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Abstract

Single photon emission computed tomography (SPECT) is a well established clin-
ical tool for functional imaging. A limitation of current SPECT systems is the use of
mechanical collimation, where only a small fraction of the emitted photons is actually
used for image reconstruction. This results in large noise level and finally in a lim-
ited spatial resolution. In order to decrease the noise level and to increase the imaging
resolution, Compton cameras have been proposed as an alternative to mechanical colli-
mators. Image reconstruction in SPECT with Compton cameras yields to the problem
of recovering a marker distribution from integrals over conical surfaces. Due to this and
other applications, such conical Radon transforms recently got significant attention. In
the current paper we consider the case where the cones of integration have vertices on
a circular cylinder and axis pointing to the symmetry axis of the cylinder. As main
results we derive analytic reconstruction methods for the considered transform. We
also investigate the V-line transform with vertices on a circle and symmetry axis or-
thogonal to the circle, which arises in the special case where the absorber distribution
is located in a horizontal plane.

Keywords: Conical Radon transform, nuclear imaging, Compton cameras, SPECT,
image reconstruction, inversion formula

AMS Subject Classification: 44A12, 65R10, 92C55.

1 Introduction

In this paper we study the inversion of a conical Radon transform that maps a function
defined in three dimensional space to its integrals over a special family of cones. Recovering
a function from integrals over cones arises in SPECT using Compton cameras. These type
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measurement devices have been introduced as an alternative to classical gamma cameras
based on mechanical collimators with increased sensitivity [6, 19, 23]. Inversion of conical
Radon transforms is also relevant for single scattering optical tomography [7] or Compton
scattering imaging [15]. Recently various versions the conical Radon transforms have been
studied (see for example [1, 3, 5, 8, 9, 12, 14, 15, 18, 20, 21, 22] and the references therein).
The instance of the conical Radon transform that we study in this paper arises in application
of SPECT using a cylindrical Compton camera.

1.1 Compton cameras in SPECT

In SPECT, weakly radioactive tracers are given to the patient and participate in physiological
processes. The radioactive tracers can be detected through the emission of gamma ray
photons allowing to infer information about physiological processes. In order to obtain
sufficient location information about the emitted photons, the standard approach in SPECT
is to use collimators, which only record photons that enter the detector surface vertically. As
illustrated in the left image in Figure 1.1, such data provide integrals of the tracer distribution
over straight lines, and reconstructing the tracer distribution can be performed by inverting
the (attenuated) ray transform [25]. A main drawback of the use of mechanical collimators
is that they remove most photons, and therefore the number of recorded photons is low.
To increase the sensitivity, the use of Compton cameras has been proposed in [6, 19, 23].
Opposed to classical gamma cameras, Compton cameras use two detector arrays in order to
avoid the use of a mechanical collimator.

As illustrated in the right image in Figure 1.1, a Compton camera consists of a scatter
detector array Ds and an absorption detector array Da. A photon emitted in the direction
of the camera undergoes Compton scattering in Ds, and is absorbed in Da. In each detector,
the position and the energy of the photon are measured [19]. The measured energies can
be used to determine the scattering angle or half opening angle ψ at Ds via the Compton
scattering formula cos(ψ) = 1 −mc2(Es − Ea)/(EsEa), where m is the electron mass, c the
speed of light, Es the photon energy at Ds, and Ea the energy of the photon measured at
Da. Using this information, one can conclude that the observed photon must have been
emitted on the surface of a circular cone, where the vertex is given by the position xs at Ds,
the central axis points from xa (the position at Da) to xs, and the scattering angle is given
by ψ.

Now suppose we have given a distribution of traces f : R3 → R which emit photons
uniformly in all directions. The expected number of photons recorded with data (xs, Es)
and (xa, Ea) is proportional to K(ψ)I, where I is the integral over the cone determined
by (xs, Es) and (xa, Ea) and K(ψ) is the Klein-Nishina distribution which describes the
probability that a given photon scatters by angle ψ. The Klein-Nishina distribution is
known explicitly and well bounded from below for typical photon energies. After rescaling
we can therefore assume that Compton cameras provide noisy versions of I, from which the
tracer distribution f has to be recovered.
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Figure 1.1: Collimator versus Compton camera. Left: In standard gamma cameras, a
collimator C is inserted, which only observes photons propagating orthogonal to the detector
plane. The location of any emitted photon can be traced back to a straight line. Right: A
Compton camera consists of two detector arrays Ds and Da. Every observed photon can be
traced back to the surface of a cone.

1.2 The conical Radon transform on the cylinder

In this work we consider the situation where the scattering detector forms a cylindrical
surface S1 × R and that the source distribution f is assumed to be supported inside this
cylinder. We assume that the available data consist of integrals over all cones with the vertex
on S1 × R and the central axis pointing to {(0, 0)} × R; see Figure 1.2 (a). Our goal is to
recover f from its conical Radon transform, consisting of integrals of f over these cones. One
possible way to realize a cylindrical Compton camera is illustrated in Figure 1.2 (b), where,
in a first step, data are collected with a one-dimensional Compton camera [2, 13]. Such a one-
dimensional Compton camera consists of two linear detector arrays and records integrals over
cones with axis intersecting both linear detectors. In order to obtain the considered data, the
one-dimensional Compton camera is rotated around the x3-axis. In [13] it has been shown
that data of a one-dimensional Compton camera without rotation is theoretically (almost)
sufficient to recover the absorber distribution. While f has 3-dimensional domain, the class of
cones we consider depends on four variables, and so we are facing an overdetermined inverse
problem. Due to low photon counts the use of such over-determinated data is actually a
desired feature of Compton cameras (see, for example, the discussion in [1]).

Additionally, we consider a special two-dimensional version of the conical Radon trans-
form. Suppose that the support of the phantom is thin and contained in a horizontal plane,
such that we can model it by f(x1, x2, x3) = δ(x3)F (x1, x2), where δ is the one-dimensional
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Figure 1.2: Conical Radon transform on the cylinder. (a) The conical Radon
transform integrates a function over all cones with the vertex on S1 × R and the axis in-
tersecting {(0, 0)} × R. (b) Vertical cross section. The conical integrals may be obtained
by rotating a one-dimensional Compton camera rotated around the e3-axis. (c) Horizontal
cross section. The conical integrals reduce to integrals over V-shaped, with the vertex on S1

and the symmetry axis pointing to the origin.

delta-distribution. In such a situation it is reasonable to restrict the set of vertices to
S1 × {0}. The intersection of any corresponding cone with the plane {x ∈ R3 | x3 = 0} be-
comes a V-line with the vertex on S1 and the axis pointing to the origin; see Figure 1.2 (c).
Reconstructing the function F from the resulting V-line transform will be considered in
Section 2. In fact the developed inversion method for the V-line transform is the basis of
one of our inversion methods for the three-dimensional conical Radon transform. Another
interesting two-dimensional case would arise when f is restricted to a vertical plane and the
vertices of the cones are located on a line pointing in the x3-direction. The resulting V-line
transform with vertices on a line been studied in previous works, such as [1, 2, 12, 9, 24],
and therefore will not be investigated in the present work.

