:

dk = argmin
d

{

f(xk) + 〈∇f(xk), d〉 + 1

2
〈d,∇2f(xk)d〉+ g(xk + d)

}

. (1.5)

It has essentially been shown in [31, Theorems 6, 7] that the PDN and the proximal Newton

method can find an approximate solution xk satisfying λk ≤ ǫ in at most

O
(
F (x0)− F ∗ + log log ǫ−1

)
(1.6)

iterations, where λk =
√

(dk)T∇2f(xk)dk. This complexity was derived similarly as for the DN

and the mixture of DN and Newton by considering the two phases mentioned above.

Besides, proximal gradient type methods and proximal Newton type methods have been pro-

posed in the literature for solving a class of composite minimization problems in the form of (1.1)

(e.g., see [1, 23, 8, 3, 12]). At each iteration, proximal gradient type methods require the gradient

of f while proximal Newton type methods need to access the Hessian of f or its approximation.

Though the proximal Newton type methods [3, 12] are applicable to solve (1.1), they typically

require a linear search procedure to determine a suitable step length, which may be expensive for

solving large-scale problems. In this paper we are only interested in a line-search free method for

solving problem (1.1).

It is known from [31] that PDN has a better iteration complexity than the accelerated proximal

gradient methods [1, 23]. The cost per iteration of PDN is, however, generally much higher because

it computes the search direction dk according to (1.5) that involves ∇2f(xk). This can bring an

enormous challenge to PDN for solving large-scale problems. Inspired by the recent success of

block coordinate descent methods, block proximal gradient methods and block quasi-Newton type

methods (e.g., see [2, 5, 7, 11, 13, 14, 15, 16, 19, 20, 24, 26, 27, 28, 29, 32, 34, 35]) for solving

large-scale problems, we propose a randomized block proximal damped Newton (RBPDN) method

for solving (1.1) with

g(x) =

n∑

i=1

gi(xi), (1.7)

where each xi denotes a subvector of x with dimension Ni, {xi : i = 1, . . . , n} form a partition of

the components of x, and each gi : ℜNi → ℜ̄ is a proper closed convex function. Briefly speaking,

suppose that p1, . . . , pn > 0 are a set of probabilities such that
∑

i pi = 1. Given a current iterate

xk, we randomly choose ι ∈ {1, . . . , n} with probability pι. The next iterate xk+1 is obtained by

setting xk+1
j = xkj for j 6= ι and

xk+1
ι = xkι +

dι(x
k)

1 + λι(xk)
,

where dι(x
k) is an approximate solution to the subproblem

min
dι

{

f(xk) + 〈∇ιf(x
k), dι〉+

1

2
〈dι,∇2

ιιf(x
k), dι〉+ gι(x

k
ι + dι)

}

, (1.8)

λι(x
k) =

√

〈dι(xk),∇2
ιιf(x

k)dι(xk)〉, and ∇ιf(x
k) and ∇2

ιιf(x
k) are respectively the subvector and

the submatrix of ∇f(xk) and ∇2f(xk) corresponding to xι.

In contrast with the (full) PDN [31], the cost per iteration of RBPDN can be considerably lower

because: (i) only the submatrix ∇2
ιιf(x

k) rather than the full ∇2f(xk) needs to be accessed and/or

evaluated; and (ii) the dimension of subproblem (1.8) is much smaller than that of (1.5) and thus

the computational cost for solving (1.8) can also be substantially lower. In addition, compared

to the randomized block accelerated proximal gradient (RBAPG) method [7, 15], RBPDN utilizes
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the entire curvature information in the random subspace (i.e., ∇2
ιιf(x

k)) while RBAPG only uses

the partial curvature information, particularly, the extreme eigenvalues of ∇2
ιιf(x

k). It is thus

expected that RBPDN takes less number of iterations than RBAPG for finding an approximate

solution of similar quality, which is indeed demonstrated in our numerical experiments. Overall,

RBPDN can be much faster than RBAPG, provided that the subproblem (1.8) is efficiently solved.

The convergence of RBPDN is analyzed in this paper. In particular, we show that when g is

Lipschitz continuous in

S(x0) := {x : F (x) ≤ F (x0)}, (1.9)

RBPDN is globally convergent, that is, E[F (xk)]→ F ∗ as k → ∞. It is also shown that RBPDN

enjoys a local linear convergence. Moreover, we show that for a class of g including the case where

g is smooth (but not necessarily self-concordant) and ∇g is Lipschitz continuous in S(x0), RBPDN

enjoys a global linear convergence, that is, there exists some q ∈ (0, 1) such that

E[F (xk)− F ∗] ≤ qk(F (x0)− F ∗), ∀k ≥ 0,

Notice that the DN [22] and PDN [31] are a special case of RBPDN with n = 1. As a striking

consequence, it follows that they are globally linearly convergent for such g, which was previously

unknown in the literature. Moreover, this result can be used to sharpen the existing iteration

complexity of the first phase of DN [22], IDN [40], PDN [31], the proximal Newton method [31]

and the mixture of DN and Newton [22].

The rest of this paper is organized as follows. In Subsection 1.1, we present some assumption,

notation and also some known facts. We propose in Section 2 a RBPDN method for solving problem

(1.1) in which g is in the form of (1.7). In Section 3, we provide some technical preliminaries. The

convergence analysis of RBPDN is given in Section 4. Numerical results are presented in Section

5.

1.1 Assumption, notation and facts

Throughout this paper, we make the following assumption for problem (1.1).

Assumption 1 (i) f is a standard self-concordant function1 and g is in the form of (1.7).

(ii) ∇2f is continuous and positive definite in the domain of F .

(iii) Problem (1.1) has a unique optimal solution x∗.

Let ℜN denote the Euclidean space of dimension N that is equipped with the standard inner

product 〈·, ·〉. For every x ∈ ℜN , let xi denote a subvector of x with dimension Ni, where {xi : i =
1, . . . , n} form a particular partition of the components of x.

‖ · ‖ denotes the Euclidean norm of a vector or the spectral norm of a matrix. The local norm

and its dual norm at any x ∈ dom(f) are given by

‖u‖x :=
√

〈u,∇2f(x)u〉, ‖v‖∗x :=
√

〈v, (∇2f(x))−1v〉, ∀u, v ∈ ℜN .

It is easy to see that

|〈u, v〉| ≤ ‖u‖x · ‖v‖∗x, ∀u, v ∈ ℜN . (1.10)

1It follows from [22, Corollary 4.1.2] that if f is self-concordant with parameter Mf , then
M2

f

4
f is a standard

self-concordant function. Therefore, problem (1.1) can be rescaled into an equivalent problem for which Assumption

1 (i) holds.
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For any i ∈ {1, . . . , n}, let ∇2
iif(x) denote the submatrix of ∇2f(x) corresponding to the subvector

xi. The local norm and its dual norm of x restricted to the subspace of xi are defined as

‖y‖xi :=
√

〈y,∇2
iif(x)y〉, ‖z‖∗xi

:=
√

〈z, (∇2
iif(x))

−1z〉, ∀y, z ∈ ℜNi . (1.11)

In addition, for any symmetric positive definite matrix M , the weighted norm and its dual norm

associated with M are defined as

‖u‖M :=
√

〈u,Mu〉, ‖v‖∗M :=
√

〈v,M−1v〉. (1.12)

It is clear that

|〈u, v〉| ≤ ‖u‖M · ‖v‖∗M . (1.13)

The following two functions have played a crucial role in studying some properties of a standard

self-concordant function (e.g., see [22]):

ω(t) = t− ln(1 + t), ω∗(t) = −t− ln(1− t). (1.14)

It is not hard to observe that ω(t) ≥ 0 for all t > −1 and ω∗(t) ≥ 0 for every t < 1, and moreover,

ω and ω∗ are strictly increasing in [0,∞) and [0, 1), respectively. In addition, they are conjugate

of each other, which implies that for any t ≥ 0 and τ ∈ [0, 1),

ω(t) = tω′(t)− ω∗(ω
′(t)), ω(t) + ω∗(τ) ≥ τt (1.15)

(e.g., see [22, Lemma 4.1.4]).

It is known from [22, Theorems 4.1.7, 4.1.8]) that f satisfies:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ ω(‖y − x‖x), ∀x ∈ dom(f), ∀y; (1.16)

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ ω∗(‖y − x‖x) ∀x, y ∈ dom(f), ‖y − x‖x < 1. (1.17)

2 Randomized block proximal damped Newton method

In this section we propose a randomized block proximal damped Newton (RBPDN) method for

solving problem (1.1) in which g is in the form of (1.7).

RBPDN method for solving (1.1):

Choose x0 ∈ dom(F ), η ∈ [0, 1/4], and pi > 0 for i = 1, . . . , n such that
∑n

i=1 pi = 1. Set k = 0.

1) Pick ι ∈ {1, . . . , n} randomly with probability pι.

