
CHEBFUN IN THREE DIMENSIONS

BEHNAM HASHEMI AND LLOYD N. TREFETHEN†

Abstract. We present an algorithm for numerical computations involving trivariate functions
in a 3D rectangular parallelepiped in the context of Chebfun. Our scheme is based on low-rank
representation through multivariate adaptive cross approximation (MACA). The component 1D
functions are represented by finite Chebyshev expansions, or trigonometric expansions in the periodic
case. Numerical experiments show the power and convenience of Chebfun3 for problems such as
function manipulation, differentiation, optimization, and integration, as well as for exploration of
fundamental issues of multivariate approximation and low-rank compression.
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1. Introduction. Chebfun is a MATLAB toolbox for numerical computing with
functions to approximately 15-digit precision [12]. It began in 2003 [2] with univariate
functions, and the 2D extension Chebfun2, due to Alex Townsend, was released in
2013 [30, 31, 32, 33]. Given a smooth bivariate function f(x, y) defined on a rectangle
[a, b] × [c, d], Chebfun2 attempts to represent f in a low-rank format computed by
adaptive cross approximation (ACA) [3, 4], i.e., iterative application of an approxima-
tion of Gaussian elimination with complete pivoting. This means that f is represented
by a sum of products of univariate functions,

f(x, y) ≈
r∑

k=1

αkuk(x)vk(y). (1.1)

Our aim has been to extend Chebfun and Chebfun2 to trivariate functions defined
on a parallelepiped [a, b]× [c, d]× [e, g]. For simplicity of exposition, we will take the
domain to be the unit cube [−1, 1]3. In developing an effective representation, we
have explored different techniques. The reference point from which they all spring is
a full tensor product, in which a function is represented by a triple sum of Chebyshev
polynomials,

f(x, y, z) ≈
m−1∑
i=0

n−1∑
j=0

p−1∑
k=0

cijkTi(x)Tj(y)Tk(z), (1.2)

where C = {cijk} is an m × n × p tensor of coefficients. Mathematically, one choice
of coefficients cijk would be that corresponding to truncation of an infinite 3-variable
Chebyshev series of f (weighted L2 projection), and another would correspond to 3D
Chebyshev interpolation, i.e., interpolation of f in a 3D tensor product grid obtained
from Chebyshev points in the x, y, and z directions. The two are related by aliasing,
and the difference in accuracy will normally be small [37, chap. 5]. See also [22].
For ready comparison of the tensor product representation with others, Chebfun3
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includes a class chebfun3t implementing this tensor product Chebyshev interpola-
tion idea. Chebfun3t computes the necessary coefficients using the 3D discrete cosine
transform (DCT), choosing m,n, p automatically to achieve 15-digit precision, and
requires O

(
mnp log(mnp))

)
operations. See Section 5 for further discussion and com-

parisons.
The problem with full tensor representations is the product mnp : they require a

great deal of work and storage when m,n, p are not small. For some functions, this
is unavoidable, but for a good proportion of functions that arise in practice, one can
do better by low-rank representations [38]. Like Chebfun2, Chebfun3 makes use of
this technique. A difference from the 2D case is that in 3D, there are many different
possible low-rank representations to consider.

The general idea of low-rank approximation algorithms is as follows. Beginning
with a function f , we approximate it by a function with a simple structure. Subtract-
ing off this first approximation, we then approximate the difference by another simple
function. We proceed in such a manner until the error is 15 or 16 digits below the
scale of the original function.

Within this general framework, many methods are possible. Our choice for
Chebfun3 is a variant of multivariate adaptive cross approximation (MACA) [4] that
we call slice-Tucker decomposition. Here, the simple functions used in the first stage
of constructing a low rank approximation of f are products of univariate and bivariate
functions. Once this first stage is complete, a second stage is executed in which the
bivariate functions are themselves approximated, as in Chebfun2, by sums of products
of univariate functions. The details of our method are presented in Section 2, and
comments on related algorithms and mathematics are given in Section 6.

Broadly speaking, the vision of the Chebfun enterprise is the development of
mathematical ideas and computational algorithms that are continuous analogues of
familiar discrete ideas and algorithms of scientific computing. Here, our computa-
tions with trivariate functions based on low-rank representations build on the well-
established literature of low-rank representations for order-3 tensors. Specifically, we
make use of a tensor F that approximates f on a tensor product grid of points,

F (i, j, k) ≈ f(xi, yj , zk). (1.3)

To conclude this section we review a few concepts from tensor analysis [14] and men-
tion some of the software available for tensor computations in MATLAB.

A discrete order-3 tensor F ∈ Cm×n×p is a real or complex 3-dimensional array
F (1:m, 1:n, 1:p). In general, throughout the paper, tensors are of size m×n×p, though
occasionally we consider m ×m ×m. A fiber of F is a vector obtained by fixing all
but one of the indices of F ; the directions x, y, and z are conventionally called modes
1, 2, and 3. Mode-1 fibers are columns, mode-2 fibers are rows, and mode-3 fibers
are tubes. A slice is a matrix obtained by fixing all but two of the indices of F . All
these notions such as fibers, columns, rows, and tubes, as well as further objects of
tensor analysis, have continuous analogues for functions, and Chebfun3 enables users
to work with them.

Definition 1.1. Let a ∈ Cm, b ∈ Cn, and c ∈ Cp be vectors and let A ∈ Cm×n

be a matrix. The outer product of a, b, c is the tensor F := a ◦ b ◦ c ∈ Cm×n×p

defined by F (i, j, k) = a(i)b(j)c(k), and the outer product of A and c is the tensor
G := A ◦ c ∈ Cm×n×p defined by G(i, j, k) = A(i, j)c(k).

Definition 1.2. [14] Let T ∈ Cn1×n2×n3 be a tensor. For k = 1, 2, 3, the
mode-k unfolding of T , denoted by T(k), is the matrix of size nk× (n1n2n3/nk) whose
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columns are the mode-k fibers of T . Moreover, if A is matrix of size mk × nk, then
the mode-k contraction of T with A, denoted by S := T ×k A, is the tensor such that
S(k) := A T(k).

Given a discrete tensor F ∈ Cm×n×p, a Tucker representation of F is a represen-
tation of the form

F = T ×1 A×2 B ×3 C,

where T ∈ Cr1×r2×r3 is the core tensor, A ∈ Cm×r1 , B ∈ Cn×r2 , and C ∈ Cp×r3

are factor matrices, and (r1, r2, r3), or occasionally r := max{r1, r2, r3}, is the Tucker
rank of (this representation of) F . Instead of mnp entries, Tucker format allows the
representation of F by mr1 + nr2 + pr3 + r1r2r3 entries. See [19] for a review of
tensor decompositions and [17] for a more recent review of low rank approximation
of tensors.