1.3 Outline

This manuscript is organized as follows. In Section 2 we define the V-line transform with
vertices on the circle and derive an explicit inversion formula based on a Fourier series
expansion. This in particular implies the invertibility of the V-line transform. In Section 3
we present two inversion methods for inverting the conical Radon transform with vertices on
the cylinder and the axis pointing to the symmetry axis of the cylinder. The first method
even works when a radial weight included in the conical Radon transform and is based on
reducing the conical Radon transform to the V-line transform. The second method uses
an approach of Smith [20] and reduces the conical Radon transform to the standard Radon
transform. This further allows us to show stability of inverting the conical Radon transform.
Generalizations of our results to higher dimension are presented in the appendix.
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2 V-line transform with vertices on a circle

In this section we study the the V-line transform on the circle. We derive an explicit inversion
formula using a Fourier series expansion, which in particular implies the invertibility of the
V-line transform, and further derive a numerical reconstruction algorithm based on our
inversion formula.

2.1 Explicit inversion formula

For ϕ ∈ [0, 2π) we write θ(ϕ) := (cosϕ, sinϕ). Further, we denote by D1(0) := {x ∈ R2 |
‖x‖ < 1} the unit disc in R2 and by C∞

c (D1(0)) the set of all C
∞-functions F : R2 → R with

supp(F ) ⊆ D1(0).

Definition 2.1 (The V-line transform on the circle). Let F ∈ C∞
c (D1(0)). We define the

V-line transform of F by

VF : [0, 2π)× (0, π/2)→ R : (ϕ, ψ) 7→
∑

σ=±1

∫ ∞

0

F (θ(ϕ)− rθ(ϕ− σψ)) dr . (2.1)

The V-line transform integrates the function F over V-lines (one-sided cones in the
plane), having the vertex θ(ϕ) := (cosϕ, sinϕ) ∈ S1, symmetry axis {−rθ(ϕ) | r > 0} and
half opening angle ψ. In the following we will frequently make use of the 2-dimensional
(regular) Radon transform of a function F ∈ C∞

c (R2), defined by

(RF )(α, s) :=
∫

R

F (s cos(α)− t sin(α), s sin(α) + t cos(α)) dt for (α, s) ∈ [0, 2π)× R .

The Radon transform integrates the function F over the line {x ∈ R2 | (cos(α), sin(α)) • x =
s} having a normal vector (cos(α), sin(α)) and an oriented distance s ∈ R from the origin.

The inversion approach we present below uses the Fourier series of F and VF with respect
the angular variables,

F (rθ(ϕ)) =
∑

n∈Z
Fn(r) e

inϕ with Fn(r) :=
1

2π

∫ 2π

0

F (rθ(ϕ)) e−inϕdϕ , (2.2)

(VF )(ϕ, ψ) =
∑

n∈Z
(VF )n(ψ) einϕ with (VF )n(ψ) :=

1

2π

∫ 2π

0

(VF )(ϕ, ψ) e−inϕdϕ . (2.3)

For k ≥ 0, we denote by Tk(z) and Uk(z) the Chebyshev polynomials of the first and second
kind, respectively, where

Tk(z) :=











cos (k arccos(z)) for |z| ≤ 1

cosh(k arccosh(z)) for z > 1

(−1)k cosh(k arccosh(−z)) for z < −1

Uk(z) :=











sin((k + 1) arccos(z))/ sin(arccos(z)) for |z| ≤ 1

sinh((k + 1) arccosh(z))/ sinh(arccosh(z)) for z > 1

(−1)k sinh((k + 1) arccosh(−z))/ sinh(arccosh(−z)) for z < −1 ,
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and set U−1 := 0.
Our strategy for inverting V is to recover the Fourier coefficient Fn from (VF )n for any

n ∈ Z. For that purpose we proceed by setting up a one-dimensional integral equation for
Fn in terms of (RF )n that will subsequently be solved explicitly.

Lemma 2.2 (Expressing (VF )n in terms of Fn). Suppose F ∈ C∞
c (D1(0)) and let Fn and

(VF )n denote the Fourier coefficients of F and VF as defined in (2.2) and (2.3), respectively.
Then, for all (n, ψ) ∈ Z× (0, π/2), we have

(VF )n(ψ) = 4 cos(n(ψ − π/2))
∫ 1

sin(ψ)

Fn(r)
T|n|(sin(ψ)/r)
√

r2 − sin2(ψ)
dr . (2.4)

Proof. From the definitions of VF and RF we have the following relation

VF (ϕ, ψ) = RF (ϕ− ψ + π/2, sin(ψ)) +RF (ϕ + ψ − π/2, sin(ψ)) . (2.5)

Now let (RF )n(s) := 1
2π

∫ 2π

0
(RF )(α, s) e−inαdα denote the n-th Fourier coefficient of RF

with respect to the angular variable. Equation (2.5), the definition of the Fourier coefficients
of VF and RF , and two variable substitutions yield

(VF )n(ψ)

=
1

2π

∫ 2π

0

[RF (ϕ− ψ + π/2, sin(ψ)) +RF (ϕ + ψ − π/2, sin(ψ))] e−inϕdϕ

=
1

2π

∫ 2π

0

RF (α, sin(ψ)) e−in(α+ψ−π/2)dα +
1

2π

∫ 2π

0

RF (α, sin(ψ)) e−in(α−ψ+π/2)dα

= (RF )n(sin(ψ)) e−in(ψ−π/2) + (RF )n(sin(ψ)) ein(ψ−π/2)
= 2 cos(n(ψ − π/2)) (RF )n(sin(ψ)) .

(2.6)

Next we note the relation (RF )n(s) = 2
∫ 1

s
Fn(r)

T|n|(s/r)√
r2−s2 dr, that was first derived by Cormack

in [4]. Combining this with the last displayed equation yields (2.4).

Lemma 2.2 together with known inversion formulas for the Radon transform yields the
following explicit inversion formulas for the V-line transform on the circle.

Theorem 2.3 (Inversion of the V-line transform on the circle). Suppose F ∈ C∞(D1(0))
and let Fn and (VF )n denote the Fourier coefficients of F and VF , as defined in (2.2) and
(2.3). Then the following inversion formulas hold:

Fn(r) = −
1

2π

∫ 1

r

∂

∂s

[

(VF )n(arcsin(s))
cos(n(arcsin(s)− π/2))

]

T|n|(s/r)√
s2 − r2

ds (2.7)

Fn(r) = −
1

2πr

{
∫ 1

r

∂

∂s

[

(VF )n(arcsin(s))
cos(n(arcsin(s)− π/2))

]

[

s/r +
√

s2/r2 − 1
]−|n|

√

s2/r2 − 1
ds (2.8)

−
∫ r

0

∂

∂s

[

(VF )n(arcsin(s))
cos(n(arcsin(s)− π/2))

]

U|n|−1(s/r) ds

}

.
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Proof. Let (RF )n denote the n-th Fourier coefficient of RF . Then (2.6) implies

(RF )n(s) =
(VF )n(arcsin(s))

2 cos(n(arcsin(s)− π/2)) . (2.9)

Next we recall the following inversion formulas for the Radon transform:

Fn(r) = −
1

π

∫ 1

r

∂(RF )n(s)
∂s

T|n|(s/r)√
s2 − r2

ds (2.10)

Fn(r) = −
1

πr

{
∫ 1

r

∂(RF )n(s)
∂s

[

s/r +
√

s2/r2 − 1
]−|n|

√

s2/r2 − 1
ds (2.11)

−
∫ r

0

∂(RF )n(s)
∂s

U|n|−1(s/r) ds

}

.