2) Find an approximate solution dι(x
k) to the subproblem

min
dι

{

f(xk) + 〈∇ιf(x
k), dι〉+

1

2
〈dι,∇2

ιιf(x
k), dι〉+ gι(x

k
ι + dι)

}

(2.1)

such that

− vι ∈ ∇ιf(x
k) +∇2

ιιf(x
k)dι(x

k) + ∂gι(x
k
ι + dι(x

k)), (2.2)

‖vι‖∗xk
ι
≤ η‖dι(xk)‖xk

ι
(2.3)

for some vι.
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3) Set xk+1
j = xkj for j 6= ι, xk+1

ι = xkι +dι(x
k)/(1+λι(x

k)), k ← k+1 and go to step 1), where

λι(x
k) =

√

〈dι(xk),∇2
ιιf(x

k)dι(xk)〉.
end

Remark:

(i) The constant η controls the inexactness of solving subproblem (2.1). Clearly, dι(x
k) is the

optimal solution to (2.1) if η = 0.

(ii) For various g, the above dι(x
k) can be efficiently found. For example, when g = 0, dι(x

k) can

be computed by conjugate gradient method. In addition, when g = ‖ · ‖ℓ1 , it can be found

by numerous methods (e.g., see [1, 23, 10, 33, 36, 38, 37, 21, 4, 18]).

(iii) To verify (2.3), one has to compute ‖vι‖∗xk
ι
, which can be expensive since (∇2

ιιf(x
k))−1 is

involved. Alternatively, we may replace (2.3) by a relation that can be cheaply verified and

also ensures (2.3). Indeed, as seen later, the sequence {xk} lies in the compact set S(x0) and

∇2f(x) is positive definite for all x ∈ S(x0). It follows that

σf := min
x∈S(x0)

λmin(∇2f(x)) (2.4)

is well-defined and positive, where λmin(·) denotes the minimal eigenvalue of the associated

matrix. One can observe from (1.11) and (2.4) that

‖vι‖∗xk
ι
=
√

vTι (∇2
ιιf(x

k))−1vι ≤
‖vι‖√
σf
.

It follows that if ‖vι‖ ≤ η
√
σf‖dι(xk)‖xk

ι
holds, so does (2.3). Therefore, for a cheaper

computation, one can replace (2.3) by

‖vι‖ ≤ η√σf‖dι(xk)‖xk
ι
,

provided that σf is known or can be bounded from below.

(iv) The convergence of RBPDN will be analyzed in Section 4. In particular, we show that if

g is Lipschitz continuous in S(x0), then RBPDN is globally convergent. It is also shown

that RBPDN enjoys a local linear convergence. Moreover, we show that for a class of g

including the case where g is smooth (but not necessarily self-concordant) and ∇g is Lipschitz

continuous in S(x0), RBPDN enjoys a global linear convergence.

3 Technical preliminaries

In this section we establish some technical results that will be used later to study the convergence

of RBPDN.

For any x ∈ dom(F ), let d̂(x) be an inexact proximal Newton direction, which is an approximate

solution of

min
d

{

f(x) + 〈∇f(x), d〉 + 1

2
〈d,∇2f(x)d〉+ g(x+ d)

}

such that

− v̂ ∈ ∇f(x) +∇2f(x)d̂(x) + ∂g(x+ d̂(x)) (3.1)

for some v̂ satisfying ‖v̂‖∗x ≤ η‖d̂(x)‖x with η ∈ [0, 1/4].

The following theorem provides an estimate on the reduction of the objective value resulted

from an inexact proximal damped Newton step.
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Lemma 3.1 Let x ∈ dom(F ) and d̂(x) be defined above with η ∈ [0, 1/4]. Then

F

(

x+
d̂

1 + λ̂

)

≤ F (x)− 1

2
ω(λ̂),

where d̂ = d̂(x) and λ̂ = ‖d̂(x)‖x.

Proof. By the definition of d̂ and λ̂, one can observe that

‖d̂‖x/(1 + λ̂) = λ̂/(1 + λ̂) < 1.

It then follows from (1.17) that

f

(

x+
d̂

1 + λ̂

)

≤ f(x) + 1

1 + λ̂
〈∇f(x), d̂〉+ ω∗

(

λ̂

1 + λ̂

)

. (3.2)

In view of (3.1) and d̂ = d̂(x), there exists s ∈ ∂g(x+ d̂) such that

∇f(x) +∇2f(x)d̂+ v̂ + s = 0. (3.3)

By the convexity of g, one has

g

(

x+
d̂

1 + λ̂

)

≤ g(x+ d̂)

1 + λ̂
+
λ̂g(x)

1 + λ̂
≤ 1

1 + λ̂
[g(x) + 〈s, d̂〉] + λ̂g(x)

1 + λ̂
= g(x) +

〈s, d̂〉
1 + λ̂

. (3.4)

Summing up (3.2) and (3.4), and using (3.3), we have

F

(

x+
d̂

1 + λ̂

)

≤ F (x) +
1

1 + λ̂
〈∇f(x) + s, d̂〉+ ω∗

(

λ̂

1 + λ̂

)

= F (x) +
1

1 + λ̂
〈−∇2f(x)d̂ − v̂, d̂〉+ ω∗

(

λ̂

1 + λ̂

)

≤ F (x) − λ̂2

1 + λ̂
+

λ̂

1 + λ̂
‖v‖∗x + ω∗

(

λ̂

1 + λ̂

)

, (3.5)

where the last relation is due to the definition of λ̂ and (1.13). In addition, observe from (1.14)

that ω′(λ̂) = λ̂/(1 + λ̂). It follows from this and (1.15) that

− λ̂2

1 + λ̂
+ ω∗

(

λ̂

1 + λ̂

)

= −λ̂ω′(λ̂) + ω∗
(

ω′(λ̂)
)

= −ω(λ̂),

which along with (3.5), ‖v̂‖∗x ≤ η‖d̂‖x and λ̂ = ‖d̂‖x implies

F

(

x+
d̂

1 + λ̂

)

≤ F (x)− ω(λ̂) + ηλ̂2

1 + λ̂
. (3.6)

Claim that for any η ∈ [0, 1/4],

ηλ̂2

1 + λ̂
≤ 1

2
ω(λ̂). (3.7)
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Indeed, let φ(λ) = 1
2ω(λ)(1 + λ) − ηλ2. In view of ω′(λ) = λ/(1 + λ), (1.14) and η ∈ [0, 1/4], one

has that for every λ ≥ 0,

φ′(λ) = 1
2 [ω

′(λ)(1 + λ) + ω(λ)]− 2ηλ = 1
2

[
λ

1+λ(1 + λ) + λ− ln(1 + λ)
]

− 2ηλ

= (1 − 2η)λ− 1
2 ln(1 + λ) ≥ 1

2 [λ− ln(1 + λ)] = 1
2ω(λ) ≥ 0.

This together with φ(0) = 0 implies φ(λ) ≥ 0 . Thus (3.7) holds as claimed. The conclusion of

this lemma then immediately follows from (3.6) and (3.7).

We next provide some lower and upper bounds on the optimality gap.

Lemma 3.2 Let x ∈ dom(F ) and λ̄(x) be defined as

λ̄(x) := min
s∈∂F (x)

‖s‖∗x. (3.8)

Then

ω(‖x− x∗‖x∗) ≤ F (x) − F ∗ ≤ ω∗(λ̄(x)), (3.9)

where the second inequality is valid only when λ̄(x) < 1.

Proof. Since x∗ is the optimal solution of problem (1.1), we have −∇f(x∗) ∈ ∂g(x∗). This

together with the convexity of g implies g(x) ≥ g(x∗) + 〈−∇f(x∗), x − x∗〉. Also, by (1.16), one

has

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉+ ω(‖x− x∗‖x∗).

Summing up these two inequalities yields the first inequality of (3.9).

Suppose λ̄(x) < 1. We now prove the second inequality of (3.9). Indeed, by (1.16), one has

f(y) ≥ f(x) + 〈∇f(x), y − x〉 + ω(‖y − x‖x), ∀y.

By (3.8), there exists s ∈ ∂F (x) such that ‖s‖∗x = λ̄(x) < 1. Clearly, s−∇f(x) ∈ ∂g(x). In view

of this and the convexity of g, we have

g(y) ≥ g(x) + 〈s−∇f(x), y − x〉, ∀y.

Summing up these two inequalities gives

F (y) ≥ F (x) + 〈s, y − x〉+ ω(‖y − x‖x), ∀y.

It then follows from this, (1.10) and (1.15) that

F ∗ = min
y
F (y) ≥ min

y
{F (x) + 〈s, y − x〉 + ω(‖y − x‖x)} ,

≥ min
y
{F (x) − ‖s‖∗x · ‖y − x‖x + ω(‖y − x‖x)} ,

≥ F (x)− ω∗(‖s‖∗x) = F (x)− ω∗(λ̄(x)),

where the last inequality uses (1.15). Thus the second inequality of (3.9) holds.

