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Toeplitz matrix
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Abstract

The computation of the matrix exponential is a ubiquitous operation in numerical
mathematics, and for a general, unstructured n×n matrix it can be computed in O(n3)
operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for
example as the result of discretizing integral equations with a time invariant kernel.
In this case it is not obvious how to take advantage of the Toeplitz structure, as the
exponential of a Toeplitz matrix is, in general, not a Toeplitz matrix itself. The main
contribution of this work are fast algorithms for the computation of the Toeplitz matrix
exponential. The algorithms have provable quadratic complexity if the spectrum is real,
or sectorial, or more generally, if the imaginary parts of the rightmost eigenvalues do
not vary too much. They may be efficient even outside these spectral constraints. They
are based on the scaling and squaring framework, and their analysis connects classical
results from rational approximation theory to matrices of low displacement rank. As
an example, the developed methods are applied to Merton’s jump-diffusion model for
option pricing.

1 Introduction

Let us consider an n× n Toeplitz matrix

T =













t0 t−1 · · · t−n+1

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0













. (1)

In this work, we propose a new class of fast algorithms for computing a highly accurate
approximation of the matrix exponential exp(T ). An important source of applications for
exp(T ) arises from the discretization of integro-differential equations with a shift-invariant
kernel. Such equations play a central role in, e.g., the pricing of single-asset options modelled
by jump-diffusion processes [5, 28]. The related problem of computing the exponential of a
block Toeplitz matrix appears in the Erlangian approximation of Markovian fluid queues [3].

It is well known that the multiplication of a Toeplitz matrix with a vector can be imple-
mented in O(n log n) operations, using the FFT. This suggests the use of a Krylov subspace
method, such as the Lanczos method, for computing the product of exp(T ) with a vector b;
see, e.g., [23]. For a matrix T of large norm, the Krylov subspace method can be expected to
converge slowly [15]. In this case, the use of rational Krylov subspace methods is advisable.
For example, Lee, Pang, and Sun [20] have suggested a shift-and-invert Arnoldi method for
approximating exp(T )b. Every step of this method requires the solution of a linear system
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with a Toeplitz matrix. The fast and superfast solution of such linear systems has received
broad attention in the literature; we refer to [12, 19, 24, 25] for overviews. Recent work in
this direction includes an algorithm based on a combination of rank structured matrices and
randomized sampling [31].

If, additionally, T is upper triangular then T 2 and, more generally, any matrix function
of T is again an upper triangular Toeplitz matrix. This very desirable property allows for
the design of efficient algorithms that directly aim at the computation of generators for
exp(T ); see [3] and the references therein. It is important to note that this property does
not extend to general Toeplitz matrices.

The approach proposed in this work is different from existing approaches, because it aims
at approximating the full matrix exponential exp(T ), instead of exp(T )b, and it does not
impose additional structure on T . Our approach is based on a combination of the scaling
and squaring method for the matrix exponential of unstructured matrices [10, 13, 14] with
approximations of low displacement rank [19]. Specifically, we show that the displacement
rank of a rational function of T is bounded by the degree of the rational function. In turn,
we obtain an approximate representation of exp(T ), which requires O(n) storage under
suitable assumptions and allows to conveniently multiply exp(T ) with a vector in O(n log n)
operations. The latter property is particularly interesting in option pricing; it allows for
quickly evaluating prices for times to maturity that are integer multiplies of a fixed time
period. The availability of an approximation to the full matrix exponential also allows us
to quickly access parts of that matrix. For example, the diagonal entries can be computed
in O(n) operations, which would be significantly more expensive using Krylov subspace
methods.

2 Toeplitz matrices

In this section, we recall and establish basic properties of Toeplitz matrices needed for our
developments. Following [18], we define the displacement ∇F (A) of A ∈ C

n×n with respect
to F ∈ Cn×n as

∇F (A) := A− FAF ∗.

We will mostly use the downward shift matrix for F , in which case we omit the subscript:

∇(A) = A− ZAZ∗, Z =











0
1 0

. . .
. . .
1 0











.

The rank of ∇(A) is called the displacement rank of A. Toeplitz matrices have displacement
rank at most two. Matrices of “small” displacement rank are often called Toeplitz-like ma-
trices. Given an invertible matrix A with rank(∇(A)) ≤ r, it follows that rank(∇(A−1)) ≤
r + 2. More generally, any Schur complement of A has bounded displacement rank, see [18,
Thm. 2.2]. These displacement rank properties are discussed with great detail in Section 3.1.

It follows that the inverse of a Toeplitz matrix T has displacement rank at most 2. This
property does not extend to general matrix functions of T . In particular, exp(T ) usually
has full displacement rank. However, as we will see below in Section 3.2, it turns out that
matrix functions of T can often be well approximated by a matrix of low displacement rank.

2.1 Generators, reconstruction, and fast matrix-vector products

For r ≥ rank(∇(A)), there are matrices G, B ∈ Cn×r such that

∇(A) = A− ZAZ∗ = GB∗. (2)

2



We call such a pair (G, B) a generator for A. Note that A admits many generators and
(G, B) is called a minimal generator for A if r = rank(∇(A)). A generator for the Toeplitz
matrix (1) is given by

G =











t0 1
t1 0
...

...
tn−1 0











, B =











1 0
0 t̄−1

...
...

0 t̄−n+1











. (3)

Fast algorithms for Toeplitz-like matrices operate directly on the generator of A instead
of A itself. When needed, the full matrix can be reconstructed from the generators by noting
that (2) is a matrix Stein equation admitting the unique solution

A = T (G, B) :=
n−1
∑

k=0

ZkGB∗(Z∗)k. (4)

Letting gj, bj ∈ Cn for j = 1, . . . , r denote the columns of G, B, we can rewrite (4) as

A = T (G, B) = L(g1)U(b∗
1) + L(g2)U(b∗

2) + · · ·+ L(gr)U(b∗
r), (5)

with the triangular Toeplitz matrices

L(x) :=













x1 0 · · · 0

x2 x1
. . .

...
...

. . .
. . . 0

xn · · · x2 x1













, U(x) :=













x1 x2 · · · xn

0 x1
. . .

...
...

. . .
. . . x2

0 · · · 0 x1













.

Using the Fast Fourier Transform (FFT), the matrix-vector product with a Toeplitz
matrix can be done in O(n log n) operations; see, e.g., [2, Sec. 10.2.3]. In turn, (5) shows
that the multiplication of A with a vector can be computed in O(rn log n) operations; see [19,
Chap. 1] for more details.

2.2 Generator Truncation

Operations like matrix addition or multiplication typically increase the displacement rank of
Toeplitz-like matrices. Even worse, the result of such operations may lead to non-minimal,
that is, rank deficient generators with many more columns than necessary. To limit this in-
crease in generator size, we will truncate the singular values of the generators. The following
results justify our procedure.

Lemma 2.1. The displacement ∇(A) for A ∈ Cn×n satisfies

1
2
‖∇(A)‖∗ ≤ ‖A‖∗ ≤ n ‖∇(A)‖∗ ,

where ‖·‖∗ denotes any unitarily invariant norm.

Proof. Note that
∥

∥Zk
∥

∥

2
= 1 for 0 ≤ k < n. The first inequality follows directly from the

definition of the displacement operator, viz.

‖∇(A)‖∗ = ‖A− ZAZ∗‖∗ ≤ ‖A‖∗ + ‖Z‖2 ‖A‖∗ ‖Z‖2 ≤ 2 ‖A‖∗ .

For the second inequality we compute from (4) that

‖A‖∗ ≤
n−1
∑

k=0

∥

∥Zk∇(A)(Z∗)k
∥

∥

2
≤

n−1
∑

k=0

∥

∥Zk
∥

∥

2
‖∇(A)‖∗

∥

∥(Z∗)k
∥

∥

2
= n ‖∇(A)‖∗ .
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The bounds of Lemma 2.1 may not be sharp. In particular, one may question whether
the factor n of the upper bound is necessary. The following example shows that this linear
dependence on n can, in general, not be removed.