Here (2.10) is Cormack’s inversion formula [4] and (2.11) an inversion formula with bet-
ter stability properties first derived in [17]. Inserting (2.9) in (2.10) yields the inversion
formula (2.7) whereas inserting (2.11) yields (2.8).

Theorem 2.3 in particular implies that the V-line transform is uniquely invertible. Fur-
ther, it implies the following inversion method for the V-line transform:

Algorithm 1 (Inversion of the V-line transform).

❖ Step 1: Compute the Fourier coefficients (VF )n of VF ; see (2.3).

❖ Step 2: Recover the Fourier coefficients Fn from (VF )n by (2.7) or (2.8).

❖ Step 3: Recover F from its Fourier coefficients Fn; see (2.2).

The inversion formula (2.7) solves the exterior problem for the V-line transform, because
for reconstructing Fn(r) it only uses integrals over V-lines that do not intersect the disc
{x ∈ R

2 | |x| ≤ r}. Such data can be stably obtained from exterior data of the Radon
transform. As a consequence, evaluating (2.7) is numerically unstable (severely ill-posed).
For the following, we therefore only consider the inversion formula (2.8) and we demonstrate
that it can be evaluated stably and efficiently.

2.2 Numerical implementation

In this subsection we describe how to numerically implement Algorithm 1. In our imple-
mentation, we discretize any step in Algorithm 1. For computing the Fourier coefficients
in Step 1 and for evaluating the Fourier series in Step 3, we use the standard FFT algo-
rithm. For Step 1, the FFT algorithm outputs approximations G[n, j] ≃ (VF )n(arcsin(sj))
for n ∈ {−N/2,−N/2 + 1, . . . , N/2− 1} and j ∈ {0, . . . ,M}.
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The main issue in the reconstruction procedure is implementing the inversion formula (2.8)
in Step 2. Consider equidistant grid points ri = i/M for i ∈ {0, . . . ,M} and rewrite the
inversion formula (2.8) in the form

Fn(r) =
1

π

{

∫ r

0

g′n(s)U|n|−1(s/r)
ds

r
−
∫ 1

r

g′n(s)

[

s/r +
√

s2/r2 − 1
]−|n|

√

s2/r2 − 1

ds

r

}

,

g′n(s) :=
∂

∂s

[

(VF )n(arcsin(s))
2 cos(n(arcsin(s)− π/2))

]

.

These formulas are used for finding approximations to Fn(ri) as follows. First, for some
small regularization parameter ǫ > 0 (that accounts for instabilities due to the zeros in the
denominator in the definition to g′n) we define

H[n, j] :=
cos(n(arcsin(sj)− π/2))G[n, j]

ǫ2 + cos(n(arcsin(sj)− π/2))2
, (2.12)

and take g′n[j] := (H[n, j + 1]−H[n, j])/(2M) as an approximation of g′n(s) on the interval
[rj, rj+1]. Using such an approximation, we obtain

Fn(ri) =
1

π

{

∫ ri

0

g′n(s)U|n|−1(s/ri)
ds

ri
−
∫ 1

ri

g′n(s)

[

s/ri +
√

s2/r2i − 1
]−|n|

√

s2/r2i − 1

ds

ri

}

=
1

π

{

i−1
∑

j=0

∫ rj+1

rj

g′n(s)U|n|−1(s/ri)
ds

ri

−
M−1
∑

j=i

∫ rj+1

rj

g′n(s)

[

s/ri +
√

s2/r2i − 1
]−|n|

√

s2/r2i − 1

ds

ri

}

≃ 1

π

{

i−1
∑

j=0

g′n[j]

∫ rj+1

rj

U|n|−1(s/ri)
ds

ri

−
N−1
∑

j=i

g′n[j]

∫ rj+1

rj

[

s/ri +
√

s2/r2i − 1
]−|n|

√

s2/r2i − 1

ds

ri

}

.

By elementary integration one verifies that

∀j ∈ {0, . . . , i− 1} : w
(n)
i,j :=

∫ rj+1

rj

U|n|−1(s/ri)
ds

ri
(2.13)

=







0 for n = 0
1

|n|
(

T|n|(rj+1/ri)− T|n|(rj/ri)
)

for n 6= 0 ,

and

∀j ∈ {i, . . . ,M − 1} : w
(n)
i,j :=

∫ rj+1

rj

[

s/ri +
√

s2/r2i − 1
]−|n|

√

s2/r2i − 1

ds

ri
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=











log
(

rj+1 +
√

r2j+1 − r2i
)

− log
(

rj +
√

r2j − r2i
)

for n = 0

− 1

|n|
(

e−|n| arccosh(rj+1/ri) − e−|n| arccosh(rj/ri)
)

for n 6= 0 .
(2.14)

Consequently, we obtain

∀(n, i) ∈ {−N/2, . . . , N/2− 1}×{1, . . . ,M} : F[n, i] =

M−1
∑

j=0

w
(n)
i,j

H[n, j]−H[n, j]

2M
, (2.15)

where H[n, j] is given by (2.12), the weights w
(n)
i,j are defined by (2.13) and (2.14), and F[n, i]

is the desired approximation to Fn(ri).

x−axis

y−
ax

is

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

PSfrag replacements

C
D
Ds

Da

xs
xa

axis
ψ

ψ

β

(a)
(b)
(c)

a

f

x3

S1 × R

S1

R half angle

ve
rt

ex

(b)

0 0.5 1 1.5

0

1

2

3

4

5

6

PSfrag replacements

C
D
Ds

Da

xs
xa

axis
ψ

ψ

β

(a)
(b)
(c)

a

f

x3

S1 × R

S1

R half angle

ve
rt

ex

(c)

0 0.5 1 1.5

0

1

2

3

4

5

6

PSfrag replacements

C
D
Ds

Da

xs
xa

axis
ψ

ψ

β

(a)
(b)
(c)

a

f

x3

S1 × R

S1

R

Figure 2.1: (a) Phantom F used for numerical simulations. (b) Corresponding V-line
transform VF . (c) Corresponding X-ray transform XF .

Formula (2.15) immediately yields to the following discrete reconstruction algorithm for
inverting the V-line transform using discrete data.

Algorithm 2 (Discrete reconstruction algorithm for inverting the V-line transform).

❖ Step 1: Use the FFT to compute the G[n, i] ≃ (VF )n(si).

❖ Step 2: For some ǫ > 0, compute H[n, i] ≃ (RF )n(si) by evaluating (2.12).

❖ Step 3: Compute F[n, i] ≃ Fn(ri) by evaluating (2.15).

❖ Step 4: Approximate F(ri cosϕk, ri cosϕk) by applying the inverse FFT.