For the further discussion, we denote by d̃(x) and λ̃(x) the (exact) proximal Newton direction

and its local norm at x ∈ dom(F ), that is,

d̃(x) := argmin
d

{

f(x) + 〈∇f(x), d〉 + 1

2
〈d,∇2f(x)d〉+ g(x+ d)

}

, (3.10)

λ̃(x) := ‖d̃(x)‖x. (3.11)

The following result provides an estimate on the reduction of the objective value resulted from

the exact proximal damped Newton step.
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Lemma 3.3 Let x ∈ dom(F ), d̃(x) and λ̃(x) be defined respectively in (3.10) and (3.11), and

x̃ = x+ d̃(x)/(1 + λ̃(x)). Then

F (x̃) ≤ F (x)− ω(λ̃(x)), (3.12)

F (x)− F ∗ ≥ ω(λ̃(x)). (3.13)

Proof. The relation (3.12) follows from [31, Theorem 5]. In addition, the relation (3.13) holds

due to (3.12) and F (x̃) ≥ F ∗.

Throughout the remainder of the paper, let di(x) be an approximate solution of the problem

min
di

{

f(x) + 〈∇if(x), di〉+
1

2
〈di,∇2

iif(x), di〉+ gi(xi + di)

}

, (3.14)

which satisfies the following conditions:

−vi ∈ ∇if(x) +∇2
iif(x)di(x) + ∂gi(xi + di(x)), (3.15)

‖vi‖∗xi
≤ η‖di(x)‖xi (3.16)

for some vi and η ∈ [0, 1/4]. Define

d(x) := (d1(x), . . . , dn(x)), v := (v1, . . . , vn), (3.17)

λi(x) := ‖di(x)‖xi , i = 1, . . . , n, (3.18)

H(x) := Diag(∇2
11f(x), . . . ,∇2

nnf(x)), (3.19)

where H(x) is a block diagonal matrix, whose diagonal blocks are ∇2
11f(x), . . . ,∇2

nnf(x). It then

follows that

− (∇f(x) + v +H(x)d(x)) ∈ ∂g(x+ d(x)). (3.20)

The following result builds some relationship between ‖d(x)‖H(x) and
∑n

i=1 λi(x).

Lemma 3.4 Let x ∈ dom(F ), d(x), λi(x) and H(x) be defined in (3.17), (3.18) and (3.19),

respectively. Then

1√
n

n∑

i=1

λi(x) ≤ ‖d(x)‖H(x) ≤
n∑

i=1

λi(x). (3.21)

Proof. By (1.11), (1.12), (3.17) and (3.19), one has

‖d(x)‖H(x) =

√
√
√
√

n∑

i=1

∥
∥
∥(∇2

iif(x))
1
2 di(x)

∥
∥
∥

2

≥ 1√
n

n∑

i=1

∥
∥
∥(∇2

iif(x))
1
2 di(x)

∥
∥
∥ =

1√
n

n∑

i=1

λi(x),

n∑

i=1

λi(x) =

n∑

i=1

∥
∥
∥(∇2

iif(x))
1
2 di(x)

∥
∥
∥ ≥

√
√
√
√

n∑

i=1

∥
∥
∥(∇2

iif(x))
1
2 di(x)

∥
∥
∥

2

= ‖d(x)‖H(x).

The following lemma builds some relationship between ‖d(x)‖H(x) and ‖d̃(x)‖x.

Lemma 3.5 Let x ∈ dom(F ), d̃(x), d(x) and H(x) be defined in (3.10), (3.17) and (3.19), respec-

tively. Then

‖d(x)‖H(x) ≤ ‖d̃(x)‖x
1− η

(

(1 + η)‖H(x)
1
2 (∇2f(x))−

1
2 ‖+ ‖H(x)−

1
2 (∇2f(x))

1
2 ‖
)

, (3.22)

‖d̃(x)‖x ≤
(

(1 + η)‖H(x)
1
2 (∇2f(x))−

1
2 ‖+ ‖H(x)−

1
2 (∇2f(x))

1
2 ‖
)

‖d(x)‖H(x). (3.23)
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Proof. For convenience, let d = d(x), d̃ = d̃(x), H = H(x) and H̃ = ∇2f(x). Then it follows

from (3.20) and (3.10) that

−(∇f(x) + v +Hd) ∈ ∂g(x+ d),

−(∇f(x) + H̃d̃) ∈ ∂g(x+ d̃).

In view of these and the monotonicity of ∂g, one has 〈d− d̃,−v −Hd+ H̃d̃〉 ≥ 0, which together

with (1.12) and (1.13) implies that

‖d‖2H + ‖d̃‖2
H̃
≤ 〈v, d̃− d〉+ 〈d, (H + H̃)d̃〉

≤ ‖v‖∗H(‖d‖H + ‖d̃‖H) + ‖d‖H · ‖d̃‖H̃ · ‖H− 1
2 (H + H̃)H̃− 1

2 ‖. (3.24)

Notice that

‖d̃‖H ≤ ‖H
1
2 H̃− 1

2 ‖ · ‖d̃‖H̃ . (3.25)

Let Hi = ∇2
iif(x). Observe that ‖vi‖∗Hi

= ‖vi‖∗xi
and ‖di‖Hi = ‖di‖xi . These and (3.16) yield

‖vi‖∗Hi
≤ η‖di‖Hi . In view of this and (3.19), one has

‖v‖∗H =

√
∑

i

(‖vi‖∗Hi
)2 ≤

√
∑

i

η2‖di‖2Hi
= η‖d‖H . (3.26)

It follows from this, (3.24) and (3.25) that

‖d‖2H + ‖d̃‖2
H̃
≤ η‖d‖H

(

‖d‖H + ‖H 1
2 H̃− 1

2 ‖ · ‖d̃‖H̃
)

+ ‖d‖H · ‖d̃‖H̃ · ‖H− 1
2 (H + H̃)H̃− 1

2 ‖,

≤ η‖d‖2H +
(

(1 + η)‖H 1
2 H̃− 1

2 ‖+ ‖H− 1
2 H̃

1
2 ‖
)

‖d‖H · ‖d̃‖H̃ , (3.27)

where the second inequality uses the relation

‖H− 1
2 (H + H̃)H̃− 1

2 ‖ ≤ ‖H 1
2 H̃− 1

2 ‖+ ‖H− 1
2 H̃

1
2 ‖.

Clearly, (3.27) is equivalent to

(1− η)‖d‖2H + ‖d̃‖2
H̃
≤
(

(1 + η)‖H 1
2 H̃− 1

2 ‖+ ‖H− 1
2 H̃

1
2 ‖
)

‖d‖H · ‖d̃‖H̃ .

This, along with d = d(x), d̃ = d̃(x), H = H(x), H̃ = ∇2f(x) and ‖d̃‖x = ‖d̃‖H̃ , yields (3.22) and

(3.23).

The following results will be used subsequently to study the convergence of RBPDN.

Lemma 3.6 Let S(x0), σf , d̃(x), d(x), λi(x) and H(x) be defined in (1.9), (2.4), (3.10), (3.17),

(3.18) and (3.19), respectively. Then

(i) S(x0) is a nonempty convex compact set.

(ii)

‖x− x∗‖ ≤ 2(Lf/σf )‖d̃(x)‖, ∀x ∈ S(x0), (3.28)

where

Lf = max
x∈S(x0)

‖∇2f(x)‖. (3.29)
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(iii)

F (x)− F ∗ ≥ ω
(

c1

n∑

i=1

λi(x)

)

, ∀x ∈ S(x0), (3.30)

where

c1 =
1− η

√
n max

x∈S(x0)

{

(1 + η)‖H(x)
1
2 (∇2f(x))−

1
2 ‖+ ‖H(x)−

1
2 (∇2f(x))

1
2 ‖
} . (3.31)

(iv)

‖d̃(x)‖ ≤ 1− η
c1
√
nσf
‖d(x)‖H(x), ∀x ∈ S(x0). (3.32)

(v)

‖d̃(x)‖ ≤ 1− η
c1
√
nσf

n∑

i=1

λi(x), ∀x ∈ S(x0). (3.33)

Proof. (i) Clearly, S(x0) 6= ∅ due to x0 ∈ S(x0). By (1.9) and the first inequality of (3.9),

one can observe that S(x0) ⊆
{
x : ω(‖x− x∗‖x∗) ≤ F (x0)− F ∗}. This together with the strict

monotonicity of ω in [0,∞) implies that S(x0) is a bounded set. In addition, we know that F is a

closed convex function. Hence, S(x0) is closed and convex.

(ii) By Assumption 1, we know that ∇2f is continuous and positive definite in dom(F ). It

follows from this and the compactness of S(x0) that σf and Lf are well-defined in (2.4) and (3.29)

and moreover they are positive. For convenience, let d̃ = d̃(x) and H̃ = ∇2f(x). By the optimality

condition of (1.1) and (3.10), one has

−(∇f(x) + H̃d̃) ∈ ∂g(x+ d̃), −∇f(x∗) ∈ ∂g(x∗),

which together with the monotonicity of ∂g yield

〈x+ d̃− x∗,−∇f(x)− H̃d̃+∇f(x∗)〉 ≥ 0.

