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Abstract

In this paper we consider the problem of structural stability of strong local opti-
misers for the minimum time problem in the case when the nominal problem has a
bang-bang strongly local optimal control which exhibits a double switch.

1 Introduction

In this paper we consider the minimum time problem between two submanifolds of a
finite dimensional manifold M in the case when the dynamics is affine with respect to
the control and the control takes values in a box of Rm. Namely, the following optimal
control is studied:

T → min, (1.1a)

ξ̇(t) = f0(ξ(t)) +

m∑

s=1

us(t)fs(ξ(t)) a.e. t ∈ [0, T ], (1.1b)

ξ(0) ∈ N0, ξ(T ) ∈ Nf , (1.1c)

|us(t)| ≤ 1 s = 1, 2, . . . ,m a.e. t ∈ [0, T ]. (1.1d)

For such a problem, the triple (T, ξ, u) is said to be an admissible triple for problem
(1.1) if T > 0 and the couple (ξ, u) ∈ W 1,∞([0, T ],M) × L∞([0, T ],Rm) satisfies (1.1b),
(1.1c) and (1.1d). We assume that a triple (T̂ , ξ̂, û) satisfying the necessary conditions
for optimality (i.e. Pontryagin Maximum Principle) is given where the control is bang-
bang but multiple switches occur. To the author’s knowledge the literature on bang-bang
controls with multiple switches is much more scarce than the one with simple switches
only. L1-local optimality results for bang-bang controls with multiple switches in the
minimum time problem between two fixed end points were given in [8]. In [5] the authors
consider the case when a double switch occurs and all the other switches are simple.
They prove that under suitable regularity conditions, and assuming the coercivity of the
second order approximation of a certain finite-dimensional subproblem of the given one,
the triple (T̂ , ξ̂, û) is in fact a state-local minimiser of the problem (see Definition 1.1 for
a precise definition of this kind of strong local optimality).
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Here we consider the same case as in [5] and we study the structural stability of the
locally optimal control û under smooth perturbations of the data of the problem, namely
the drift f0, the controlled vector fields f1, f2, . . . , fm and the submanifolds of the initial
and final constraints.

In particular we are interested in understanding how the existence of the double switch
and the bang-bang structure of the locally optimal control are affected by small pertur-
bations of the data. Such a situation is in fact not generic and we show here that under
the same assumptions that ensure state-local optimality of the reference triple plus a
controllability assumption, the bang-bang structure of the locally optimal control is sta-
ble under small perturbations even though the double switching time may decouple into
two simple switching times.

The proof is carried out by Hamiltonian methods, which were also used in [5] to prove
the state local optimality result for the nominal problem. The same methods were also
used in [6] and [7] to prove state local optimality and structural stability of a bang-
singular-bang extremal in the minimum time problem between two fixed end points.
The same methods were used in [4] and [1] for the problem of strong local optimality
and structural stability of bang-bang extremals with a double switch in Mayer problem.

As in [5], for the sake of notational simplicity we shall confine ourselves to the case
when M = R

n, m = 2 and only the double switch occurs. However, as all the results
are invariant under a change of coordinates, they can be easily generalised to the case
when the state space is a smooth finite dimensional manifold. Moreover, the presence
of a finite number of simple switches occuring either before and/or after the double one
can be treated at the expenses of a much heavier notation, see for example [4]. Thus the
nominal problem (1.1) simplifies to

T → min, (P0)

ξ̇(t) = f0(ξ(t)) + u1(t)f1(ξ(t)) + u2(t)f2(ξ(t)) a.e. t ∈ [0, T ],

ξ(0) ∈ N0, ξ(T ) ∈ Nf ,

|us(t)| ≤ 1 s = 1, 2 a.e. t ∈ [0, T ].

Without loss of generality we can assume that û is given by

û(t) = (û1(t), û2(t)) =

{
(−1,−1) t ∈ [0, τ̂ ),

(1, 1) t ∈ (τ̂ , T̂ ].

We assume that (P0) is the problem we obtain when r = 0 in the following parameter
dependent problem (Pr):

T → min, (Pr)

ξ̇(t) = f r
0 (ξ(t)) + u1(t)f

r
1 (ξ(t)) + u2(t)f

r
2 (ξ(t)) a.e. t ∈ [0, T ],

ξ(0) ∈ N r
0 , ξ(T ) ∈ N r

f ,
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|us(t)| ≤ 1 s = 1, 2 a.e. t ∈ [0, T ].

The parameter r belongs to some ball BR centered at the origin of Rk and radius R > 0.
For notational simplicity we choose R

n as state–space; All the data are assumed to be
smooth, more precisely the maps

(r, x) ∈ BR × R
n 7→ f r

i (x) ∈ R
n, i = 0, 1, 2

are assumed to be C2 and the submanifolds of the initial and final constraints are given
as regular intersections of zero-level sets of C2 maps from BR × R

n to R, i.e.

N r
0 : Φ

0,r
i (x) = 0 ∀i = 1, . . . , n − n0,

DΦ0,r
i (x) are linearly independent at x ∀(r, x) ∈ BR × R

n.

and

N r
f : Φ

f,r
j (x) = 0 ∀j = 1, . . . , n− nf ,

DΦf,r
j (x) are linearly independent at x ∀(r, x) ∈ BR × R

n.

We are interested in state-local optimisers according to the following definition:

Definition 1.1 (state-local optimality). The trajectory ξ of an admissible triple (T, ξ, u)
for problem (Pr) is a state-local minimiser of such problem if there are neighbourhoods U
of its range ξ([0, T ]), U0 of ξ(0) and Uf of ξ(T ) such that ξ is a minimum time trajectory
among the admissible trajectories of (Pr) whose range is in U , whose initial point is in
N r

0 ∩ U0 and whose final point is in N r
f ∩ Uf .

Remark 1.1. Notice that state-local optimality is a kind of strong local optimality, in
the sense that there is no localisation with respect to the control, but only with respect to
the trajectories. Moreover state-local optimality is stronger than the classical notion of
strong-local optimality where one considers the C0 distance between trajectories, i.e. one
considers only triples (T, ξ, u) where the graph of the trajectory ξ is close to the graph
of the reference trajectory ξ̂.

Assuming that
(
T̂ , ξ̂, û

)
satisfies normal PMP, the sufficient conditions for state-local

optimality as stated in [5] and a controllability assumption which ensures the uniqueness
of the adjoint covector, we prove that for small R each problem (Pr), r ∈ BR has a state-
local optimal trajectory (T r, ξr, ur) (with adjoint covector λr) where ur preserves the
bang-bang structure of û and T r is close to T̂ . Moreover λr is the only Pontryagin
extremal of (Pr) whose graph is close to the graph of λ̂.
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2 Notation

We are going to use some basic notions from symplectic geometry. For any manifold
N ⊂ R

n and any x ∈ N , the tangent space and the cotangent space to N in x are
denoted as TxN and T ∗

xN , respectively. We recall that the cotangent bundle T ∗
R
n to

R
n can be identified with the Cartesian product (Rn)∗ × R

n = T ∗
xR

n × TxR
n for any

x ∈ R
n. The projection from T ∗

R
n onto R

n is denoted as π : ℓ ∈ T ∗
R
n 7→ πℓ ∈ R

n. We
shall write TxR

n instead of Rn, to emphasize the fact that we are dealing with tangent
vectors.

The canonical Liouville one–form s on T ∗
R
n and the associated canonical symplectic

two-form σ = ds allow to associate to any, possibly time-dependent, smooth Hamiltonian

Ft : T
∗
R
n → R, the unique Hamiltonian vector field

−→
Ft such that

σ(v,
−→
Ft(ℓ)) = 〈dFt(ℓ) , v〉, ∀v ∈ TℓT

∗
R
n.