Algorithm 2 is numerically efficient in the following sense. IfM = O(N), easy arguments
show that the proposed algorithm only requires O(N3) floating point operations for recon-
structing the phantom at N2 reconstruction points. This is the same complexity as filtered
backprojection reconstruction algorithms have. Notice further that by evaluating (2.15) in
Step 3 in Algorithm 2 we actually implement the inversion formula (2.11) for the regular
Radon transform derived by Perry [17]. The proposed implementation of (2.11) is of inter-
est on its own and is different from the implementation given in [10]. Finally note that a
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different reconstruction strategy based on (2.12) (or (2.9)) would be to first recover RF by
applying the inverse FFT algorithm and then to apply any existing reconstruction algorithm
for the Radon transform such as the filtered backprojection algorithm.

2.3 Numerical examples

The reconstruction procedure outlined above has been implemented in Matlab and tested
on a discretized version of a Smiley phantom shown in Figure 2.1 (a) sampled on a Cartesian
201 × 201 grid. For implementing the V-line transform we first numerically computed the
X-ray transform XF (ϕ, ψ) =

∫∞
0
F (θ(ϕ) − r(cos(ϕ − ψ), sin(ϕ − ψ)))dr by computing the

ray integrals using the composite trapezoidal rule. We then evaluated the V-line transform
using VF (ϕ, ψ) =∑σ=±1XF (ϕ, σψ). Figure 2.1 (b) and (c) show the numerically computed
V-line and X-ray transforms for m = 256 vertex positions and N = 201 opening angles in
the interval [0, π/2].
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Figure 2.2: (a) Reconstruction from numerically computed V-line transform. (b) Reconstruc-
tion from numerically computed X-ray transform. (c) Reconstruction from V-line transform
after adding Gaussian white noise to the data. (d) Reconstruction from X-ray transform
after adding Gaussian white noise to the data.
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The numerical reconstruction from the V-line transform using Algorithm 2 evaluated on
a Cartesian 201×201 grid is shown in Figure 2.2 (a). The regularization parameter has been
taken as ǫ = 0.005. For comparison purpose we also applied our reconstruction algorithm to
the X-ray transform, see Figure 2.2 (b). For inverting the X-ray transform, equation (2.12)
is replaced by H[n, j] := G[n, j]/ exp(−in(arcsin(sj)− π/2)). (In fact, such a reconstruction
procedure is justified by (2.5) and (2.6).) Because exp(−int) 6= 0, no regularization is
necessary for inverting XF . Finally, in order to demonstrate the stability of our algorithm
we added 5% noise to the data and repeated the computations. For inverting the V-line
transform we used an increased regularization parameter equal to ǫ = 0.05. Again the results
for both the V-line and the X-ray transform are quite good. However, the inversion of the
V-line transform is slightly more sensitive to the noise which is expected due to the zeros
of the function s 7→ cos(n(arcsin(s) − π/2)) appearing in the denominator of the inversion
formula for VF .

3 The conical Radon transform with vertices on a cylin-

der

In this section we study the inversion of the conical Radon transform on the cylinder using
4D data. For that purpose, for (ϕ, z, β, ψ) ∈ [0, 2π) × R × (0, π)2, we use the following
notations:

❖ θ(ϕ) := (cosϕ, sinϕ) ∈ S1;

❖ a(ϕ, β) := (−θ(ϕ) sin(β), cos(β)) ∈ S2;

❖ C(ϕ, z, β, ψ) := (θ(ϕ), z) + {x ∈ R3 | a(ϕ, β) • x = ‖x‖ cosψ}.
The set C(ϕ, z, β, ψ) is a one-sided circular cone, having a vertex (θ(ϕ), z) ∈ S

1 × R, a
symmetry axis {ra(ϕ, β) | r > 0} pointing to the symmetry axis of the cylinder S1 ×R, and
a half opening angle ψ ∈ (0, π); see Figure 1.2 (a).

Definition 3.1 (Conical Radon transform on the cylinder). Let k ∈ N0 = {0, 1, . . . } and
f ∈ C∞

c (D1(0)× R). We define the (weighted) conical Radon transform of f by

Ckf : [0, 2π)× R× (0, π)2 → R : (3.1)

(ϕ, z, β, ψ) 7→
∫

C(ϕ,z,β,ψ)

f(x) ‖x− (θ(ϕ), z)‖k−1 dS(x) .

The weighted conical Radon transform maps the function f to integrals over members of
the four-dimensional set of all cones {C(ϕ, z, β, ψ) ⊆ R3 | (ϕ, z, β, ψ) ∈ [0, 2π)×R× (0, π)2}.
The parameter k ∈ N0 allows to include a radial weight that can be adjusted to a particular
application at hand. In the literature on Compton camera imaging the case k = 0 and k = 1
have been used. In [20], the case k = 1 is referred to as the surface integral model, and the
case k = 0 as the cone-beam line integral model.

In the following we present two inversion methods for inverting Ck. The first one is based
on reducing the conical Radon transform to the V-line transform, whereas the second one is
based on reducing the conical Radon transform to the Radon transform.
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3.1 Method 1: Reduction to the V-line transform

The first inversion method consists in first recovering the V-line transform from Ckf and
subsequently recovering f by inverting the V-line transform. For that purpose we make use
of the (weighted) X-ray transform

(Xkf) : [0, 2π)× R× R
3 → R : (ϕ, z, u) 7→

∫ ∞

0

f((θ(ϕ), z) + ru))rkdr , (3.2)

for k ∈ N0 and f ∈ C∞
c (D1(0) × R). The X-ray transform consists of integrals over rays

{(θ(ϕ), z) + ru | r > 0} with a vertex (θ(ϕ), z) ∈ S1 × R and a direction u ∈ R3.

Lemma 3.2. Let f ∈ C∞
0 (D1(0) × R) and (ϕ, z) ∈ [0, 2π)× R. For any y = (y1, y2) ∈ R2

with ‖y‖ ≤ 1, we have

∑

σ=±1

(Xkf)
(

ϕ, z, y1θ(ϕ) + σ
√

1− ‖y‖2 θ(ϕ)⊥, y2
)

=

√

1− ‖y‖2
2π2

∫ π

0

∫ π

0

∂ψ[Ckf(ϕ, z, α, ψ)/ sinψ]
cos(ψ)− y • (− sin(β), cos(β))

dψdβ . (3.3)

Further, for any v ∈ S1 we have

(X0f)(ϕ, z, v, 0) =
(−1)k−1

(k − 1)!