Hence, we have that for all x ∈ S(x0),

σf‖x− x∗‖2 ≤ 〈x− x∗,∇f(x)−∇f(x∗)〉 ≤ −〈d̃,∇f(x) −∇f(x∗)〉 − 〈x− x∗, H̃d̃〉
≤ ‖∇f(x)−∇f(x∗)‖ · ‖d̃‖+ ‖H̃‖ · ‖x− x∗‖ · ‖d̃‖ ≤ 2Lf‖x− x∗‖ · ‖d̃‖,

which immediately implies (3.28).

(iii) In view of (3.11), (3.21), (3.22) and (3.31), one can observe that

λ̃(x) = ‖d̃(x)‖x ≥ c1
n∑

i=1

λi(x), ∀x ∈ S(x0),

which, together with (3.13) and the monotonicity of ω in [0,∞), implies that (3.30) holds.

(iv) One can observe that

‖d̃(x)‖ ≤
∥
∥
∥(∇2f(x))−

1
2

∥
∥
∥ · ‖d̃(x)‖x ≤

1
√
σf
‖d̃(x)‖x, ∀x ∈ S(x0), (3.34)

where the last inequality is due to (2.4). This, (3.23) and (3.31) lead to (3.32).

(v) The relation (3.33) follows from (3.21) and (3.32).
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4 Convergence results

In this section we establish some convergence results for RBPDN. In particular, we show in Sub-

section 4.1 that if g is Lipschitz continuous in S(x0), then RBPDN is globally convergent. In Sub-

section 4.2, we show that RBPDN enjoys a local linear convergence. In Subsection 4.3, we show

that for a class of g including the case where g is smooth (but not necessarily self-concordant) and

∇g is Lipschitz continuous in S(x0), RBPDN enjoys a global linear convergence.

4.1 Global convergence

In this subsection we study the global convergence of RBPDN. To proceed, we first establish a

certain reduction on the objective values over every two consecutive iterations.

Lemma 4.1 Let {xk} be generated by RBPDN. Then

Eι[F (x
k+1)] ≤ F (xk)− 1

2
ω

(

pmin

n∑

i=1

λi(x
k)

)

, k ≥ 0, (4.1)

where λi(·) is defined in (3.18) and

pmin := min
1≤i≤n

pi. (4.2)

Proof. Recall that ι ∈ {1, . . . , n} is randomly chosen at iteration k with probability pι. Since f

is a standard self-concordant function, it is not hard to observe that f(xk1 , . . . , x
k
ι−1, z, x

k
ι+1, . . . , x

k
n)

is also a standard self-concordant function of z. In view of this and Lemma 3.1 with F replaced

by F (xk1 , . . . , x
k
ι−1, z, x

k
ι+1, . . . , x

k
n), one can obtain that

F (xk+1) ≤ F (xk)− 1

2
ω(λι(x

k)). (4.3)

Taking expectation with respect to ι and using the convexity of ω, one has

Eι[F (x
k+1)] ≤ F (xk)− 1

2

n∑

i=1

piω(λi(x
k)) ≤ F (xk)− 1

2ω

(
n∑

i=1

piλi(x
k)

)

≤ F (xk)− 1
2ω

(

pmin

n∑

i=1

λi(x
k)

)

,

where the last inequality follows from (4.2) and the monotonicity of ω in [0,∞).

We next show that under a mild assumption RBPDN is globally convergent.

Theorem 4.1 Assume that g is Lipschitz continuous in S(x0). Then

lim
k→∞

E[F (xk)] = F ∗.

Proof. It follows from (4.1) that

E[F (xk+1)] ≤ E[F (xk)]− 1
2E

[

ω

(

pmin

n∑

i=1

λi(x
k)

)]

≤ E[F (xk)]− 1
2ω

(

pminE

[
n∑

i=1

λi(x
k)

])

,

where the last relation follows from Jensen’s inequality. Hence, we have

0 ≤
∑

k

ω

(

pminE

[
n∑

i=1

λi(x
k)

])

≤ F (x0)− F ∗. (4.4)
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Notice from (1.14) that ω(t) ≥ 0 for all t ≥ 0 and ω(t) = 0 if and only if t = 0. This and (4.4)

imply that

lim
k→∞

E

[
n∑

i=1

λi(x
k)

]

= 0. (4.5)

In view of x0 ∈ S(x0) and (4.3), one can observe that xk ∈ S(x0) for all k ≥ 0. Due to the

continuity of ∇f and the compactness of S(x0), one can observe that f is Lipschitz continuous

in S(x0). This along with the assumption of Lipschitz continuity of g in S(x0) implies that F is

Lipschitz continuous in S(x0) with some Lipschitz constant LF ≥ 0. Using this, (3.28) and (3.33),

we obtain that for all k ≥ 0,

F (xk) ≤ F ∗ + LF ‖xk − x∗‖ ≤ F ∗ + 2LfLF

σf
‖d̃(xk)‖

≤ F ∗ + 2(1−η)LfLF

c1
√
nσ

3/2
f

n∑

i=1

λi(x
k),

where the last two inequalities follow from (3.28) and (3.33), respectively. This together with (4.5)

and F (xk) ≥ F ∗ implies that the conclusion holds.

4.2 Local linear convergence

In this subsection we show that RBPDN enjoys a local linear convergence.

Theorem 4.2 Let {xk} be generated by RBPDN. Suppose F (x0) ≤ F ∗+ω(c1/pmin), where c1 and

pmin are defined in (3.31) and (4.2), respectively. Then

E[F (xk)− F ∗] ≤
[
6c2 + p2min(1− θ)

6c2 + p2min

]k

(F (x0)− F ∗), ∀k ≥ 0,

where

c2 :=

∣
∣
∣
∣
∣
θ

[(
Lf

σf

)3/2
2(1− η2)
c1
√
n
− 1

]

+

(
1

2
+ η

)

pmax

∣
∣
∣
∣
∣
, (4.6)

pmax := max
1≤i≤n

pi, θ := min
1≤i≤n

inf
x∈S(x0)

pi
1 + λi(x)

∈ (0, 1), (4.7)

and σf , Lf and c1 are defined respectively in (2.4), (3.29) and (3.31).

Proof. Let k ≥ 0 be arbitrarily chosen. For convenience, let x = xk and x+ = xk+1. By the

updating scheme of xk+1, one can observe that x+j = xj for j 6= ι and

x+ι = xι +
dι(x)

1 + λι(x)
,

where ι ∈ {1, . . . , n} is randomly chosen with probability pι and dι(x) is an approximate solution to

problem (3.14) that satisfies (3.15) and (3.16) for some vι and η ∈ [0, 1/4]. To prove this theorem,

it suffices to show that

Eι[F (x
+)− F ∗] ≤

(
6c2 + p2min(1− θ)

6c2 + p2min

)

(F (x)− F ∗). (4.8)

To this end, we first claim that θ is well-defined in (4.7) and moreover θ ∈ (0, 1). Indeed, given

any i ∈ {1, . . . , n}, let y ∈ ℜN be defined as follows:

yi = xi +
di(x)

1 + λi(x)
, yj = xj , ∀j 6= i,
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where λi(·) is defined in (3.18). By a similar argument as for (4.3), one has

F (y) ≤ F (x)− 1

2
ω(λi(x)).

Using this, x ∈ S(x0), F (y) ≥ F ∗ and the monotonicity of ω−1, we obtain that

λi(x) ≤ ω−1(2[F (x) − F (y)]) ≤ ω−1(2[F (x0)− F ∗]),

where ω−1 is the inverse function of ω when restricted to the interval [0,∞).2 It thus follows that

θ is well-defined in (4.7) and moreover θ ∈ (0, 1).

For convenience, let λi = λi(x), di = di(x) and Hi = ∇2
iif(x) for i = 1, . . . , n and H =

Diag(H1, . . . , Hn). In view of x ∈ S(x0) and (3.29), one can observe that

‖H‖ ≤ ‖∇2f(x)‖ ≤ Lf ,

which along with (3.28) and (3.32) implies

‖x− x∗‖H ≤ ‖H‖1/2‖x− x∗‖ ≤ 2(L
3/2
f /σf )‖d̃(x)‖,

≤ 2

(
Lf

σf

)3/2
1− η
c1
√
n
‖d‖H . (4.9)

It follows from (3.15) that there exists si ∈ ∂gi(xi + di) such that

∇if(x) +Hidi + si + vi = 0, i = 1, . . . , n, (4.10)

which together with the definition of H and v yields

∇f(x) +Hd+ s+ v = 0,

where s = (s1, . . . , sn) ∈ ∂g(x+ d).

By the convexity of f , one has

f(x) ≤ f(x∗) + 〈∇f(x), x − x∗〉.

In addition, by s ∈ ∂g(x+ d) and the convexity of g, one has

g(x+ d) ≤ g(x∗) + 〈s, x+ d− x∗〉.