Example 2.2. Let g = [1, 1, . . . , 1]∗ ∈ Rn and A = T (gg∗). Then the kth entry of f = Ag
is given by f(k) = kn − k(k − 1)/2. Since f is monotonically increasing, this allows us to
estimate

‖f‖2
2 =

n
∑

k=1

f(k)2 ≥

∫ n

0

f(k)2 dk ≥
2
15

n5.

In turn,

‖A‖2 ≥
‖Ag‖2

‖g‖2
≥

√

2
15

n2 =

√

2
15

n‖∇(A)‖2,

which shows that ‖A‖2/‖∇(A)‖2 grows linearly with n.

Lemma 2.1 allows us to analyze the effect of generator truncation in terms of the ap-
proximation error.

Theorem 2.3. Let A ∈ Cn×n be a Toeplitz-like matrix of displacement rank r and consider
the singular value decomposition (SVD)

∇(A) = UΣV ∗ =
[

U1 U2

]

[

Σ1 0
0 Σ2

] [

V ∗
1

V ∗
2

]

,

where Σ1 ∈ diag(σ1, . . . , σr̃) and Σ2 = diag(σr̃+1, . . . , σr). Letting Ã = T (U1Σ1, V1), it holds
that

‖A− Ã‖2 ≤ nσr̃+1 and ‖A− Ã‖F ≤ n
√

σ2
r̃+1 + · · ·+ σ2

r . (6)

Proof. By linearity of the displacement operator ∇ we find

∇(A− Ã) = ∇(A) −∇(Ã) = UΣV ∗ − U1Σ1V ∗
1 = U2Σ2V ∗

2 .

Hence, the claimed bounds follow from applying Lemma 2.1 to A− Ã.

Note that (6) improves upon a result by Pan [26, Eq. (3.5)].
We will use the construction of Theorem 2.3 to compress a generator (G, B) with G, B ∈

Cn×r to a generator (G̃, B̃) with G̃, B̃ ∈ Cn×r̃ and r̃ < r. By (6), the singular values of GB∗

allow us to quantify the compression error and choose r̃ adaptively. In the particular case of
a non-minimal (rank deficient) generator (G, B) with r > r̃ = rank(GB∗), the construction
returns an exact minimal generator. Typically we have r ≪ n, in which case the cost greatly
reduces from O(n3) FLOPs for computing the SVD of GB∗ to O(r2n + r3) FLOPs by first
computing thin QR decompositions of G and B. This well-known procedure is summarized
in Algorithm 1.

Algorithm 1 Generator Compression
Input: Generator matrices G, B ∈ Cn×r, integer r̃ < r.
Output: Generator matrices G̃, B̃ ∈ C

n×r̃ such that T (G, B) ≈ T (G̃, B̃).
1: Compute thin QR factorizations QGRG = G and QBRB = B
2: Compute S = RGR∗

B ∈ Cr×r

3: Compute truncated SVD U1Σ1Y ∗
1 ≈ S with Σ1 ∈ Rr̃×r̃

4: Set G̃ = QGX1Σ
1

2

1 and B̃ = QBY1Σ
1

2

1

Generators are not uniquely determined. For every Z ∈ GLr(C), the generators (G, B)
and (GZ, BZ−∗) correspond to the same Toeplitz-like matrix. The following lemma shows
that this relation in fact characterizes the set of all minimal generators.
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Lemma 2.4. Let A ∈ Cn×n be a Toeplitz-like matrix of displacement rank r, and let
(G1, B1), (G2, B2) be two minimal generators for A. Then there exists a matrix Z ∈ GLr(C)
such that G1 = G2Z and B1 = B2Z−∗.

Proof. By minimality of the generators all of Gi and Bi, i = 1, 2, have full rank. Hence G1

is right-equivalent to G2, and B1 is right-equivalent to B2, i.e., there exist Z, W ∈ GLr(C)
such that G1 = G2Z and B1 = B2W . But then

G2B∗
2 = G1B∗

1 = G2ZW ∗B∗
2 ,

so G2(I − ZW ∗)B∗
2 = 0. Since G2 and B2 have full rank it follows that W = Z−∗.

3 Bounds on the displacement rank of functions of Toeplitz

matrices

The scaling and squaring method [13, chap. 10] for the evaluation of exp(T ) takes three
phases: First, the matrix T is scaled by a power of two, then a Padé approximant of the
scaled matrix is computed, and in a third step, the approximant is repeatedly squared in
order to undo the initial scaling. In the context of Toeplitz matrices, the main challenge is
to control the growth of the displacement rank in the second and third phase.

3.1 Polynomial and rational functions of Toeplitz matrices

In the following, we analyze the impact of various operations on the displacement rank of
Toeplitz-like matrices and provide explicit expressions for the resulting generators. The fol-
lowing result is a variation of the well-known result that Schur complements do not increase
the displacement rank.

Lemma 3.1 (Generator block update). Consider M =
[

D U
L M1

]

∈ Cn×n with D ∈ Ck×k

invertible and
∇F (M) = GB∗, G, B ∈ C

n×r,

for a strictly lower triangular matrix F . Let us partition F =
[

F̂ 0
⋆ F1

]

with F̂ ∈ Ck×k,

F1 ∈ C(n−k)×(n−k), and G =
[

Ĝ
⋆

]

, B =
[

B̂
⋆

]

with Ĝ, B̂ ∈ Ck×r (⋆ is used as a placeholder
referring to an arbitrary block). Then the Schur complement of D in M satisfies

∇F1
(M1 − LD−1U) = G1B∗

1 ,

where the generator matrices G1, B1 ∈ R(n−k)×r are defined by the relations
[

0
G1

]

= G + (F − In)
[

D
L

]

D−1(Ik − F̂ )−1Ĝ, (7)
[

0
B1

]

= B + (F − In)
[

D∗

U∗

]

D−∗(Ik − F̂ )−1B̂. (8)

Proof. The result is a direct extension of [29, Alg. 3.3] from the Hermitian to the non-
Hermitian case.

It is well known that the displacement rank of the product T1T2 of two Toeplitz matrices
T1, T2 is at most 4 [17, Example 2]. The following theorem extends this result to Toeplitz-like
matrices.

Theorem 3.2. Let A1, A2 ∈ Cn,n be two Toeplitz-like matrices of displacement ranks r1, r2

with generators (G1, B1) and (G2, B2), respectively. Then A1A2 is a Toeplitz-like matrix of
displacement rank at most r1 + r2 + 1, and a generator (G, B) for A1A2 is given by

G =
[

(Z − I)A1(Z − I)−1G2 G1 −(Z − I)A1(Z − I)−1e1

]

,

B =
[

B2 (Z − I)A∗
2(Z − I)−1B1 (Z − I)A∗

2(Z − I)−1e1

]

,

5



where e1 ∈ Rn denotes the first unit vector. If, additonally, e1 ∈ ran(G2) ∪ ran(B1) then
A1A2 has displacement rank at most r1 + r2.

Proof. Consider the matrix

M =
[

−I A2

A1 0

]

,

and set F = Z ⊕ Z. One computes that

∇F (M) = M − FMF ∗ =
[

−e1e∗
1 G2B∗

2

G1B∗
1 0

]

=
[

G2 0 −e1

0 G1 0

]





0 B∗
2

B∗
1 0

e∗
1 0



 .

Since A1A2 is the Schur complement of −I in M , Lemma 3.1 implies that A1A2 has dis-
placement rank at most r1 + r2 + 1. Moreover, by (7)–(8), a generator (G, B) for A1A2 is
given by

G =
[

0 G1 0
]

+ (Z − I)A1(Z − I)1
[

G2 0 −e1

]

=
[

(Z − I)A1(Z − I)−1G2 G1 −(Z − I)A1(Z − I)−1e1

]

,

B =
[

B2 0 0
]

+ (Z − I)A∗
2(Z − I)−1

[

0 B1 e1

]

=
[

B2 (Z − I)A∗
2(Z − I)−1B1 (Z − I)A∗

2(Z − I)−1e1

]

.