∫ 0

−π/2
sink−1(γ)(∂kzXkf) (ϕ, z, v cos(γ), sin(γ)) dγ. (3.4)

Proof. Using the one-dimensional delta-distribution, we have

Ckf(ϕ, z, β, ψ) = sin(ψ)

∫

S2

∫ ∞

0

f ((ϕ, z) + rω) δ (a(ϕ, β) • ω − cos(ψ)) rkdrdS(ω)

= sin(ψ)

∫

S2

(Xkf)(ϕ, z, ω)δ (a(ϕ, β) • ω − cos(ψ)) dS(ω)

=
∑

σ=±1

sin(ψ)

∫

S2σ

(Xkf)(ϕ, z, ω)δ (a(ϕ, β) • ω − cos(ψ)) dS(ω) , (3.5)

where S2
σ := {ω ∈ S2 | (σθ(ϕ)⊥, 0) • ω > 0}. Any element on the half sphere S2

σ can uniquely
be written in the form ω = (y1θ(ϕ) + σ

√

1− ‖y‖2θ(ϕ)⊥, y2) for y = (y1, y2) ∈ R2 with
‖y‖ < 1. Using this representation we have a(ϕ, β) •ω = (− sin(β), cos(β)) •y. Together with
(3.5) and the transformation rule this shows

Ckf(ϕ, z, β, ψ) =
∑

σ=±1

∫

‖y‖<1

(Xkf)
(

ϕ, z, y1θ(ϕ) + σ
√

1− ‖y‖2θ(ϕ)⊥, y2
)

× δ ((− sin(β), cos(β)) • y − cos(ψ))
sin(ψ)dy
√

1− ‖y‖2
.
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Now for fixed ϕ, z and k, we define functions Fσ : R
2 → R by

Fσ(y) :=







(Xkf)
(

ϕ, z, y1θ(ϕ) +
√

1− ‖y‖2θ(ϕ)⊥, y2
) 1
√

1− ‖y‖2
for ‖y‖ ≤ 1

0 for ‖y‖ > 1 ,

and recall that the 2-dimensional Radon transform can be written in the form RF (α, s) =
∫

R2 F (y)δ ((cos(α), sin(α)) • y − s) dy; we obtain Ckf(ϕ, z, β, ψ)/ sinψ =
∑

σ=±1(RFσ)(β +
π/2, cos(ψ)). With the formula F (y) = 1

2π2

∫ π

0

∫

R
((cos(α), sin(α)) •y−s)−1(∂sRF )(α, s)dsdα

for inverting the Radon transform (see, for example, [11, 16]) this yields

∑

σ=±1

Fσ(y) =
1

2π2

∫ π

0

∫ 1

−1

∂cos(ψ)[Ckf(ϕ, z, α− π/2, ψ)/ sinψ]
y • (cos(α), sin(α))− cos(ψ)

d(cosψ)dα

=
1

2π2

∫ π

0

∫ π

0

∂ψ[Ckf(ϕ, z, α− π/2, ψ)/ sinψ]
cos(ψ)− (cos(α), sin(α)) • y

dψdα.

Inserting the definition of Fσ yields (3.3).
By the chain rule we have

(∂kwX0f)(ϕ, z, v, w) =

∫ ∞

0

∂kwf ((θ(ϕ), z) + r(v, w)) dr

=

∫ ∞

0

∂kz f ((θ(ϕ), z) + r(v, w)) rkdr = (∂kzXkf)(ϕ, z, v, w) .

Together with Cauchy’s formula for repeated integration we obtain

(X0f)(ϕ, z, v, w) =
1

(k − 1)!

∫ w

−∞
(w − s)k−1(∂kzXkf)(ϕ, z, v, s)ds

=
1

(k − 1)!

∫ w

−∞
(w − s)k−1(∂kzXkf)

(

ϕ, z,
(v, s)

√

‖v‖2 + s2

)

ds

(‖v‖2 + s2)(k+1)/2
,

where for the second equality we used the identity (Xkf)(ϕ, z, λu) = λ−k−1(Xkf)(ϕ, z, u)
that holds for every λ > 0 and u ∈ R3.

Now we take w = 0 and ‖v‖ = 1 in the last displayed equation, and make the substitution
s = tan(γ). Then ‖v‖2 + s2 = 1/ cos2(γ) and ds = dγ/ cos2(γ). Consequently,

(X0f)(ϕ, z, v, 0) =
1

(k − 1)!

∫ 0

−π/2
(− tan(γ))k−1(∂kzXkf) (ϕ, z, v cos(γ), sin(γ))

× cosk−1(γ)dγ for v ∈ S
1 ,

which after simple manipulation yields (3.4).

The following theorem shows how to explicitly reduce the weighted conical Radon trans-
form to the (two-dimensional) V-line transform applied in horizontal planes.
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Theorem 3.3 (Reduction of the conical Radon transform to the V-line transform). Let

f ∈ C∞
c (D1(0)× R). Then, we have for (ϕ, z, ψ) ∈ [0, 2π)× R× (0, π/2),

∑

σ=±1

(X0f)(ϕ, z,− cos(ψ)θ(ϕ) + σ sin(ψ)θ(ϕ)⊥, 0)

=

∫ π

0

∫ π

0

∂kz∂ψ[Ckf(ϕ, z, β, ψ)/ sinψ]Hk(β, ψ)dψdβ , (3.6)

with

Hk(β, ψ) :=
(−1)k−1

2π2(k − 1)!

∫ 0

−π/2

sink−1(γ) cos(γ) sin(ψ)dγ

cos(ψ)− (cos(γ) cos(ψ), sin(γ)) • (sin(β), cos(β))
. (3.7)

Proof. By Lemma 3.2 we have

∑

σ=±1

(X0f)(ϕ, z,− cos(ψ)θ(ϕ) + σ sin(ψ)θ(ϕ)⊥, 0)

=
(−1)k−1

(k − 1)!

∑

σ=±1

∫ 0

−π/2
sink−1(γ)

× (∂kzXkf)
(

ϕ, z,− cos(γ) cos(ψ)θ(ϕ) + σ cos(γ) sin(ψ)θ(ϕ)⊥, sin(γ)
)

dγ

=
(−1)k−1

(k − 1)!
∂kz

∫ 0

−π/2
sink−1(γ)

×
∑

σ=±1

(Xkf)
(

ϕ, z,− cos(γ) cos(ψ)θ(ϕ) + σ cos(γ) sin(ψ)θ(ϕ)⊥, sin(γ)
)

dγ

=
(−1)k−1

2π2(k − 1)!

∫ 0

−π/2

∫ π

0

∫ π

0

sink−1(γ) cos(γ) sin(ψ)∂kz∂ψ[Ckf(ϕ, z, β, ψ)/ sinψ]dψdβdγ
cos(ψ)− (− cos(γ) cos(ψ), sin(γ)) • (− sin(β), cos(β))

.

(3.8)

After interchanging the order of integrations and using the definition of the kernel Hk(β, ψ)
yields the desired identity.

Let f ∈ C∞
c (D1(0)× R). For any given z ∈ R define fz := f( · , z). Therefore, the V-line

transform of fz satisfies

(Vfz) (ϕ, ψ) =
∑

σ=±1

∫ ∞

0

f(θ(ϕ)− r(cos(ϕ− σψ), sin(ϕ− σψ)), z)dr

=
∑

σ=±1

(X0f)(ϕ, z,− cos(ψ)θ(ϕ) + σ sin(ψ)θ(ϕ)⊥, 0)

=

∫ π

0

∫ π

0

∂kz∂ψ[Ckf(ϕ, z, β, ψ)/ sinψ]Hk(β, ψ, γ)dψdβ . (3.9)

Here the second equality follows from the identity − cos(ψ)θ(ϕ)+σ sin(ψ)θ(ϕ)⊥ = −(cos(ϕ−
σψ), sin(ϕ− σψ)) and the last equality from Theorem 3.3. Equation (3.9) shows how to re-
cover the V-line transform Vfz from the conical Radon transform. By subsequently inverting
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the V-line transform one recovers f . In summary, we conclude the following inversion method
for the conical Radon transform:

Algorithm 3 (Inversion of the conical Radon transform, Method 1).