Using the last three relations, (3.26) and (4.9), we can obtain that

f(x) + 〈∇f(x) + v, d〉+ g(x+ d) ≤ f(x∗) + 〈∇f(x), x − x∗〉+ 〈∇f(x) + v, d〉+ g(x∗)

+〈s, x+ d− x∗〉
= F ∗ + 〈∇f(x) + v + s, x+ d− x∗〉 − 〈v, x− x∗〉
= F ∗ + 〈−Hd, x+ d− x∗〉 − 〈v, x− x∗〉
= F ∗ − 〈Hd, d〉 − 〈Hd, x− x∗〉 − 〈v, x− x∗〉
≤ F ∗ − ‖d‖2H + ‖d‖H · ‖x− x∗‖H + ‖v‖∗H · ‖x− x∗‖H
≤ F ∗ + β‖d‖2H , (4.11)

where

β =

(
Lf

σf

)3/2
2(1− η2)
c1
√
n
− 1. (4.12)

2 Observe from (1.14) that ω is strictly increasing in [0,∞). Thus, its inverse function ω−1 is well-defined when

restricted to this interval and moreover it is strictly increasing.
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By (3.16) and (4.7), we have

−
∑

i

pi〈vi, di〉
1 + λi

≤
∑

i

pi
1 + λi

‖vi‖∗Hi
· ‖di‖Hi ≤ η

∑

i

pi
1 + λi

‖di‖2Hi
≤ η pmax‖d‖2H . (4.13)

In addition, recall that ω∗(t) = −t− ln(1− t). It thus follows that

ω∗(t) =
∞∑

k=2

tk

k!
≤ t2

2

∞∑

k=0

tk =
t2

2(1− t) , ∀t ∈ [0, 1).

This inequality implies that

∑

i

piω∗

(
λi

1 + λi

)

≤
∑

i

pi(λi/(1 + λi))
2

2(1− λi/(1 + λi))
=

1

2

∑

i

piλ
2
i

1 + λi
≤ pmax

2

∑

i

λ2i =
pmax

2
‖d‖2H , (4.14)

where pmax is defined in (4.7).

Recall that si ∈ ∂gi(xi + di). By the convexity of gi, one has gi(xi + di)− gi(xi) ≤ 〈si, di〉. It

thus follows from this and (4.10) that for i = 1, . . . , n,

〈∇if(x) + vi, di〉+ gi(xi + di)− gi(xi) ≤ 〈∇if(x) + vi, di〉+ 〈si, di〉

= 〈∇if(x) + si + vi, di〉 = −〈di, Hidi〉 ≤ 0. (4.15)

By a similar argument as for (3.2) and the definition of x+, one has

f(x+) ≤ f(x) + 1

1 + λι
〈∇ιf(x), dι〉+ ω∗

(
λι

1 + λι

)

.

It also follows from the convexity of gι that

gι

(

xι +
dι

1 + λι

)

− gι(xι) ≤
1

1 + λι
[gι(xι + dι)− gι(xι)] .

Using the last two inequalities and the definition of x+, we have

F (x+) = f(x+) + gι

(

xι +
dι

1+λι

)

+
∑

j 6=ι

gj(xj)

= f(x+) + g(x) + gι

(

xι +
dι

1+λι

)

− gι(xι)

≤ f(x) + 1
1+λι
〈∇ιf(x), dι〉+ ω∗

(
λι

1+λι

)

+ g(x) + gι

(

xι +
dι

1+λι

)

− gι(xι)

= F (x) + 1
1+λι
〈∇ιf(x), dι〉+ ω∗

(
λι

1+λι

)

+ gι

(

xι +
dι

1+λι

)

− gι(xι)

≤ F (x) + 1
1+λι
〈∇ιf(x), dι〉+ ω∗

(
λι

1+λι

)

+ 1
1+λι

[gι(xι + dι)− gι(xι)]

= F (x) + 1
1+λι

[〈∇ιf(x) + vι, dι〉+ gι(xι + dι)− gι(xι)]− 〈vι,dι〉
1+λι

+ ω∗
(

λι

1+λι

)

.
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Taking expectation with respect to ι on both sides and using (4.7), (4.11), (4.13), (4.14) and (4.15),
one has

Eι[F (x+)] ≤ F (x) +
∑

i

pi
1 + λi

[〈∇if(x) + vi, di〉+ gi(xi + di)− gi(xi)]
︸ ︷︷ ︸

≤0 due to (4.15)

−
∑

i

pi〈vi, di〉

1 + λi

+
∑

i

piω∗

(
λi

1 + λi

)

≤ F (x) + θ
∑

i

[〈∇if(x) + vi, di〉+ gi(xi + di)− gi(xi)]−
∑

i

pi〈vi, di〉

1 + λi

+
∑

i

piω∗

(
λi

1 + λi

)

= F (x) + θ [〈∇f(x) + v, d〉+ g(x+ d)− g(x)]−
∑

i

pi〈vi, di〉

1 + λi

+
∑

i

piω∗

(
λi

1 + λi

)

= (1− θ)F (x) + θ [f(x) + 〈∇f(x) + v, d〉+ g(x+ d)]−
∑

i

pi〈vi, di〉

1 + λi

+
∑

i

piω∗

(
λi

1 + λi

)

≤ (1− θ)F (x) + θ(F ∗ + β‖d‖2H) + η pmax‖d‖
2
H +

pmax

2
‖d‖2H

= (1− θ)F (x) + θF ∗ + (θβ + (1/2 + η)pmax) ‖d‖
2
H

≤ (1− θ)F (x) + θF ∗ + c2

(
∑

i

λi

)2

, (4.16)

where the last inequality is due to (4.12), (4.6) and ‖d‖2H =
∑

i λ
2
i ≤ (

∑

i λi)
2.

One can easily observe from (4.16) that the conclusion of this theorem holds if c2 = 0. We now

assume c2 > 0. Let δ+ = F (x+)− F ∗ and δ = F (x)− F ∗. It then follows from (4.16) that

Eι[δ
+] ≤ (1− θ)δ + c2

(
∑

i

λi

)2

,

which yields
(
∑

i

λi

)2

≥ 1

c2

(
Eι[δ

+]− (1− θ)δ
)

(4.17)

By the assumption, one has F (x) ≤ F (x0) ≤ F ∗ + ω(c1/pmin). By this and (3.30), we have

ω(c1
∑

i

λi) ≤ F (x) − F ∗ ≤ ω(c1/pmin),

which together with the monotonicity of ω in [0,∞) implies pmin

∑

i λi ≤ 1. Observe that

ω(t) = t− ln(1 + t) =

∞∑

k=2

(−1)ktk
k!

≥ t2

2
− t3

6
≥ t2

3
, ∀t ∈ [0, 1].

This and pmin

∑

i λi ≤ 1 lead to

ω

(

pmin

∑

i

λi

)

≥ 1

3
p2min

(
∑

i

λi

)2

.

It then follows from this and (4.1) that

Eι[δ
+] ≤ δ − 1

6
p2min

(
∑

i

λi

)2

,

which together with (4.17) gives

Eι[δ
+] ≤ δ − p2min

6c2

(
Eι[δ

+]− (1− θ)δ
)
.
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Hence, we obtain that

Eι[δ
+] ≤

(
6c2 + p2min(1 − θ)

6c2 + p2min

)

δ,

which proves (4.8) as desired.

4.3 Global linear convergence

In this subsection we show that for a class of g including the case where g is smooth (but not

necessarily self-concordant) and ∇g is Lipschitz continuous in S(x0),3 RBPDN enjoys a global

linear convergence. To this end, we make the following assumption throughout this subsection

which, as shown subsequently, holds for a class of g.

Assumption 2 There exists some c3 > 0 such that

‖d̃(x)‖ ≥ c3λ̄(x), ∀x ∈ S(x0),

where S(x0), λ̄(x) and d̃(x) are defined in (1.9), (3.8) and (3.10), respectively.

The following proposition shows that Assumption 2 holds for a class of g including g = 0 as a

special case.

Proposition 4.1 Suppose that g is Lipschitz differentiable in S(x0) with a Lipschitz constant

Lg ≥ 0. Then Assumption 2 holds with c3 =
√
σf/(Lf +Lg), where σf and Lf are defined in (2.4)

and (3.29), respectively.

Proof. Let x ∈ S(x0) be arbitrarily chosen. It follows from (3.10) and the differentiability of g

that

∇f(x) +∇2f(x)d̃(x) +∇g(x+ d̃(x)) = 0,

which, together with (3.8), (3.29) and the Lipschitz continuity of ∇g, implies that

λ̄(x) = ‖∇f(x) +∇g(x)‖∗x ≤ 1√
σf
‖∇f(x) +∇g(x)‖,

= 1√
σf
‖∇g(x)−∇g(x+ d̃(x)) −∇2f(x)d̃(x)‖ ≤ Lf+Lg√

σf
‖d̃(x)‖.

and hence the conclusion holds.

We next provide a lower bound for λ̄(x) in terms of the optimality gap, which will play crucial

role in our subsequent analysis.