Note that at least one of these matrices becomes rank deficient if e1 ∈ ran(G2) ∪ ran(B1),
which shows the second part of the theorem.

Because of (3), the additional condition of Theorem 3.2 is satisfied for Toeplitz matrices.
An analogous condition plays a role in controlling the displacement rank for the inverse of
a Toeplitz-like matrix.

Theorem 3.3. Let A be an invertible Toeplitz-like matrix of displacement rank r with gen-
erator (G, B). Then A−1 is a Toeplitz-like matrix of displacement rank at most r + 2, and
a generator (G̃, B̃) is given through

G̃ =
[

−(Z − I)A−1(Z − I)−1G (Z − I)A−1(Z − I)−1e1 e1

]

,

B̃ =
[

(Z − I)A−∗(Z − I)B e1 (Z − I)A−∗(Z − I)e1

]

.

If, additionally, e1 ∈ ran(G) ∪ ran(B) then A−1 has displacement rank at most r + 1.

Proof. The result follows from applying the technique from the proof of Theorem 3.2 to
the embedding M =

[

−A I
I 0

]

, which has the generator Ĝ =
[

G 0 e1

0 e1 0

]

, B̂ =
[

B e1 0
0 0 e1

]

. The
second part follows from the observation that at least one of Ĝ, B̂ has at most rank r + 1 if
e1 ∈ ran(G) ∪ ran(B).

Remark 3.4. We remark that the special shape (3) of B, G for a Toeplitz matrix T imply
that the matrix ĜB̂∗ in the proof of Theorem 3.3 has rank ≤ 2 and, in turn, the displacement
rank of T −1 is ≤ 2. In fact, letting (G, B) = ([ g e1 ] , [ e1 b ]) denote the generator (3) for T ,
the matrices

Ĝ =
[

e1 0
]

+ (Z − I)T −1(Z − I)−1
[

−g e1

]

,

B̂ =
[

0 e1

]

+ (Z − I)T −∗(Z − I)−1
[

e1 −b
]

constitute a generator for T −1. This result is well known and a corollary of Lemma 3.1.

While Theorems 3.2 and 3.3 are variations of well-known results, we are not aware of
existing results on the displacement ranks of powers and polynomials of Toeplitz matrices
analyzed in the following.
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Lemma 3.5. Let T be a Toeplitz matrix. Then T s is a Toeplitz-like matrix of displacement
rank at most 2s for any integer s ≥ 1. Letting (G, B) denote a generator for T , a sequence
of (non-minimal) generators (G1, B1), . . . , (Gs, Bs) for T, T 2, . . . , T s is given by

G1 = G, Gi+1 =
[

P i
GG P i−1

G G . . . G −PGe1 . . . −P i
Ge1

]

(9)

B1 = B, Bi+1 =
[

B PBB . . . P i
BB P i

Be1 . . . PBe1

]

, (10)

for i = 1, . . . , s − 1, where PG := (Z − I)T (Z − I)−1 and PB := (Z − I)T ∗(Z − I)−1.
Moreover,

e1 ∈ ran(G1) ⊂ · · · ⊂ ran(Gs) and e1 ∈ ran(B1) ⊂ · · · ⊂ ran(Bs). (11)

Proof. The proof is by induction on i. For G1, B1, the claim (11) follows directly from the
expression (3) for the generator of T .

Now assume that (9)–(11) hold for all Gi, Bi with i < s. Invoking Theorem 3.2 with
T1 = T i and T2 = T yields the formulas (9)–(10). Further, since all columns of Gi and Bi

are also columns of Gi+1 and Bi+1, respectively, we directly obtain ran(Gi) ⊂ ran(Gi+1)
and ran(Bi) ⊂ ran(Bi+1).

Finally, since e1 ∈ ran(G), each of the last i columns of Gi+1 and Bi+1 is a linear
combination of one of the first i + 1 block columns. In turn,

ran(Gi+1) = ran
([

P i
GG P i−1

G G . . . G
])

,

ran(Bi+1) = ran
([

B PBB . . . P i
BB

])

,

which implies rank(Gi+1) ≤ 2(i + 1) and rank(Bi+1) ≤ 2(i + 1). In particular, the displace-
ment rank of T i+1 is at most 2(i + 1).

Theorem 3.6. Let T be a Toeplitz matrix and p ∈ Ps, where Ps denotes the set of polyno-
mials of degree at most s. Then p(T ) is a Toeplitz-like matrix of displacement rank at most
2s.

Proof. Let p =
∑s

i=0 akzk and consider the generators (Gi, Bi), 1 ≤ i ≤ s, for the mono-
mials T i constructed in (9)–(10). Setting G0 := B0 := e1 and using the linearity of the
displacement operator ∇ we obtain

∇(p(T )) =
s

∑

i=0

ai∇(T i) =
s

∑

i=0

aiGiB
∗
i =

[

a0e1 a1G1 . . . asGs

]











e∗
1

B∗
1
...

B∗
s











=: GpB∗
p .

It follows from (11) that rank(Gp) = rank(Gs) ≤ 2s, rank(Bp) = rank(Bs) ≤ 2s, and hence
rank(∇(p(T ))) ≤ 2s.

The following theorem is the main result of this section and quantifies the effect of a
rational function on the displacement rank. It shows that the displacement rank grows at
most linearly with the degree of the rational function, defined as the maximal degree of the
numerator and denominator.

Theorem 3.7. Let T be a Toeplitz matrix, and let p ∈ Psp
, q ∈ Psq

be such that q(T )
is invertible. Let (Gp, Bp) and (Gq, Bq) denote generators of p(T ) and q(T ), respectively.

Then r(T ) = p(T )
q(T ) is a Toeplitz-like matrix of displacement rank at most 2 max{sp, sq}+ 1,

and a generator is given by

G =
[

−(Z − I)q(T )−1(Z − I)−1Gq (Z − I)q(T )−1(Z − I)−1Gp e1,
]

(12)

B =
[

(Z − I)p(T )∗q(T )−∗(Z − I)−1Bq Bp (Z − I)p(T )∗q(T )−∗(Z − I)−1e1

]

. (13)
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Proof. The Schur complement of the leading diagonal block in the embedding M =
[

−q(T ) p(T )
I 0

]

,
is q(T )−1p(T ), and setting F = Z ⊕ Z one computes

M − FMF ∗ =
[

−GqB∗
q GpB∗

p

e1e∗
1 0

]

=
[

−Gq Gp 0
0 0 e1

]





B∗
q 0

0 B∗
p

e∗
1 0



 . (14)

The formulas (12) and (13) are obtained by applying Lemma 3.1.
To see that the matrix (14) has rank at most 2 max{sp, sq}+ 1, we recall from (11) that

the ranges of the generator matrices for monomials are nested and thus Theorem 3.6 implies
rank [ −Gq Gp ] ≤ 2 max{sp, sq}.

3.2 Low displacement rank approximation of matrix exponential

If the singular values of a matrix are rapidly decaying, the limits of finite precision arithmetic
effect that the numerical rank of the matrix is smaller than its rank. In order to formulate
quantitative statements involving the numerical rank, we use the following notion of ε-rank.

Definition 3.8. Let A ∈ Cn,n and ε > 0. We say that A has ε-rank k, if

min
B∈Cn,n

{‖A−B‖2 : rank(B) ≤ k} ≤ ε,

or, equivalently, if the k + 1st singular value of A does not exceed ε. The matrix A is said
to have ε-displacement rank k, if ∇(A) has ε-rank k.

Theorem 3.6 allows us to derive a priori bounds on the numerical displacement rank of
exp(T ), using rational approximations of the exponential function. To see this, let us first
recall a seminal result by Gonchar and Rakhmanov [7].

Theorem 3.9. There is a constant C such that

inf
p1,p2∈Ps

max
λ∈(−∞,0]

|eλ − p1(λ)/p2(λ)| ≤ C V −s

holds for all s ≥ 1 with V ≈ 9.28903 . . ..