The Tensor Toolbox by Bader and Kolda [1] contains, among other things, a
class of tensors in Tucker format called ttensor. The latest version of Tensorlab by
Vervliet, et al. [39] has several features including different tensor decompositions. The
htucker toolbox by Kressner and Tobler allows the construction and manipulation of
tensors in the Hierarchical Tucker format [21]. TT-Toolbox by Oseledets [25] allows
fast multidimensional array operations in the tensor train format.

The remainder of this paper is organized as follows. In Section 2 we present our
algorithm for constructing representations of 3D functions in Chebfun3. Section 3 de-
scribes algorithms for numerical computing with chebfun3 objects. Section 4 presents
examples of computations in Chebfun3, and Section 5 shows how Chebfun3 and Cheb-
fun3t can be used as a laboratory for exploration of issues of low-rank approximation.
Section 6 discusses some related tensor factorizations, and Section 7 finishes with
some concluding remarks.

2. The Chebfun3 constructor.

2.1. Overview. Our low-rank approximation technique consists of three phases,
which are summarized in Table 2.1. The algorithm aims to take advantage both of
situations where dependence on one variable is simpler than dependence on the other
two, and of situations where the rank is smaller than the complexity of a tensor
product representation (1.2) would lead one to expect. We first outline these phases
at a high level, then give details in the subsections.

Table 2.1
Outline of the Chebfun3 constructor. BTD stands for Block Term Decomposition.

Phase Action Key point
1 slice decomposition computations involving full

and discrete BTD tensors of (hopefully) small size
2 resolve univariate skeletons sizes of skeletons may increase
3 convert to Tucker form final non-adaptive compression phase

Phase 1 begins by separating one of the variables from the other two. We can
decompose f into a sum of products of bivariate and univariate functions

f(x, y, z) ≈
rz∑
k=1

gk(x, y)hk(z), (2.1)
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where rz is called the (xy, z) numerical separation rank of f , or the z-rank for short.
Alternatively, we can represent f as

f(x, y, z) ≈
ry∑
k=1

gk(z, x)hk(y) ≈
rx∑
k=1

gk(y, z)hk(x),

where ry and rx are the y-rank and x-rank. Each bivariate function gk corresponds
to a slice, and each univariate function hk to a fiber. We call any of these formulas
a slice decomposition of f . See Figure 2.1. The numbers rx, ry, and rz may differ
greatly.

Fig. 2.1. Phase 1 of the Chebfun3 constructor: Slice decomposition, eq. (2.1). r stands for rz.

Which of the three decompositions should be used? The first step of construction
attempts to make a good choice, i.e., one that allows the approximation of f with low
complexity. This is the problem known as dimension clustering. We use the following
heuristic: sample f on a 10 × 10 × 10 tensor product grid, use the SVD to compute
the numerical ranks of the three modal unfoldings of the sample tensor with tolerance
machine epsilon, and find the dimension that corresponds to the minimum rank.1 In
the case of a tie, we choose the variable whose resolution requires the bigger number of
Chebyshev coefficients.2 For simplicity, in what follows we assume that the dimension
clustering step has estimated that the decomposition (2.1) is the best of the three.
Thus Figure 2.1 and equation (2.1) can be kept in mind for the remaining discussion.

The main computations of Phase 1 now involve, first, constructing the bivariate
functions gk(x, y) and tubes hk(z) of the slice decomposition. Then the functions
gk(x, y) are reduced to low-rank 2D representations by a process modeled on Cheb-
fun2, the goal being to identify what we call (following more or less familiar terminol-
ogy) skeleton columns and skeleton rows of each of these slices, to be combined with
the skeleton tubes hk(z) already determined. The final result of Phase 1 is a represen-
tation like what is called a block term decomposition (BTD) by De Lathauwer [10]
(though he does not use the same algorithm). See Figure 2.2.

Phase 2 then resolves the skeleton columns and rows of each slice and the skeleton
tubes identified in Phase 1.

1Recall that encountering distinct ranks for different variables would be impossible for a bivariate
function f(x, y): for any matrix, row rank equals column rank.

2A different approach to dimension clustering has been proposed by Bebendorf and Kuske [6].
For a 3D function, their scheme forms a 3× 3 covariance matrix from a probability density function
assigned to f , which is then inspected to find variables with smallest correlation. This requires
the approximate computation of seven triple integrals, which they carry out by a quasi Monte-
Carlo method with a Halton sequence. Our experiments with this technique show that in our
3D context, the SVD-based dimension clustering gets satisfactory results with considerably fewer
function evaluations.
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Fig. 2.2. Phase 1, continued: Block-term decomposition. Phase 2 then resolves the univariate
functions in the three directions.

Fig. 2.3. Phase 3: Compression to Tucker representation.

Phase 3 compresses the block term representation of Phase 2 to get a Tucker
decomposition of f , as depicted in Figure 2.3. In this final representation of f as a
chebfun3, there is no longer any asymmetry in the treatment of the three variables x,
y, and z.

Considering f(x, y, z) as an order 3 infinite dimensional continuous tensor defined
on the domain [a, b]× [c, d]× [e, g], we get the following representation of f :

f(x, y, z) ≈ T ×1 A(x)×2 B(y)×3 C(z), (2.2)

where T is a discrete tensor of size rx× ry × rz, A(x) is a quasimatrix3 of size ∞× rx
defined over [a, b], B(y) is a quasimatrix of size ∞ × ry over [c, d] and C(z) is a
quasimatrix of size ∞ × rz defined over [e, g]. The above formula involves modal
contractions of the core tensor T and the quasimatrices A(x), B(y) and C(z) and can
be rewritten as follows

f(x, y, z) ≈
rx∑
i=1

ry∑
j=1

rz∑
k=1

ti,j,k ai(x) bj(y) ck(z).

We call either (rx, ry, rz) or r := max{rx, ry, rz} the numerical or approximate Tucker
rank of f (i.e., the Tucker rank of the approximation of f on the right-hand side of
(2.2).)

Our algorithm has a number of similarities with the CROSS3D algorithm of [13,
27], and some significant differences. Both algorithms aim at computing a Tucker

3A quasimatrix is a ‘matrix’ whose ‘columns’ are functions rather than vectors, a term coined
by Stewart [29].
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decomposition and have complexity linear in the size of the underlying tensors. At the
same time we are interested in a continuous analogue of the Tucker decomposition and
use complete pivoting partly to take advantage of the nesting property of Chebyshev or
Fourier points, while a greedy pivoting strategy is used in [27] together with maximum
subvolume matrices. Another difference is that we do not aim at getting orthogonal
factors.

