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Abstract

Motion, e.g., due to patient movement or improper device calibration, is inevitable
in many imaging modalities such as photoacoustic tomography (PAT) by a rotating
system and can lead to undesirable motion artifacts in image reconstructions, if ignored.
In this paper, we establish a hybrid-type model for PAT that incorporates motion in
the model. We first introduce an approximate continuous model and establish two
uniqueness results for simple parameterized motion models. Then we formulate the
discrete problem of simultaneous motion estimation and image reconstruction as a
separable nonlinear least squares problem and describe an automatic approach to detect
and eliminate motion artifacts during the reconstruction process. Numerical examples
validate our methods.

Keywords: photoacoustic tomography, uniqueness, motion estimation, dynamic imaging,
separable nonlinear least squares, variable projection, hybrid iterative methods
AMS: 53C65, 65F22, 92C55, 65R10, 65R32

1 Introduction

Photoacoustic tomography (PAT) is a hybrid imaging technique that combines the high con-
trast of optical imaging with the high resolution of ultrasound imaging. A short pulse of laser
light is irradiated through the biological object of interest. Due to the photoelastic effect,
the object slightly expands and releases an ultrasound pressure that propagates through the
space. The pressure is measured by transducers located on an observation surface S. The
initial pressure f(x) contains information regarding the inner structures of the object. One
concentrates on finding f(x) from the observed data.
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In this article, we are interested in a recent PAT implementation, where there are multiple
illuminations and an array of transducers is rotated around the object of interest to collect
the data. We will discuss that setup shortly. Meanwhile, let us introduce the standard setup
of PAT (e.g., [49, 60, 81]), where the object is irradiated once and the data is simultaneously
measured by all transducers covering the observation surface S. The mathematical model of
PAT is given then by the wave equation (e.g., [15, 77]){

utt(x, t)− c2(x) ∆u(x, t) = 0, (x, t) ∈ R3 × R+,

u(x, 0) = f(x), ut(x, 0) = 0, x ∈ R3.
(1)

Here, function c(x) represents the ultrasound speed, and the measured data is g = u|S×R+ .
One needs to solve the inverse problem: find f given g. This problem has been intensively
studied from both theoretical and numerical perspectives (see, e.g., [84, 82, 83, 2, 34, 18, 54,
3, 17, 55, 51, 33, 70, 41, 52, 73, 65, 74, 50, 53], just to name a few). Common techniques to
solve the aforementioned inversion problem include explicit inversion formula, time reversal,
and series solution. Let us also mention that PAT in two dimensional space has also been
well studied in the literature (see, e.g., [54, 17]).

In many applications, it is reasonable to assume that c(x) is constant, in which case the
data can be represented by the spherical Radon transform R(f) of f (see, e.g., [18]):

R(f)(z, r) =

∫
S(z,r)

f(x) dσ(x), (z, r) ∈ S × R+,

where S(z, r) is the spherical of radius r centered at z. Hence, the PAT reconstruction
process reduces to the inversion of the spherical Radon transform. When S has special
geometry such as a plane or ellipsoid, the spherical Radon transform admits an explicit
inversion formula (e.g., [18, 54, 58, 63, 57, 31, 32]). The corresponding problem in the two
dimensional space reduces to the inversion of the circular Radon transform and has also been
thoroughly studied (see, e.g., [54, 17]).

Various technical constraints in the standard PAT setup have motivated the development
of newer PAT technologies, where transducers are rotated around the object and data is ac-
quired in time. In this article, we are interested in such a PAT setup, which is currently being
developed at TomoWave Laboratories (see the company’s webpage http://www.tomowave.com/
and the reference [7]). In this setup, transducers are attached to a half-circle ring, placed
vertically, and rotated around the object, see Figure 1. After each illumination and measure-
ment, the ring is slightly rotated. By rotating the ring, one can specify a sphere where the
pressures are measured. Under ideal conditions, the full set of measurements is equivalent
to that obtained using the standard setup with a spherical observation surface.

However, in practice, the object that is being imaged may move during the measure-
ment process, thereby presenting a significant challenge to achieving accurate tomographic
reconstruction for dynamic PAT systems. For example, in in-vivo imaging, the observations
may be affected by the body’s natural activities. If ignored, the resulting motion artifacts
can inhibit reconstruction quality, thereby leading to incorrect image analysis and false di-
agnosis. Although generic pre- or post-processing software may improve the visual appeal of
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Figure 1: Setup of new time-lapse PAT device, in development at TOMOWAVE.

reconstructions, in this paper, we consider a mathematical model that directly incorporates
motion for more precise reconstruction. In X-ray CT, there has been work on estimating
motion from the data (e.g., [47]) and on incorporating motion in reconstruction algorithms
(e.g., [68, 42, 79, 5, 61, 23, 14, 76, 75, 44, 45, 27, 28, 29, 46, 30]). However, to the best of
our knowledge, there is currently no such work for PAT reconstruction, where the forward
model is different than that of X-ray CT. Our work is the first attempt to fill this gap.

Overview of contributions This work has two main goals: i) to establish a continuous
approximate model of PAT reconstruction under motion and to derive two uniqueness re-
sults for this theoretical model, and ii) to propose an automatic and robust reconstruction
technique for simultaneous estimation of the motion parameters and the desired image. For
the first goal, we will recast the imaging procedure as a hybrid-type inverse problem and
approximate it by a continuous model. We will make use of the theory of analytic wave front
set and convex analysis to establish two uniqueness results. Then, for the second goal, since
current techniques for standard PAT, such as inversion formula, time reversal, and series
solution, do not seem feasible in our framework, our approach is to discretize the problem
and employ algebraic techniques. We reformulate the problem of simultaneous estimation of
motion parameters and reconstruction as a separable nonlinear least squares problem and ex-
ploit recent work on variable projection approaches [22, 11], where regularization parameter
selection can be done automatically. To handle large-scale problems and to avoid expensive
computations, we make use of object-oriented programming and exploit matrix sparsity.

The article is organized as follows. In Section 2, we describe the mathematical model
for PAT reconstruction under motion. Then, assuming that the object does not move so
rapidly, we derive an approximate continuous mathematical model. In Section 3, we provide
theoretical results and properties that help in understanding the underlying problem. In
Section 4 we describe an efficient computational approach to solve this problem. Numerical
results are provided in Section 5, and conclusions can be found in Section 6.
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2 The mathematical model

Let us begin by describing a mathematical model for PAT with motion. For simplicity, in
this article we consider the two-dimensional model. Our ideas are extendable to the three
dimensional problem; however, the computation and analysis in that case are more involved
and will be addressed in a followup paper. For the two dimensional problem, we consider the
case of one detector rotating on the unit circle S to measure the signal. Let us assume that the
object is supported inside the unit disc D of R2. Let {zi = (cosφi, sinφi)}, i = 1, . . . , n, be n
locations distributed uniformly counterclockwise along the unit circle S. Fixing ∆t > 0, for
each moment ti = (i−1)∆t, i = 1, . . . , n, one illuminates the object uniformly and measures
the ultrasonic pressure at zi. Assuming the speed of sound is constant, the data can be
considered as the circular Radon transform R(fi)(φi, r) of fi:

R(fi)(φi, r) =

∫
C(φi,r)

fi(x) ds(x), r ∈ R+ i = 1, . . . , n,

where C(φ, r) denotes the circle of radius r centered at z = (cosφ, sinφ). Here, fi is the
object at moment ti. It is commonly assumed in imaging science that fi is a deformation of
the steady state f , which represents the object at rest. Our problem now reads as follows:

find the function f from {R(fi)(φi, r) : i = 1, . . . , n, 0 ≤ r ≤ 2}.