Choosing coordinates ℓ = (p, x) ∈ (Rn)∗ × R
n, we have

−→
Ft(p, x) =

(
− ∂Ft

∂x
,
∂Ft

∂p

)
(p, x).

To any vector field f : Rn → TRn we associate the Hamiltonian function F

F : ℓ ∈ T ∗
R
n 7→ 〈ℓ , f(πℓ)〉 ∈ R,

so that
−→
F (p, x) =

(
− p df(x), f(x)

)
.

We denote by f̂t the piecewisely time-dependent vector field associated to the reference
control:

f̂t := f0 + û1(t)f1 + û2(t)f2

and by h1, h2 its restrictions to the time intervals [0, τ̂ ) and (τ̂ , T̂ ], respectively:

h1 := f̂t

∣∣∣
[0,τ̂)

= f0 − f1 − f2, h2 := f̂t

∣∣∣
(τ̂ ,T̂ ]

= f0 + f1 + f2.

In what follows we shall also neeed the vector fields

k1 := f0 + f1 − f2 = h1 + 2f1 = h2 − 2f2,

k2 := f0 − f1 + f2 = h1 + 2f2 = h2 − 2f1.

The associated Hamiltonian functions are denoted by the same letter, but capitalized.
Namely

H1(ℓ) := 〈ℓ , h1(πℓ)〉, H2(ℓ) := 〈ℓ , h2(πℓ)〉,

K1(ℓ) := 〈ℓ , k1(πℓ)〉, K2(ℓ) := 〈ℓ , k2(πℓ)〉.
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Analougously we define the parameter dependent vector fields

hr1 := f r
0 − f r

1 − f r
2 , hr2 := f r

0 + f r
1 + f r

2 ,

kr1 := f r
0 + f r

1 − f r
2 , kr2 := f r

0 − f r
1 + f r

2 ,

and the associated parameter dependent Hamiltonians

Hr
1 := F r

0 − F r
1 − F r

2 , Hr
2 := F r

0 + F r
1 + F r

2 ,

Kr
1 := F r

0 + F r
1 − F r

2 , Kr
2 := F r

0 − F r
1 + F r

2 .

The maximised Hamiltonian of the nominal control system (P0) is well defined in the
whole cotangent bundle T ∗

R
n and is denoted by Hmax:

Hmax(ℓ) :=max
{
F0(ℓ) + u1F1(ℓ) + u2F2(ℓ) : (u1, u2) ∈ [−1, 1]2

}

=F0(ℓ) + |F1(ℓ)|+ |F2(ℓ)| .

Throughout the paper, the symbol O(x) denotes a neighborhood of x in its ambient
space. The flow starting at time t = 0 of the time-dependent vector field f̂t is defined in
a neighborhood O(x̂0) for any t ∈ [0, T̂ ] and is denoted by Ŝt : O(x̂0) → R

n, i.e.

d

dt
Ŝt(x) = f̂t ◦ Ŝt(x) a.e. t ∈ [0, T̂ ], Ŝ0(x) = x.

We denote by x̂0 := ξ̂(0) and by x̂f := ξ̂(T̂ ) = ŜT (x̂0) the end points of the reference

trajectory and by x̂d := ξ̂(τ̂) = Ŝτ̂ (x̂0) the point corresponding to the switching time.

Given a smooth function γ : O(x) ⊂ R
n → R and a vector δx ∈ TxR

n, the Lie
derivative of γ with respect to the vector δx at the point x is denoted by δx · γ (x),
i.e. δx · γ (x) = 〈Dγ(x) , δx〉. If f : O(x) → TRn is a smooth vector field, then f · γ (x) is
the Lie derivative of γ at x with respect to the vector f(x), i.e. f ·γ (x) := 〈Dγ(x) , f(x)〉.

Finally, given two smooth vector fields f, g : Rn → TRn, then the Lie bracket [f, g] is
given by the vector field (Dg)f − (Df)g.

3 Assumptions

We now state the assumptions on the nominal extremal triple
(
T̂ , ξ̂, û

)
of (P0). Besides

the necessary conditions for optimality, namely Pontryagin Maximum Principle (PMP)
–which we assume to hold in its normal form– we require that the triple

(
T̂ , ξ̂, û

)
sat-

isfies the conditions that ensure state-local optimality, as stated in [5]: regularity along
the bang arcs, regularity at the switching time and the coercivity of the second order
variation associated to some finite-dimensional subproblem of the given one. Moreover
we assume that the nominal problem (P0) is controllable along ξ̂.
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Assumption 1 (Normal PMP). There exists an absolutely continuous curve λ̂ : [0, T̂ ] →
T ∗

R
n satisfying the following properties

πλ̂(t) = ξ̂(t), ∀t ∈ [0, T̂ ], (3.1a)

˙̂
λ(t) =

−→
F̂ t(λ̂(t)), a.e. t ∈ [0, T̂ ], (3.1b)

F̂t(λ̂(t)) = Hmax(λ̂(t)) = 1, a.e. t ∈ [0, T̂ ], (3.1c)

λ̂(0)
∣∣∣
Tx̂0

N0

= 0, λ̂(T̂ )
∣∣∣
Tx̂f

Nf

= 0. (3.1d)

In coordinates we put λ̂(t) :=
(
µ̂(t), ξ̂(t)

)
where µ̂(t) ∈ T ∗

ξ̂(t)
R
n ∀t ∈ [0, T̂ ].

Here and in what follows we shall use the following notation:

ℓ̂0 := λ̂(0), ℓ̂d := λ̂(τ̂ ), ℓ̂f := λ̂(T̂ ),

p̂0 := µ̂(0), p̂d := µ̂(τ̂), p̂f := µ̂(T̂ ).

Remark 3.1. The flow starting at time t = 0 of the time-dependent Hamiltonian vector
field associated to F̂t(ℓ) := 〈ℓ , f̂t(πℓ)〉 is defined in a neighborhood O(ℓ̂0) of ℓ̂0 for any
t ∈ [0, T̂ ] and is denoted by F̂t : O(ℓ̂0) → T ∗

R
n:

d

dt
F̂t(ℓ) =

−→
F̂t ◦ F̂t(ℓ) a.e. t ∈ [0, T̂ ], F̂0(ℓ) = ℓ.

Remark 3.2. The adjoint covector µ̂ is a solution to the ODE

µ̇(t) =
− ∂Ft

∂x

(
µ(t), ξ̂(t)

)
= −〈µ(t) , df̂t(ξ̂(t))〉

so that µ̂(t) = p̂0Ŝ
−1
t ∗ ∀t ∈ [0, T̂ ] and equations (3.1d) read

p̂0 =

n−n0∑

i=1

âiDΦ0,0
i (x̂0), p̂f =

n−nf∑

j=1

b̂j DΦf,0
i (x̂f ),

for some â =
(
â1, . . . , ân−n0

)
∈ R

n−n0 , b̂ =
(
b̂1, . . . , b̂n−nf

)
∈ R

n−nf .

Remark 3.3. As λ̂ is a normal extremal then the transversality conditions (3.1d) to-
gether with the maximality condition (3.1c) yield h1(x̂0) /∈ Tx̂0

N0 and h2(x̂f ) /∈ Tx̂f
Nf .

Maximality condition (3.1c) implies, for any i = 1, 2 and for almost every t ∈ [0, T̂ ],

ûi(t)Fi(λ̂(t)) = ûi(t)〈λ̂(t) , fi(ξ̂(t))〉 ≥ 0.
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We assume that the bang arcs of λ̂ are regular, i.e., we assume that at each point λ̂(t),
t 6= τ̂ , the maximum of the Hamiltonian is achieved only by u = û(t) = (û1(t), û2(t)),
i.e.,

F0(λ̂(t)) + u1F1(λ̂(t)) + u2F2(λ̂(t)) < Hmax(λ̂(t)) = 1

∀(u1, u2) ∈ [−1, 1]2 \ {(û1(t), û2(t))}.