2.2. Phase 1: Determination of the separation rank and skeletons. Al-
gorithm 1 presents Phase 1 of the Chebfun3 constructor, which involves grids in each
dimension potentially of sizes 17, 23, 33, 46, . . . (one more than a power of

√
2) and z-

ranks potentially as large as 6, 8, 11, 16, . . . (approximately the same numbers divided
by the rather arbitrary constant 2

√
2). In words, we begin by sampling f on a q×q×q

tensor product Chebyshev grid with q = 17. We perform up to 6 steps of MACA
to determine whether the discretely sampled f can be approximated to the specified
tolerance by a function of z-rank at most 6. Specifically, in Step 4 of Algorithm 1 we
find the value of the entry with maximum magnitude over the whole tensor together
with the corresponding optimal indices (i, j, k), which are then used to form the 2D
slices and 1D tubes. If MACA was not successful with q = 17, we increase the grid
size to q = 23 and perform at most 8 steps of MACA to determine whether the z-rank
is at most 8. The process continues on Chebyshev grids with q = 33, 46, . . . , 363, with
checks for z-rank of at most 11, 16, . . . , 128. Carefully tracking these numbers leads
to the conclusion that, if it is successful, Phase 1 approximates a tensor of size

b
√

2
t+7

+ 1c × b
√

2
t+7

+ 1c × b
√

2
t+7

+ 1c (2.3)

by a tensor of z-rank at most b
√

2
t+4

+
√

2
−3c with t ≥ 1. To put it another way,

if f can be relatively approximated to the tolerance by a function of z-rank k, then
k steps of MACA are needed and Phase 1 samples f on a tensor grid of size (2.3),
where t = d−4.5 + 2 log2 ke. Note that

q = b
√

2
t+7

+ 1c ≤
√

2
d−4.5+2 log2 ke+7

+ 1 ≤ 4k + 1 = O(k).

If we simplify parameters, each iteration involves O(k3) operations in the MACA level
and O(k3) operations in the 2D ACA level. This means that overall, Phase 1 needs
O(k4) arithmetic operations.

We have oversimplified slightly. In fact, Phase 1 permits the grid in the x-y plane
to rise to a higher grid parameter q̂ > q than in the z direction. See the algorithm
as displayed. The first two conditional statements in Step 5 basically check the rank
r̂1 of the first slice. This is used to examine the success of internal 2D ACA steps.
The third conditional statement, on the other hand, checks the success of the external
MACA.

At the end of Phase 1, we have an approximation of the form

f(x, y, z) ≈
rz∑
l=1

r̂l∑
s=1

cl,s(x) rl,s(y) hl(z), (2.4)

as depicted in Figure 2.2. Similar representations appear in the literature; see e.g. [4,
5, 27]. De Lathauwer [10, Fig. 2.1] uses the name rank (r, r, 1) decomposition in
the more general context of block term decompositions. See also [24, eq. (13)] and [9,
p. 65]. We note in passing that the tensor train format [26], though different in the way
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Algorithm 1 Chebfun3 constructor: Phase 1.

1: Apply dimension clustering to a 10× 10× 10 sample of f , as described in §§2, to
choose which of x, y, and z is to be separated. Hereafter we assume this is z.

2: Set q̂ := q := 17 and a tolerance tol, e.g. 10−15.
3: Sample f at q̂× q̂× q tensor product Chebyshev points to get a discrete tensor F .
4: Set R1 := F , and then for l = 1, 2, 3, . . . .

• Find ε = maxi,j,k |Rl(:, :, :)| and associated indices i, j, k. Now consider the
2D slice Sl = Rl(:, :, k) and the 1D tube Rl(i, j, :).
• Identify skeleton columns and rows via 2D ACA for this 2D slice. Write
Sl = ClDlE

T
l , with Cl, Dl, El of sizes q̂ × r̂l, r̂l × r̂l, and q̂ × r̂l.

• Set Rl+1 := Rl − Sl ◦Rl(i, j, :)/Rl(i, j, k). See e.g. eq. (26) of [4].
5: Step 4 may terminate in various ways.

• If ε < tol and r̂1 < bq/2c, Phase 1 is finished; go to Phase 2.
• If ε < tol and r̂1 ≥ bq/2c, increase q̂ to d

√
2q̂e and return to Step 3.

• If ε ≥ tol and l = lmax = d2−3/2qe, increase q and q̂ by
√

2 and return to
Step 3, unless q would exceed qmax = 363, in which case the construction
exits with a failure.

it is computed, employs a similar representation for approximating order 3 discrete
tensors. The same is true of Tucker2 representation of order-3 discrete tensors.

If f is triply periodic and the flag ‘trig’ (or ‘periodic’) is invoked, then
instead of Chebyshev points, tensor product grids of equally spaced points are used
and a different refinement sequence is employed to exploit the grid nesting.

2.3. Phase 2: Resolving skeleton columns, rows, and tubes. At the end
of Phase 1 we have the block term decomposition (2.4). This means that we have
identified not only the locations of pivot values and skeleton slices and tubes, but also
skeleton columns and rows of each slice, as depicted in Figure 2.2. Phase 2 aims to
fully resolve these slices and tubes. For example, f(x, y, z) = (x + y) sin(200z) is a
function of z-rank 1. Consequently, Phase 1 terminates after sampling on a 17×17×17
tensor product Chebyshev grid even though a Chebyshev interpolant of degree 261 is
required to resolve the oscillations in the variable z. In Phase 2, we sample f only on
a subset of a finer grid consisting of k columns, rows and tubes and perform MACA
on those skeletons.

Suppose that after Phase 1 is finished, there are r skeleton columns and rows
of size q in each slice and each skeleton tube is also of size q. From Phase 2 on,
we work only with the skeletons, not forming explicitly any q × q slices. Instead we
follow a Chebyshev grid refinement procedure modeled on Chebfun to update the
skeleton columns and rows based on 3D MACA and 2D ACA. At the end of Phase 2,
the skeleton columns, rows, and tubes are of dimensions m,n, p, respectively, with
m,n, p ≥ q.

Each refinement in Phase 2 doubles the grid size, and the number of samples
needed to compute a degree n− 1 interpolant is n ≤ 2dlog2 ne. Therefore, if the pivot
tubes require degree p − 1 Chebyshev interpolants in z and the pivot columns and
rows require degree m− 1 and n− 1 Chebyshev interpolants in x and y, respectively,
then this stage samples f at at most

k
(
2dlog2 pe + k(2dlog2 me + 2dlog2 ne)

)
≤ 2kp+ 2k2m+ 2k2n

points. Another way to see this is that Phase 2 starts by resampling f on the points
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corresponding to skeletons in the block term decomposition. There are k skeleton
tubes, each a p × 1 vector, and k skeleton columns and rows, matrices of size m × k
and n× k, respectively.

We then perform k steps of MACA on the specified columns, rows and tubes,
and at the end of each MACA step we need to apply a bivariate ACA to the skeleton
columns and rows corresponding to a single slice. The overall cost of MACA isO(mk4)
for the columns, O(nk4) for rows, and O(pk2) for the tubes.