Corollary 3.10. Let T ∈ Cn,n be a diagonalizable Toeplitz matrix with all eigenvalues real
and contained in (−∞, µ] for some µ ∈ R. Then

min{‖exp(T )−A‖2 : rank(∇(A)) ≤ 2s + 1} ≤ C̃ V −s,

for C̃ = κ(X)eµC, where C, V are as in Theorem 3.9 and κ(X) is the condition number of
a matrix X such that X−1T X is diagonal.

Proof. According to Theorem 3.7, the matrix A = eµp2(T )−1p1(T ) with p1, p2 ∈ Ps has
displacement rank at most 2s + 1. From

‖exp(T )−A‖2 = ‖exp(µI) exp(T − µI)−A‖2

≤ κ(X)eµ max
λ∈(−∞,0]

|eλ − p1(λ)/p2(λ)|,

the result follows using Theorem 3.9.

Corollary 3.10 implies that the singular values of ∇(exp(T )) decay at least exponentially
to zero, with a decay rate that does not deteriorate even if T has very small eigenvalues.
This property is retained by approximations to the matrix exponential.
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Corollary 3.11. Under the assumptions of Corollary 3.10, let B ∈ Cn×n satisfy ‖B − exp(T )‖2 ≤
τ for τ ≥ 0. If s is an integer such that

C̃V −s ≤ τ,

then B has 2τ-displacement rank 2s + 1.

Proof. The result follows from the triangular inequality

‖B −A‖2 ≤ ‖B − exp(T )‖2 + ‖exp(T )−A‖2 ≤ 2τ,

and Corollary 3.10.

The case of complex spectra is more difficult. A common approach to obtain rational
approximations is to consider the contour integral representation

exp(T ) =
1

2πi

∫

Γ

ez(zI − T )−1 dz, (15)

where Γ is a contour enclosing the spectrum of T . Applying numerical quadrature with s
points to (15) yields an approximation r(T ) ≈ exp(T ), where r is a rational function of
degree s and hence r(T ) has displacement rank at most 2s + 1 by Theorem 3.7. In the
absence of information on the spectrum of T , one might choose Γ to be a circle of radius
larger than ‖T ‖2. Applying the composite trapezoidal rule yields exponential convergence
but the convergence rate deteriorates as ‖T ‖2 grows; see, e.g., [30]. Sometimes, much better
results can be obtained if more information on the spectrum is available. For example, if
A is sectorial (that is, its eigenvalues are contained in a sector strictly contained in the left
half plane), López-Fernández et al. [21, Thm. 1] establish a bound of the form

‖ exp(T )− r(T )‖2 ≤ C γs

where the rate 0 < γ < 1 depends on the opening angle of the sector but not on the norm
of A. The rational function r has degree s and is obtained by applying quadrature to (15)
with Γ chosen to be the left branch of a hyperbola. Analogous results hold for the case that
the numerical range of A is contained in the open left half complex plane; see [9, Sec. 4.2]
for an overview.

If T has large norm and eigenvalues on or close to the imaginary axis then it cannot be
expected that exp(T ) admits a good approximation of low displacement rank. In turn, the
methods developed in this paper are not efficient, i.e., of quadratic complexity in n, for this
type of matrices. The following example illustrates such a situation.

Example 3.12. Let T ∈ R2000×2000 be a skew-symmetric Toeplitz matrix (1) with t1 = 1,
t−1 = −1 and all other entries zero. The following table shows the numerical displacement
rank of exp(αT ), which we compute as the number of singular values of ∇(exp(αT )) larger
than 10−10 times the first singular value (see also Figure 1):

α 1 10 100 1 000
num. displacement rank 11 29 153 1309

Clearly, as α grows it becomes increasingly difficult to approximate exp(αT ) by a Toeplitz-like
matrix.

4 Algorithmic tools

In Section 5, we will adapt two variants of the scaling and squaring method for Toeplitz
matrices. The algorithmic tools needed for an efficient implementation are the same for both,
and we will describe them in this section without making reference to either algorithm.
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Figure 1: Decay of the singular values of ∇
(

exp(αT )
)

for α ∈ {1, 10, 100, 1000} and the
Toeplitz matrix T from Example 3.12. The plots show the singular value ratios σj/σ1 vs.
1 ≤ j ≤ 2000 for each choice of α.

4.1 Norm estimation and scaling

The first step of the scaling and squaring method consists of determining a scaling parameter
ρ ∈ N such that ‖2−ρT ‖ ≈ 1, which necessitates computing ‖T ‖ or an estimate thereof.

Since matrix-vector products with a Toeplitz matrices can be carried out in O(n log n)
operations, the power method for estimating ‖T ‖2 can be implemented with the same com-
plexity per iteration. Alternatively, ‖T ‖1 can be computed at little cost.

Lemma 4.1. Let T ∈ Cn×n be a Toeplitz matrix. Then ‖T ‖1 can be computed in O(n)
operations.

Proof. Let us denote the first column and row of T by c and r, respectively, and set µj :=
‖T ej‖1, 1 ≤ j ≤ n. From the structure of T we find that

µ1 =
n

∑

i=1

|ci|, µj+1 = µj − |cn−j+1|+ |rj | for 1 ≤ j < n,

and hence ‖T ‖1 = max1≤j≤n{µj} can be computed in O(n).

Once the scaling parameter ρ is determined, the generator of T is scaled accordingly,
which obviously requires only O(n) operations.

4.2 Fast solution of Toeplitz and Toeplitz-like systems

In order to compute generators for rational functions of Toeplitz matrices, we need to solve
linear systems of equations with Toeplitz and Toeplitz-like matrices; see Theorem 3.7. We
will now briefly summarize a well established technique for the solution of such systems in
quadratic time (the “GKO algorithm” [6]).

Let A ∈ Cn×n be a Toeplitz-like matrix of displacement rank r ≪ n, so that A satisfies
the matrix Stein equation (2) with a low-rank right hand side. It is well known (see, e.g., [6,
sec. 0.2] and the references therein) that T also satisfies numerous other matrix equations,
including the Sylvester equation

∆Z1,Z
−1

(T ) := Z1T − T Z−1 = G̃B̃∗, (16)

with low-rank right-hand side and Zδ := Z + δe1e∗
n.
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One could directly apply the generalized Schur algorithm [18] to either representation (2)
or (16) in order to solve linear systems with A in O(rn2) operations, but without further
assumptions on A, such as well-conditioned leading principal submatrices, or more involved
algorithmic techniques [4] a numerically stable solution is not guaranteed.

Instead, we propose to use a transformation [6, prop. 3.1] (see also [11]) of (16) to a
Cauchy-like Sylvester displacement equation

D1C − CD2 = ĜB̂∗, (17)

with the same displacement rank and where D1, D2 are diagonal matrices. The transfor-
mation between (16) and (17) involves only FFTs and diagonal scalings. The fact that
the Sylvester operator matrices D1 and D2 are now diagonal allows for pivoting within the
generalized Schur algorithm, requiring in total O(rn2) operations. Combined with further
safeguarding techniques one obtains an efficient algorithm for the solution of linear sys-
tems with A that enjoys similar stability properties as traditional Gaussian elimination with
pivoting [8].

For our purpose of evaluating rational matrix functions of Toeplitz matrices only one
minor technicality needs to be resolved: The generator matrices G, B with respect to the
matrix Stein equation (2) need to be transformed to generator matrices with respect to the
Sylvester equation (16). The following lemma shows that the corresponding displacement
rank increases at most by two.

Lemma 4.2. Let A ∈ Cn×n be a Toeplitz-like matrix, and let [ c
α ] and [ r α ] denote its last

column and row, respectively. If T denotes the Toeplitz matrix with first column [ α
c ] and

first row [ α r ] then
∆Z1,Z

−1
(A) = (∇(T )−∇(A))Z−1.

Proof. One directly calculates that

∆Z1,Z
−1

(A)Z∗
−1 = Z1AZ∗

−1 −A = (Z + e1e∗
n)A(Z∗ − ene∗

1)−A

= ZAZ∗ −A + e1e∗
nAZ∗ − ZAene∗

1 − e1e∗
nAene∗

1

= −∇(A) +
[

α r
c 0n−1,n−1

]

= −∇(A) +∇(T ).