In terms of the controlled Hamiltonians F1 and F2 this can be stated as follows:

Assumption 2 (Regularity along the bang arcs). Let i = 1, 2. If t 6= τ̂ , then

ûi(t)Fi(λ̂(t)) = ûi(t)〈λ̂(t) , fi(ξ̂(t))〉 > 0. (3.2)

Remark 3.4. Passing to the limit for t → τ̂ in (3.2) we get F1(ℓ̂d) = F2(ℓ̂d) = 0 and,
because of the normality condition in PMP, F0(ℓ̂d) = 1. As a consequence f0(x̂d) /∈
span{f1(x̂d), f2(x̂d)}.

From the necessary maximality condition (3.1c) we get

d

dt
2Fi ◦ λ̂(t)

∣∣∣∣
t=τ̂−

=
d

dt
(Ki −H1) ◦ λ̂(t)

∣∣∣∣
t=τ̂−

≥ 0,

d

dt
2Fi ◦ λ̂(t)

∣∣∣∣
t=τ̂+

=
d

dt
(H2 −Ki) ◦ λ̂(t)

∣∣∣∣
t=τ̂+

≥ 0,

i = 1, 2.

We assume that the above inequalities are strict:

Assumption 3 (Regularity at the double switching time).

d

dt
(Kν −H1) ◦ λ̂(t)

∣∣∣∣
t=τ̂−

> 0,
d

dt
(H2 −Kν) ◦ λ̂(t)

∣∣∣∣
t=τ̂+

> 0, ν = 1, 2.

Assumption 3 is called the Strong bang-bang Legendre condition for the

double switching time. Equivalently, this assumption can be expressed in terms of
the Lie brackets of vector fields or in terms of the canonical symplectic structure σ (·, ·)
on T ∗

R
n.

Proposition 3.1. Assumption 3 is equivalent to

〈ℓ̂d , [h1, kν ] (x̂d)〉 = σ

(−→
H1,

−→
Kν

)
(ℓ̂d) > 0,

〈ℓ̂d , [kν , h2] (x̂d)〉 = σ

(−→
Kν ,

−→
H2

)
(ℓ̂d) > 0,

ν = 1, 2.

An easy computation proves the following equivalent condition

7



Proposition 3.2. Assumption 3 is equivalent to

〈ℓ̂d , [f0, fi] (x̂d)〉 >
∣∣∣〈ℓ̂d , [f1, f2] (x̂d)〉

∣∣∣ , i = 1, 2, (3.3)

i.e.
σ

(−→
F0,

−→
Fi

)
(ℓ̂d) >

∣∣∣σ
(−→
F1,

−→
F2

)
(ℓ̂d)

∣∣∣ , i = 1, 2.

In what follows we shall also need to reformulate Assumption 3 in terms of the pull-
backs of the vector fields hν and kν along the reference flow Ŝt . Define

gν(x) := Ŝ−1
τ̂ ∗

hν ◦ Ŝτ̂ (x), jν(x) := Ŝ−1
τ̂ ∗

kν ◦ Ŝτ̂ (x), ν = 1, 2 (3.4)

and let Gν , Jν be the associated Hamiltonians. Then a straightforward computation
yields

Proposition 3.3. Assumption 3 is equivalent to

〈ℓ̂0 , [g1, jν ] (x̂0)〉 = σ

(−→
G1,

−→
Jν

)
(ℓ̂0) > 0,

〈ℓ̂0 , [jν , g2] (x̂0)〉 = σ

(−→
Jν ,

−→
G2

)
(ℓ̂0) > 0,

ν = 1, 2. (3.5)

Also, we assume that ξ̂ has no self-intersection:

Assumption 4. The reference trajectory ξ̂ : [0, T̂ ] → R
n is injective.

4 The second order variation

The second order variation is the second order approximation of a finite-dimensional sub-
problem of (P0) obtained by keeping the same end-point constraints and restricting the
set of admissible controls. Namely, we allow for independent variations of the switching
times of each of the two reference control components û1 and û2. This sub-problem is then
extended by allowing for variations of the initial points of trajectories on a neighborhood
of x̂0 in R

n. We penalise the latter variations with a smooth cost α that vanishes on N0.
We allow for perturbations of the final time, of the initial point of trajectories on N0,

of the final point on Nf and of the switching time of either component of the reference
control: let τ1 := τ̂ + ε1 and τ2 := τ̂ + ε2 be the perturbed switching times of the first
and of the second component of û, respectively, and let τ3 := T̂ + ε3 be the perturbation
of the final time T̂ .

Let α : Rn → R be a smooth nonnegative function vanishing on N0. We remove the
constraint on the initial point ξ(0) introducing the penalty cost α on such point. We
thus obtain the following problem in the unknowns x, ε1, ε2, ε3:

α(x) + T̂ + δ3 → min, (4.1a)

8



ξ̇ =





h1(ξ(t)) t ∈ (0, τ̂ + δ1),

kν(ξ(t)) t ∈ (τ̂ + δ1, τ̂ + δ2),

h2(ξ(t)) t ∈ (τ̂ + δ2, T̂ + δ3),

(4.1b)

ξ(0) = x ∈ R
n, ξ(T̂ + δ3) ∈ Nf , (4.1c)

δ1 := min{ε1, ε2}, δ2 := max{ε1, ε2}, δ3 := ε3, (4.1d)

ν =

{
1 if ε1 ≤ ε2,

2 if ε1 > ε2.
(4.1e)

Let gν , jν , ν = 1, 2 be the pullbacks along the reference flow of the vector fields hν and
kν , as defined in equation (3.4). Let N̂f be the pullback of Nf to time t = 0 along the
reference flow:

N̂f := Ŝ−1

T̂
(Nf )

and let Tx̂0
N̂f = Ŝ−1

T̂ ∗
(Tx̂f

Nf ) be its tangent space at x̂0.

By the transversality condition (3.1d) at the reference final time T̂ , there exists a smooth
function β : Rn → R that vanishes on Nf and such that dβ(x̂f ) = −ℓ̂f . Also let β̂ be the

pull-back of β along the reference flow, β̂ := β ◦ Ŝ
T̂
so that, by Remark 3.2,

β̂ : O(x̂0) → R, β̂
∣∣∣
O(x̂0)o∩N̂f

≡ 0, dβ̂(x̂0) = −p̂0.

Let us set

a1 := δ1, b := δ2 − δ1 = |ε2 − ε1| , a2 := δ3 − δ2;

then the second order approximations of problem (4.1), for ν = 1, 2, are defined on the
closed half-spaces

V +
ν :=

{
(δx, a1, b, a2) ∈ R

n × R× R
+ × R :

δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0
N̂f

}

and are given by

J ′′
ν [δx, a1, b, a2] = D2(α+ β̂)(x̂0)[δx]

2 + 2 δx · (a1g1 + b jν + a2g2) · β̂(x̂0)

+ (a1g1 + b jν + a2g2)
2 · β̂(x̂0)

+ a1b [g1, jν ] · β̂(x̂0) + a1a2 [g1, g2] · β̂(x̂0) + b a2 [jν , g2] · β̂(x̂0),

(4.2)

see [4] for the construction. The restrictions of J ′′
ν to the sets

V +
0, ν :=

{
(δx, a1, b, a2) ∈ Tx̂0

N0 ×R× R
+ × R :

9



δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0
N̂f

}
, ν = 1, 2,

are indeed the second order approximation of (P0).

We are now in a position to state our assumption on the second order approximation
of sub-problem (4.1).

Assumption 5. For each ν = 1, 2, J ′′
ν is coercive on V +

0,ν.