On the other hand, in order to fully update the skeleton columns of size m × k
corresponding to each slice, a single 2D ACA is used, involving O(mk2) operations.
Similarly, O(nk2) operations are needed to fully update the skeleton rows correspond-
ing to each slice. Since we have k skeleton columns and k skeleton rows, the total cost
of all bivariate ACA steps is O

(
(m+ n)k3

)
. In total, Phase 2 requires

O
(
(m+ n)k4 + (m+ n)k3 + pk2

)
arithmetic operations.

Note that Phase 1 also needed O(k3) evaluations of f . So, in the simplified case
where m = n = p and f has Tucker rank r, the total number of evaluations of f that
our algorithm needs is O(mr2 + r3). Phase 3 does not involve any evaluations of f .

Note that one of the three factor matrices of the Tucker format can now be formed
as a p×k matrix having skeleton tubes as its columns. The other two factor matrices
and the core tensor will be computed in Phase 3.

2.4. Phase 3: From block term decomposition to Tucker format. Let
us consider the slice decomposition of the first part of Phase 1. This contains two
types of dependency: between variables x and y in each slice gk(x, y), and between
different slices forming the whole decomposition. Phase 1 has already removed the
first type of dependency by block term decomposition. Phase 3 is designed to remove
the second, which is still present in the more compact representation of the block term
decomposition (2.4). See Steps 7–9 of Algorithm 2. We have reserved Step 6 for the
whole Phase 2.

Algorithm 2 Phase 3: BTD2Tucker compression.

7: Put the skeleton columns in a matrix U := [ C1 | C2 | · · · | Crz ] of dimension
m× ř and the skeleton rows in a matrix V := [ E1 | E2 | · · · | Erz ] of dimension
n× ř. Here, ř :=

∑rz
l=1 r̂l.

8: Apply two-dimensional ACA to U and V to get their low rank decompositions,
i.e., CUDUR

T
U = U and CVDVR

T
V = V .

9: Form the core tensor using the matrices DU , RU , DV and RV and pivot values
from the 2D ACA and MACA steps according to size of the low rank representa-
tion of each slice. CU and CV are factor matrices of the Tucker representation.

10: Chop the tails and run a “sampleTest”, to check the approximation accuracy. If
passed, then construct the chebfun3 object, otherwise if m,n, p ≤ mmax, refine
them and go to Step 3.

Step 7 involves O
(
(m+n)k2+k4

)
operations, assuming that it applies 2D ACA to

two matrices of size m×k2 and n×k2 each having rank k. The two factor matrices CU

and CV computed in Step 8 are m×k and n×k, respectively. Therefore, Step 10 needs
O
(
k(m logm + n log n + p log p)

)
operations for k FFTs. Thus we have established

the following result.
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Proposition 2.1. The Chebfun3 constructor requires

O
(
(m+ n)r4 + pr2 + (m logm+ n log n+ p log p)r

)
arithmetic operations and

O
(
(m+ n)r2 + pr

)
function evaluations, where r is the numerical Tucker rank of f .

2.5. A toy example. Consider the function

f(x, y, z) = 3x7z + yz + yz2 + log(2 + y)z3 − 2z5, (2.5)

which has the following three slice decompositions obtained by separating x, y, and z,
respectively:

f(x, y, z) = 1(yz + yz2 + log(2 + y)z3 − 2z5) + 3x7z (2.6)

= 1(3x7z − 2z5) + y(z + z2) + log(2 + y)z3 (2.7)

= z(3x7 + y) + z2y + z3 log(2 + y)− 2z5. (2.8)

This means that if we start Phase 1 by separating in the x dimension, we get the
representation (2.6), i.e. (modulo constant factors),

h1(x) = 1, g1(y, z) = yz + yz2 + log(2 + y)z3 − 2z5,

h2(x) = x7, g2(y, z) = 3z,

and the x-rank of f is 2. See Figure 2.1. Note that at the end of this slice decompo-
sition step we have already formed a basis for the “x space” of f , but not necessarily
for its “y space” and “z space”. On the other hand, (2.7) indicates that the y-rank
of f is 3, and (2.8) indicates that the z-rank of f is 4.

Going back to (2.6), we can form the bivariate separable representations

g1(y, z) = 1(−2z5) + y(z + z2) + log(2 + y)z3, g2(y, z) = 1(3z)

which then make up the block-term decomposition of f as in Figure 2.2. Then, Step 7
of the algorithm corresponds to forming the quasimatrices

U(y) = [ 1 y log(2 + y) 1 ], V (z) = [−2z5 z + z2 z3 3z ].

In contrast to V (z), which has full rank 4, U(y) has rank 3 because of the obvious
linear dependence in its columns. To form a basis for the “y space” of f , we proceed
by removing the last column of U(y). This explains why Tucker decomposition is
considered a subspace representation [18]. The factor quasimatrices of the Tucker
decomposition of f are

A(x) = [ 1 x7 ], B(y) = [ 1 y log(2 + y) ], C(z) = [ z5 z + z2 z3 z ].

We thus see that the trilinear rank of f is (2, 3, 4): these three numbers are the x-rank,
the y-rank, and the z-rank. The 2 × 3 × 4 discrete core tensor T has the following
mode-1 unfolding:

T(1) =

[
−2 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0

]
.

As our first illustration of Chebfun3 in action, here is the display that results if
we construct a chebfun3 for (2.5) numerically.
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>> f = chebfun3(@(x,y,z) 3*x.^7.*z+y.*z+y.*z.^2+log(2+y).*z.^3-2*z.^5)

f =

chebfun3 object

cols: Inf x 2 chebfun

rows: Inf x 3 chebfun

tubes: Inf x 4 chebfun

core: 2 x 3 x 4

length: 8, 25, 6

domain: [-1, 1] x [-1, 1] x [-1, 1]

vertical scale = 7

The lines labeled cols, rows, tubes, and core indicate that a 2× 3× 4 representa-
tion has been found. The length parameters 8, 25, and 6 indicate that the maximum
polynomial degrees needed to represent the univariate fibers in the x, y, and z di-
rections are 7, 24, and 5. The degrees 7 and 5 result from the powers x7 and z5 in
(2.5), and the degree 24 is what is needed to resolve log(2 + y) to machine precision
on the interval [−1, 1], as one can see in Chebfun by executing f = chebfun(@(y)

log(2+y)); plotcoeffs(f) or explain('log(2+y)'). The univariate functions con-
structed by Chebfun are available through f.cols, f.rows, and f.tubes and will
span the spaces indicated above, though the precise choices of functions and scalings
will be different.

As explained in the last section, the representation of a chebfun3 is symmetric with
respect to x, y, and z, even though the construction process begins by separating one
of these dimensions from the other two. In keeping with this symmetry, the display
above gives no indication of whether it was x, y, or z that was separated in the
constuction of this chebfun3. As it happens, the separated variable was x, matching
the formulas given above—not that it would make much difference for such a simple
function. A user can force the constructor to choose a particular separation dimension
with a command like f = chebfun3(...,’fiberDim’,i), where i is 1, 2, or 3.