To compute a ∆Z1,Z
−1

generator for A using Lemma 4.2, one needs to reconstruct the last
column and row of A from a generator with respect to ∇. According to (5) this requires 2r
matrix-vector multiplications with triangular Toeplitz matrices and can hence be computed
in O(rn log n) operations. We can summarize the preceding discussion as follows.

Corollary 4.3. Let A ∈ Cn×n be a Toeplitz-like matrix of displacement rank r. Then linear
systems with A can be solved in O(rn2) operations.

4.3 Computing generators of Toeplitz matrix polynomials

In Lemma 3.5 we computed explicit expressions for generators of monomials T, T 2, T 3, . . . .
Within these expressions, one needs to (repeatedly) apply the matrices

(Z − I)T (Z − I)−1 and (Z − I)T ∗(Z − I)−1

to a given canonical Toeplitz generator (G, B). Note that applying (Z − I)−1 to a vector
amounts simply to computing the vector of its cumulative sums, and that the application of
Z − I to a vector can be evaluated with n− 1 subtractions. Hence, both operations require
O(n) operations. Finally, as mentioned in Section 2, matrix-vector products with T and T ∗

can be evaluated in O(n log n) operations, so that we have the following result.
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Corollary 4.4. Let T ∈ Rn,n be a Toeplitz matrix, then a set of generators for the mono-
mials T, T 2, . . . , T s can be computed with O(sn log n) operations.

Because of the nested structure of the monomial generators (cf. (9)–(10)), only the
generator (Gs, Bs) for the leading monomial T s is actually needed for the evaluation of
p(T ) :=

∑s
k=0 akT k. A generator for p(T ) can be computed by appropriate linear combina-

tion of the block columns of Gs, i.e., there exists a matrix X ∈ R3s−1,3s−1 defined through
the coefficients a0, . . . , as, such that (GsX, Bs) is a generator for p(T ). For example, if we
set

X =





a2I2 0 0
0 a2I2 0
0 0 a2



 +





0 a1I2 0
0 0 0
0 0 0



 ,

then (G2X, B2) is a generator for a2T 2 + a1T .
Alternatively, a Horner-like scheme can be used to compute a generator for p(T ). Let

Tk, 0 ≤ k ≤ s be the kth Horner polynomial, defined via the recursion

T0 := asI, Tk := T Tk−1 + as−kI for 1 ≤ k ≤ s,

then Tk is the Schur complement of −I in the embedding

M =
[

−I Tk−1

T akI

]

. (18)

Using similar arguments and techniques as for the evaluation of monomials in T , it follows
that the evaluation of p(T ) based on (18) can be carried out in O(sn log n) operations. In
contrast to the evaluation based on monomials of T , the resulting generator has length 2s.

4.4 Evaluating rational approximants by solving Toeplitz-like sys-

tems

We now turn to the computation of generators for rational functions of T . Let r(z) = p(z)
q(z)

be a rational function, and let (Gp, Bp) and (Gq, Bq) be generators for p(T ) and q(T ),
respectively; see Section 4.3. From equations (12)–(13), we see that a generator for r(T ) =
q(T )−1p(T ) is found by solving the linear Toeplitz-like systems

q(T )−1(Z − I)−1
[

Gq Gp

]

and q(T )−∗(Z − I)−1
[

Bq e1

]

. (19)

In total there are 2 deg(q)+deg(p)+1 right hand sides to solve for, and since the displacement
rank of q(T ) is at most 2 deg(q), the techniques outlined in Section 4.2 yield the following
result.

Corollary 4.5. Let T ∈ Cn×n be a Toeplitz matrix, and r(z) = p(z)
q(z) a rational function of

degree s = max{deg(p), deg(q)}. Then a generator for r(T ) = q(T )−1p(T ) can be computed
with O(s2n2) operations.

The dependence on s2 in the above statement is nearly negligible in our context, since
the degrees of the Padé approximants we will be using are typically small, and never larger
than thirteen. Note also that (12)–(13) involve matrix-vector multiplications with p(T ) and
p(T ∗), but the cost for these are dominated by solving the linear systems (19).

4.5 Evaluating rational approximants by partial fraction expansion

Any rational function with simple poles can be expressed as a partial fraction expansion

r(z) =
m

∑

i=1

βi

z − αi
+ p(z),
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where m is the number of poles αi with residues βi, and p is a polynomial. Let T ∈ Cn×n be
a Toeplitz matrix, and assume that none of the poles of r is an eigenvalue of T . Generators
for p(T ) can be computed using the techniques described in Section 4.3, and we now discuss
the computation of generators for the Toeplitz-like matrix

m
∑

i=1

βi(T − αiI)−1. (20)

First note that for any α ∈ C the matrix Tα = T + αI is a Toepliz matrix as well, with
the generator

Gα =











t0 + α 1
t1 0
...

...
tn−1 0











, Bα =











1 0
0 t−1

...
...

0 t−n+1











.

Hence, the evaluation of (20) is simply the sum of m inverse Toeplitz matrices and we can
therefore apply the result from Remark 3.4 and the related Gohberg-Semuncul formulas (see,
e.g., [16] for an overview) to compute a generator for (20) by solving O(m) linear Toeplitz
systems using the technique described in Section 4.2.

In the common case where T is real, and the expansion (20) involves pairs of complex
conjugates shifts α, ᾱ and residues β, β̄, then

β̄(T − ᾱ)−1 = β(T − α)−1,

so that a real generator for β(T −α)−1 + β̄(T − ᾱ)−1 can be computed by means of solving
two linear Toeplitz systems (instead of four). So let (G, B) be a generator for β(T − α)−1,
then

∇(β(T − α)−1 + β̄(T − ᾱ)−1) = ∇(β(T − α)−1) +∇(β(T − α)−1)

= GB∗ + GB∗ = 2 Re(GB∗) = 2(Re(G) Re(B)∗ + Im(G) Im(B)∗).

In the case of a Padé approximant, this implies that the number of Toeplitz matrix inversions
is roughly halved. Of course, the asymptotic cost is unchanged, and we summarize our
findings as follows.

Corollary 4.6. Let T ∈ Cn×n be a Toeplitz matrix, and r(z) =
∑m

i=1 βi(z − αi)−1 a
rational function. Then r(T ) can be evaluated in O(mn2) operations involving at most
2m + 2 solutions of linear Toeplitz systems.

4.6 Iterative squaring

At the final stage of scaling and squaring algorithms we have at hand a rational approxima-
tion r(2−ρT ) ≈ exp(2−ρT ), and in order to obtain an approximation for exp(T ), the initial
scaling is undone by squaring the matrix r(2−ρT ) ρ times.

Let (G, B) be a generator of length s for the Toeplitz-like matrix A. Then a generator
of length 2s + 1 for A2 can be computed using Theorem 3.2. The cost for computing the
new generator is dominated by the evaluation of the products AG and A∗B. Each of these
products can be computed based on the expansion (5), involving 2s2 multiplications with
triangular Toeplitz matrices, resulting in an operation of complexity O(s2n log n).

Each squaring operation effectively doubles the length of the generator matrices, and
hence after ρ squaring operations we would obtain generator matrices of length O(2ρs),
which is computationally feasible only for tiny values of ρ. However, if the spectrum of T
allows for low degree rational approximation of exp(T ) (see Sec. 3), the same is true for each
scaled matrix 2−kT , 1 ≤ k ≤ ρ. Consequently, if the rational approximation to exp(2−ρT )
is such that

r(2−ρT )2k

≈ exp(2ρ−kT ), 0 ≤ k ≤ ρ, (21)
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then Corollary 3.11 shows that each displacement ∇(r(2−ρT )2k

) is close to a low rank ma-
trix, and a generator compression (Alg. 1) applied after every squaring operation will reduce
the intermediate generator length back to O(s), without compromising the approximation
quality of the final approximation to exp(T ). The computational cost for each of this com-
pressions is dominated by the matrix multiplications AG and A∗B. The following Corollary
summarizes the discussion.