The data of this problem is of hybrid-type: it is neither discrete (due to the continuous
variable r) nor continuous (due to the discrete variable φi). Since the desired function f(x)
is of two continuous variables, the above problem is underdetermined and the kernel of the
forward operator is nontrivial. Another underlying challenge of the above reconstruction
problem is ill-posedness, since the forward operator is a smoothing operator. Moreover, the
exact motion may not be known a priori. Numerical techniques to handle these challenges
will be discussed in Section 4.

2.1 An approximate continuous model

Assume that the object does not change rapidly and that the measurement time ∆t at each
location is small. That is, the object does not change too much between two consecutive
illuminations and measurements. Moreover, we assume that the number of measurement
locations is big enough. Then, the data can be approximately considered as a function defined
on (φ, r) ∈ (α, β)×R+. For each location z = (cosφ, sinφ), the data is {R(fφ)(φ, r) : r > 0},
where fφ is the deformation of f at time tφ (when the signal is measured at location z(φ)).
Thus, the continuous problem, incorporating time-varying deformations, can be stated as:

(P) find f given R(fφ)(φ, r) for all (φ, r) ∈ (α, β)× R+.

Here, the length of (α, β) may be less than 2π, when the rotation of the transducer does not
make a complete circle. In that case, we assume that (α, β) ⊂ [−π/2, 3π/2]. On the other
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hand, the length of (α, β) can also be bigger than 2π, when the transducer makes more than
a complete circle. However, we note that, in the latter case, fφ and fφ+2π may not be the
same, if the motion is not periodic.

The deformation relationship between f and fφ is a topic that needs investigation. In
this article, we follow the literature in dynamic tomography (e.g., [28, 29]) and assume that
1.

fφ(Φ(φ, x)) = f(x).

Here for a fixed φ, Φ(φ, x) is the location at moment tφ (when the signal is measured at
location z(φ) = (cosφ, sinφ)) of the particle whose location is x when the object is at rest.
We will make the following assumptions on the deformation mapping Φ:

(A.1) Φ(φ., ) is a bijection from R2 to R2. Physically, this means two points can not deform
into one location. Then, Φ(φ, .) has an inverse Ψ(φ, .) and

fφ(y) = f(Ψ(φ, y)).

(A.2) There is an open subset O and a compact subset K of the unit open disc D such that
supp(f) ⊂ O and Φ(φ,O) ⊂ K for all φ ∈ (α, β). That is, the the object is always
contained inside K during the imaging process.

(A.3) Φ is an analytic function in both variables. This technical restriction allows us to
obtain theoretical results.

In general, the deformation mapping Φ may not be given. We, instead, have to
extract it from the measured data as well. This, in fact, poses the main challenges for PAT
with motions, both theoretically and computationally. In this article, we analyze Problem (P)
under this circumstance.

Next, let us write down the data R(fφ) in terms of f . We first notice that

R(fφ)(φ, r) =

∫
R2

δ(|z(φ)− y| − r)fφ(y) dy

=

∫
R

∫
R2

eiλ(|z(φ)−y|−r)fφ(y) dy dλ.

That is,

R(fφ)(φ, r) =

∫
R

∫
R2

eiλ(|z(φ)−y|−r)f(Ψ(φ, y)) dy dλ.

By the change of variables x = Ψ(φ, y), i.e., y = Φ(φ, x), we obtain

R(fφ)(φ, r) =

∫
R

∫
R2

eiλ(|z(φ)−Φ(φ,x)|−r)Jx[Φ(φ, x)] f(x) dx dλ, (2)

1Other works assume a slightly different relation, which accounts for conservation of mass (e.g., [46])
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where
Jx[Φ(φ, x)] = | detDxΦ(φ, x)|

is the absolute value of the Jacobian of the change of variables x→ y = Φ(φ, x). That is,

R(fφ)(φ, r) =

∫
R2

δ(|z(φ)− Φ(φ, x)| − r) Jx[Φ(φ, x)] f(x) dx

=

∫
E(φ,r)

Jx[Φ(φ, x)]

|∇x|z(φ)− Φ(φ, x)||
f(x) dσ(x)

=

∫
E(φ,r)

Jx[Φ(φ, x)] |z(φ)− Φ(φ, x)|
| 〈z(φ)− Φ(φ, x), DxΦ(φ, x)〉 |

f(x) dσ(x). (3)

Here,

E(φ, r) = {x ∈ R2 : |z(φ)− Φ(φ, x)| = r}
= Φ−1{C(φ, r)}
= Ψ{C(φ, r)}.

Since Ψ is analytic, E(φ, r) is a closed analytic curve in R2.
Let us now denote

RΦ(f)(φ, r) =

∫
E(φ,r)

w(φ, x) f(x) dσ(x),

where

w(φ, x) =
Jx[Φ(φ, x)] |z(φ)− Φ(φ, x)|
| 〈z(φ)− Φ(φ, x),∇xΦ(φ, x)|〉 |

.

Now, Problem (P) can be reformulated as:

find f given RΦ(f)(φ, r) for all (φ, r) ∈ (α, β)× R+.

Let us note that Rφ is a generalized Radon transform (see, e.g., [20, 67, 24, 25, 66, 63])
with the incidence relation defined by

I(x, φ, r) :=
1

2

(
|z(φ)− Φ(φ, x)|2 − r2

)
= 0.

It is a Fourier integral operator with the canonical relation

C = {(φ, r, λ ∂φI, λ ∂rI;x, λ ∂xI) : I(x, φ, r) = 0, λ 6= 0}.

It can be parametrized by

(φ, x, λ) ∈ (α, β)×O × (R \ 0).

Let us consider its left projection

πL : (φ, x, λ) 7−→
(
φ, |z(φ)− Φ(φ, x)|, λ ∂θI, λ ∂rI

)
,

and right projection
πR : (φ, x, λ) 7−→

(
x, λ ∂xI

)
.

In order to analyze Problem (P), we will assume the following condition:
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(A.5) The left projection πL is an injective immersion. This is the so-called Bolker condition
(see, e.g., [67, 24, 25, 66]).

(A.6) The right projection πR is a surjective submersion. Intuitively, this condition means
that all the singularities of f are visible to the transform RΦ.

As proved in Appendix A, these two conditions are equivalent to

(B) (Bolker’s condition) For each φ ∈ (α, β), the mapping

Π : x ∈ O → (
1

2
|z(φ)− Φ(φ, x)|2, 1

2
∂φ|z(φ)− Φ(φ, x)|2)

is an injective immersion.

(C) (Visibility condition) For each x ∈ O, the set of unit normal vectors of all curves E(φ, r)
passing through x covers the unit circle S.

Let us note that condition (B) was proposed in [38]. However, it was not proved to
be equivalent to (A.5), since it was irrelevant for its purpose. This fact will be proved in
Appendix A for the sake of completeness. Although it is not trivial to verify conditions (B)
and (C) for a general family of deformations Φ, it is possible for simple cases. In particular,
in Section 2.2, we will present a model of deformation for which these conditions hold.