3. Numerical computation with chebfun3 objects. The purpose of Cheb-
fun and Chebfun3 is not just to represent functions, but to compute with them. Once
chebfun3 objects have been constructed, many subsequent operations can exploit the
Tucker representation (2.2), reducing most of the work to one-dimensional operations
available in 1D Chebfun. Chebfun3 does this for operations involving differentiation
and integration, but not for addition, multiplication or evaluation of functions of a
chebfun3. For use of Tucker format for addition of tensors, see for example [21].

Throughout the Chebfun3 code, speedups would be possible if various operations
made use of MEX files from compiled programming languages. However, the Chebfun
project has a policy of avoiding MEX files in the interests of portability and durability
over time. Therefore, Chebfun3 is entirely written in MATLAB. Also following the
Chebfun convention, everything runs if the user has only core MATLAB, without
toolboxes, though a speedup is possible if the Optimization Toolbox is installed as
described below under Minima and maxima.

Evaluation. To evaluate a chebfun3 f at an argument x, y, z, we first evaluate the
factor quasimatrices A(x), B(y), and C(z) with 1D Chebfun (which uses the Clenshaw
recurrence) and then apply (2.2). This computation scales linearly with the number
of evaluation points.

Addition and subtraction. If f and g are chebfun3 objects, then a chebfun3 for
f + g is computed by calling the constructor, i.e., based on sampling f + g at various
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points. The convergence tolerance is scaled not to the samples but to the inputs f
and g, so that if g ≈ −f , for example, the result returned will be zero rather than an
attempt to resolve rounding error noise. Differences f − g are computed in the same
fashion.

Multiplication and division. The pointwise product fg, invoked by the syntax
f.*g, is also computed by calling the constructor, as is the quotient f/g, invoked by
f./g. If g takes the value zero somewhere in the domain, then f/g will usually result
in a construction failure. If an exactly infinite value is detected at some point along
the way, the result is an immediate error message and exit.

Functions of a chebfun3. If f is a chebfun3, then chebfun3 objects representing
functions such as exp(f) and sin(f) are computed by calling the constructor. If
singularities are encountered, as may happen for example with log, tan, sqrt, or
abs, the construction will usually fail.

Trivial functions of a chebfun3. A few functions can be evaluated without the
need for the constructor, notably unary plus (which makes no change) and unary
minus (which negates the core tensor T ).

Differentiation. Partial derivatives with respect to x, y, or z are computed by
differentiating (2.2) with respect to the appropriate variable. For example, if f is a
chebfun3, then a chebfun3 for ∂f/∂x is formed from the equation

∂f(x, y, z)

∂x
≈ T ×1

∂A(x)

∂x
×2 B(y)×3 C(z)

making use of the diff command of 1D Chebfun to compute ∂A/∂x. Differentiation
is invoked in Chebfun3 by the commands diffx, diffy, and diffz, or by a general
command diff that combines these capabilities.

Laplacian and biharmonic operators. Commands lap and biharm (or equivalently
laplacian and biharmonic) are available for computing ∆f and ∆2f , again mapping
a chebfun3 to a chebfun3. The implementation consists of adding up the appropriate
partial derivatives.

Definite integrals. The sum3 command computes the triple definite integral of f .
This is based on the integral of (2.2),∫ g

e

∫ d

c

∫ b

a

f(x, y, z)dxdydz ≈ T ×1

∫ b

a

A(x)dx×2

∫ d

c

B(y)dy ×3

∫ g

e

C(z)dz,

with each 1D integral computed by 1D Chebfun (Clenshaw–Curtis quadrature). Fol-
lowing the analogous MATLAB syntax, there is also a sum command for integration
with respect to just one of the variables, by default x, which maps a chebfun3 to a
chebfun2. Thus sum3(f) is mathematically equivalent to sum(sum(sum(f))). Simi-
larly the command sum2 integrates with respect to two variables, by default x and y,
mapping a chebfun3 to a chebfun.

Mean and standard deviation. The commands mean3 and std3 follow directly
from sum3, each mapping a chebfun3 to a scalar. Again following the MATLAB pat-
tern, there are commands mean and std that operate along one dimension, producing
chebfun2 objects, and mean2 and std2 operate along two dimensions and produce
chebfuns.

Indefinite integrals. Like Chebfun and Chebfun2, Chebfun3 has a cumsum com-
mand that computes an indefinite integral with respect to one variable, by default x.
The algorithm is analogous to the above, using (2.2) to reduce the problem to 1D
pieces. Similarly cumsum2 integrates with respect to two variables, by default x and y,
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and cumsum3 integrates with respect to all three variables. All of these operations map
a chebfun3 to a chebfun3.

Norms. If f is a chebfun3, then norm(f) and norm(f,’fro’) both return the
trivariate 2-norm, i.e., the square root of the integral of |f2|. This could be computed
by constructing ff and then evaluating its integral as described above, but for greater
speed, following a proposal of De Lathauwer [11], we instead make use of the higher-
order SVD, described below. The command norm(f,inf) returns the maximum of
|f |, computed as described below. The 1-norm of a chebfun3 also makes sense math-
ematically, but this operation is not implemented in Chebfun3 since its computation
would involve a non-smooth integral. Note that in all of the operations just described,
no operator norms are in play, just norms of multivariate functions. This follows the
same convention as in Chebfun2 that by default, Chebfun objects are interpreted as
functions, not operators, although functionality for certain operator interpretations
may also be available when explicitly requested.

Minima and maxima. The commands min3 and max3 compute global minima and
maxima of chebfun3 objects. At present, our algorithm is a rather simple one that
works in most cases but does not fully exploit Chebfun3’s rank-compressed structures.
The algorithm begins by computing an initial guess for the optimum using sample of
f on a discrete tensor of appropriate size. It then improves the initial guess using
MATLAB fmincon (an interior point algorithm) if the user has the Optimization
Toolbox, otherwise fminsearch (Nelder–Mead simplex algorithm). Commands max2,
min2, max and min for optimization along just one or two variables are at present
implemented only in crude low-accuracy versions.

Higher-order SVD (HOSVD). The higher-order SVD (HOSVD) of a discrete ten-
sor was introduced in [11]. For an order-3 tensor, this uses SVDs of the three modal
unfolding matrices to compute a factorization in Tucker format for which the resulting
three factor matrices have orthogonal columns and the core tensor is all orthogonal,
i.e., the horizontal, lateral and frontal slices have orthogonal columns. Chebfun3 has
a continuous analogue of this discrete HOSVD. The underlying algorithm starts by
calling the Chebfun qr method to compute QR factorizations of the three factor quasi-
matrices A(x), B(y), and C(z) [36]. It then computes the discrete HOSVD of the core
tensor of the chebfun3 object contracted with the triangular factors computed in the
QR factorizations.