Lemma 4.2 Let x ∈ dom(F ) and λ̄(x) be defined in (3.8). Then

λ̄(x) ≥ ω−1
∗ (F (x) − F ∗), (4.18)

where ω−1
∗ is the inverse function of ω∗ when restricted to the interval [0, 1).

Proof. Observe from (1.14) that ω∗(t) ∈ [0,∞) for t ∈ [0, 1) and ω∗ is strictly increasing in

[0, 1). Thus its inverse function ω−1
∗ is well-defined when restricted to this interval. It also follows

that ω−1
∗ (t) ∈ [0, 1) for t ∈ [0,∞) and ω−1

∗ is strictly increasing in [0,∞). We divide the rest of

the proof into two separable cases as follows.

3This covers the case where g = 0, which, for instance, arises in the interior point methods for solving smooth

convex optimization problems.
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Case 1): λ̄(x) < 1. It follows from Theorem 3.2 that F (x) − F ∗ ≤ ω∗(λ̄(x)). Taking ω−1
∗ on

both sides of this relation and using the monotonicity of ω−1
∗ , we see that (4.18) holds.

Case 2): λ̄(x) ≥ 1. (4.18) clearly holds in this case due to ω−1
∗ (t) ∈ [0, 1) for all t ≥ 0

In what follows, we show that under Assumption 2 RBPDN enjoys a global linear convergence.

Theorem 4.3 Let {xk} be generated by RBPDN. Suppose that Assumption 2 holds. Then

E[F (xk)− F ∗] ≤
[

1− c24p
2
min(1 − ω−1

∗ (δ0))

2(1 + c4pminω
−1
∗ (δ0))

]k

(F (x0)− F ∗), ∀k ≥ 0,

where δ0 = F (x0)− F ∗,

c4 =
c1c3
√
nσf

1− η , (4.19)

and σf and c1 are defined in (2.4) and (3.31), respectively.

Proof. Let k ≥ 0 be arbitrarily chosen. For convenience, let x = xk and x+ = xk+1. By the

updating scheme of xk+1, one can observe that x+j = xj for j 6= ι and

x+ι = xι +
dι(x)

1 + λι(x)
,

where ι ∈ {1, . . . , n} is randomly chosen with probability pι and dι(x) is an approximate solution to

problem (3.14) that satisfies (3.15) and (3.16) for some vι and η ∈ [0, 1/4]. To prove this theorem,

it suffices to show that

Eι[F (x
+)− F ∗] ≤

[

1− c24p
2
min(1− ω−1

∗ (δ0))

2(1 + c4pminω
−1
∗ (δ0))

]

(F (x)− F ∗). (4.20)

Indeed, it follows from (3.33), (4.19) and Assumption 2 that

n∑

i=1

λi(x) ≥
c1
√
nσf

1− η ‖d̃(x)‖ ≥ c4λ̄(x).

This together with (4.18) yields

n∑

i=1

λi(x) ≥ c4ω
−1
∗ (F (x) − F ∗).

Using this, (4.1) and the monotonicity of ω in [0,∞), we obtain that

Eι[F (x
+)] ≤ F (x) − 1

2
ω
(
c4pminω

−1
∗ (F (x)− F ∗)

)
.

Let δ+ = F (x+)− F ∗ and δ = F (x)− F ∗. It then follows that

Eι[δ
+] ≤ δ − 1

2
ω
(
c4pminω

−1
∗ (δ)

)
. (4.21)

Consider the function t = ω−1
∗ (s). Then s = ω∗(t). Differentiating both sides with respect to

s, we have

(ω∗(t))
′ dt

ds
= 1,

which along with ω∗(t) = −t− ln(1− t) yields

(ω−1
∗ (s))′ =

dt

ds
=

1

(ω∗(t))′
=

1− t
t

=
1− ω−1

∗ (s)

ω−1
∗ (s)

.
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In view of this and ω(t) = t− ln(1 + t), one has that for any α > 0,

d

ds
[ω(αω−1

∗ (s))] = αω′(αω−1
∗ (s))(ω−1

∗ (s))′ = α · αω−1
∗ (s)

1 + αω−1
∗ (s)

· 1− ω
−1
∗ (s)

ω−1
∗ (s)

=
α2(1− ω−1

∗ (s))

1 + αω−1
∗ (s)

.

(4.22)

Notice that δ ≤ δ0 due to x ∈ S(x0). By this and the monotonicity of ω−1
∗ , one can see that

ω−1
∗ (s) ≤ ω−1

∗ (δ) ≤ ω−1
∗ (δ0), ∀s ∈ [0, δ],

which implies that
1− ω−1

∗ (s)

1 + αω−1
∗ (s)

≥ 1− ω−1
∗ (δ0)

1 + αω−1
∗ (δ0)

, ∀s ∈ [0, δ].

Also, observe that ω(αω−1
∗ (0)) = 0. Using these relations and (4.22), we have

ω(αω−1
∗ (δ)) =

∫ δ

0

d

ds
[ω(αω−1

∗ (s))]ds =

∫ δ

0

α2(1− ω−1
∗ (s))

1 + αω−1
∗ (s)

ds ≥ α2(1− ω−1
∗ (δ0))

1 + αω−1
∗ (δ0)

δ.

This and (4.21) with α = c4pmin lead to

Eι[δ
+] ≤

[

1− c24p
2
min(1− ω−1

∗ (δ0))

2(1 + c4pminω
−1
∗ (δ0))

]

δ,

which gives (4.20) as desired.

The following result is an immediate consequence of Proposition 4.1 and Theorem 4.3.

Corollary 4.1 Let {xk} be generated by RBPDN. Suppose that g is Lipschitz differentiable in

S(x0) with a Lipschitz constant Lg ≥ 0. Then

E[F (xk)− F ∗] ≤
[

1− c̃24p
2
min(1 − ω−1

∗ (δ0))

2(1 + c̃4pminω
−1
∗ (δ0))

]k

(F (x0)− F ∗), ∀k ≥ 0,

where δ0 = F (x0)− F ∗,

c̃4 =

√
nc1σf

(1 − η)(Lf + Lg)
,

and σf , Lf and c1 are defined in (2.4), (3.29) and (3.31), respectively.

One can observe that RBPDN reduces to PDN [31] or DN [22] 4 by setting n = 1. It thus

follows from Corollary 4.1 that PDN for a class of g and DN are globally linearly convergent, which

is stated below. To the best of our knowledge, this result was previously unknown in the literature.

Corollary 4.2 Suppose that g is Lipschitz differentiable in S(x0). Then PDN [31] for such g and

DN [22] are globally linearly convergent.

Before ending this subsection we show that Corollary 4.2 can be used to sharpen the existing

iteration complexity of some methods in [22, 40, 31].

A mixture of DN and Newton methods is presented in [22, Section 4.1.5] for solving problem

(1.1) with g = 0. In particular, this method consists of two stages. Given an initial point x0,

β ∈ (0, (3−
√
5)/2) and ǫ > 0, the first stage performs the DN iterations

xk+1 = xk − d̃(xk)

1 + λ̃(xk)
(4.23)

4PDN becomes DN if g = 0.
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until finding some xK1 such that λ̃(xK1) ≤ β, where d̃(·) and λ̃(·) are defined in (3.10) and (3.11),

respectively. The second stage executes the standard Newton iterations

xk+1 = xk − d̃(xk), (4.24)

starting at xK1 and terminating at some xK2 such that λ̃(xK2 ) ≤ ǫ. As shown in [22, Section

4.1.5], the second stage converges quadratically:

λ̃(xk+1) ≤
(

λ̃(xk)

1− λ̃(xk)

)2

, ∀k ≥ K1. (4.25)

In addition, an upper bound on K1 is established in [22, Section 4.1.5], which is

K1 ≤
⌈
(F (x0)− F ∗)/ω(β)

⌉
. (4.26)

In view of (4.25), one can easily show that

K2 −K1 ≤
⌈

log2

(
log ǫ− 2 log(1− β)
log β − 2 log(1− β)

)⌉

. (4.27)

Observe that the first stage of this method is just DN, which is a special case of RBPDN with

n = 1 and η = 0. It thus follows from Corollary 4.2 that the first stage converges linearly. In fact,

it can be shown that

F (xk+1)− F ∗ ≤
(

1− 1− ω−1
∗ (δ0)

1 + ω−1
∗ (δ0)

)

(F (xk)− F ∗), ∀k ≤ K1, (4.28)

where δ0 = F (x0) − F ∗. Indeed, since g = 0, one can observe from (3.8) and (3.11) that λ̃(xk) =

λ̄(xk). It then follows from this, g = 0 and [22, Theorem 4.1.12] that F (xk+1) ≤ F (xk)−ω(λ̄(xk))
for all k ≤ K1. This together with (4.18) implies that

F (xk+1) ≤ F (xk)− ω(ω−1
∗ (F (xk)− F ∗)), ∀k ≤ K1.

The relation (4.28) then follows from this and a similar argument as in the proof of Theorem 4.3.