Corollary 4.7. Generators for the sequence r(2−ρT )2, . . . , r(2−ρT )2ρ

can be computed in
O(ρs2n log n), provided that each intermediate displacement ∇(r(2−ρT )2), . . . , ∇(r(2−ρT )2ρ

)
has numerical rank O(s).

4.7 Reconstruction of Toeplitz-like matrices

As mentioned in Section 2, a Toeplitz-like matrix can be reconstructed from a generator
based on (4). We note next that this operation can be implemented efficiently.

Lemma 4.8. Let A ∈ C
n×n be a Toeplitz-like matrix, and (G, B) a generator for T of length

r. Then A can be computed from (G, B) in O(rn2) operations.

Proof. The number of operations for computing D = GB∗ is O(rn2). Then the expression

A =
n−1
∑

k=0

ZkD(Z∗)k

can be evaluated in O(n2) operations by noting that the kth subdiagonal (superdiagonal)
of A is just the vector of cumulative sums of the kth subdiagonal (superdiagonal) of D.

Remark 4.9. If only the diagonal of A is of interest then the proof of Lemma 4.8 shows
that this diagonal can be reconstructed by forming the cumulative sum of the vector d =
diag(GB∗). The arithmetic cost for forming d and thus the entire cost of extracting the
diagonal of A is O(nr). In fact any banded section of A can be reconstructed by only
computing the corresponding banded section of GB∗.

4.8 A remark on the use of the FFT

Many of the operations discussed in this section involve or even reduce to matrix-vector
multiplication with Toeplitz and Toeplitz-like matrices, cf. Secs. 4.1, 4.3, 4.4, 4.6. The
complexity of computing a matrix-vector product Ax for a Toeplitz-like matrix A ∈ C

n,n of
displacement rank r is rn log n. Although carrying out these multiplications using the FFT
is asymptotically faster than standard matrix-vector multiplication, an actual computational
advantage is gained only for sufficiently large matrix dimension n.

If that is not the case, it is preferable to resort to standard matrix-vector multiplication.
Since A is of displacement rank r, the reconstruction of A from a generator can be done in
O(rn2) operations, as described in Sec. 4.7. Consequently, a single matrix-vector product
can be computed using standard multiplication in O(rn2 + n2) operations, and ℓ matrix-
vector products with A can be evaluated in O((r + ℓ)n2) operations. Note that in this latter
case, the cost for FFT based multiplication is O(ℓrn log n).

5 Scaling and squaring algorithms for Toeplitz matrices

In Section 3 we have shown that rational approximations to the matrix exponential of a
Toeplitz matrix T enjoy low displacement rank, provided that T is negative real or sectorial.
We will now use scaling and squaring algorithms that take advantage of this property.
Based on the techniques presented in Section 4, the resulting algorithms will require O(n2)
operations for computing exp(T ), which is optimal since the output is also of size n2.
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Denote by rk,m(z) = pk,m(z)
qk,m(z) the (k, m)-Padé approximant to the exponential function,

meaning that the numerator polynomial is of degree k, and the denominator polynomial of
degree m. Scaling and squaring algorithms take advantage of the fact that Padé approxi-
mations are very accurate close to origin. An input matrix A is thus scaled by a power of
two, so that ‖2−ρA‖ / 1, and then the Padé approximant rk,m(2−ρA) is computed. Finally,
an approximation to exp(A) is obtained by squaring the result repeatedly, viz.

exp(A) ≈ rk,m(2−ρA)2ρ

,

using the identity exp(A) = exp(σ−1A)σ, σ ∈ C \ {0}.
Different strategies for choosing the scaling parameter ρ and the Padé degree (k, m) yield

different methods. We will discuss two recently proposed scaling and squaring methods. The
first one, described by Higham [14], is based on a diagonal Padé approximation of degree at
most 13 and makes no assumption on the spectrum of the input matrix. The second one by
Güttel and Nakatsukasa [10] employs a subdiagonal Padé approximation of much smaller
degree, and is particularly useful if the imaginary parts of the rightmost eigenvalues do not
vary too much. Both scaling and squaring methods have been shown to behave in a forward
stable manner for normal matrices.

5.1 A diagonal scaling and squaring method

The scaling and squaring method designed by Higham [14] was until recently the default
method to compute the matrix exponential in Matlab, available via the command expm. It
scales the input matrix A so that ‖2−ρA‖1 / 5.4, and approximates exp(A) using a diagonal
Padé approximation, i.e., k = m in the notation from above. The approximation degree is at
most 13, or less for matrices that need not be scaled. This parameter choice is designed such
that the approximation error can be interpreted as a backward error E (in any consistent
matrix norm)

rm,m(2−ρA)2ρ

= exp(A + E), ‖E‖ ≤ u ‖A‖ , (22)

where u denotes the unit roundoff in double precision; see [14, Thm. 2.1]. Note that no
assumption on the spectral properties of A have been made. The matrix E can be shown
to commute with A, and hence one obtains immediately

‖rm,m(2−ρA)2ρ

− exp(A)‖ ≤ ‖exp(A)(exp(E)− I)‖

≤ ‖exp(A)‖‖E‖‖exp(E)‖ ≤ ‖exp(A)‖u ‖A‖ eu‖A‖,
(23)

which bounds the forward error of the approximation. At the same time, Higham shows
that the matrix qm,m(A) is well conditioned under this parameter regime.

We now show for the case of real spectra that the numerical rank is bounded throughout
the squaring phase (cf. (21)). By effecting a shift T ← T − µI we may assume that the
spectrum is actually negative real, which simplifies the notation in what follows.

Lemma 5.1. Let T be a diagonalizable Toeplitz matrix with spectrum in (−∞, 0]. Set
τ = u ‖T ‖ exp(u ‖T ‖), and

s =
⌈

log(C̃)− log(τ)
log(V )

⌉

,

with C̃ and V as in Corollary 3.10 (we may safely assume that s ≥ 0). Then rm,m(2−ρA)2σ

and all the intermediate matrices in the squaring phase have 2τ-displacement rank 2s + 1.

Proof. We abbreviate r := rm,m. The squaring phase involves the quantities

r(2−σT ), r(2−σT )21

, r(2−σT )22

, . . . , r(2−σT )2σ

,

and we proceed by showing that each of these powers is close to the matrix exponential
of the matrix Tk := 2−kT . Regarding Tk as the input matrix to expmt, the scaling power
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Algorithm 2 expmt – Diagonal scaling & squaring from [14] for Toeplitz matrices

Input: Toeplitz matrix T ∈ Cn×n, given by its first column c and row r.
Output: Generator (G, B) such that T (G, B) ≈ exp(T )

1: Compute ‖T ‖1 {O(n), Sec. 4.1}
2: Chose scaling parameter ρ and Padé approximant rm(z) = pm(z)

qm(z) {[14]}
3: Scale c← 2−ρc, r ← 2−ρr {O(n)}
4: (Gp, Bp)← generator for pm(T ) {O(mn log n), Sec. 4.3}
5: (Gq, Bq)← generator for qm(T ) {O(mn log n), Sec. 4.3}
6: (G, B)← generator for rm(T ) = qm(T )−1pm(T ) {O(m2n2), Sec. 4.4}
7: for k = 1 to ρ do

8: (G̃, B̃)← generator for T (G, B)2 {O(m2n log n), Sec. 4.6}
9: (G, B)← compress (G̃, B̃) {O(m2n), Alg. 1}

10: end for

11: {optionally} reconstruct T (G, B) {O(mn2), Sec. 4.7}

selected by the algorithm design is σ − k, and the approximant r is the same for all k. So
we obtain from (22) for 0 ≤ k ≤ σ

r(2−σ+k2−kT )2k

= r(2−σT )2k

= exp(Tk + Ek), ‖Ek‖ ≤ 2−ku ‖T ‖ .

A forward error bound for the approximation of the intermediate exponentials, that is,
for each squaring iteration k, follows from (23),

∥

∥

∥
r(2−σT )2k

− exp(Tk)
∥

∥

∥
= ‖exp(Tk + Ek)− exp(Tk)‖

≤ u2−k ‖T ‖ exp(u2−k ‖T ‖) ≤ τ.