❖ Step 1: Compute the kernel Hk defined in (3.7).

❖ Step 2: Evaluate (3.9) to recover Vfz from Ckf for every z ∈ R.

❖ Step 3: For every z ∈ R recover fz from Vfz by means of Algorithm 1.

Theorem 3.3 also implies that the considered conical Radon transform f 7→ Ckf is
uniquely invertible and can be reconstructed by Algorithm 3. How to efficiently implement
Algorithm 3 is a topic of future work.

3.2 Method 2: Reduction to the Radon Transform

The second method is probably simpler than the method presented above, but only works
for the cases k = 0, 1. It based on a relation between the conical Radon transform and the
regular 3-dimensional Radon transform, that has first been first derived by Smith [20]. For
that purpose we use the following additional notation:

❖ (Rf)(ω, s) :=
∫

ω⊥ f(sω+y)dS(y) for (ω, s) ∈ S2×R denotes the regular 3-dimensional
Radon transform of f ∈ C∞

c (R3);

❖ (Hg)(ω, s) := 1
π

∫

R
g(ω, t)dt/(s− t) for (ω, s) ∈ S2 × R denotes the Hilbert transform

in the second component of a function g ∈ C∞
c (S2 × R).

Lemma 3.4 (Reduction of the conical Radon transform to the Radon transform). Let f ∈
C∞
c (R3). Then, for (ϕ, z, β) ∈ [0, 2π)× R× (0, π), we have

(H∂sRf)(a(ϕ, β), z cos(β)− sin(β)) = −1

π

∫ π

0

(C0f)(ϕ, z, β, ψ)
dψ

cos(ψ)2
(3.10)

(HRf)(a(ϕ, β), z cos(β)− sin(β)) = −1

π

∫ π

0

(C1f)(ϕ, z, β, ψ)
dψ

cos(ψ)
. (3.11)

Proof. Expressing Ck for k = 0, 1 in terms of the one-dimensional delta-distribution and
performing several coordinate substitutions yield

∫ π

0

Ckf(ϕ, z, β, ψ) cosk−2(ψ)dψ
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=

∫ π

0

∫

S2

∫ ∞

0

f ((θ(ϕ), z) + rω) δ (a(ϕ, β) • ω − cos(ψ)) rkdrdS(ω) cosk−2(ψ)d(cos(ψ))

=

∫

S2

∫ ∞

0

f ((θ(ϕ), z) + rω) (a(ϕ, β) • ω)k−2rkdrdS(ω)

=

∫

R3

f ((θ(ϕ), z) + x) (a(ϕ, β) • x)k−2dx

=

∫

R3

f(x)(a(ϕ, β) • x− a(ϕ, β) • (θ(ϕ), z))k−2dx

=

∫

R

∫

a(ϕ,β)⊥
f(sa(ϕ, β) + y)(s+ sin(β)− z cos(β))k−2dyds

=

∫

R

(Rf)(a(ϕ, β), s)(s+ sin(β)− z cos(β))k−2ds.

Here the third equality follows after introducing spherical coordinates x ← rω, the fourth
equality follows after the change of variables x ← (θ(ϕ), z) + x, the fifth equality follows
after the substitution x ← sa(ϕ, β) + y, and the last equality follows form the definition
of the Radon transform. Now, the definition of the Hilbert transform and performing one
integration by parts in the case k = 0 yields (3.10), (3.11).

Using Lemma 3.4 we can recover H∂1−ks Rf from the conical Radon transform. By
applying the inverse Hilbert transform and the inverse Radon transform afterwards one then
recovers the original function. This yields the following reconstruction method.

Algorithm 4 (Inversion of the conical Radon transform for k = 0, 1, Method 2).

❖ Step 1: Recover H∂1−ks Rf from Ckf by evaluating (3.10) or (3.11).

❖ Step 2: Recover ∂1−ks Rf from H∂1−ks Rf by applying inverse Hilbert transform.

❖ Step 3: Recover f from ∂1−ks Rf by applying the inverse Radon transform.

While Algorithm 4 can efficiently be implemented, one can combine three steps to obtain
an explicit inversion formula. Such inversion formulas are also useful for theoretical investi-
gations. By using the standard filtered backprojection type inversion formulas for the Radon
transform (see, for example, [11, 16])

f(x) = − 1

8π2
∆x

∫

S2

Rf(ω, ω • x)dS(ω) (3.12)

f(x) = − 1

8π2

∫

S2

∂2tRf(ω, ω • x)dS(ω), (3.13)

Lemma 3.4 yields the following result.
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Theorem 3.5. For f ∈ C∞(D1(0)× R) we have

f(x) = − 1

8π4

∫

S2

∫

R

∫ π

0

(∂2zCkf)(ϕ, z, β, ψ) cos−k(β)dψdzdS(a(ϕ, β))
(x • a(ϕ, β)− z cos(β) + sin(β)) cos2−k(ψ)

for k ∈ {0, 1}
(3.14)

f(x) = − 1

8π4
∆x

∫

S2

∫

R

∫ π

0

C1f(ϕ, z, β, ψ) cos(β)dψdzdS(a(ϕ, β))
(x • a(ϕ, β)− z cos(β) + sin(β)) cos(ψ)

for k = 0 . (3.15)

Proof. Since HHg = −g, we have

∂1−ks Rf(a(ϕ, β), s) = −∂1−ks (HHRf)(a(ϕ, β), s)

=
(−1)k
π

∫

R

HRf(a(ϕ, β), z cos(β)− sin(β)) cos(β)dz

(s− z cos(β) + sin(β))2−k

= −1

π

∫

R

∂1−kz HRf(a(ϕ, β), z cos(β)− sin(β)) cosk(β)dz

s− z cos(β) + sin(β)

=
1

π2

∫

R

∫ π

0

∂1−kz Ckf(ϕ, z, β, ψ) cos(β)dψdz
(s− z cos(β) + sin(β)) cos2−k(ψ)

.

Together with (3.12) this yields (3.15) for k = 1. Further, integration by parts shows

(∂2sRf)(a(ϕ, β), t)
= (∂1+ks ∂1−ks Rf)(a(ϕ, β), t)

=
(−1)k+1(k + 1)!

π2

∫

R

∫ π

0

(∂1−kz Ckf)(ϕ, z, β, ψ) cos(β)dψdz
(s− z cos(β) + sin(β))2+k cos2−k(ψ)

=
(−1)k+1

π2

∫

R

∫ π

0

∂1+kz

[

1

s− z cos(β) + sin(β)

]

(∂1−kz Ckf)(ϕ, z, β, ψ) cos−k(β)
dψdz

cos2−k(ψ)

=
1

π2

∫

R

∫ π

0

(∂2zCkf)(ϕ, z, β, ψ) cos−k(β)
(s− z cos(β) + sin(β)) cos2−k(ψ)

dψdz ,

which together with (3.13) yields (3.14).