2.2 A simple model: vertical stretching

Consider Φ to be a family of vertical stretching in R2. That is,

Φ(φ, x) = (x1, c+ a(φ)(x2 − c)),

where a(φ) > 0 is the stretch factor corresponding to the measurement at transducer z(φ).
The horizontal line x2 = c is unchanged under the above vertical stretch. We will refer to it
as the base line of the stretch. Let us prove that under appropriate assumptions, this model
satisfies conditions (B) and (C).

Lemma 2.1. Let ε > 0 be such that K ⊂ D1−ε and

Cε = sup
z∈S, x∈D1−ε

|z − x|
| 〈z − x, z〉 |

=
1√

2ε− ε2
.

Assume that ∣∣∣∣a′(φ)

a(φ)

∣∣∣∣ ≤ 1

(3 + |c|)Cε
for all z ∈ S.

Then, the Bolker condition (B) holds.
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Proof. Let us first verify that the mapping

Π : x ∈ O →
(

1

2
|z(φ)− Φ(φ, x)|2, 1

2
∂φ|z(φ)− Φ(φ, x)|2

)
is an immersion. Indeed, we notice that

|z(φ)− Φ(φ, x)|2 = |z1(φ)− Φ1(φ, x)|2 + |z2(φ)− Φ2(φ, x)|2

= (cosφ− x1)2 + (sinφ− c− a(φ) (x2 − c))2.

Therefore,

1

2
∂φ|z(φ)− Φ(φ, x)|2 = (cosφ− Φ1(x))(− sinφ) (4)

+
(

sinφ− Φ2(φ, x)
)(

cosφ− a′(φ)(x2 − c)
)
.

Hence,

∇x

(1

2
∂φ|z(φ)− Φ(φ, x)|2

)
=

(
sinφ,−a(φ) cosφ+ a(φ)a′(φ)(x2 − c)− a′(φ)(sinφ− Φ2(φ, x)

)
.

On the other hand

∇x

(1

2
|z(φ)− Φ(φ, x)|2

)
= −

(
cosφ− Φ1(φ, x), (sinφ− Φ2(φ, x))a(φ)

)
.

Therefore,

det JΠ(x) = [(cosφ− Φ1(φ, x)) cosφ+ (sinφ− Φ2(φ, x)) sinφ] a(φ)

+ [sinφ− Φ2(φ, x)− a(φ)(x2 − c)](cosφ− x1) a′(φ).

That is,

1

a(φ)
det JΠ(x) = 〈z(φ)− Φ(φ, x), z(φ)〉+ [sinφ− 2Φ2(φ, x) + c](cosφ− x1)

a′(φ)

a(φ)
.

Let us show that JΠ(x) 6= 0 for all x ∈ O. Indeed, since
∣∣∣a′(φ)
a(φ)

∣∣∣ ≤ 1
(3+|c|)Cε , it suffices to show

| 〈z(φ)− Φ(φ, x), z(φ)〉 | > 1

(3 + |c|)Cε
| sinφ− 2 Φ2(φ, x) + c| |z1(φ)− x1|.

This is true because (since Φ(φ, x) ∈ K)

| 〈z(φ)− Φ(φ, x), z(φ)〉 | > 1

Cε
|z(φ)− Φ(φ, x)| ≥ 1

Cε
|z1(φ)− x1|.

and | sinφ− 2 Φ2(φ, x) + c| < 3 + |c|. This finishes the first part of the proof.
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Let us now verify that Π is injective. Given x 6= y ∈ O, we want to show that if
|z(φ)− Φ(φ, x)| = |z(φ)− Φ(φ, y)| then

1

2
∂φ|z(φ)− Φ(φ, x)|2 6= 1

2
∂φ|z(φ)− Φ(φ, y)|2.

Assume by contradiction that the equality holds. We note that (see, e.g., (4))

1

2
∂φ|z(φ)− Φ(φ, x)|2 =

〈
z(φ)− Φ(φ, x), z(φ)⊥ −

(
0, a′(φ)(x2 − c)

)〉
.

Therefore,〈
z(φ)− Φ(φ, x), z(φ)⊥ −

(
0, a′(φ)(x2 − c)

)〉
=
〈
z(φ)− Φ(φ, y), z(φ)⊥ −

(
0, a′(φ)(y2 − c)

)〉
.

That is,〈
Φ(φ, y)− Φ(φ, x), z(φ)⊥

〉
= a′(φ) [(z2(φ)− Φ2(φ, x))(x2 − c)− (z2(φ)− Φ2(φ, y))(y2 − c)] .

We obtain〈
Φ(φ, y)− Φ(φ, x), z(φ)⊥

〉
= a′(φ)(x2 − y2)(z2(φ)− a(φ) (x2 + y2 − 2c)− c)

=
a′(φ)

a(φ)
(Φ2(φ, x)− Φ2(φ, y))(z2(φ)− Φ2(φ, x)− Φ2(φ, y) + c).(5)

Since Φ(φ, x),Φ(φ, y) ∈ K ⊂ D1−ε and |z(φ)−Φ(φ, x)| = |z(φ)−Φ(φ, y)|, a simple geometric
observation gives

|Φ(φ, x)− Φ(φ, y)| < Cε
∣∣〈Φ(φ, x)− Φ(φ, y), z(φ)⊥

〉∣∣ .
In particular, this implies:

|Φ2(φ, x)− Φ2(φ, y)| < Cε
∣∣〈Φ(φ, y)− Φ(φ, x), z(φ)⊥

〉∣∣ .
Since

∣∣∣a′(φ)
a(φ)

∣∣∣ < 1
(3+|c|)Cε and |z2(φ)− Φ2(φ, x)− Φ2(φ, y) + c| < 3 + |c|, the absolute value of

the right hand side of (5) is bounded by

1

(3 + |c|)Cε
|
∣∣Φ2(φ, x)−Φ2(φ, y)

∣∣∣∣(z2(φ)−Φ2(φ, x)−Φ2(φ, y)+c)
∣∣ < ∣∣ 〈Φ(φ, y)− Φ(φ, x), z(φ)⊥

〉 ∣∣.
This is a contradiction to (5). We, hence, finish the proof for the second part of the Bolker
condition.

We should remark, in passing, that the assumption in Lemma 2.1 means the object does
not change quickly (compared to the rotation of the receiver). However, this restriction is
not significant, since for example, if K ⊂ D1/2 and c = 0, then the requirement becomes∣∣∣∣a′(φ)

a(φ)

∣∣∣∣ ≤ 1

2
√

3
for all φ ∈ (α, β).
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Lemma 2.2. Assume one of the following cases:

i) β − α > 2π

ii) [α, β] ⊂ [−π/2, 3π/2] and

Φ2(φ, x) > max{sinα, sin β}, ∀x ∈ K, φ ∈ (α, β). (6)

Then, condition (C) holds for the above vertical stretching model.

Proof. We only prove the theorem under case ii). The other case is easier. Fix x ∈ K, all
ellipses passing through x are of the form

Eφ = {y : |z(φ)− Φ(φ, x)| = |z(φ)− Φ(φ, y)|}, φ ∈ (α, β).