Since all the matrices Tk (trivially) have negative real spectra, the result now follows from
Corollary 3.11.

Note that the non-normality of T is reflected in the constant C̃, via the condition number
of an eigenbasis for T . If T arises from a discretization process, the lemma shows that the 2τ -
numerical displacement rank remains bounded as long as this condition number is bounded.
For highly non-normal matrices, the usefulness of our result is limited. We remark, however,
that the behaviour of scaling and squaring, in particular its stability, is not well understood
in this case.

We now leave the regime of negative real spectra, but continue to assume that T is not
highly non-normal, that is, T can be diagonalized by a reasonably well-conditioned matrix.
The preceding discussion in fact applies to any Toeplitz matrix T whose spectrum is con-
tained in a subset of the complex plane, where the error of the rational best approximation
to ez decays exponentially in the approximation degree (the involved constants change, how-
ever). Another well known example for this situation are sectorial matrices (see Section 3.2).

In the absence of such a rational best approximation result, which are in general quite
difficult to obtain, the displacement rank of exp(T ), as well as the intermediates in the
squaring phase, are not bounded a priori and independently of the scaling power ρ. However
the displacemnt ranks may still remain small, see Section 6.2 for an example.

Assuming that the numerical displacement ranks during the squaring phase are bounded,
a practical algorithm of quadratic complexity is obtained by replacing the unstructured
matrix computations used in [14] by their structured counterparts explained in Sec. 4. The
resulting method is shown in Algorithm 2.

We close the discussion by noting that Algorithm 2 almost achieves our goal of designing
a method of quadratic complexity for the Toeplitz matrix exponential. While the approx-
imation degree m is bounded by 13, the scaling power ρ still grows logarithmically with
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‖A‖1, and consequently the number of squaring iterations is not bounded independently of
the numerical values of A. From a practical point of view Algorithm 2 still behaves like an
algorithm of quadratic complexity.

5.2 A subdiagonal scaling and squaring method

The second scaling and squaring method we adapted for the Toeplitz case is described
and analyzed in [10]. In contrast to Higham’s design, it (typically) employs a subdiagonal
Padé approximation (hence “sexpm”), which is appropriate if the spectrum is located on
the negative real line, or close to it. If the input matrix T does not have this property, say,
the eigenvalues are only real, this subdiagonal approximation may be applied to the shifted
matrix

T − λmaxI,

where λmax denotes the largest eigenvalue of T . (The approximation to exp(T ) is then
recovered by multiplication with eλmax).

Put more generally, it suffices that the rightmost eigenvalues of T do not have widely
varying imaginary parts for this subdiagonal approximation to be very accurate. We refer
to [10] for a complete discussion of this shifting technique, and the quality of the obtained
approximation.

Compared to expm, sexpm has several attractive features:

1. For the Padé degree (k, m) we have k, m ≤ 5, resulting in computational cost savings
over the diagonal approximation from the previous section.

2. The Padé approximant can be stably evaluated as a partial fraction expansion. Hence
the rational approximation qk,m(T )−1pk,m involves only solves with Toeplitz matrices
instead of Toeplitz-like matrices.

3. The number of scaling iterations ρ is bounded by four, independently of A, implying
that the generator length can increase at most by a factor of 24 = 16 during the
squaring phase. (In light of the results from Section 3.2, this factor likely still is a
gross overestimate, however). Hence, the displacement rank of the approximation to
the exponential is bounded independently of A as well. In other words, the potential
displacement rank growth as discussed in Section 4.6 is not an issue for this method.

If A ∈ Cn,n is normal, the approximation B of exp(A) obtained through sexpm satisfies

‖B − exp(A)‖2 ≤ u ‖A‖2 ,

and the authors in fact show that their method is a forward stable method [10, Thm. 4.1].
The adaption to the Toeplitz case, coined sexpmt, is shown in Algorithm 3. Since the
number of squaring iterations is bounded independently of n and ‖A‖2, it follows that the
complexity of Algorithm 3 is O(n2).

6 Numerical experiments

We have implemented Algorithms 2 and 3 in Matlab. For solving the Toeplitz-like systems
as described in Section 4.2, we are using the drsolve1 package [1]. All experiments were
conducted on a standard Linux box using a single computational thread. The expm function
of Matlab that we used for various comparisons is described in [13].
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Algorithm 3 sexpmt – Subdiagonal scaling & squaring from [10] for Toeplitz matrices

Input: Toeplitz matrix T ∈ Cn×n with the spectral properties described in Section 5.2,
given by its first column c and row r.

Output: Generator (G, B) such that T (G, B) ≈ exp(T )
1: Estimate ‖T ‖2 {O(n log n), Sec. 4.1}
2: Chose scaling 2ρ and Padé approximant rk,m(z) =

∑m
i=1

βi

z−αj
+ p(z) {[10]}

3: Scale c← 2−ρc, r ← 2−ρr {O(n)}
4: Initialize G = [], B = []
5: for i = 1 to m do

6: Compute generator (Gi, Bi) for βi(T − αiI)−1 {O(n2), Sec. 4.5}
7: G← [G, Gi], B ← [B, Bi]
8: end for

9: Compute generator for p(T ), append to (G, B) {O(deg(p)n log n), Sec. 4.3}
10: for k = 1 to ρ do

11: (G̃, B̃)← generator for T (G, B)2 {O(m2n log n), Sec. 4.6}
12: (G, B)← compress (G̃, B̃) {O(m2n), Alg. 1}
13: end for

14: {optionally} reconstruct T (G, B) {O(mn2), Sec. 4.7}

6.1 Exact error on small matrices

As a first test we compute the exact normwise error of the approximation of exp(T ) via
Algorithm 2 on a diverse set of small Toeplitz matrices, from the following sources:

• The 16 Toeplitz matrices available via the smtgallery command of the structured
matrix toolbox2 [27].

• Seven matrices from [20, sec. 5]. Specifically, we generated matrices according to
Examples 1 and 2 from [20] for time steps 1, 10 and 100 as well as one instance of
Example 3 from [20] with time step 1. The last example refers to the Merton model,
which is considered further in Section 6.3.

Figure 2 shows the normwise relative errors

‖exp(T )− expmt(T )‖F
‖exp(T )‖F

,

where expmt(T ) denotes the computed approximation to exp(T ) obtained from Algorithm 2.
The “exact” exp(T ) was computed using Matlab’s variable precision arithmetic with 150
digits. Further, we show for each matrix in the set an approximation to the relative condition
number of the exponential condition number [13, chap. 10] (black line). The errors of a
backward stable method would realize errors close to this line, and we see that the errors of
expmt are roughly bounded by ten times this quantity.

6.2 Efficiency of expmt outside the sectorial regime

Let T be a Toeplitz matrix. In Section 5.1 we concluded that that the displacement rank of
exp(T ), and ranks of the intermediate approximations (21), are bounded a priori only under
certain conditions on the spectrum of T , e.g., real or sectorial. Further, in Example 3.12 we
showed that one cannot expect an accurate, low displacement rank approximation of exp(T )
if all the eigenvalues of T are located on, or close to, the imaginary axis.

1http://bugs.unica.it/˜gppe/soft/#drsolve
2http://bugs.unica.it/˜gppe/soft/smt/
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Figure 2: Left: Normwise relative error for the approximation of exp(T ) via Algorithm 2
for the matrices listed in Section 6.1. The solid black line indicates the condition numbers
(times machine precision). Right: Displacement rank of exp(T ) and the displacement rank
of the approximation. All matrices have size 32× 32.
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Figure 3: Algorithm 2 applied to αT , where T is a random matrix and α ∈ {1, 10, 100}.
Left: Spectrum of T in the complex plane. Right: Displacement rank of the intermediate
approximations during the squaring phase. See Section 6.2 for a discussion.

This does not imply that Algorithm 2 is necessarily inefficient if applied to a matrix that
is not sectorial. We illustrate this setting in Figure 3. There we consider a Toeplitz matrix
T as in (1) where the real and imaginary parts of each tk, −n + 1 ≤ k ≤ n− 1 (n = 2000),
have been drawn from N (0, 1), followed by a scaling so that ‖T ‖2 = 1. The spectrum of T
is shown on the left, and it is evident that T is not sectorial.