Let

K̄ =











log(ω(β))− log δ0

log
(

1− 1−ω−1
∗

(δ0)

1+ω−1
∗

(δ0)

)





+








,

where t+ = max(t, 0). In view of (4.28), one can easily verify that F (xK̄) − F ∗ ≤ ω(β), which

along with (3.13) implies that λ̃(xK̄) ≤ β. By (4.26) and the definition of K1, one can have

K1 ≤ min
{
K̄, ⌈δ0/ω(β)⌉

}
, which sharpens the bound (4.26). Combining this relation and (4.27),

we thus obtain the following new iteration complexity for finding an approximate solution of (1.1)

with g = 0 by a mixture of DN and Newton method [22, Section 4.1.5].

Theorem 4.4 Let x0 ∈ dom(F ), β ∈ (0, (3−
√
5)/2) and ǫ > 0 be given. Then the mixture of DN

and Newton methods [22, Section 4.1.5] for solving problem (1.1) with g = 0 requires at most

min

















log(ω(β)) − log δ0

log
(

1− 1−ω−1
∗

(δ0)

1+ω−1
∗

(δ0)

)





+








,

⌈
δ0
ω(β)

⌉







+

⌈

log2

(
log ǫ − 2 log(1− β)
log β − 2 log(1− β)

)⌉

iterations for finding some xk satisfying λ̃(xk) ≤ ǫ, where δ0 = F (x0)− F ∗.
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Recently, Zhang and Xiao [40] proposed an inexact DN method for solving problem (1.1) with

g = 0, whose iterations are updated as follows:

xk+1 = xk − d̂(xk)

1 + λ̂(xk)
, ∀k ≥ 0,

where d̂(xk) is an approximation to d̃(xk) and λ̂(xk) =

√

〈d̂(xk),∇2f(xk)d̂(xk)〉 (see [40, Algorithm

1] for details). It is shown in [40, Theorem 1] that such {xk} satisfies

F (xk+1) ≤ F (xk)− 1

2
ω(λ̃(xk)), ∀k ≥ 0, (4.29)

ω(λ̃(xk+1)) ≤ 1

2
ω(λ̃(xk)), if λ̃(xk) ≤ 1/6, (4.30)

where λ̃(·) is defined in (3.11). These relations are used in [40] for deriving an iteration complexity

of the inexact DN method. In particular, its complexity analysis is divided into two parts. The first

part estimates the number of iterations required for generating some xK1 satisfying λ̃(xK1) ≤ 1/6,

while the second part estimates the additional iterations needed for generating some xK2 satisfying

F (xK2)− F ∗ ≤ ǫ. In [40], the relation (4.29) is used to show that

K1 ≤
⌈
(2(F (x0)− F ∗))/ω(1/6)

⌉
, (4.31)

while (4.30) is used to establish

K2 −K1 ≤
⌈

log2

(
2ω(1/6)

ǫ

)⌉

. (4.32)

It follows from these two relations that the inexact DN method can find an approximate solution

xk satisfying F (xk)− F ∗ ≤ ǫ in at most

⌈
2(F (x0)− F ∗)

ω(1/6)

⌉

+

⌈

log2

(
2ω(1/6)

ǫ

)⌉

iterations, which is stated in [40, Corollary 1].

By a similar analysis as above, one can show that the inexact DN method ([40, Algorithm 1])

is globally linearly convergent. In fact, it can be shown that

F (xk+1)− F ∗ ≤
(

1− 1− ω−1
∗ (δ0)

2(1 + ω−1
∗ (δ0))

)

(F (xk)− F ∗), ∀k ≥ 0, (4.33)

where δ0 = F (x0) − F ∗. Indeed, since g = 0, one has λ̃(xk) = λ̄(xk). It follows from this, (4.18)

and (4.29) that

F (xk+1) ≤ F (xk)− 1

2
ω(ω−1

∗ (F (xk)− F ∗)), ∀k ≥ 0.

The relation (4.33) then follows from this and a similar derivation as in the proof of Theorem 4.3.

By (4.31), (4.33) and a similar argument as above, one can have

K1 ≤ min

















log(12ω(1/6))− log δ0

log
(

1− 1−ω−1
∗

(δ0)

2(1+ω−1
∗

(δ0))

)





+








,

⌈
2δ0

ω(1/6)

⌉







,

which improves the bound (4.31). Combining this relation and (4.32), we thus obtain the fol-

lowing new iteration complexity for finding an approximate solution of (1.1) with g = 0 by the

aforementioned inexact DN method.
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Theorem 4.5 Let x0 ∈ dom(F ) and ǫ > 0 be given. Then the inexact DN method ([40, Algorithm

1]) for solving problem (1.1) with g = 0 requires at most

min

















log(12ω(1/6))− log δ0

log
(

1− 1−ω−1
∗

(δ0)

2(1+ω−1
∗

(δ0))

)





+








,

⌈
2δ0

ω(1/6)

⌉







+

⌈

log2

(
2ω(1/6)

ǫ

)⌉

iterations for finding some xk satisfying F (xk)− F ∗ ≤ ǫ, where δ0 = F (x0)− F ∗.

Dinh-Tran et al. recently proposed in [31, Algorithm 1] a proximal Newton method for solving

problem (1.1) with general g. Akin to the aforementioned method [22, Section 4.1.5] for (1.1)

with g = 0, this method also consists of two stages (or phases). The first stage performs the

PDN iterations in the form of (4.23) for finding some xK1 such that λ̃(xK1) ≤ ω(0.2), while the

second stage executes the proximal Newton iterations in the form of (4.24) starting at xK1 and

terminating at some xK2 such that λ̃(xK2) ≤ ǫ. As shown in [31, Theorem 6], the second stage

converges quadratically. The following relations are essentially established in [31, Theorem 7]:

K1 ≤
⌈
(F (x0)− F ∗)/ω(0.2)

⌉
, (4.34)

K2 −K1 ≤
⌈

1.5 log log
0.28

ǫ

⌉

. (4.35)

Throughout the remainder of this subsection, suppose that Assumption 2 holds. Observe that the

first stage of this method is just PDN, which is a special case of RBPDN with n = 1 and η = 0. It

thus follows from Corollary 4.2 that the first stage converges linearly. In fact, it can be shown that

F (xk+1)− F ∗ ≤
[

1− ĉ2(1− ω−1
∗ (δ0))

(1 + ĉω−1
∗ (δ0)

]k

(F (x0)− F ∗), ∀k ≤ K1, (4.36)

where δ0 = F (x0)−F ∗, ĉ = c3
√
σf , and σf and c3 are given in (2.4) and Assumption 2, respectively.

Indeed, by (3.11) and (3.34), one has ‖d̃(xk)‖ ≤ λ̃(xk)/
√
σf . In addition, by Assumption 2, we

have ‖d̃(xk)‖ ≥ c3λ̄(x
k). It follows from these two relations that λ̃(xk) ≥ ĉλ̄(xk), which together

with (4.18) yields λ̃(xk) ≥ ĉω−1
∗ (F (xk)− F ∗). This and (3.12) imply that

F (xk+1) ≤ F (xk)− ω(ĉω−1
∗ (F (xk)− F ∗)), ∀k ≤ K1.

The relation (4.36) then follows from this and a similar argument as in the proof of Theorem 4.3.

Let

K̄ =











log(ω(0.2))− log δ0

log
(

1− ĉ2(1−ω−1
∗

(δ0))

(1+ĉω−1
∗

(δ0)

)





+








.

By (4.36), one can easily verify that F (xK̄) − F ∗ ≤ ω(0.2), which along with (3.13) implies that

λ̃(xK̄) ≤ 0.2. By (4.26) and the definition of K1, one can have K1 ≤ min
{
K̄, ⌈δ0/ω(0.2)⌉

}
, which

sharpens the bound (4.34). Combining this relation and (4.35), we thus obtain the following new

iteration complexity for finding an approximate solution of (1.1) by the aforementioned proximal

Newton method.

Theorem 4.6 Let x0 ∈ dom(F ) and ǫ > 0 be given. Suppose that Assumption 2 holds. Then the

proximal Newton method [31, Algorithm 1] for solving problem (1.1) requires at most

min

















log(ω(0.2))− log δ0

log
(

1− ĉ2(1−ω−1
∗

(δ0))

(1+ĉω−1
∗

(δ0)

)





+








,

⌈
δ0

ω(0.2)

⌉







+

⌈

1.5 log log
0.28

ǫ

⌉

23



iterations for finding some xk satisfying λ̃(xk) ≤ ǫ, where δ0 = F (x0) − F ∗, ĉ = c3
√
σf , and σf

and c3 are given in (2.4) and Assumption 2, respectively.

Remark: Suppose that g is Lipschitz differentiable in S(x0) with a Lipschitz constant Lg ≥ 0.

It follows from Proposition 4.1 that Assumption 2 holds with c3 =
√
σf/(Lf + Lg), where Lf is

defined in (3.29), and thus Theorem 4.6 holds with ĉ = σf/(Lf + Lg).