The outward unit normal vector of Eφ at x has the same direction as

νφ =
(
z1(φ)− Φ1(φ, x), a(φ) (z2(φ)− Φ2(φ, x))

)
.

It now suffices to show that the conic set

V = {tνφ : t ≥ 0, φ ∈ (α, β)}

contains the (closed) upper half plane. Indeed, we observe that V is the upper solid angle
whose boundary is the union of two rays:

{t(cosα− x1, a(α)(sinα− x2)) : t ≥ 0}

and
{t(cos β − x1, a(β)(sin β − x2)) : t ≥ 0}.

Since, see (6),
Φ2(φ, x) > max{sin(α), sin(β)}, for all φ ∈ (α, β),

the above two rays are in the lower half plane. We hence conclude that V contains the upper
half plane. This finishes our proof.

3 Uniqueness results

In this section, we prove two uniqueness results for the continuous model. The first one
is the uniqueness of Problem (P) when the deformation family Φ is known. This result
holds for any general family of deformation satisfying conditions (A.1-3), (B), and (C). The
second result is the injectivity of the linearized problem of finding Φ given the function f .
This result is only proved for the vertical stretching model introduced in Section 2.2. Our
approach is based on the theory of analytic wave front set (see, e.g., [40]) and, interestingly,
convex analysis.
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Our use of the analytic wave front set is inspired by several works in integral geometry,
such as [6, 66, 19, 38]. Let us now briefly recall some basic facts of that theory. The following
definition of analytic wave front set follows from [72, Definition 6.1] (which is in spirit of
Bros-Iagolnitzer [8]). Let us denote by T∗Rn \ 0 the cotangent bundle of Rn excluding the
zero section. For simplicity, it can be identify with Rn × (Rn \ 0). Let (x0, ξ0) ∈ T∗Rn \ 0
and ψ(x, y, ξ) be an analytic function defined in a neighborhood U of (x0, x0, ξ0) ∈ C3n such
that

1) For all (x, x, ξ) ∈ U , (i.e., x = y), we have ψ(x, x, ξ) = 0 and ∂xψ(x, x, ξ) = ξ.

2) There exists c > 0 such that for all (x, y, ξ) ∈ U , we have

=ψ(x, y, ξ) ≥ c |x− y|2.

Here, =ψ denotes the imaginary part of ψ.

Let a(x, y, ξ, λ) be an elliptic classical analytic symbol defined on U . We say that a
distribution u in Rn is analytic microlocally near (x0, ξ0) if there exists a cut-off function
χ ∈ C∞(Rn) with χ(x0) = 1 such that∫

ei λψ(x,y,ξ) a(x, y, ξ, λ)χ(y)u(y) dy = O(e−λ/C).

for some C > 0, uniformly in a conic neighborhood of (x0, ξ0). The analytic wavefront set is
the closed conic set WFA(u) ⊂ T∗Rn which is the complement of the set of covectors near
which u is microlocally analytic.

Let us state the first result of this section.

Theorem 3.1. Assume that the family of deformations Φ(φ, .) is known and satisfies condi-
tions (A.1-3), (B), and (C). Then, f is uniquely determined from the data R(fφ) = RΦ(f).

Proof. Let us recall that

RΦ(f)(φ, r) =

∫
E(φ,r)

w(φ, x) f(x) dσ(x),

where

w(φ, x) =
Jx[Φ(φ, x)] |z(φ)− Φ(φ, x)|
| 〈z(φ)− Φ(φ, x),∇xΦ(φ, x)〉 |

> 0

is an analytic function. Then,RΦ is a Radon transform satisfying the Bolker condition, which
has been investigated in [66, 38]. Assume that RΦ(f)(φ, r) = 0 for all (φ, r) ∈ (α, β)× R+.
Then, (see, [66, Proposition 3.1] or [38, Proposition 1]),

(x, ξ) 6∈WFA(f) for all (x, ξ) being conormal to a curve E(φ, r).

From condition (C), we obtain (x, ξ) 6∈WFA(f) for all (x, ξ) ∈ T∗O. That is, f is an analytic
function (see, e.g., [40, Theorem 8.4.5]). Since f is compactly supported, it has to be the
zero function.
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We now study the linearization of Problem (P) with respect to the motion. We recall
from (2) that

RΦ(f)(φ, r) = R(fφ)(φ, r) =

∫
R

∫
R2

eiλ(|z(φ)−Φ(φ,x)|−r)Jx[Φ(φ, x)] f(x) dx dλ.

Let us linearize the operator RΦ with respect to Φ at the background Φ∗ along the
direction d = d(φ, x) as follows,

Df (d)(φ, r) =
d

dε

∫
R

∫
R2

ei(|z(φ)−(Φ∗(φ,x)+εδ(φ,x))|−r)λJx(Φ
∗(φ, x) + εd(φ, x)) f(x) dx dλ

∣∣∣
ε=0
.

That is,

Df (d)(φ, r) =

∫
R

∫
R2

ei(|z(φ)−Φ∗(φ,x)|−r)λ p(z, x, λ) f(x) dx dλ, (7)

where

p(z, x, λ) = iλ
〈z(φ)− Φ∗(φ, x),d(φ, x)〉
|z(φ)− Φ∗(φ, x)|

Jx[Φ
∗(φ, x)] +

d

dε
Jx(Φ

∗(φ, x) + εd(φ, x))
∣∣
ε=0
.

Let us consider the vertical stretching model introduced in Section 2.2:

Φ(φ, x) = (x1, c+ a(φ)(x2 − c)).

Then, we can assume
Φ∗(φ, x) = (x1, c+ a∗(φ)(x2 − c)),

and
d(φ, x) = (0, d(φ) (x2 − c)),

where d(φ) = a(φ)− a∗(φ). Let us denote

ν2(φ, x) =
z2(φ)− Φ∗2(φ, x)

|z(φ)− Φ∗(φ, x)|
.

Then, direct calculations show

p(z, x, λ) =
[
iλν2(φ, x) a∗(φ)(x2 − c) + 1

]
d(φ).

From equation (7), we obtain

Df (d)(φ, r) = d(φ) T (f)(φ, r),

where

T (f)(φ, r) =

∫
R

∫
R2

ei(|z(φ)−Φ∗(φ,x)|−r)λ [iλν2(φ, x) a∗(φ) (x2 − c) + 1
]
f(x) dx dλ.

12



Let us observe that T is a geometric integral transform on the family of curves

E∗(φ, r) = {x ∈ R2 : |z(φ)− Φ∗(φ, x)| = r}.

Unlike RΦ(f), T not only involves the function f but also its first derivative (since the
amplitude function is of order 1). Moreover, it also involves vanishing weight.

To analyze Df , we will also assume that Φ∗ satisfies conditions (A.1-3), (B), and (C). We
also assume that a(φ) is analytic. We will need the following result

Lemma 3.2. Let (x0, z0, r0) be such that

(x0,2 − c) ν2(φ0, x0) 6= 0

and T (f)(φ, r) = 0 in a neighborhood of (z0, r0). Then,

(x0, ξ0) 6∈WFA(f),

if (x0, ξ0) is conormal to E∗(z0, r0).

The proof of Lemma 3.2 follows closely the arguments in [66, 19, 38] and is omitted for
brevity. Let us now state the second main result of this section.