Vector-valued functions and operations. A chebfun3 is a scalar function, but many
3D applications need three-dimensional vectors, and for this we have also implemented
a class chebfun3v, modeled on the class chebfun2v in Chebfun2. A chebfun3v consists
of a triple of three chebfun3 objects,

f(x, y, z) =

 f(x, y, z)
g(x, y, z)
h(x, y, z)

 .
The implementation is a straightforward extension of Chebfun3, and we shall not
give details. The method grad (or gradient) computes ∇f , mapping a chebfun3 to
a chebfun3v. Conversely, div computes ∇ · f , mapping a chebfun3v to a chebfun3.
The method curl computes the curl of a vector field f , mapping a chebfun3v to a
chebfun3v, and cross computes the cross product f × g of two vector fields.

Curves, surfaces, and vector calculus. One of the major themes of the Chebfun
project in recent years has been capabilities for various kinds of computing on curves
and surfaces. One aspect of this has been the Spherefun and Diskfun classes for
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functions defined on spheres and disks [35, 34]. Another has been various capabilities
in both Chebfun2 and now Chebfun3 for performing operations on general curves
and surfaces defined by parametrizations. In particular, Chebfun3 includes a method
integral for computing the line integral of a chebfun3 over a parametrized curve in
3D, and integral2 for computing the surface integral over a parameterized surface.
There are also analogous vector commands by the same names applicable to chebfun3v
objects. These capabilities combine to enable a broad range of computations related
to vector calculus, involving Green’s theorems and Stokes’ theorem for example, and
some examples are posted at www.chebfun/org/examples/approx3.

Rootfinding. Chebfun2 has algorithms for computing the “roots” of a chebfun2,
which consist generically of curves that are represented as chebfuns, and the roots of
of a chebfun2v, which consist generically of points. In three dimensions the analogous
operations are much more challenging, and at present, Chebfun3 has only a primitive
command root that attempt to return a single root of a chebfun3v. This is an area
of ongoing research.

4. Numerical examples. We now give four examples to illustrate Chebfun3
computing. In a few pages we can not show very much, and for more examples, see
the Guide and the examples collection at www.chebfun.org. Our emphasis here is on
general capabilities, whereas the next section focusses on algorithmic investigations.

We set the stage by mentioning a Chebfun3 command that users find very conve-
nient, analogous to the commands cheb.x and cheb.xy for Chebfun and Chebfun2.
If one types cheb.xyz, then three chebfun3 objects are put into the workspace: x

representing the function x in the default domain [−1, 1]3, y representing y, and z

representing z. In what follows we assume that cheb.xyz has been executed.

Example 1. An arbitrary sequence of operations. As an illustration entirely with-
out scientific content, consider this sequence of operations:

f = exp(x.*y.*z); g = cos(sin(f)); h = log(x+y.*z+f+g)

Chebfun produces this output in about 2 sections on a 2015 desktop machine:

h =

chebfun3 object

cols: Inf x 27 chebfun

rows: Inf x 36 chebfun

tubes: Inf x 36 chebfun

core: 27 x 36 x 36

length: 55, 54, 54

domain: [-1, 1] x [-1, 1] x [-1, 1]

vertical scale = 1.7

Here are illustrations of typical ongoing computations:

>> sum3(h)

ans = 3.518814806858063

>> [val,pos] = min3(h)

val =

-0.497265559894641

pos =
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Fig. 4.1. plotcoeffs(h) plot, showing the Chebyshev series involved in representing the
columns, rows, and tubes of Example 1 to machine precision.

-1.000000000000000 -0.263375189750789 0.971965306269114

>> h(0,0,0)

ans = 0.510645654808261

The command

plotcoeffs(h)

produces the plot shown in Fig. 4.1, showing the Chebyshev series from which this
chebfun3 is constructed.

Example 2. A periodic lattice function. The function

f(x, y, z) = cos2(2πx) + cos2(2πy) + cos2(2πz) (4.1)

is available in the Chebfun3 Gallery collection (cheb.gallery3(’lattice’)). We
can construct f and produce a plot like that of Fig. 4.2 with the commands

f = cos(2*pi*x).^2+cos(2*pi*y).^2+cos(2*pi*z).^2

isosurface(f,0.3)

The image depicts the surface in the unit cube where f(x, y, z) = 0.3. This function
has a core of size 2× 2× 2, with chebfuns in the three directions of lengths 39, 39, 39.
Since it is periodic, it can also be contructed with a trigonometric representation,

f = chebfun3(@(x,y,z) cos(2*pi*x).^2+cos(2*pi*y).^2+cos(2*pi*z).^2,'trig')

14



Fig. 4.2. isosurface(f,0.3) plot, showing a level surface of the function (4.1).

in which case the lengths in the three directions (now of Fourier rather than Chebyshev
series) shrink to 9, 9, 9. Both the maximum and the integral of this function are readily
computed in one’s head:

>> max3(f)

ans = 3

>> sum3(f)

ans = 12.000000000000007

Example 3. Global minimum of a function of Wagon. One of the problems of the
SIAM 100-Dollar, 100-Digit Challenge [8] was to compute the global minimum of the
bivariate function

f(x, y) = esin(50x)+sin(60ey)+sin(70 sinx)+sin(sin(80y))−sin(10(x+y))+(x2+y2)/4.

This function has rank 4 (exact, not just numerical), and in about 1 second on a desk-
top computer, the Chebfun2 command min2(cheb.gallery2(’challenge’)) pro-
duces the value −3.306868647475238, which is correct in all but the last digit [31].
On p. 99 of the book about the challenge [8], Stan Wagon proposed a generalization
of the function to 3D whose optimization should be “a lot harder”:

f(x, y, z) = esin(50x) + sin(60ey) sin(60z) + sin(70 sinx) cos(10z) + sin sin(80y)

− sin(10(x+ z)) + (x2 + y2 + z2)/4.

In Chebfun3, we find the following in about 2 seconds:

>> f = cheb.gallery3('wagon');

>> min3(f)

ans = -3.328338345663266
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Fig. 4.3. Contour plot of a slice through Wagon’s function (4.2) at the critical level x =
−0.1580368, showing its considerable complexity (level curves blue at −2, green at 0, grey at 2).
Nevertheless, Chebfun3 finds the 3D global minimum in two seconds, marked by the red dot.