The inversion formulas (3.14) for k = 0 and (3.15) for k = 1 can further be rewritten in
terms of the conical back-projection operator C♯kg that is defined by

C♯kg(x) =
∫ π

0

∫ π

0

∫

R

∫ 2π

0

g(ϕ, z, β, ψ)‖x− (θ(ϕ), z)‖k−1

× δ(a(ϕ, β) • x− z cos(β) + sin(β)− ‖x− (θ(ϕ), z)‖ cos(ψ)) sin(ψ)dϕdzdβdψ . (3.16)

for g ∈ C∞([0, 2π)× R × (0, π)2) and x ∈ R3. As shown in Appendix A.1, the operator C♯k
is the (formal) L2-adjoint of Ck.
Corollary 3.6. Let f ∈ C∞(D1(0)× R). Then we have for x ∈ R

3,

f(x) =
(−1)k
8π4

∆k
xC♯k
[
∫ π

0

∂1−kz Ckf(ϕ, z, β, ψ′) cos(β) sin(β)dψ′

cos2−k(ψ) cos2−k(ψ′)

]

(x). (3.17)
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Proof. See Appendix A.2

Using Corollary 3.6, we can easily derive a stability estimate for the conical Radon
transform. For that purpose we denote by Ff the Fourier transform of f and set

‖f‖2−1 =

∫

R3

|Ff(ξ)|2(‖ξ‖2 + 1)−1dξ,

‖Ckf‖2 =
∫ π

0

∫

R

∫ 2π

0

∫ π

0

∣

∣

∣

∣

Ckf(ϕ, z, β, ψ)
cos2−k(ψ)

∣

∣

∣

∣

2

cos(β) sin(β)dψdϕdzdβ

‖Ckf‖21 = ‖Ckf‖
2 + ‖∂zCkf‖2 .

Theorem 3.7. For f ∈ C∞
c (D1(0)× R) we have ‖f‖−1 ≤ ‖C1f‖ and ‖f‖ ≤ π/2‖C0f‖1.

Proof. By Corollary 3.6 with k = 1 we have

‖f‖2−1 ≤
∫

R3

|Ff(ξ)|2 ‖ξ‖−2 dξ (3.18)

= −(2π)3
∫

R3

f(x)∆−1
x f(x)dx

=
1

π

∫

R3

f(x)C♯1
[
∫ π

0

C1f(ϕ, z, β, ψ′) cos(β) sin(β)dψ′

cos(ψ) cos(ψ′)

]

(x)dx

=
1

π

∫ π

0

∫ π

0

∫

R

∫ 2π

0

C1f(ϕ, z, β, ψ)
∫ π

0

C1f(ϕ, z, β, ψ′) cos(β) sin(β)dψ′

cos(ψ) cos(ψ′)
dϕdzdβdψ

=
1

π

∫ π

0

∫

R

∫ 2π

0

(
∫ π

0

C1f(ϕ, z, β, ψ)
cos(ψ)

dψ

)2

cos(β) sin(β)dϕdzdβ,

where in the second last equality holds because C♯1 is the L2-adjoint of C1. Applying Jensen’s
inequality to the inner integral completes our proof.

Now suppoe k = 0. Similar to (3.18) we have

|f‖2 = 1

π

∫ π

0

∫

R

∫ 2π

0

(
∫ π

0

C0f(ϕ, z, β, ψ)
cos2(ψ)

dψ

)

×
(
∫ π

0

∂zC0f(ϕ, z, β, ψ)
cos2(ψ)

dψ

)

cos(β) sin(β)dϕdzdβ

≤ 1

π

(

∫ π

0

∫

R

∫ 2π

0

(
∫ π

0

C0f(ϕ, z, β, ψ)
cos2(ψ)

dψ

)2

cos(β) sin(β)dϕdzdβ

)1/2

×
(

∫ π

0

∫

R

∫ 2π

0

(
∫ π

0

∂zC0f(ϕ, z, β, ψ)
cos2(ψ)

dψ

)2

cos(β) sin(β)dϕdzdβ

)1/2

,

where in the second line, we used the Cauchy-Schwarz inequality. By Jensen’s inequality,

‖f‖2 ≤ π

(

∫ π

0

∫

R

∫ 2π

0

∫ π

0

∣

∣

∣

∣

C0f(ϕ, z, β, ψ)
cos2(ψ)

∣

∣

∣

∣

2

dψ cos(β) sin(β)dϕdzdβ

)1/2
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×
(

∫ π

0

∫

R

∫ 2π

0

∫ π

0

∣

∣

∣

∣

∂zC0f(ϕ, z, β, ψ)
cos2(ψ)

∣

∣

∣

∣

2

dψ cos(β) sin(β)dϕdzdβ

)1/2

≤ π

2

(

∫ π

0

∫

R

∫ 2π

0

∫ π

0

∣

∣

∣

∣

C0f(ϕ, z, β, ψ)
cos2(ψ)

∣

∣

∣

∣

2

dψ cos(β) sin(β)dϕdzdβ

)

+
π

2

(

∫ π

0

∫

R

∫ 2π

0

∫ π

0

∣

∣

∣

∣

∂zC0f(ϕ, z, β, ψ)
cos2(ψ)

∣

∣

∣

∣

2

dψ cos(β) sin(β)dϕdzdβ

)

.

4 Conclusion

In this paper we studied the weighted conical Radon Ck with vertices on the cylinder and
presented two explicit reconstruction procedures (see Algorithms 3 and 4). The first approach
is based on reducing Ck to the V-line transform with vertices on the circle. For the V-line
transform we derived an explicit inversion formula based on Fourier series expansion and a
corresponding efficient discrete reconstruction algorithm. We believe that also Algorithms 3
and 4 for inverting Ck can be implemented efficiently. Future work will be done to numerically
implement these reconstruction methods. We intend to compare these methods with iterative
procedures in terms of computation time and image quality for realistically simulated data.

A Proofs

A.1 Formal L2-adjoint of Ck
We have

∫ π

0

∫ π

0

∫

R

∫ 2π

0

Ckf(ϕ, z, β, ψ)g(ϕ, z, β, ψ)dϕdzdβdψ

=

∫ π

0

∫ π

0

∫

R

∫ 2π

0

∫

R3

f((θ(ϕ), z) + x)δ(a(ϕ, β) • x− ‖x‖ cos(ψ))

× g(ϕ, z, β, ψ)sin(ψ)dx‖x‖1−k dϕdzdβdψ

=

∫

R3

∫ π

0

∫ π

0

∫

R

∫ 2π

0

f(x)g(ϕ, z, β, ψ)‖x− (θ(ϕ), z)‖k−1

× δ(a(ϕ, β) • x− z cos(β) + sin(β)− ‖x− (θ(ϕ), z)‖ cos(ψ)) sin(ψ)dϕdzdβdψdx

=

∫

R3

f(x)C♯kg(x)dx .