Since both J ′′
1 and J ′′

2 are quadratic forms, we may as well remove the constraint b ≥ 0
and let them be defined and coercive on the linear spaces

V0,ν :=
{
(δx, a1, b, a2) ∈ Tx̂0

N0 × R
3 :

δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0
N̂f

}
, ν = 1, 2. (4.3)

Also let

Vν :=
{
(δx, a1, b, a2) ∈ R

n ×R
3 :

δx+ a1g1(x̂0) + b jν(x̂0) + a2g2(x̂0) ∈ Tx̂0
N̂f

}
, ν = 1, 2. (4.4)

By [2] we obtain the following:

Theorem 4.1. If the second order approximations J ′′
1 and J ′′

2 are coercive on V0, 1 and
V0, 2 respectively, then there exists a smooth function α : Rn → R such that α|N0

≡ 0,

dα(x̂0) = ℓ̂0 and both J ′′
1 and J ′′

2 are coercive quadratic forms on V1 and V2, respectively.

The main result of [5] is the following:

Theorem 4.2. Assume
(
T̂ , ξ̂, û

)
is an admissible triple for the minimum time problem

(1.1). Assume the triple is bang-bang with only one switching time which is a double
switching time. Assume the triple satisfies PMP, the regularity assumption along the bang
arcs (Assumption 2), the regularity assumption at the double switching time (Assumption
3) and the coercivity assumption (Assumption 5). Moreover assume the trajectory ξ̂ is
injective. Then, ξ̂ is a strict state-locally optimal trajectory.

5 The controllability assumption

In order to prove our structural stability result we need one further assumption which was
not required in [5], i.e. controllability of the nominal problem (P0) along the reference
trajectory ξ̂.

Assumption 6. µ̂ is the only adjoint covector associated to ξ̂.
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The controllability assumption can in fact be stated in terms of the data of the nominal
problem (P0). For any i = 0, 1, 2, let f̃i be the pull-back of fi along the reference flow
from the double switching time τ̂ to time 0:

f̃i(x) := Ŝ−1
τ̂∗

fi ◦ Ŝτ̂ (x) = exp(−τ̂ h1)∗fi ◦ exp τ̂h1(x).

Lemma 5.1. Assumption 6 holds if and only if

span
{
Tx̂0

N0, Tx̂0
N̂f , f̃0(x̂0), f̃1(x̂0), f̃2(x̂0)

}
= R

n.

Proof. For ease of notation set C := span
{
Tx̂0

N0, Tx̂0
N̂f , f̃0(x̂0), f̃1(x̂0), f̃2(x̂0)

}
.

1. Let Assumption 6 hold and assume, by contradiction, that C 6= R
n. Then there

exists p ∈ C⊥, p 6= 0:

〈p , δx〉 = 0 ∀δx ∈ Tx̂0
N0 ∪ Tx̂0

N̂f , 〈p , f̃i(x̂0)〉 = 0 ∀i = 0, 1, 2.

Let µ(t) := (p̂0 + p) Ŝ−1
t∗ = µ̂(t) + pŜ−1

t∗ .

If t ∈ [0, τ̂ ] then 〈pŜ−1
t∗ , h1(ξ̂(t))〉 = 〈p ,

(
f̃0 − f̃1 − f̃2

)
(x̂0)〉 = 0. If t ∈ (τ̂ , T ], then

〈pŜ−1
t∗ , h2(ξ̂(t))〉 = 〈pŜ−1

τ̂∗
, h2(ξ̂(τ̂))〉 = 〈p ,

(
f̃0 + f̃1 + f̃2

)
(x̂0)〉 = 0.

As µ(0)|
Tx̂0

N0∪Tx̂0
N̂f

= p̂0|Tx̂0
N0∪Tx̂0

N̂f
, it is easily checked that λ(t) :=

(
µ(t), ξ̂(t)

)

satisfies PMP, a contradiction.
2. Assume C = R

n and suppose, by contradiction, there exists an adjoint covector
µ(t) which, together with the reference triple

(
T̂ , ξ̂, û

)
satisfies PMP. Thus the following

conditions hold:

〈µ(t) , f0(ξ̂(t))〉+ û1(t)〈µ(t) , f1(ξ̂(t))〉+ û2(t)〈µ(t) , f2ξ̂(t))〉 =

= F0(µ(t), ξ̂(t)) +
∣∣∣F1(µ(t), ξ̂(t))

∣∣∣+
∣∣∣F2(µ(t), ξ̂(t))

∣∣∣ = p0 ∈ {0, 1};
(5.1)

∃p ∈ (Tx̂0
N0)

⊥ ∩
(
Tx̂0

N̂f

)⊥

: µ(t) = pŜ−1
t∗ . (5.2)

As in t = τ̂ the double switch of û occurs, we have

〈µ(τ̂ ) , f1(ξ̂(τ̂ ))〉 = 〈µ(τ̂) , f2(ξ̂(τ̂))〉 = 0,

so that 〈µ(τ̂) , f0(ξ̂(τ̂ ))〉 = p0, that is:

〈p , f̃1(x̂0)〉 = 〈p , f̃2(x̂0)〉 = 0, 〈p , f̃0(x̂0)〉 = p0. (5.3)

We now distinguish between two cases:
1. if

(
µ(t), ξ̂(t)

)
is an abnormal extremal (p0 = 0) then, by (5.2) and (5.3), p ∈ C⊥.

As C = R
n this means that p = 0, so that µ(t) ≡ 0, a contradiction in PMP.

2. if
(
µ(t), ξ̂(t)

)
is a normal extremal (p0 = 1) then, by (5.2) and (5.3), p acts on

C = R
n in the same way as p̂, so that p = p̂ and µ(t) = µ̂(t), i.e. µ̂ is the only adjoint

covector associated to ξ̂.
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6 The main result

We are now in a position to state the main results of this paper, which will be proved
in the following sections.

Theorem 6.1. Under Assumptions 1-6 there exists R̃ ∈ (0, R) such that for any r ∈ B
R̃
,

problem (Pr) has a bang-bang state-local minimiser (T r, ur, ξr). Each control component
of ur has exactly one switching time. Let τ ri be the switching time of uri , i = 1, 2. At time
τ ri the control component uri switches from the value −1 to the value 1. The final time
T r and the switching times τ r1 , τ

r
2 depend smoothly on r.

Remark 6.1. Notice that the switching times τ r1 , τ
r
2 in Theorem 6.1 may either coincide

or be different, i.e. we may either have a double switching time or two simple switching
times.

Theorem 6.2. Under Assumptions 1-6 there exists R̃ ∈ (0, R), ε > 0 and a neighborhood
V of the graph of λ̂ in R×T ∗

R
n such that for any r ∈ B

R̃
, the extremal pair λr associated

to the local minimum time triple (T r, ur, ξr) of Theorem 6.1 is the only extremal pair
whose final time is in [T̂ − ε, T̂ + ε] and whose graph is in V.

6.1 The coercivity of the second order variations

In [5], in order to prove the strong local optimality result, the authors consider the
bilinear form Qν associated to J ′′

ν , ν = 1, 2, i.e. if δe = (δx, a1, b, a2), δf = (δy, c1, d, c2) ∈
V0,ν then

Qν [δe, δf ] =D2(α+ β̂)(x̂0)(δx, δy) + δy · (a1g1 + b jν + a2g2) · β̂ (x̂0)

+ δx · (c1g1 + d jν + c2g2) · β̂ (x̂0)

+ (c1g1 + d jν + c2g2) · (a1g1 + b jν + a2g2) · β̂ (x̂0)

+ da1[g1, jν ] · β̂ (x̂0) + c2a1[g1, g2] · β̂ (x̂0) + c2b[jν , g2] · β̂ (x̂0) .