Theorem 3.3. Consider the vertical stretching model. Assume supp(f) lies in the open
upper half plane of the line x = c and its boundary does not contain any vertical line segments.
Assume further that {Ψ∗(φ, z(φ)) : φ ∈ (α, β)} does not contain any horizontal line segments.
Then, Df is injective.

In order to prove this theorem, we will need some basic knowledge of convex analysis.
Let us recall that a function h defined in an interval I is convex if

h(ατ + (1− τ)τ ′) ≤ αh(τ) + (1− τ)h(τ ′), for all 0 ≤ α ≤ 1, τ, τ ′ ∈ I.

For each τ0 in the interior of I, a convex function h admits a finite left-derivative and a finite
right-derivative (see, e.g., [37, Theorem 4.1.1]):

D−h(τ) = lim
τ→τ−0

h(τ)− h(τ0)

τ − τ0

,

D+h(τ) = lim
τ→τ+0

h(τ)− h(τ0)

τ − τ0

,

respectively that satisfy
D−h(τ0) ≤ D+h(τ0).

The set
∂h(τ0) = [D−h(τ0), D+h(τ0)]

is called the subdifferential of h at τ0. In particular, if ∂h(τ0) is a singleton then h is
differentiable at τ0.
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Furthermore, we will need some results from microlocal analysis of analytic wave front
set. Let F be a closed subset of Rn. The exterior conormal Ne(F ) is defined to be the set of
all (x0, ξ0) such that x0 ∈ F and there exists a function f ∈ C2(Rn) with ∇f(x0) = ξ0 6= 0
and

f(x) ≤ f(x0), when x ∈ F ∩ U,

where U is some open neighborhood of x0. We also denote

N(F ) = Ne(F ) ∪ (−Ne(F )).

We will make use of the following result (see, e.g., [40, Theorem 8.5.6’])

N(suppu) ⊂WFA(u) , (8)

and the Kashiwara’s Watermelon theorem (see, e.g., [39, Theorem 2.1]), stated as follows.

Theorem 3.4. Let u be a distribution in Rn and (x0, ξ0) ∈ N(suppu), then

(x0, ξ) ∈WFA(u)⇒ (x0, ξ + tξ0) ∈WFA(u), for all t ∈ R with ξ + tξ0 6= 0. (9)

We are now ready to prove Theorem 3.3.

Proof. Let us assume, by contradiction, that there exists d 6≡ 0 such that Df (0, d)(φ, r) ≡ 0.
Then, there exists an open interval A ⊂ (α, β) such that d(φ) 6= 0 for all φ ∈ A. We obtain

T (f)(φ, r) = 0, for all φ ∈ A and r > 0.

Let us recall

E∗(φ, r) = {x : |z(φ)− Φ(φ, x)| = r}.

For each φ ∈ A, let rφ > 0 be the smallest value r such that E∗(φ, r) intersects supp(f). Let
xφ be such an intersection point and ξφ be orthogonal to E∗(φ, rφ) at xφ. Then, (xφ, ξφ) ∈
N(supp(f)). Using (8), we obtain

(xφ, ξφ) ∈WFA(f).

Due to Lemma 3.2 and xφ,2 > c,

ν2(φ, xφ) = 0.

From the definition of ν(φ, xφ), we get

xφ,2 = Ψ∗2(φ, z(φ)).

On the other hand, E∗(φ, rφ) is an ellipse centered at Ψ∗(φ, z(φ)). Therefore, the normal
vector of E∗(φ, rφ) at xφ is horizontal. That is, ξφ is a horizontal vector and xφ is unique
(since it belongs to the same horizontal line as Ψ∗(φ, z(φ))).
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Due to the assumption that the curve {Ψ∗(φ, z(φ)) : φ ∈ (α, β)} does not contain any
piece of horizontal straight line, by shrinking A if necessary, we can assume

Ψ∗2(φ, z(φ)) 6= Ψ∗2(φ′, z(φ′))

for all φ 6= φ′ belonging to A. Let us denote

I = {xφ,2 = Ψ∗2(φ, z) : φ ∈ A}.

Then I is a nonempty open interval and the following function is well-defined

h : I −→ R,

xφ,2 7−→ xφ,1.

Let S be the swapping operator S(x1, x2) = (x2, x1). Then,

(τ, h(τ)) ∈ S[∂supp(f)], for all τ ∈ I.

That is, graph(h) ⊂ S[∂supp(f)]. We now prove that h is a constant function. This implies
∂supp(f) contains a vertical straight line segment, which is a contradiction to our assumption
and the theorem is proved. To proceed with the proof, let us notice that for each φ ∈ A,
(xφ, ξφ) ∈ N(supp(f)). If h is differentiable then S(ξφ) is orthogonal to the tangent line of
the graph of h. Since S(ξφ) is vertical for all φ ∈ A, we conclude that h is constant on I. It,
therefore, now suffices to prove that h is differentiable. Our approach is to “convexify” the
function h in order to make use of the theory of convex analysis.

Let τ0 ∈ I, we now prove the following claim: there exist ε > 0 such that

h∗(τ) := h(τ) +
1

ε
τ 2

is convex on Iτ0,ε = (τ0−ε, τ0+ε). Indeed, we recall that for each τ ∈ I, the ellipse S[E∗(φ, rφ)]
does not intersect the interior of the epigraph of h. For ε small enough and τ ∈ Iτ0,ε, there
is a function hτ : Iτ0,ε → R such that:

i) graph(hτ ) ⊂ S[E∗(φ, rφ)], and

ii) h′′τ (s) ≥ −1
ε

on Iτ0,ε.

We define h∗τ (s) = hτ (s) + 1
ε
s2, then h∗τ is convex on Iτ0,ε. It is easy to see that

h∗ = sup
τ∈Iτ0,ε

h∗τ .

Therefore, h∗ is a convex function on Iτ0,ε.
Let us now prove that h∗ is differentiable at τ0, or equivalently, ∂h∗(τ0) is a singleton. To

this end, let us define

F (x) =

(
x1, x2 −

1

ε
x2

1

)
, and f ∗(x) = f(F (x)).
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Then, graph(h∗) ⊂ S[∂supp(f ∗)]. We notice that for each s ∈ ∂h∗(τ0),

(−1, s) ∈ N(supp(f ∗)).

Let assume ∂h∗(τ0) is not a singleton. Then supp(f ∗) has at least two linearly independent
exterior normal vectors θ1, θ2 at y = (h∗(τ0), τ0). Applying the Kashiwara’s Watermelon
theorem, we obtain

(y, η) ∈WFA(f ∗) for all η ∈ R2 \ 0.

Let x = F (y) ∈ supp(f). Since F is an analytic bijection from R2 to R2, [40, Theorem 8.5.1]
gives

(x, ξ) ∈WFA(f) for all ξ 6= 0. (10)

We notice that x = (h(τ0), τ0). Let I 3 τ 6= τ0 and φ ∈ A such that π2(Ψ(φ, z(φ))) = τ .
There is an r > 0 such that E(φ, r) passes through x. Let ξ = ∇x|z(φ)− Φ∗(φ, x)|, which is
a normal vector of E(φ, r) at x. Since Ψ∗2(φ, z(φ)) 6= Ψ∗2(φ0, z(φ0)) = x2, we have

z2(φ)− Φ∗2(φ, x) = a∗(φ)(Ψ∗2(φ, z(φ))− x2) 6= 0.