5 Numerical results

In this section we conduct numerical experiment to test the performance of RBPDN. In particular,

we apply RBPDN to solve a regularized logistic regression (RLR) model and a sparse regularized

logistic regression (SRLR) model. We also compare RBPDN with a randomized block accelerated

proximal gradient (RBAPG) method proposed in [15] on these problems. All codes are written in

MATLAB and all computations are performed on a MacBook Pro running with Mac OS X Lion

10.7.4 and 4GB memory.

For the RLR problem, our goal is to minimize a regularized empirical logistic loss function,

particularly, to solve the problem:

L∗
µ := min

x∈ℜN

{

Lµ(x) :=
1

m

m∑

i=1

log(1 + exp(−yi〈wi, x〉)) + µ

2
‖x‖2

}

(5.1)

for some µ > 0, where wi ∈ ℜN is a sample of N features and yi ∈ {−1, 1} is a binary classification

of this sample. This model has recently been considered in [40]. Similarly, for the SRLR problem,

we aim to solve the problem:

L∗
γ,µ := min

x∈ℜN

{

Lγ,µ(x) :=
1

m

m∑

i=1

log(1 + exp(−yi〈wi, x〉)) + µ

2
‖x‖2 + γ‖x‖1

}

(5.2)

for some µ, γ > 0.

In our experiments below, we fix m = 1000 and set N = 3000, 6000, . . . , 30000. For each pair

(m,N), we randomly generate 10 copies of data {(wi, yi)}mi=1 independently. In each copy, the

elements of wi are generated according to the standard uniform distribution on the open interval

(0, 1) and yi is generated according to the distribution P(ξ = −1) = P(ξ = 1) = 1/2. As in [40],

we normalize the data so that ‖wi‖ = 1 for all i = 1, . . . ,m, and set the regularization parameters

µ = 10−5 and γ = 10−4.

We now apply RBPDN and RBAPG to solve problem (5.1). For both methods, the decision

variable x ∈ ℜN is divided into 10 blocks sequentially and equally. At each iteration k, they pick

a block ι uniformly at random. For RBPDN, it needs to find a search direction dι(x
k) satisfying

(2.2) and (2.3) with f = Lµ and g = 0, that is,

∇2
ιιLµ(x

k)dι(x
k) +∇ιLµ(x

k) + vι = 0, (5.3)
√

〈vι, (∇2
ιιLµ(xk))−1vι〉 ≤ η

√

〈dι(xk),∇2
ιιLµ(xk)dι(xk)〉 (5.4)

for some η ∈ [0, 1/4]. To obtain such a dι(x
k), we apply conjugate gradient method to solve the

equation

∇2
ιιLµ(x

k)dι = −∇ιLµ(x
k)

until an approximate solution dι satisfying

‖∇2
ιιLµ(x

k)dι +∇ιLµ(x
k)‖ ≤ 1

4

√

µ〈dι,∇2
ιιLµ(xk)dι〉. (5.5)
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is found and then set dι(x
k) = dι. Notice from (5.1) that ∇2

ιιLµ(x
k) � µI. In view of this, one

can verify that such dι(x
k) satisfies (5.3) and (5.4) with η = 1/4. In addition, we choose x0 = 0

for both methods and terminate them once the duality gap is below 10−3. More specifically, one

can easily derive a dual of problem (5.1) given by

max
s∈ℜm






Dµ(s) := −

1

m

m∑

i=1

log(1−msi)−
1

2µ

∥
∥
∥
∥
∥

m∑

i=1

siyiw
i

∥
∥
∥
∥
∥

2

−
m∑

i=1

si log

(
msi

1−msi

)





.

Let {xk} be a sequence of approximate solutions to problem (5.1) generated by RBPDN or RBAPG

and sk ∈ ℜm the associated dual sequence defined as follows:

ski =
exp(−yi〈wi, xk〉)

m(1 + exp(−yi〈wi, xk〉)) , i = 1, . . . ,m. (5.6)

We use Lµ(x
k) − Dµ(s

k) ≤ 10−3 as the termination criterion for RBPDN or RBAPG, which is

checked once every 10 iterations.

The computational results averaged over the 10 copies of data generated above are presented

in Table 1. In detail, the problem size N is listed in the first column. The average number of

iterations (upon round off) for RBPDN and RBAPG are given in the next two columns. The

average CPU time (in seconds) for these methods are presented in columns four and five, and

the average objective function value of (5.1) obtained by them are given in the last two columns.

One can observe that both methods are comparable in terms of objective values, but RBPDN

substantially outperforms RBAPG in terms of CPU time.

In the next experiment, we apply RBPDN and RBAPG to solve problem (5.2). Same as above,

the decision variable x ∈ ℜN is divided into 10 blocks sequentially and equally. At each iteration

k, they pick a block ι uniformly at random. For RBPDN, it needs to compute a search direction

dι(x
k) satisfying (2.2) and (2.3) with f = Lγ,µ and g = γ‖ · ‖1, that is,

− vι ∈ ∇2
ιιLµ(x

k)dι(x
k) +∇ιLµ(x

k) + γ∂(‖xkι + dι(x
k)‖1), (5.7)

√

〈vι, (∇2
ιιLµ(xk))−1vι〉 ≤ η

√

〈dι(xk),∇2
ιιLµ(xk)dι(xk)〉 (5.8)

for some η ∈ [0, 1/4]. To obtain such a dι(x
k), we apply FISTA [1] to solve the problem

min
dι

{
1

2
〈dι,∇2

ιιLµ(x
k)dι〉+ 〈∇ιLµ(x

k), dι〉+ γ‖xkι + dι‖1
}

until an approximate solution dι satisfying (5.5) and (5.7) is found and then set dι(x
k) = dι. By

the same argument as above, one can see that such dι(x
k) also satisfies (5.8) with η = 1/4. In

addition, we choose x0 = 0 for both methods and terminate them the duality gap is below 10−3.

More specifically, one can easily derive a dual of problem (5.2) as follows:

max
s∈ℜm







Dγ,µ(s) := − 1
m

∑m
i=1 log(1−msi) + µ

2 ‖h(s)‖2 + γ‖θ(s)‖1 −
∑m

i=1 si log
(

msi
1−msi

)

−〈∑m
i=1 siyiw

i, h(s)〉






,

where

h(s) := arg min
h∈ℜn

{

µ

2
‖h‖2 − 〈

m∑

i=1

siyiw
i, h〉+ γ‖h‖1

}

, ∀s ∈ ℜm.

Let {xk} be a sequence of approximate solutions to problem (5.2) generated by RBPDN or RBAPG

and sk ∈ ℜm the associated dual sequence defined as in (5.6). We use Lγ,µ(x
k)−Dγ,µ(s

k) ≤ 10−3

as the termination criterion for RBPDN or RBAPG, which is checked once every 10 iterations.
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Table 1: Comparison on RBPDN and RBAPG for solving (5.1)

Problem Iteration CPU Time Objective Value

N RBPDN RBAPG RBPDN RBAPG RBPDN RBAPG

3000 111 2837 0.13 2.01 0.2300 0.2298

6000 53 2756 0.12 3.61 0.2142 0.2141

9000 56 2339 0.22 5.80 0.2092 0.2092

12000 52 2083 0.32 7.64 0.2079 0.2078

15000 48 2084 0.40 10.33 0.2069 0.2069

18000 59 1881 0.59 9.23 0.2058 0.2059

21000 46 1866 0.55 10.28 0.2050 0.2050

24000 53 1854 0.72 11.33 0.2050 0.2050

27000 54 1848 0.82 12.38 0.2045 0.2044

30000 51 1924 0.87 13.87 0.2043 0.2043

Table 2: Comparison on RBPDN and RBAPG for solving (5.2)

Problem Iteration CPU Time Objective Value Cardinality

N RBPDN RBAPG RBPDN RBAPG RBPDN RBAPG RBPDN RBAPG

3000 2233 6126 5.44 3.19 0.5529 0.5532 749 1705

6000 1003 6239 3.82 4.74 0.5941 0.5943 840 2372

9000 626 6174 3.17 6.39 0.6210 0.6211 857 3000

12000 408 5985 2.63 7.70 0.6398 0.6400 852 3108

15000 294 5762 2.30 9.06 0.6521 0.6523 815 3340

18000 272 5476 2.50 10.26 0.6616 0.6618 748 3237

21000 208 5287 2.26 11.49 0.6693 0.6694 698 3173

24000 186 5146 2.31 12.76 0.6748 0.6748 650 3334

27000 180 5059 2.78 14.37 0.6790 0.6791 571 4157

30000 153 4942 2.74 15.80 0.6824 0.6824 527 4312

The computational results averaged over the 10 copies of data generated above are presented

in Table 2, which is similar to Table 1 except that it has two additional columns displaying the

average cardinality (upon round off) of the solutions obtained by RBPDN and RBAPG. We can

observe that both methods are comparable in terms of objective values, but RBPDN substantially

outperforms RBAPG in terms of CPU time and the sparsity of solutions.
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