The bilinear forms Qν can be written in a more compact way by introducing the linear
Hamiltonians

G′′
i : (δp, δx) ∈ (Rn)∗ × R

n 7→ 〈δp , gi(x̂0)〉+ δx · gi · β̂ (x̂0) ∈ R,

J ′′
ν : (δp, δx) ∈ (Rn)∗ × R

n 7→ 〈δp , jν(x̂0)〉+ δx · jν · β̂ (x̂0) ∈ R,

and the associated constant Hamiltonian vector fields
−→
G ′′

1 and
−→
Jν

′′. An easy computation
shows that

σ

(
(δp, δx),

−→
G ′′

1

)
= G′′

i (δp, δx), σ

(
(δp, δx),

−→
Jν

′′
)
= J ′′

ν (δp, δx),

G′′
i (
−→
G ′′

j ) = [gj , gi] · β̂ (x̂0) , G′′
i (
−→
Jν

′′) = [jν , gi] · β̂ (x̂0) = −J ′′
ν (
−→
G ′′

i ).

With these equalities at hand it is just a straightforward computation to prove the
following proposition.
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Proposition 6.3. For any admissible variation δe = (δx, a1, b, a2) ∈ Vν and any δp ∈
(Rn)∗ let

(δpT , δxT ) := (δp, δx) + a1
−→
G ′′

1 + b
−→
Jν

′′ + a2
−→
G ′′

2.

Then

Qν [δe, δf ] = D2(α+ β̂)(x̂0)(δx, δy) + 〈δp , δy〉 − 〈δpT , δy + c1g1 + djν + c2g2〉

+c1G
′′
1 (δp, δx) + dJ ′′

ν

(
(δp, δx) + a1

−→
G ′′

1

)
+ c2G

′′
2

(
(δp, δx) + a1

−→
G ′′

1 + d
−→
Jν

′′

)
.

Proposition 6.4. An admissible variation δe ∈ V0,ν is in V0,ν ∩ V
⊥J′′

ν

0,ν if and only if
there exists δp ∈ (Rn)∗ such that

δp = −D2(α+ β̂)(x̂0)(δx, ·) + ω0, ω0 ∈ (Tx̂0
N0)

⊥ ,

G′′
1(δp, δx) = σ

(
(δp, δx),

−→
G ′′

1

)
= 0,

J ′′
ν

(
(δp, δx) + a1

−→
G ′′

1

)
= σ

(
(δp, δx) + a1

−→
G ′′

1,
−→
Jν

′′
)
= 0,

G′′
2

(
(δp, δx) + a1

−→
G ′′

1 + b
−→
Jν

′′
)
= σ

(
(δp, δx) + a1

−→
G ′′

1 + b
−→
Jν

′′,
−→
G ′′

2

)
= 0,

δpT ∈
(
Tx̂0

N̂f

)⊥

.

Corollary 6.5. Assume the coercivity assumption, Assumption 5, holds and let δe =
(δx, a1, b, a2) ∈ V0,ν. If there exists δp ∈ (Rn)∗ such that

δp = −D2(α+ β̂)(x̂0)(δx, ·) + ω0, ω0 ∈ (Tx̂0
N0)

⊥ ,

G′′
1(δp, δx) = σ

(
(δp, δx),

−→
G ′′

1

)
= 0,

J ′′
ν

(
(δp, δx) + a1

−→
G ′′

1

)
= σ

(
(δp, δx) + a1

−→
G ′′

1,
−→
Jν

′′
)
= 0,

G′′
2

(
(δp, δx) + a1

−→
G ′′

1 + b
−→
Jν

′′
)
= σ

(
(δp, δx) + a1

−→
G ′′

1 + b
−→
Jν

′′,
−→
G ′′

2

)
= 0,

δpT ∈
(
Tx̂0

N̂f

)⊥

.

then δe = (0, 0, 0, 0).

Consider the Lagrangian manifold of the initial transversality conditions

Λ0 :=
{
ℓ = dα(x) + ω : x ∈ N0, ω ∈ (TxN0)

⊥ , H1(ℓ) = 1
}

so that

T
ℓ̂0
Λ0 :=

{
δℓ = dα∗δx+ ω : δx ∈ Tx̂0

N0, ω ∈ (Tx̂0
N0)

⊥ , σ

(
δℓ,

−→
H1(ℓ̂0)

)
= 0

}
.
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Let i : (δp, δx) ∈ (Rn)∗ ×R
n 7→ δℓ := −δp+d(−β̂)δx ∈ T ∗

R
n. The map i is an antisym-

plectic isomorphism,

i
−→
G ′′

1 =
−→
H1(ℓ̂0) =

−→
G1(ℓ̂0) = F̂−1

τ̂ ∗

−→
H1 ◦ F̂τ̂ (ℓ̂0),

i
−→
G ′′

2 =
−→
G2(ℓ̂0) = F̂−1

τ̂ ∗

−→
H2 ◦ F̂τ̂ (ℓ̂0) = F̂−1

T̂ ∗

−→
H2 ◦ F̂T̂

(ℓ̂0),

i
−→
Jν

′′ =
−→
Jν(ℓ̂0) = F̂−1

τ̂ ∗

−→
Kν ◦ F̂τ̂ (ℓ̂0) ν = 1, 2,

and T
ℓ̂0
Λ0 = iL′′

0 where

L′′
0 :=

{
(δp, δx) : δx ∈ Tx̂0

N0, δp = −D2(α+ β̂)(x̂0)(δx, ·) + ω,

ω ∈ (Tx̂0
N0)

⊥ , σ

(
(δp, δx),

−→
G ′′

1

)
= 0

}
.

Lemma 6.6. Under Assumptions 1 to 6 there exist R̃ ∈ (0, R), ε > 0 and a neighborhood
O(ℓ̂0) of ℓ̂0 in T ∗

R
n such that for any r ∈ B

R̃
, there exists a unique bang-bang extremal

pair λr = (µr, ξr) of (Pr) having the following properties:

1. λr is a normal extremal and λr(0) ∈ O(ℓ̂0);

2. each component uri , i = 1, 2 of the associated control ur = (ur1, u
r
2) has exactly

one switching time τ ri ; τ
r
1 , τ

r
2 ∈ [τ̂ − ε, τ̂ + ε]; at time τ ri the control component uri

switches from the value −1 to the value +1;

3. T r ∈ [T̂ − ε, T̂ + ε];

4. τ r1 , τ
r
2 , T

r and λr(0) depend smoothly on r,

5. the bang arcs are regular: for i = 1, 2 uri (t)F
r
i (λ

r(t)) > 0 ∀t 6= τ ri ,

6. each switching time is regular:
d

dt
uri (t)F

r
i (λ

r(t))

∣∣∣∣
t=τri ±

> 0, i = 1, 2.

Proof. We prove claims 1-4 applying the implicit function theorem: for ν = 1, 2 consider
the following system of 2n + 3 scalar equations in the unknowns r ∈ BR, ℓ = (p, x) ∈
T ∗

R
n, t1, t2, t3 ∈ R:

ℓ ∈ (TπℓN
r
0 )

⊥ ×N r
0 , (6.1a)

Hr
1(ℓ)− 1 = 0, (6.1b)

Kr
ν ◦ exp t1

−→
Hr

1(ℓ)− 1 = 0, (6.1c)

Hr
2 ◦ exp(t2 − t1)

−→
Kr

ν ◦ exp t1
−→
Hr

1(ℓ)− 1 = 0, (6.1d)

exp(t3 − t2)
−→
Hr

2 ◦ exp(t2 − t1)
−→
Kr

ν ◦ exp t1
−→
Hr

1(ℓ)

∈
(
T
π exp(t3−t2)

−→
Hr

2
◦exp(t2−t1)

−→
Kr

ν◦exp t1
−→
Hr

1
(ℓ)
N r

f

)⊥

×N r
f .