Therefore, ν2(φ, x) 6= 0. From Lemma 3.2, we obtain (noticing that x2 > c since x ∈ supp(f))

(x, ξ) 6∈WFA(f).

This is a contradiction to (10). Thus, the theorem is proved.

We remark here some geometric restrictions in Theorem 3.3 may be relaxed (or even
removed). That can be done by obtaining a better version of Lemma 3.2, which is a topic
of upcoming research.

In summary, we have formulated an approximate continuous model for the problem
of PAT reconstruction with motion and proved two uniqueness results. In particular, we
showed that when the family of deformations is known, the desired function f is unique
(Theorem 3.1), and we showed a one-to-one correspondence of the linearized problem for
obtaining Φ given f , under mild assumptions (Theorem 3.3). These two results indicate
that the reconstruction for PAT with motion may be a stable problem, at least for the verti-
cal stretching model presented in Section 2.2. In the next section, we will demonstrate this
numerically. Namely, we consider the discretized problem and describe numerical methods
for simultaneous motion estimation and PAT image reconstruction.

4 Computational approach for simultaneous motion es-

timation and image reconstruction

In this section, we describe a computational approach to simultaneously estimate motion
parameters and obtain a reconstruction for the discrete PAT problem. We first recast the
problem as a separable nonlinear least squares problem. Then we use variable projection
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methods [21, 22, 48, 69, 59] to efficiently solve the problem by exploiting structure in the
variables, i.e., separating the linear and nonlinear variables. The work presented here builds
on work presented in [10, 11], but a significant contribution is our application to PAT recon-
struction problems under motion, where the particular forms of the forward model and the
deformation model have not been considered in this framework before. Previous work on
using variable projection to improve PAT reconstruction for transducers with inaccurate elec-
tric impulse responses can be found in [71]. For computational efficiency, we take advantage
of matrix sparsity and object-oriented programming for implementing projection operations,
and we use a hybrid LSQR method for automatic regularization parameter selection [12].

First, we formulate the discrete PAT reconstruction problem with motion. Assume c(x)
is constant, then following the notation in Section 2.1, let f ∈ RN be the discretized desired
solution2 and let {zi} , i = 1, ...n denote the locations of the transducers. Let us consider
the discrete version of the deformation model in Section 2.2. That is, we assume vertical
stretching, which is a relatively realistic model for motion resulting from breathing. Let
a(zi) = 1 + γi be the stretch factor corresponding to the transducer at zi, so the ith trans-
formed image is given by fi = K(γi)f , where K(γi) ∈ RN×N performs one dimensional
stretching/expansion as described in Section 2.2. We use bilinear interpolation to determine
the weights in sparse matrix K.

At each transducer location zi, assume there are m radii and let Ai ∈ Rm×N be the
corresponding projection matrix for that location (i.e., Aif is the discrete spherical Radon
transform of f on circles centered at zi). Thus the observed spherical projection measure-
ments for all m radii are contained in vector

gi = AiK(γi) f + ei ∈ Rm

where ei ∈ Rm is additive Gaussian noise that is independent and identically distributed.

Let γ =
[
γ1 · · · γn

]> ∈ Rn and define

g =

g1
...
gn

 ∈ Rnm, A(γ) =

A1K(γ1)
...

AnK(γn)

 ∈ Rmn×N , and e =

e1
...
en

 ∈ Rmn

then, the discrete mathematical model for PAT reconstruction with motion is given by

g = A(γ)f + e , (11)

where the goal is to estimate the desired image f as well as the motion parameters γ, given the
observations g. In Figure 2 we provide a sample desired image f which has 256× 256 pixels
and corresponding PAT observations g where transducers are located at 120 equidistant
angles between 0 and 357 at 3 degree intervals and each projection corresponds to m = 363
radii. The test image used here was obtained from the Auckland MRI Research Group
website [1]. It is supported inside the square [−1

2
, 1

2
]× [−1

2
, 1

2
]. In our numerical experiment,

the base line of the vertical stretch is x2 = −1
2

and is assumed known. An illustration of
vertical stretching is provided in Figure 4.
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(a) Desired image (b) Observations in sinogram

Figure 2: In 2D PAT reconstruction, the goal is to reconstruct image in (a) from observed
measurements shown in (b). Each row of the sinogram image corresponds to a transducer
location, where the columns correspond to different radii. Here, the sinogram image is
120× 363.
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Figure 3: Illustration of vertical stretching. The solid line corresponds to pixel values con-
tained in column 100 of the true image shown in Figure 2(a). The dashed and dotted lines
correspond to pixel values in column 100 of deformed images K(γi)f (after reshape) for
γi = 0.05 and γi = −0.05 respectively. Notice that features that are farther from the base
line are stretched more.
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If the motion parameters γ are fixed, then estimating the image f is a linear inverse
problem, and various algebraic methods can be used for reconstruction. In particular, the
least squares (LS) problem,

min
f
‖A(γ)f − g‖2

2 (12)

gives one solution, but as we will see in Section 4.1, the LS solution is poor, and regulariza-
tion is required to stabilize the solution. Regardless, if the motion parameters are not known
precisely or only estimated from the data, then the problem becomes simultaneous estima-
tion of the motion parameters and the desired image. In this paper, we consider variable
projection methods to solve the separable nonlinear least squares problem,

min
f ,γ
‖A(γ)f − g‖2

2 . (13)

There are a few important features that make this problem ideal for variable projection
methods. First, for a parameterized motion model (e.g., vertical stretching) that is a good
approximation to the actual motion, the number of parameters in γ is typically much smaller
than the number of unknowns in f (i.e., n� N). Furthermore the residual function in (13)
is linear in f and nonlinear in γ, so we can exploit separability. In many applications, such
features are exploited by decoupling the problems. That is, researchers first seek a good set
of parameters γ by using sophisticated image registration or calibration techniques, and then
solve a linear inverse problem for f . Although this approach (or an approach that alternates
between the two steps) may work in some scenarios, convergence to a solution can be slow
[10]. On the other hand, a fully coupled approach that simultaneously optimizes over f and γ
could be used, but being able to obtain a good estimate of γ may be prohibitively expensive,
especially if the variables are tightly coupled [10]. Thus, in this paper, we consider a partially
coupled framework that can take algorithmic advantage of the structure of the problem and
handle nonlinearity directly.

To begin, we describe some of the challenges and approaches to solve the linear recon-
struction problem (12) (when γ is fixed) in Section 4.1. Then, in Section 4.2, we describe
a variable projection approach to solve (13) for simultaneous PAT motion estimation and
reconstruction.

4.1 Regularization for the linear problem

Assume motion parameters γ are fixed. Even if accurate estimates of parameters γ are
available, the linear inverse problem (11) where A = A(γ) can be very difficult to solve.
This is because the underlying problem is ill-posed [26], where a main challenge is that small
errors in the data may result in large errors in the reconstruction.