All but at worst the final two digits of this number must be correct, since it lies
in the interval [−3.328338345663281,−3.328338345663262] reported in [8], computed
by interval arithmetic. Figure 4.3, showing just one 2D slice, indicates the great
complexity of this function, while a look at its structure indicates how Chebfun has
nevertheless been able to deal with it efficiently:

>> f

f =

chebfun3 object

cols: Inf x 4 chebfun

rows: Inf x 3 chebfun

tubes: Inf x 5 chebfun

core: 4 x 3 x 5

length: 666, 1058, 102

domain: [-1, 1] x [-1, 1] x [-1, 1]

vertical scale = 6.9

The rank is very low, with a core tensor of size just 4× 3× 5, but the lengths in the
three dimensions are 666, 1058, 102. Thus Wagon’s function turns out to be one for
which low-rank compression is extremely effective.

It is interesting to consider, how has the Chebfun3 setting helped us in solving
Wagon’s minimization problem? — which could of course be solved in other ways too,
since an explicit formula for Wagon’s function is provided. There are perhaps two
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main aspects to this. One is that, by a bit of luck, the function has turned out to have
very low rank, making the representation of Chebfun3 very economical. The other,
more fundamental observation has to do with the global nature of all optimization
(and rootfinding) calculations in Chebfun, Chebfun2, and Chebfun3. These systems
make use of global representations of functions, which include implicit information
about the space scales on which the functions vary. Thus right at the start of the
computation of a minimum, Chebfun3 has available a sample on a grid which is known
to be of about the right resolution for the function at hand. These samples on the
grid are exploited to find initial guesses for minimization, providing exceptionally fast
global optimization in many cases, although without a guarantee of optimality.

Still more fundamentally, Chebfun3 is a system that enables us to perform com-
putations such as minimization on functions that do not, like Wagon’s, have explicit
representations.

Example 4. Higher-order singular values of a 3D function. On p. 233 of [18],
Hackbusch reports the modal singular values of the function

f(x, y, z) = xz + x2y, (x, y, z) ∈ [0, 1]3. (4.2)

We can compute these numbers with Chebfun3 as follows:

>> f = chebfun3(@(x,y,z) x.*z + x.^2.*y, [0, 1, 0, 1, 0, 1]);

>> s = hosvd(f)

>> s{1}

0.549642914043599

0.025892949222491

>> s{2}

0.548590017185186

0.042740739611470

>> s{3}

0.548590017185186

0.042740739611470

These results match those of Hackbusch to 16 digits. Note the decay of each set of
modal singular values, analogous to the decay of singular values of bivariate functions.

5. Exploring low rank approximation issues. Hundreds of authors have em-
ployed low-rank compression in hundreds of applications. What distinguishes Cheb-
fun3 is its application of such methods to functions rather than discrete tensors, and
its ambition to be a general computational tool, providing results to machine precision
for all kinds of 3D functions of unpredictable nature. The generality of the tool also
makes it a good laboratory for exploration of issues of function representation and
low-rank compression, with the pure tensor-product alternative Chebfun3t providing
a useful comparator.

Our first example illustrates that some functions have low rank for algebraic
reasons. Consider f(x, y, z) = cos(kπ(x + y + z)), where k is a parameter. For any
k 6= 0, the mathematical rank is 2, and Chebfun3 exploits this property. For example,
here we take k = 500.

>> tic, f = chebfun3(@(x,y,z) cos(500*pi*(x+y+z))), toc

f =

chebfun3 object

cols: Inf x 2 chebfun
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rows: Inf x 2 chebfun

tubes: Inf x 2 chebfun

core: 2 x 2 x 2

length: 1684, 1684, 1684

domain: [-1, 1] x [-1, 1] x [-1, 1]

vertical scale = 1

Elapsed time is 0.206855 seconds.

Note that the degrees in each direction are large – approximately kπ. This means
that polynomials of high degree are involved in representing f , but only univariate
ones. The mean of f2 comes out correctly as ≈ 0.5:

>> tic, mean3(f.^2), toc

ans = 0.499999999999952

Elapsed time is 3.385625 seconds.

Attempting to represent this function in a purely tensor manner would be completely
impractical. Even if k is reduced to 50, the expense is great:

>> tic, f = chebfun3t(@(x,y,z) cos(50*pi*(x+y+z))), toc

f =

chebfun3t object

coeffs: 214 x 214 x 214

domain: [-1, 1] x [-1, 1] x [-1, 1]

vertical scale = 1

Elapsed time is 33.066422 seconds.

Not many functions have exactly low rank for reasons of algebra, but quite a few
have numerically low rank for reasons of analysis. In [38] it is argued that there are
two main properties that enable functions to be well approximated with low rank:
localization of (near-) singularities, and alignment with axes. As an example of the
first kind, here is a trivariate Runge function. In this and the subsequent displays of
chebfun3 objects, we have deleted the “cols”, “rows”, and “tubes” lines, which can
be inferred from the core dimensions, and also the relatively uninteresting display of
vertical scale.

>> tic, f = chebfun3(@(x,y,z) 1./(1+25*(x.^2+y.^2+z.^2))), toc

f =

chebfun3 object

core: 19 x 19 x 19

length: 191, 191, 191

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 1.140339 seconds.

The low-rank nature of f is reflected in the fact that the lengths of each univariate
piece are ten times the dimension of the core tensor in each direction. This is caused
by the fact that the behavior of f is dominated by a localized region near (0, 0, 0).
A similar construction with Chebfun3t cannot take advantage of this structure, and
takes much longer:

>> tic, f = chebfun3t(@(x,y,z) 1./(1+25*(x.^2+y.^2+z.^2))), toc

f =
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chebfun3t object

coeffs: 177 x 179 x 181

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 11.127352 seconds.

The complexity of the Chebfun3t construction is reflected in its needing many function
evaluations along the way: 26,328,437 as compared with 903,380 for Chebfun3.

Another feature of Chebfun3 is its dimension clustering step, which attempts to
split one dimension from the other two in an advantageous way. For example, here is
an entirely satisfactory construction process involving a function that is complicated
in two directions and relatively simple in the third. This kind of difference between
coordinates arises very commonly in applications.

>> tic, f = chebfun3(@(x,y,z) tanh(5*(x+z)).*exp(y)), toc

f =

chebfun3 object

core: 73 x 1 x 73

length: 126, 15, 124

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 0.324121 seconds.

The algorithm has successfully determined that the variable y should be separated
from x and z in Phase 1. If we override this decision and force x to be separated
from y and z, the computation becomes very slow, even though the end result is
approximately the same:

>> tic, f = chebfun3(@(x,y,z) tanh(5*(x+z)).*exp(y),'fiberDim',1), toc

f =

chebfun3 object

core: 72 x 1 x 72

length: 120, 15, 121

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 28.486261 seconds.

Some functions, unfortunately, lack the kind of structure that can be readily
compressed to low rank. For example, the function f(x, y, z) = 1/ cosh2(k(x+y+z)),
which is not well aligned with the x, y, or z axes, remains highly complicated in our
representations when k is large. Even for k = 3, Chebfun3 is slow:

>> tic, f = chebfun3(@(x,y,z) 1./cosh(3*(x+y+z)).^2), toc

f =

chebfun3 object

core: 59 x 59 x 58

length: 84, 82, 82

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 10.136970 seconds.