(6.1e)

14



The linearised equations with respect to (ℓ, t1, t2, t3) at (r, ℓ, t1, t2, t3) = (0, ℓ̂0, τ̂ , τ̂ , T̂ )
are given by

δℓ = (δp, δx) ∈ T
ℓ̂0

(
(Tx̂0

N0)
⊥ ×N0

)
, (6.2a)

σ

(
δℓ,

−→
H1(ℓ̂0)

)
= 0, (6.2b)

σ

(
exp τ̂

−→
H1∗δℓ+ δt1

−→
H1(ℓ̂d), (

−→
Kν −

−→
H1)(ℓ̂d)

)
= 0, (6.2c)

σ

(
exp τ̂

−→
H1∗δℓ− δt1(

−→
Kν −

−→
H1)(ℓ̂d) + δt2

−→
Kν(ℓ̂d), (

−→
H2 −

−→
Kν)(ℓ̂d)

)
= 0, (6.2d)

F̂
T̂ ∗

δℓ+ exp(T̂ − τ̂)
−→
H2∗

(
δt1

−→
H1 + (δt2 − δt1)

−→
Kν + (δt3 − δt2)

−→
H2

)
(ℓ̂d)

∈ T
ℓ̂f

((
Tx̂f

Nf

)⊥

×Nf

)
.

(6.2e)

Notice that α|N0
≡ 0 so that dα(x) ∈ (TxN0)

⊥ for any x ∈ N0. Hence, if in equation

(6.1a) we write ℓ = (p, x) we must have p− dα(x) ∈ (TxN0)
⊥ for any x ∈ N0 so that, if

δℓ = (δp, δx) we get δx ∈ Tx̂0
N0 δp − D2α(x̂0)[δx, ·] ∈ (Tx̂0

N0)
⊥. Thus, taking the pull-

back to time t = 0, the homogeneous linear system (6.2) admits a nontrivial solution if
and only if there exists δℓ = (δp, δx) ∈ T

ℓ̂0
T ∗

R
n, δt1, δt2, δt3 ∈ R, with at least one of

them being different from zero, such that

δℓ = dα∗δx+ ω0, δx ∈ Tx̂0
N0, ω0 ∈ Tp̂0 (Tx̂0

N0)
⊥ , (6.3a)

σ

(
δℓ,

−→
G1(ℓ̂0)

)
= 0, (6.3b)

σ

(
δℓ+ δt1

−→
G1(ℓ̂0), (

−→
Jν −

−→
G1)(ℓ̂0)

)
= 0, (6.3c)

σ

(
δℓ− δt1(

−→
Jν −

−→
G1)(ℓ̂0) + δt2

−→
Jν(ℓ̂0), (

−→
G2 −

−→
Jν)(ℓ̂0)

)
= 0, (6.3d)

δxf := δx+ (δt1g1 + (δt2 − δt1)jν + (δt3 − δt2)g2) (x̂0) ∈ Tx̂0
N̂f , (6.3e)

δℓ+
(
δt1

−→
G1 + (δt2 − δt1)

−→
Jν + (δt3 − δt2)

−→
G2

)
(ℓ̂0)

= d(−β̂)∗δxf + ωf , ωf ∈ Tp̂0

(
Tx̂0

N̂f

)⊥

.
(6.3f)

Applying the anti symplectic isomorphism i−1 and denoting i−1δℓ = (δp, δx), equations
(6.3) can also be written as

(δp, δx) = −D2(α+ β̂)(x̂0)(δx, ·) + ω0, δx ∈ Tx̂0
N0, ω0 ∈ (Tx̂0

N0)
⊥ , (6.4a)

σ

(
(δp, δx),

−→
G ′′

1

)
= 0, (6.4b)

σ

(
(δp, δx) + δt1

−→
G ′′

1 ,
−→
Jν

′′

)
= 0, (6.4c)
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σ

(
(δp, δx) + δt1

−→
G ′′

1 + (δt2 − δt1)
−→
Jν

′′,
−→
G ′′

2

)
= 0, (6.4d)

(δpT , δxT ) := (δp, δx) + δt1
−→
G ′′

1 + (δt2 − δt1)
−→
Jν

′′

+ (δt3 − δt2)
−→
G ′′

2 ∈
(
Tx̂0

N̂f

)⊥

× Tx̂0
N̂f .

(6.4e)

Thus, by Proposition 6.4, the variation (δx, δt1, δt2 − δt1, δt3 − δt2) is in V0,ν ∩ V ⊥
0,ν . As

J ′′
ν is coercive on V0,ν we can apply Corollary 6.5 and we get δx = 0, δt1 = δt2 = δt3 = 0,

so that δp = 0 if and only if ω0 = 0. By equations (6.4),

ω0 ∈ span
{
Tx̂0

N0, Tx̂0
N̂f , g1(x̂0), jν(x̂0), g2(x̂0)

}⊥

=

= span
{
Tx̂0

N0, Tx̂0
N̂f , f̃0(x̂0), f̃1(x̂0), f̃2(x̂0)

}⊥

,

thus the controllability assumption, Assumption 6 and Lemma 5.1 yield the claim.

Thus we can apply the implicit function theorem to system (6.1). For r ∈ B
R̃

let
(ℓr0, τ

r
1 , τ

r
2 , T

r), ℓr0 = (pr0, x
r
0) be the solution of system (6.1). The piecewise smooth curve

λr(t) = (µr(t), ξr(t)) defined by





exp t
−→
Hr

1(ℓ
r
0), t ∈ [0, τ r1 ],

exp(t− τ r1 )
−→
Kr

1 ◦ exp τ
r
1

−→
Hr

1(ℓ
r
0), t ∈ [τ r1 , τ

r
2 ],

exp(t− τ r2 )
−→
Hr

2 ◦ exp(τ
r
2 − τ r1 )

−→
Kr

1 ◦ exp τ
r
1

−→
Hr

1(ℓ
r
0), t ∈ [τ r2 , T

r],





if τ r1 < τ r2

exp t
−→
Hr

1(ℓ
r
0), t ∈ [0, τ r2 ],

exp(t− τ r2 )
−→
Kr

2 ◦ exp τ
r
2

−→
Hr

1(ℓ
r
0), t ∈ [τ r2 , τ

r
1 ],

exp(t− τ r1 )
−→
Hr

2 ◦ exp(τ
r
1 − τ r2 )

−→
Kr

2 ◦ exp τ
r
2

−→
Hr

1(ℓ
r
0), t ∈ [τ r1 , T

r],





if τ r2 < τ r1 ,

exp t
−→
Hr

1(ℓ
r
0), t ∈ [0, τ r1 ],

exp(t− τ r2 )
−→
Hr

2 ◦ exp τ r2
−→
Hr

1(ℓ
r
0), t ∈ [τ r1 , T

r],

}
if τ r2 = τ r1

is a normal extremal of problem (Pr) and satisfies claims 1-4

We can now complete the proof by proving claims 5-6: possibly restricting R̃ and O(ℓ̂0)
we can assume, by continuity

F r
i (λ

r(t)) < 0 ∀t ∈ [0, τ̂ − ε],

F r
i (λ

r(t)) > 0 ∀t ∈ [τ̂ − ε, T r],
i = 1, 2,

σ

(−→
Hr

1 ,
−→
Kr

ν

)
(λr(t)) > 0

σ

(−→
Kr

ν ,
−→
Hr

2

)
(λr(t)) > 0

∀t ∈ [τ̂ − ε, τ̂ + ε], ν = 1, 2, (6.5)
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By construction, λr is a normal Pontryagin extremal of (Pr). We prove Claim 5 in the
case when τ r1 < τ r2 . The other cases are analougous. For any t ∈ (τ̂ − ε, τ r1 ) there exists
θ1 ∈ (t, τ r1 ) such that

2F r
1 (λ

r(t)) = 2F r
1 (λ

r(τ r1 )) + (t− τ r1 )
d(2F r

1 ◦ λr)

dt
(θ1)

= (t− τ r1 )σ
(−→
Hr

1 , 2
−→
F r
1

)
(λr(θ1)) = (t− τ r1 )σ

(−→
Hr

1 ,
−→
Kr

1

)
(λr(θ1))

which is negative by (6.5). Analougously, for any t ∈ (τ r1 , τ
r
2 ] there exists θ2 ∈ (τ r1 , t)

such that

2F r
1 (λ

r(t)) = 2F r
1 (λ

r(τ r1 )) + (t− τ r1 )
d(2F r

1 ◦ λr)

dt
(θ2)