In order to obtain a meaningful reconstruction, regularization is needed to stabilize the
inversion process. The basic idea of regularization is to impose prior knowledge about the
noise in the data and about the unknown solution [43, 9, 56, 36, 4, 16, 80, 35]. Here we

2Here we assume the 2D image is vectorized column-wise.
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consider Tikhonov regularization [64, 78], where the goal is to solve regularized problem,

min
f

1

2
‖Af − g‖2

2 + λ2 ‖f‖2
2 (14)

where λ is a regularization parameter that balances the tradeoff between the data fit term
and the regularization term. Selecting a good regularization parameter can be a challenging
and delicate task, especially for large-scale problems. Various techniques have been studied
in the literature [36], and it is beyond the scope of this paper to provide a complete review
of such methods. In particular, we use hybrid LSQR methods that can solve large linear
least squares problems and automatically estimate regularization parameters for Tikhonov.
Below we provide an illustration, for readers not familiar with hybrid iterative methods.

Illustration of hybrid methods Hybrid iterative methods have been proposed as a
means to compute regularized solutions to large-scale inverse problems. In this illustra-
tion, we demonstrate the use of hybrid methods for the linear PAT reconstruction problem.
Let A = A(γtrue) and consider using LSQR on the unregularized problem. With no ad-
ditional regularization (other than early termination of the iterative method), it is known
that semiconvergence will occur, whereby early reconstructions tend to provide improved
solution reconstructions, but noise dominates later reconstructions. This phenomenon is ev-
ident in the relative error plot (see Figure 4 for relative reconstruction errors, computed as∥∥f true − f (k)

∥∥
2
/ ‖f true‖2 where f (k) is the reconstruction at the kth iteration). Hybrid meth-

ods combine an iterative scheme such as the Golub-Kahan bidiagonalization with a direct
regularization method such as Tikhonov regularization. Since regularization is performed on
the projected problem, hybrid methods can overcome semiconvergence. Furthermore, sophis-
ticated regularization parameter selection methods can be used for the projected problem.
In this paper, we use the hybrid LSQR implementation, HyBR, described in [12], which pro-
vides a Tikhonov-regularized solution where the regularization parameter is automatically
selected using a weighted-GCV method. In Figure 4, we provide relative reconstruction
errors for HyBR, as well as for HyBR where the optimal regularization parameter is used.
This parameter corresponds to minimal reconstruction error and is not obtainable in prac-
tice. For this problem, HyBR performs well, where the selected regularization parameter is
λWGCV = .0389 at iteration 100, and the corresponding reconstruction is provided in Fig-
ure 5(a). In summary, for large problems such as PAT where it may be difficult to obtain a
good regularization parameter a priori, hybrid methods can be good for obtaining regularized
solutions for linear problems.

However, all of these results rely on knowledge of the true motion parameters, γtrue. In
Figure 5(b), we provide a HyBR reconstruction where A represents only projection (that is,
motion is ignored and γ = 0). It is evident that, even if the optimal regularization parameter
is used as is the case here, motion artifacts can severely degrade image reconstructions.
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Figure 4: Relative reconstruction errors for the linear PAT reconstruction problem corre-
sponding to LSQR (no regularization) and HyBR with automatic weighted-GCV-selected
and the optimal regularization parameter.

(a) HyBR (γ = γtrue) (b) Motion artifacts (γ = 0)

Figure 5: The HyBR reconstruction in (a) demonstrates that a good solution can be
obtained by including appropriate regularization. PAT regularized reconstruction in (b)
(corresponding to the optimal regularization parameter) illustrates motion artifacts.
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4.2 Variable projection for simultaneous motion estimation and
image reconstruction

In this section, we describe a variable projection approach to solve separable nonlinear least
squares problems like (13) so that motion parameters can be automatically estimated and
improved during the reconstruction process. Following the discussion in Section 4.1, since
the problem is ill-posed, we consider the regularized problem

min
f ,γ

1

2
‖A(γ)f − g‖2

2 + λ2 ‖f‖2
2 . (15)

Although additional regularization for the motion parameters may be included, it is not
needed here due to the parameterization of the motion.

The basic idea of variable projection is to mathematically eliminate the linear parameters
f and optimize over the nonlinear parameters γ. For notational simplicity, for fixed γ, define

f(γ) = arg min
f

1

2
‖A(γ)f − g‖2

2 + λ2 ‖f‖2
2 , (16)

i.e., the solution to the linear Tikhonov problem. Then the goal is to solve the reduced
nonlinear least squares problem,

min
γ

1

2
‖A(γ)f(γ)− g‖2

2 , (17)

where any nonlinear least squares solver can be used to solve (17). Here, we use a Gauss-
Newton method since derivatives can be computed or estimated efficiently for this problem.
In particular, let r(γ) = A(γ)f(γ)− g, then the Jacobian with respect to γ can be written
as

J =

d1

. . .

dn

 , where di =
∂[AiK(γi)f ]

∂γi
∈ Rm×1 . (18)

A Gauss-Newton approach to solve (17) is provided in Algorithm 1.

Algorithm 1 Gauss-Newton variable projection approach

1: Initialize γ(0)

2: while stopping criteria not satisfied do
3: Solve (16) for f(γ(k))
4: Compute the Jacobian matrix J as (18)
5: Compute step s(k) by solving J>Js = −J>r(k)

6: Update γ(k+1) = γ(k) + s(k)

7: end while

The most computationally intensive part of the above algorithm is Step 3, solving (16).
We propose to use the hybrid LSQR approach described in [12] and illustrated in Section 4.1
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for efficient implementation and automatic regularization parameter selection. Also, due
to our assumption that the motion represents one dimensional stretching, we can use the
derivation in [10] to get a computationally efficient analytic formula for the Jacobian. Note
that for Step 5, any linear solver could be used since the size of this problem is fairly small.
Furthermore, a line search can be included in step 6. Additional considerations that can be
incorporated include constraints on γ [59] and nonegativity constraints on f [13].

5 Numerical Results

In this section, we provide numerical results demonstrating the variable projection Gauss-
Newton approach for simultaneous estimation of motion parameters and PAT reconstruction.
For this example, the goal is to reconstruct the image in Figure 2(a). The observed sinogram
in Figure 2(b) was obtained using 120 projections from transducers located between 0 and 354
degrees at 3 degree intervals, and each projection corresponds to 363 radii. In particular, the
sinogram was computed using Equation (11) where true motion parameters γtrue ∈ R120 were
obtained using the cosine function and are provided in Figure 5. These motion parameters
were selected to mimic rhythmic movement of the patient, e.g., due to breathing or pulsing
during image acquisition. Gaussian white noise was added to the sinogram such that the
noise level was ‖e‖2 / ‖A(γtrue)f true‖2 = .03.