Essentially no compression is taking place here; the ratio of dimensions about 82 in the
univariate lengths to 59 in the core tensor reflects not low-rank compression but the
π/2 factor associated with the irregular spacing of Chebyshev grids. The timing will
get rapidly worse if k is increased. By contrast the pure tensor approach of Chebfun3t
wastes no time exploring compressed representations.
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Fig. 5.1. A “slice” plot of the chebfun3 for Wagon’s function in the box [−0.5, 0.5]3.

>> tic, f = chebfun3t(@(x,y,z) 1./cosh(3*(x+y+z)).^2), toc

chebfun3t object

coeffs: 81 x 82 x 83

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 1.539751 seconds.

As before, the difference in timings is reflected in counts of the function evalua-
tions. For this example Chebfun3 requires 9,354,852 evaluations and Chebfun3t just
3,325,276.

We finish with another illustration of the power of low-rank compression for func-
tions aligned with the axes. In Example 3 of the last section we considered the com-
plicated 3D function devised by Stan Wagon for global optimization. The function is
of such low rank that Chebfun3 represents it quickly,

>> [~,ff] = cheb.gallery3('wagon');

>> tic, f = chebfun3(ff), toc

f =

chebfun3 object

core: 4 x 3 x 5

length: 666, 1058, 102

domain: [-1, 1] x [-1, 1] x [-1, 1]

Elapsed time is 0.172304 seconds.

Attempting to represent this function in Chebfun3t, however, would be utterly im-
practical. To bring the time under a minute we can shrink the domain by a factor of
2 in each dimension:
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>> tic, chebfun3t(ff,.5*[-1 1 -1 1 -1 1]), toc

f =

chebfun3t object

coeffs: 307 x 464 x 62

domain: [-0.5, 0.5] x [-0.5, 0.5] x [-0.5, 0.5]

Elapsed time is 42.131969 seconds.

Figure 5.1 shows the plot produced with the Chebfun3 command slice(f,0,0,0).
To bring the time down to that of the Chebfun3 construction, it would be necessary to
shrink the cube by a factor of 25 in each dimension, that is, to reduce it to [−.04, .04]3.

6. Related tensor approximations. As mentioned at the outset, many rep-
resentations of multivariate functions are available. We do not claim that the choices
we have made in designing Chebfun3 are the only reasonable ones. For important
alternatives see, for example, [16, 20, 28]. However, to further explain some of the
thinking behind these choices, we shall now comment on three other methods in the
tensor field.

Polyadic decomposition. Our representation (2.2) involves a dense core tensor,
T . An alternative approach is effectively to require this object to be diagonal, giving
the polyadic decomposition, where f is decomposed into a sum of outer products of
univariate functions [7]:

f(x, y, z) ≈
r∑

l=1

αlal(x)bl(y)cl(z).

Given a discrete tensor F of size m× n× p, the r-term polyadic decomposition of F
has the attractive property that the number of parameters needed to represent F is
only r(m+ n+ p). The smallest possible r is called the tensor rank or the canonical
rank . If r turns out to be the tensor rank, then the above representation is called the
canonical polyadic (CP) decomposition4. Unfortunately, it is not easy to determine
the optimal value for r in the course of computation, so in practice an estimate of r
is often simply fixed beforehand. Another point worth mentioning is the lack of the
so-called interpolation property in current implementations of polyadic decomposition,
as noted in [5]. Specifically, one of the reasons why we choose a slice and a fiber at
each step of Phase 1 of our algorithm rather than three fibers as in one variant of
MACA which forms a polyadic decomposition is that zeros introduced at one step
might be lost at subsequent steps of the latter approach. See [18, p. 455] for further
discussion. Even if one fixes a value of r, most algorithms for the polyadic format
involve steps requiring optimization, whereas our approach based on a Tucker format
is carried out in a purely algebraic fashion.

Tensor train. Another method of low rank approximation is the tensor train (TT)
format [26]. The great power of the TT approach emerges in high dimensions, as has
recently been shown by Gorodetsky, Karaman and Marzouk [15]. For applications
like ours in three dimensions, it is not so advantageous. The TT decomposition of
a discrete tensor of size m × n × p consists of a ‘train’ with just three ‘carriages’:
a matrix of size m × r1, a tensor of size r1 × n × r3, and a matrix of size r3 × p.
This representation is similar to the Tucker2 format [19], except with one of the three
factor matrices of the Tucker format set to be the identity matrix. In the continuous

4In theory the tensor rank might be as great as min{mn,mp, np}.
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framework, the TT representation of a 3D function is

f(x, y, z) ≈
r1∑
i=1

r2∑
j=1

ai(x)bij(y)cj(z).

In contrast, our slice-Tucker approach corresponds to the Tucker (i.e., Tucker3) decom-
position. The difference is obvious as Tucker3 allows the function to be compressed
three times, i.e., in all three variables, while Tucker2 (or tensor train) does this twice.

Higher-order SVD. In principle one could use the higher order SVD to represent
a discrete tensor in the Tucker format, offering a certain kind of optimality. Similarly,
one could use the SVD to compute low rank approximation of bivariate functions in
Chebfun2. However, there is a substantial cost in computing these optimal approxi-
mations which is unlikely to be amortized in the context of numerical computing with
functions, where new objects are constantly being created from existing ones. Thus
in 2D, Chebfun2 is based on ACA, a much faster alternative to SVD that usually
delivers approximations that are reasonably close to optimal. Specifically, assume
that f(x, y) is a bivariate function of numerical rank r and the degree of Chebyshev
interpolants needed to resolve f to a specified accuracy (machine epsilon by default)
is m−1 in x and n−1 in y. Then, the number of arithmetic operations needed in the
ACA-based Chebfun2 constructor is O

(
r3 +r2(m+n)+r(m logm+n log n)

)
, i.e., the

cost is loglinear in the number of Chebyshev coefficients. The Chebfun2 constructor
also involves O

(
r2 +r(m+n)

)
evaluations of f . As we have shown in Proposition 2.1,

the chebfun3 constructor also has log-linear complexity in the length of the function.

7. Conclusion. Chebfun3 was written by the first author during 2014–16 and
has been a part of Chebfun since the V5.5.0 release on 1 July 2016, freely available from
www.chebfun.org or http://github/chebfun/chebfun. This toolbox is the first of
its kind, and we believe it has great potential for all kinds of computations to near-
machine precision involving smooth scalar or vector functions in a box. Extensions
to functions with singularities, solution of PDEs, and non-rectangular domains are
mostly challenges for the future, but one is available already: the “spin3” code for
fast solution of stiff PDE in periodic 3D domains by exponential integrators [23].
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