= (t− τ r1 )σ
(−→
Kr

1 , 2
−→
F r
1

)
(λr(θ2)) = (t− τ r1 )σ

(−→
Hr

1 ,
−→
Kr

1

)
(λr(θ2))

(6.6)

which is positive by (6.5). Finally, if t ∈ (τ r2 , τ̂ + ε) there exists θ3 ∈ (τ r2 , T̂ + ε) such that

2F r
1 (λ

r(t)) = 2F r
1 (λ

r(τ r2 )) + (t− τ r2 )
d(2F r

1 ◦ λr)

dt
(θ3)

= 2F r
1 (λ

r(τ r2 )) + (t− τ r2 )σ
(−→
Hr

2 , 2
−→
F r
1

)
(λr(θ3))

= 2F r
1 (λ

r(τ r2 )) + (t− τ r2 )σ
(−→
Kr

2 ,
−→
Hr

2

)
(λr(θ3))

which is positive by (6.5) and (6.6). The proof for the sign of F r
2 (λ

r(t)) follows the same
line.

Finally, the switching times τ ri are regular (claim 6) thanks to inequalities (6.5).

We can now prove Theorem 6.1, i.e. we prove that projection ξr of the extremal λr

defined in Lemma 6.6 is a state-local optimal trajectory for problem (Pr).

Proof of Theorem 6.1. By construction and by Lemma 6.6, (T r, ξr = πλr, ur) satisfies
PMP in its normal form and the regularity assumptions for problem (Pr). Thus it suffices
to prove that ξr has no self-intersection and that the second order variation associated
to (Pr) is coercive.

Injectivity of ξr. Assume by contradiction there exists a sequence {rk}k∈N ⊂ B
R̃
that

converges to 0 and such that there exist t1,k, t2,k, 0 ≤ t1,k < t2,k ≤ T rk , ξrk(t1,k) =

ξrk(t2,k). Up to a subsequence both t1,k and t2,k converge. Let ti := limk→∞ ti,k ∈ [0, T̂ ],

i = 1, 2. If t1 < t2, then ξ̂(t1) = ξ̂(t2), a contradiction. Assume then t1 = t2 =: t.
Different cases may occur:

1. Up to a subsequence 0 ≤ t1,k < t2,k ≤ τ rk1 . In this case

0 = ξrk(t2,k)− ξrk(t1,k) =

ˆ t2,k

t1,k

hr1(ξ
rk(s)) ds.

17



Applying the mean value thorem componentwise we get:

∀j = 1, . . . , n ∃skj ∈ [t1,k, t2,k] : (h
r
1)j(ξ

rk(skj )) = 0. (6.7)

Thus, as k → ∞ in (6.7) we obtain h1(ξ̂(t)) = 0, a contradiction since t ∈ [0, τ̂1] and
H1(λ̂(t)) = 1 ∀t ∈ [0, τ̂1].

2. Up to a subsequence 0 ≤ t1,k ≤ τ rk1 < t2,k ≤ τ rk2 . In this case

0 =
ξrk(t2,k)− ξrk(t1,k)

t2,k − t1,k
=

τ rk1 − t1,k
t2,k − t1,k

 τ
rk
1

t1,k

hr1(ξ
rk(s)) ds+

+
t2,k − τ rk1
t2,k − t1,k

 t2,k

τ
rk
1

kr1(ξ
rk(s)) ds. (6.8)

Up to a subsequence there exists lim
k→∞

τ rk1 − t1,k
t2,k − t1,k

= c ∈ [0, 1], so that passing to the limit

in (6.8) we obtain

0 = c h1(x̂d) + (1− c) k1(x̂d) = f0(x̂d) + (1− 2c) f1(x̂d)− f2(x̂d).

A contradiction, since f0(x̂d) /∈ span {f1(x̂d), f2(x̂d)}.

3. Up to a subsequence 0 ≤ t1,k ≤ τ rk1 ≤ τ rk2 ≤ t2,k. In this case

0 =
ξrk(t2,k)− ξrk(t1,k)

t2,k − t1,k
=

τ rk1 − t1,k
t2,k − t1,k

 τ
rk
1

t1,k

hr1(ξ
rk(s)) ds+

+
τ rk2 − τ rk1
t2,k − t1,k

 t2,k

τ
rk
1

kr1(ξ
rk(s)) ds+

t2,k − τ rk2
t2,k − t1,k

 t2,k

τ
rk
2

hr2(ξ
rk(s)) ds. (6.9)

Up to a subsequence there exist

lim
k→∞

τ rk1 − t1,k
t2,k − t1,k

= c1 ∈ [0, 1], lim
k→∞

τ rk2 − τ rk1
t2,k − t1,k

= c2 ∈ [0, 1],

so that passing to the limit in (6.9) we obtain

0 = c1 h1(x̂d) + c2 k1(x̂d) + (1− c1 − c2)h2(x̂d) =

= f0(x̂d) + (1− 2c1) f1(x̂d)− (1− 2c1 − 2c2)f2(x̂d).

A contradiction, since f0(x̂d) /∈ span {f1(x̂d), f2(x̂d)}.
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In the other cases the proof follows the same line.

Coercivity of the second variation. Let (T r, λr, ur) be the extremal defined in Lemma
6.6, let ξr := πλr and xr0 := ξr(0). Assume τ r1 < τ r2 . In this case the trajectory ξr is
driven by the dynamics

φr
t :=





hr1, t ∈ [0, τ r1 ],

kr1, t ∈ (τ r1 , τ
r
2 ],

hr2, t ∈ (τ r2 , T
r].

Let Sr
t be the flow at time t associated to φr

t and consider the pull-back vector fields

gr1(x) := (Sr
t ∗)

−1hr1 ◦ S
r
t (x), t ∈ [0, τ r1 ],

jr1(x) := (Sr
t ∗)

−1kr1 ◦ S
r
t (x), t ∈ [τ r1 , τ

r
2 ],

gr2(x) := (Sr
t ∗)

−1hr2 ◦ S
r
t (x), t ∈ [τ r2 , T

r].

Let αr be a function that vanishes on N r
0 and such that dαr(ξr(0)) = λr(0). Let βr be a

smooth function that vanishes on (Sr
T r)−1(N r

f ), such that dβr(ξr(0)) = −λr(0). Finally
consider the linearisation of the constraints

V r
0 :=

{
δe = (δx, a1, b, a2) ∈ Txr

0
N r

0 × R
3 : δx+ a1g

r
1 + bjr1 + a2g

r
2 ∈ Txr

0
N r

0

}
.

Then the second variation at the switching points, see e.g. [3], is given by

J ′′
r [δe]

2 =
1

2
D2 (αr + βr) (xr0)[δx]

2 + δx · (a1g
r
1 + bjr1 + a2g

r
2) · β

r (xr0)

+
1

2
(a1g

r
1 + bjr1 + a2g

r
2)

2 · βr (xr0) +
1

2
a1b [g

r
1, j

r
1 ] · β

r (xr0)

+
1

2
a1a2 [g

r
1, g

r
2] · β

r (xr0) +
1

2
a2b [j

r
1 , g

r
2] · β

r (xr0) .

We now show, with a contradiction argument, that J ′′
r is coercive on V r

0 : assume there

exists a sequence {rk}k∈N ⊂ (0, R̃) that converges to 0 and such that J ′′
rk

is not coercive

on V r
0 , i.e. there exists δe

k =
(
δxk, ak1 , b

k, ak2
)
∈ V r

0 such that
∥∥δxk

∥∥+
∣∣ak1

∣∣+
∣∣bk

∣∣+
∣∣ak2

∣∣ = 1

and J ′′
r [δe

k]2 ≤ 0. Up to a subsequence δek converges to some δe =
(
δx, a1, b, a2

)
∈ V0,1

and such that
∥∥δx

∥∥+ |a1|+
∣∣b
∣∣+ |a2| = 1. Thus

0 ≥ lim
k→∞

J ′′
r [δe

k]2 = J ′′[δe]2 > 0,

a contradiction.