Since for this problem, the size of A is 43, 917×65, 536, working with the matrix explicitly
is not feasible. Most implementations avoid construction of the projection matrices Ai

by using function calls, where each function call may require up to three for loops (over
all angles, all radii, and all intersecting pixels, as one needs to implement the numeral
integrations directly). Such approaches can be very slow, especially if many matrix-vector
multiplications (mat-vecs) need to be done. Although parallel computing could be used to
accelerate the process, there is still the issue of performing unnecessary computations. In
our implementation, we exploit the fact that each projection matrix, Ai, is extremely sparse
(99.78% of the entries are zero on average) and does not depend on γ. We precompute
nonzero entries for each projection image and store them in sparse matrix format. Then
we implemented matrix-vector and matrix-transpose-vector3 multiplications using object-
oriented programming. For this example, evaluating a complete forward projection (over
all 120 angles and excluding motion) via function evaluation took 8.41 seconds, whereas
computing the nonzero entries for all 120 projection matrices took 87.37 seconds, after which
each mat-vec required only .032 seconds4. Even with the initial cost to compute and store
nonzero elements, such speed-up is significant since two mat-vecs (one matrix-vector and one
matrix-transpose-vector) need to be performed at each of up to 100 iterations of the linear
solver, and this is done at each Gauss-Newton iteration. Thus, our implementation makes

3Here, matrix-vector multiplication corresponds to motion followed by the spherical mean transform,
and matrix-transpose-vector multiplication corresponds to the adjoint spherical mean transform followed by
transpose with the motion matrix.

4CPU timings are averaged over 100 runs on a MacBook Pro, OSX Yosemite, 2.9 GHz Intel Core i7, 8G
memory in Matlab 2015b.
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Table 1: Relative parameter error εγ and reconstruction error εf at each iteration of the
Gauss-Newton approach, comparing three methods for solving the linear subproblem: LSQR
(100 iterations), HyBR, and HyBR with the optimal regularization parameter.

GN-LSQR GN-HyBR GN-HyBR-opt
GN iter εγ εf εγ εf λWGCV εγ εf λopt

1 1.0000 0.5606 1.0000 0.4609 0.0268 1.0000 0.4361 0.0407
2 0.8811 0.6297 0.7824 0.4330 0.0248 0.6838 0.3851 0.0342
3 0.8104 0.5944 0.6269 0.3976 0.0238 0.4897 0.3413 0.0304
4 0.7356 0.5737 0.5001 0.3642 0.0229 0.3601 0.3071 0.0291
5 0.6622 0.5431 0.3959 0.3350 0.0221 0.2758 0.2844 0.0292
6 0.5920 0.5187 0.3160 0.3104 0.0214 0.2228 0.2712 0.0288

both iterative linear solvers and nonlinear optimization for PAT computationally feasible.

For the Gauss-Newton algorithm, we used an initial guess of no motion, i.e., γ(0) = 0.
We compare three approaches for solving the linear subproblem (line 3 in Algorithm 1):
LSQR with 100 iterations (GN-LSQR), HyBR with weighted-GCV parameter λWGCV (GN-
HyBR), and HyBR with optimal regularization parameter, λopt, (GN-HyBR-opt). Results
corresponding to GN-HyBR-opt are not obtainable in practice, but are provided solely as a
reference.

Relative errors at each Gauss-Newton iteration defined as

εγ =

∥∥γ(k) − γtrue
∥∥

2

‖γtrue‖2

and εf =

∥∥f(γ(k))− f true
∥∥

2

‖f true‖2

are provided in the Table 1. We observe that in all considered cases, we were able to obtain
improved estimates of the motion parameters using the nonlinear scheme. Computed values
γ(6) for GN-LSQR and GN-HyBR are provided in Figure 5. Notice that since GN-HyBR
automatically incorporates regularization for solving the linear problem and hence produced
more accurate reconstructions at each iteration, GN-HyBR resulted in superior estimates for
the motion parameters than LSQR with 100 iterations. Due to semiconvergence behavior (as
described in Section 4.1), standard stopping criteria for iterative methods tend to perform
poorly for unregularized inverse problems.

Finally, we provide image reconstructions in Figure 5 corresponding to the initial Gauss-
Newton reconstruction (ignoring motion), the PAT reconstruction after 6 Gauss-Newton
iterations, using LSQR and HyBR to solve the linear problem. In all of the displayed
images, we restrict the pixel range to between 0 and 255 (which corresponds to the pixel
range for the true image). Thus, for visualization purposes only, any pixel value less than 0
in the displayed image gets set to 0 and any pixel larger than 255 is set to 255.
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Figure 6: Motion parameters. The black, solid line corresponds to true motion parameters
γtrue for each transducer given by γi = 0.05 cos(10φi). The initial guess assumes no motion,
thus γ(0) = 0 (dotted line). Computed motion parameters after 6 Gauss-Newton iterations
where LSQR and HyBR were used to solve the linear subproblem are provided in blue squares
and red stars respectively.

(a) GN-HyBR, f(γ(0)) (b) GN-LSQR (c) GN-HyBR

Figure 7: PAT image reconstructions. The regularized reconstruction in (a) is the initial
reconstruction (ignoring motion) that exhibits motion artifacts. Reconstructions in (b) and
(c) were obtained after 6 Gauss-Newton iterations, where LSQR and HyBR respectively were
used to solve the linear problem.
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6 Conclusions

In this paper, we considered the problem of motion estimation and correction in photoa-
coustic tomography. We established a hybrid-type model that incorporates parameterized
motion deformations in the mathematical formulation. Then we derived two uniqueness re-
sults for the new model, under mild assumptions. In particular, we showed that such results
hold for one-dimensional stretching. Then assuming that the parameterized motion model
is a good approximation to the exact motion, we formulated the problem of simultaneous
motion estimation and image reconstruction as a separable nonlinear least squares problem
and described a computational approach for solving the problem. We note that the described
variable projection approach can be extended to other deformation models (e.g., including
rotation and translation) [10]. The benefits of our approach are that we exploit high-level
structure to handle nonlinearities, we incorporate hybrid iterative methods for automatic
regularization parameter selection, and we exploit matrix sparsity and use object-oriented
programming for efficiency. Numerical results demonstrate computational feasibility and
validate our approach.
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A Proof of the equivalence of (A.5) & (A.6) and (B)

& (C)

In this section, we prove that the condition (A.5) & (A.6) is equivalent to (B) & (C).

Let us first prove that (A.5) is equivalent to (B). Indeed, we can easily see that πL is
injective if and only if for all φ ∈ (α, β), the mapping

Π : x ∈ O 7−→ (
1

2
|z(φ)− Φ(φ, x)|2, 1

2
∂φ|z(φ)− Φ(φ, x)|2)

is injective. We only need to prove that πL is an immersion if and only if Π is. Let us denote

J =


∂2I
∂x1∂φ

∂2I
∂x1∂r

∂I
∂x1

∂2I
∂x2∂φ

∂2I
∂x2∂r

∂I
∂x2

∂I
∂φ

∂I
0∂r

0

 .

Due to [62, Lemma 4.2], πL is a immersion if and only if det J 6= 0. Simple calculations show
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that

J =


∂Π2

∂x1
0 ∂Π1

∂x1

∂Π2

∂x2
0 ∂Π1

∂x2

∂I
∂φ
−r 0

 .

We, hence, obtain

det J = −r det JΠ,

where JΠ is the Jacobian of Π. Therefore, det J 6= 0 if and only if det JΠ 6= 0. That is, πL is
an immersion if and only if Π is.

Assuming that (A.5) (or, equivalently, (B)) holds, it now remains to show that (A.6) is
equivalent to (C). We first note that, condition (B) also implies πR is a submersion (see, e.g,
[62]). Moreover, it is easy to check that (C) is equivalent to the fact that πR is surjective.
Therefore, (C) is now equivalent to (A.6), i.e., πR is a surjective submersion. This finishes
our proof.
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