Here for the first and second equalities, we made use of the change of variables x← rω and
x← (θ(ϕ), z) + x, respectively.
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A.2 Proof of Corollary 3.6

It is enough to show that for a fixed x ∈ R3 and k = 0, 1, we have

C♯k
[
∫ π

0

∂1−kz g(ϕ, z, β, ψ′) cos(β) sin(β)dψ′

cos2−k(ψ) cos2−k(ψ′)

]

(x)

= (−1)k+1

∫

S2

∫

R

∫ π

0

∂2−2k
z g(ϕ, z, β, ψ) cosk(β)dψdzdS(a(ϕ, β))

(a(ϕ, β) • x− z cos(β) + sin(β)) cos2−k(ψ)
. (A.1)

By the definition of C♯k and the homogeneity of the one-dimensional delta-distribution, the
left hand side of (A.1) becomes

∫ π

0

∫

R

∫ 2π

0

∫ π

0

∫ π

0

∂1−kz g(ϕ, z, β, ψ′) cos(β) sin(β)

cos2−k(ψ) cos2−k(ψ′)‖x− (θ(ϕ), z)‖2−k

× δ
(

a(ϕ, β) • x− z cos(β) + sin(β)

‖x− (θ(ϕ), z)‖ − cos(ψ)

)

sin(ψ)dψ′dψdϕdzdβ

=

∫ π

0

∫

R

∫ 2π

0

∫ π

0

∂1−kz g(ϕ, z, β, ψ′) cos(β) sin(β)dψ′dϕdzdβ

(a(ϕ, β) • x− z cos(β) + sin(β))2−k cos2−k(ψ′)
.

Now the surface measure of the sphere is sin(β)dϕdβ when ϕ and β are the azimuthal and
polar angles, respectively. Thus we have

C♯k
[
∫ π

0

∂1−kz g(ϕ, z, β, ψ′) cos(β) sin(β)dψ′

cos2−k(ψ) cos2−k(ψ′)

]

(x)

=

∫

S2

∫

R

∫ π

0

∂1−kz g(ϕ, z, β, ψ) cos(β)dψdzdS(ϕ, β)

(a(ϕ, β) • x− z cos(β) + sin(β))2−k cos2−k(ψ)
.

If k = 1, the proof is done. If k = 0, then the integration by parts completes the proof.

B Generalization to higher dimension

In this section we generalize the results for the conical Radon transform presented in Sub-
section 3.2 to a general dimension. For the following let n ≥ 3.

Definition B.1 (The conical Radon transform on the cylinder in Rn). Let f ∈ C∞
c (B1(0)×

R). We define the conical Radon transform in Rn Cf : Sn−2 × R× (0, π)2 → R by

Cf(θ, z, β, ψ) := sin(ψ)

∫

Sn−1

∫ ∞

0

f((θ, z) + rω)rn−2δ(ω · a(θ, β)− cos(ψ))drdS(ω) ,

where a(θ, β) := (−θ sin(β), cos(β)).
As in the three-dimensional case the formal L2-adjoint of C is given by

C♯g(x) =
∫ π

0

∫ π

0

∫

R

∫

Sn−2

g(θ, z, β, ψ)

× δ(x · a(θ, β)− z cos(β) + sin(β)− ‖x− (θ, z)‖ cos(ψ)) sin(ψ)dS(θ)dzdβdψ . (B.1)

We further use the following notations:
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❖ Rf(ω, s) for the regular n-dimensional Radon transform;

❖ Ff(ξ) for the n-dimensional Fourier transform;

❖ (−∆x)
(n−1)/2f := F−1(‖ξ‖n−1Ff) for the fractional Laplacian;

❖ ‖f‖2−(n−1)/2 :=
∫

Rn |Ff(ξ)|2(‖ξ‖2 + 1)−(n−1)/2dξ;

❖ ‖Cf‖2 :=
∫ π

0

∫

R

∫

Sn−2

∫ π

0
|Cf(θ, z, β, ψ)/ cos(ψ)|2 cos(β) sin(β) dψdS(θ)dzdβ.

Similar to the three-dimensional case one then has the following results.

Theorem B.2. For any f ∈ C∞
c (B1(0)× R) the following hold:

Relation to Radon transform: For every (θ, β, t) ∈ Sn−1 × (0, π)× R,

Rf(a(θ, β), t) = 1

π2

∫

R

∫ π

0

Cf(θ, z, β, ψ) cos(β)dψdz
(t− z cos(β) + sin(β)) cos(ψ)

.

Inversion formulas: For every x ∈ Rn,

f(x) =
1

π(2π)n
∆(n−1)/2
x

∫ π

0

∫

Sn−2

∫

R

∫ π

0

Cf(θ, z, β, ψ) cos(β) sin(β)dψdzdS(θ)dβ
(x · a(θ, β)− z cos(β) + sin(β)) cos(ψ)

, (B.2)

f(x) =
1

π(2π)n
∆(n−1)/2
x C♯

[
∫ π

0

Cf(θ, z, β, ψ′) cos(β) sin(β)dψ′

cos(ψ) cos(ψ′)

]

(x) . (B.3)

Stability estimate: ‖f‖−(n−1)/2 ≤ ‖Cf‖.

Proof. The proof is analogous to the three-dimensional case and is therefore omitted.

Similar to the three-dimensional case one can derive inversion formulas and stability
estimates for the weighted conical Radon transform.

References

[1] M. Allmaras, D. Darrow, Y. Hristova, G. Kanschat, and P. Kuchment,
Detecting small low emission radiating sources, Inverse Probl. Imaging, 7 (2013), pp. 47–
79.

[2] R. Basko, G. L. Zeng, and G. T. Gullberg, Analytical reconstruction formula for

one-dimensional Compton camera, IEEE Trans. Nucl. Sci., 44 (1997), pp. 1342–1346.

[3] R. Basko, G. L. Zeng, and G. T. Gullberg, Application of spherical harmonics

to image reconstruction for the Compton camera, Phys. Med. Biol., 43 (1998), p. 887.

[4] A. M. Cormack, Representation of a function by its line integrals, with some radio-

logical applications, J. Appl. Phys., 34 (1963), pp. 2722–2727.

[5] M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera

based on Compton scattering, IEEE Trans. Med. Imag., 13 (1994), pp. 398–407.

21



[6] D. B. Everett, J. S. Fleming, R. W. Todd, and J. M. Nightingale, Gamma-

radiation imaging system based on the Compton effect, Proc. IEEE, 124 (1977), pp. 995–
1000.

[7] L. Florescu, J. C. Schotland, and V. A. Markel, Single-scattering optical

tomography, Phys. Rev. E, 79 (2009), p. 036607.

[8] R. Gouia-Zarrad and G. Ambartsoumian, Exact inversion of the conical Radon

transform with a fixed opening angle, Inverse Probl., 30 (2014), pp. 045007, 12.

[9] M. Haltmeier, Exact reconstruction formulas for a Radon transform over cones, In-
verse Probl., 30 (2014).

[10] E. W. Hansen, Circular harmonic image reconstruction: experiments, Appl. Opt., 20
(1981), pp. 2266–2274.

[11] S. Helgason, The Radon Transform, vol. 5 of Progress in Mathematics, Birkhäuser,
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