We applied Algorithm 2 to αT for α ∈ {1, 10, 100}, in order to provoke an increasing
number of squaring iterations. The displacement ranks of the intermediate approximations
over the course of the squaring iterations, lines 7–10, are shown on the right (iteration
0 corresponds to the initial rational approximation). We observe that the displacement
rank grows very slowly in all of the three cases under consideration. In particular, the
displacement rank does not double at each squaring iteration, which corresponds to the
worst case bound discussed in Section 4.6. We remark that for α = 100 the run time of
expmt was no more than 5s, while expm took more than 40s.

Finally we revisit Example 3.12. While Algorithm 2 will exhibit O(n3) run time scaling
when applied to matrices of this type, it is still faster than the corresponding standard expm

algorithm, because the only costly operations are the very last squaring steps. In contrast,
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all the squaring iterations, as well as the computations involved in evaluating the rational
function, are operations of cubic complexity in expm.

A comparison of the run times for computing the exponentials in Example 3.12 is given
in the following table.

α expm expmt expmt-GEMM
1 4.55s 1.96s 2.01s
10 8.04s 2.92s 2.98s
100 13.15s 3.28s 3.41s
1000 19.47s 12.30s 5.77s

Comparing the timings of expm and exmpt, we find that Algorithm 2 is always faster
than Matlab’s built-in matrix exponential function. The last column (“expmt-GEMM”)
shows the run times for the following variation of expmt: As soon as the displacement rank
exceeds a certain threshold during the squaring phase (here we chose n/6), we use standard
matrix-matrix multiplication instead of the generator based multiplication (see Section 4.6).
With this trivial twist enabled, the run time gains over expm remain quite pronounced even
if the exponential is far from having low numerical displacement rank.

6.3 Option pricing using the Merton model

We now turn to the evaluation of option prices in the Merton model, for one single under-
lying asset [22]. There, in contrast to the Black-Scholes model, the expected return of the
asset evolves as a mixture of continuous and jump processes. The option value ω(ξ, t) on
(−∞,∞)× [0, T ] satisfies the partial integro-differential equation (PIDE)

ωt =
ν2

2
ωξξ +

(

r − λκ−
ν2

2

)

ωξ − (r + λ)ω + λ

∫ ∞

−∞

ω(ξ + η, t)φ(η)dη, (24)

where T denotes time to maturity, ν ≥ 0 is the volatility, r is the risk-free interest rate,
λ ≥ 0 is the arrival intensity of a Poisson process, φ is the normal distribution with mean µ
and standard deviation σ, and κ = eµ+σ2/2 − 1.

The discretization of (24) first truncates the infinite domain (−∞,∞)×[0, T ] to (−ξmin, ξmax)×
[0, T ]. Then central differences and the rectangle method are used to discretize the differ-
ential and integral terms in (24), respectively. Because the coefficients do not depend on ξ
and the integral kernel is shift invariant, the discretization yields a nonsymmetric, sectorial
Toeplitz matrix T . We refrain from giving details and refer to the excellent summary given
in [20, Example 3].

In all experiments, we used parameters identical to the ones used in [20]: ξmin = −2,
ξmax = 2, K = 100, ν = 0.25, r = 0.05, λ = 0.1, µ = âĹŠ0.9, σ = 0.45, as well as a full time
step 1.

Figure 4 (left) shows the run time for the four matrix exponential approximations expm,
expmt, sexpm, and sexpmt. From the complexity analysis in Section 4 we know that the
run times of expmt and sexpmt scale quadratically in n (expm and sexpm scale cubically),
and the plot shows this qualitative different behaviour. The run time scaling exponents
inferred from the measured times t1, t2 at dimensions n1 = 2048 and n2 = 4096 through
log(t2/t1)/ log(n2/n1), is about 2.20 for expmt and 2.00 for sexpmt. From the shown data
we also see that a saving in run time by using our fast algorithm over the standard ones
is realized already for matrix sizes between n = 1000 and n = 1500, indicating that the
constants hidden in the big-O complexity bounds for our algorithms are not too large.

We now discuss the accuracy of the obtained approximations. Since the computation of
the matrix exponential using variable precision arithmetic is too expensive for the matrix
sizes we are considering here, we assess the accuracy of expmt, sexpm, and sexpmt with
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Figure 4: Experimental comparison of approximations to exp(An) for the Merton model
(see Section 6.3). Left: Run time comparison for the computation of the full exponential
approximation. Right: Relative error with respect to expm. The dashed gray line shows
u ‖An‖F , a lower bound for the exponential condition number (times machine precision).
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Figure 5: Displacement ranks of the exponentials computed for the Merton model.

reference to expm. Figure 4 (right), shows the relative distance

‖B − expm(T )‖F
‖expm(T )‖F

,

where B is the approximation we want to compare. In addition, we show u ‖T ‖F (dashed
line), which is a lower bound for the exponential condition number (times machine precision).
Since the relative error w.r.t. expm is roughly bounded by this quantity, we conclude that our
adapted scaling and squaring methods behave in a forward stable manner in this example.

In Figure 5 we show the displacement ranks of the approximations to the matrix ex-
ponentials. For expmt and sexpmt, this rank corresponds to the length of the generator
obtained by the corresponding method after the squaring phase. For expm and sexpm, the
shown rank is the numerical rank of the displacements, as determined by Matlab’s rank

function. As suggested by the discussion in Section 3, all these ranks are close to each other,
and in particular quite small. Finally, Figure 6 shows how the displacement rank evolves
during the squaring phase of expmt (n = 4096).
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Figure 6: Evolution of the displacement ranks in the squaring phase of Alg. 2 for the Merton
model discretized with n = 4096 points.

7 Conclusions and future work

We have shown that the full matrix exponential of a Toeplitz matrix can be computed
efficiently using scaling and squaring algorithms. A key result that enables this efficient
computation is the low displacement rank of rational functions for Toeplitz matrices. Com-
bined with classical results for rational best approximations of the exponential function, it
asserts that the Toeplitz matrix exponential itself enjoys provable low displacement rank if
its spectrum is real or sectorial, for example. By carefully adapting all the matrix compu-
tations in the general scaling and squaring framework, we obtain algorithms of quadratic
complexity of the input size for computing exp(T ) for a Toeplitz matrix T . Since the output
size of the matrix exponential is quadratic as well, our algorithms hence achieve optimal
complexity.

We also demonstrated by means of an example that a spectrum clustered along a long
stretch of the imaginary axis does not allow for a low displacement rank approximation of
the matrix exponential. The apparent reason is the periodicity of the exponential function
on this set, which does not allow for a low degree rational approximation. It would be of
interest to investigate this setting more rigorously.

In this work we have focused on analyzing the displacement rank of polynomials, rational
functions and the matrix exponential itself. Two important aspects have received less atten-
tion than they probably deserve. One is the design of the scaling and squaring logic itself,
for which we relied on the works of Higham [14], as well as Güttel and Nakatsukasa [10].
An important design goal for these methods is a small number of (unstructured) matrix
operations of cubic complexity such as inversion or matrix-matrix multiplication. However,
as our careful description in Section 4 shows, minimizing these operations is of much less
importance in the Toeplitz case, as long as the overall quadratic complexity is maintained.
It would thus be of interest to design a scaling and squaring method specifically for the case
of Toeplitz matrices. We also did not attempt to analyze the forward stability in floating
point arithmetic for our adapted methods in detail, although such an analysis is certainly
of interest.

Finally, our results show that for Toeplitz matrices it is even possible to implement scal-
ing and squaring algorithms of subquadratic complexity, provided that only the generators
of exp(T ) are requested, and not the full matrix exponential. Recall that the generators are
already sufficient for applying the exponential to a vector. If, for example, the Toepliz inver-
sions in Alg. 3 are carried out by superfast solvers (e.g., [19, 24, 31]), then these generators
can be computed in O(n log n).
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