We have thus proved that (T r, ξr, ur), together with λr satisfies all the assumptions
of Theorem 1 in [3], so that ξr is a state-locally optimal trajectory for problem (Pr). If
τ r2 < τ r1 the proof follows the same lines.
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Let us consider the case τ r1 = τ r2 =: τ r. In this case, as in the nominal problem (P0)
we have to consider two different second order approximations and to prove that they
are coercive on the respective half-space of linearised constraints.

The trajectory ξr is driven by the dynamics

φr
t :=

{
hr1, t ∈ [0, τ r],

hr2, t ∈ (τ r, T r].

Denoting again by Sr
t the flow at time t associated to φr, we consider the pullback vector

fields
gri (x) := (Sr

τr ∗)
−1hr1 ◦ S

r
τr(x), i = 1, 2,

jrν(x) := (Sr
τr ∗)

−1krν ◦ S
r
τr(x), ν = 1, 2.

Let αr, βr and γr be as before. Then the linearisation of the constraints is given by the
half spaces

V +,r
ν :=

{
δe = (δx, a1, b, a2) ∈ Txr

0
N r

0 × R× R
+ × R :

δx+ a1g
r
1(x̂0) + b jrν(x̂0) + a2g

r
2(x̂0) ∈ Txr

0
(Sr

T r)−1(N r
f )
}
, ν = 1, 2

and the second order approximation is given by

J ′′
ν
,r
[δx, a1, b, a2] =D2 (αr + βr) (xr0)[δx]

2 + 2δx · (a1g
r
1 + b jrν + a2g

r
2) · β

r (xr0)

+ (a1g
r
1 + b jrν + a2g

r
2)

2 · βr (xr0) + a1b[g
r
1, j

r
ν ] · β

r (xr0)

+ a1a2[g
r
1, g

r
2] · β

r (xr0) + b a2[j
r
ν , g

r
2] · β

r (xr0) .

With the same contradiction argument used in the previous case it is easy to show that
J ′′
ν
,r is coercive on V +,r

ν , ν = 1, 2. Thus (T r, ξr, ur), together with λr satisfies all the
assumptions of Theorem 4.2 in [5], so that ξr is a state-locally optimal trajectory for
problem (Pr).

7 Local uniqueness

We now prove the local uniqueness of the extremal λr in the cotangent bundle T ∗
R
n,

namely we prove Theorem 6.2. The proof is carried out by showing that there exists a
tubular neighborhood V in R×T ∗

R
n of the graph of λ̂ such that, if λ̃ : [0, T̃ ] → T ∗

R
n is an

extremal whose graph is in V, with T̃ close to T̂ , then the associated control ũ = (ũ1, ũ2)
is bang-bang and each control component switches once and only once from the value −1
to the value 1. This implies that λ̃ satisfies system (6.1) which, by the implicit function
theorem, admits one and only one solution, i.e. λ̃ = λr.

By the regularity assumption at the switching time (Assumption 3) and by continuity,
there exists δ > 0 such that

〈λ̂(t) , [f0, fi] (ξ̂(t))〉 >
∣∣∣〈λ̂(t) , [f1, f2] (ξ̂(t))〉

∣∣∣ , ∀t ∈ [τ̂ − δ, τ̂ + δ], i = 1, 2.
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For any δ ∈ (0, δ] and i = 1, 2 define

αa
i (δ) = min

{
ui(t)Fi ◦ λ̂(t) = −Fi ◦ λ̂(t) : t ∈ [0, τ̂ − δ]

}
,

αp
i (δ) = min

{
ui(t)Fi ◦ λ̂(t) = Fi ◦ λ̂(t) : t ∈ [τ̂ + δ, T̂ ]

}
,

and let

m(δ) := min
{
σ

(−→
F0,

−→
F1

)
(λ̂(t))−

∣∣∣σ
(−→
F1,

−→
F2

)
(λ̂(t))

∣∣∣ , i = 1, 2, t ∈ [τ̂ − δ, τ̂ + δ]
}
.

By continuity there exists O(ℓ̂0) ⊂ T ∗
R
n such that

Fi ◦ F̂t(ℓ) <
−αa

i (δ)

2
∀(t, ℓ) ∈ [0, τ̂ − δ]×O(ℓ̂0),

Fi ◦ F̂t(ℓ) >
αp
i (δ)

2
∀(t, ℓ) ∈ [τ̂ + δ, T̂ ]×O(ℓ̂0),

σ

(−→
F0,

−→
F1

)
(F̂t(ℓ))−

∣∣∣σ
(−→
F1,

−→
F2

)
(F̂t(ℓ))

∣∣∣ > m(δ)

2
∀(t, ℓ) ∈ [τ̂ − δ, T̂ + δ]×O(ℓ̂0),

and, again by continuity, there esists R > 0 such that

F r
i ◦ F̂t(ℓ) <

−αa
i (δ)

4
∀(t, ℓ) ∈ [0, τ̂ − δ] ×O(ℓ̂0), ∀r : |r| ≤ R, (7.1)

F r
i ◦ F̂t(ℓ) >

αp
i (δ)

4
∀(t, ℓ) ∈ [τ̂ + δ, T̂ ]×O(ℓ̂0), ∀r : |r| ≤ R, (7.2)

and

σ

(−→
F r
0 ,

−→
F r
1

)
(F̂t(ℓ))−

∣∣∣σ
(−→
F r
1 ,

−→
F r
2

)
(F̂t(ℓ))

∣∣∣ > m(δ)

4

∀(t, ℓ) ∈ [τ̂ − δ, T̂ + δ]×O(ℓ̂0), ∀r : |r| ≤ R.

(7.3)

Let λ̃ : [0, T̃ ] → T ∗
R
n be an extremal of (Pr) whose graph is in the tubular set

Vδ =
{
(t, F̂t(ℓ)) : t ∈ [0, T̂ + δ], ℓ ∈ Oδ(ℓ̂0)

}

and such that
∣∣∣T̃ − T̂

∣∣∣ < δ.

By (7.1)-(7.2), for i = 1, 2,

F r
i ◦ λ̃(t) <

−αa
i

4
∀t ∈ [0, τ̂ − δ], F r

i ◦ λ̃(t) >
αp
i

4
∀t ∈ [τ̂ + δ, T̃ ]

hence there exists t̃i ∈ (τ̂ − δ, τ̂ + δ) such that F r
i ◦ λ̃(t̃i) = 0. We now prove that t̃i is

the only time at which F r
i ◦ λ̃ is zero. More precisely we show that F r

i ◦ λ̃(t) is strictly
monotone increasing in the interval [τ̂ − δ, τ̂ + δ] . Let τ̂ − δ ≤ s1 < s2 ≤ τ̂ + δ:
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F r
i ◦ λ̃(s2)− F r

i ◦ λ̃(s1) =

ˆ s2

s1

d

ds
F r
i ◦ λ̃(s) ds =

=

ˆ s2

s1

σ

(−→
F r
0 + ũ1(s)

−→
F r
1 + ũ2(s)

−→
F r
2 ,

−→
F r
1

)
(λ̃(s)) ds =

=

ˆ s2

s1

(
σ

(−→
F r
0 ,

−→
F r
1

)
− ũ2(s)σ

(−→
F r
1 ,

−→
F r
2

))
(λ̃(s)) ds > (s2 − s1)

m(δ)

4
.

Thus each component of the control ũ associated to ξ̃ := πλ̃ switches once and only once
from the value −1 to the value +1.
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