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Abstract. Current state of the art preconditioners for the reduced Hessian and the Karush-
Kuhn-Tucker (KKT) operator for large scale inverse problems are typically based on approximating
the reduced Hessian with the regularization operator. However, the quality of this approximation
degrades with increasingly informative observations or data. Thus the best case scenario from a
scientific standpoint (fully informative data) is the worse case scenario from a computational per-
spective. In this paper we present an augmented Lagrangian-type preconditioner based on a block
diagonal approximation of the augmented upper left block of the KKT operator. The preconditioner
requires solvers for two linear subproblems that arise in the augmented KKT operator, which we
expect to be much easier to precondition than the reduced Hessian. Analysis of the spectrum of the
preconditioned KKT operator indicates that the preconditioner is effective when the regularization
is chosen appropriately. In particular, it is effective when the regularization does not over-penalize
highly informed parameter modes and does not under-penalize uninformed modes. Finally, we present
a numerical study for a large data/low noise Poisson source inversion problem, demonstrating the
effectiveness of the preconditioner. In this example, three MINRES iterations on the KKT system
with our preconditioner results in a reconstruction with better accuracy than 50 iterations of CG on
the reduced Hessian system with regularization preconditioning.
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1. Introduction. Here we focus on data scalable Karush-Kuhn-Tucker (KKT)
preconditioners for large-scale linear1 inverse problems in which one seeks to recon-
struct a parameter field from observations of an associated state variable. Specifically,
suppose we have observations y of a state variable u that have been corrupted by some
noise ζ,

(1) y = Bu+ ζ,

where B is a linear operator encoding the action of the observation process (i.e., the
observation operator). Further, let the state variable u depend on a parameter q
through a linear state equation,

(2) Tq +Au = f,

where A is the forward operator, T maps the parameter to the residual of the state
equation, and f is the known right hand side source. We seek to reconstruct the
parameter q based on the observations y. Under an independent and identically
distributed (i.i.d.) Gaussian noise model,2 this inverse problem naturally leads to a
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1The preconditioner presented here is also applicable to nonlinear inverse problems, which give
rise to linear systems of the form we address here at each iteration of a (Gauss) Newton or sequential
quadratic programming method.

2The least squares formulation in (3) also applies to general (non-i.i.d.) Gaussian noise models
after re-weighting the data misfit equation (1) by the inverse square root of the noise covariance.
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least squares optimization problem of the following form,

(3)
min
q,u

1

2
‖Bu− y‖2 +

α

2
‖Rq‖2

such that Tq +Au = f,

where R is a suitably chosen regularization operator and α is a regularization param-
eter. We focus on the computationally difficult case in which the observations y are
highly informative about the parameter q, and the regularization parameter α is cor-
respondingly small. The KKT system expressing the first order necessary condition
for an optimal solution of (3) is

(4)

αR∗R T ∗

B∗B A∗

T A


︸ ︷︷ ︸

K

qu
η

 =

 0
B∗y
f

 .
Here all operators are linear, possibly unbounded, maps between suitable Hilbert
spaces. The symbols A∗, B∗, R∗, and T ∗ denote the adjoints (in the Hilbert space
sense) of A,B,R, and T , respectively, and η denotes the adjoint variable (or Lagrange
multiplier) for the state equation. More details regarding our setting and notation are
provided in Section 1.5. We denote the KKT operator by K. For large-scale problems,
direct factorization of K is not computationally feasible due to both memory and
CPU time considerations, and iterative methods must be used. Krylov methods,
MINRES [51] in particular, are the gold standard for iteratively solving this kind of
large scale symmetric indefinite system. The performance of the MINRES method
strongly depends on the clustering of the spectrum of the preconditioned operator,
the more clustered the better [65]. In this paper we propose clustering the spectrum
of the KKT operator by using the following block diagonal preconditioner,

(5) P :=

αR∗R+ ρT ∗T
B∗B + ρA∗A

1
ρI

 ,
where I denotes the identity map associated with the appropriate inner product (in
the computations, a mass matrix). We further propose choosing ρ =

√
α based on the-

oretical results and numerical evidence. In our theory and numerical experiments we
assume that A and R are invertible maps. Although the application of preconditioner
(5) and the abstract theory we present in Section 3 do not depend on invertibility of T ,
much of the intuition behind the assumptions of the theory is lacking in the case where
T is non-invertible. Remedies for this case are the subject of ongoing research. While
existing data scalable KKT preconditioners usually require regularization operators
R that are spectrally equivalent to the identity,3 our preconditioner (5) performs well
even if R is a discretization of an unbounded operator (e.g., Laplacian regularization).

1.1. Overview of results. In Section 3.2 we prove that, using our precondi-
tioner (5), the symmetrically preconditioned KKT operator satisfies the condition
number bound

cond
(
P−1/2KP−1/2

)
≤ 3

(1− β)δ
,

3A review of existing work is presented in Section 1.3. In particular, see Sections 1.3.2 and 1.3.3.
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where δ and β are bounds on the eigenvalues of the arithmetic and geometric means
of certain damped projectors.4 Based on the nature of the damped projectors, we
expect these eigenvalue bounds to be satisfied with good constants δ and β for inverse
problems that are appropriately regularized. By “appropriately regularized,” we mean
that the regularization is chosen so that components of the parameter that are highly
informed by the data are not over-penalized, and components of the parameter that
are poorly informed by the data are not under-penalized. In Section 5 we derive
quantitative bounds on δ and β for the special case of source inversion problems with
spectral filtering regularization. When the regularization is chosen appropriately,
these bounds are independent of the mesh size and of the information content in the
data.

In Section 6 we numerically demonstrate the effectiveness of the preconditioner
on a Poisson source inversion problem with highly informative data and Laplacian
regularization. Preconditioning the KKT system with our preconditioner results in
greater accuracy in three MINRES iterations than the widely-used regularization pre-
conditioning on the reduced Hessian system achieves in 50 conjugate gradient itera-
tions. Even though the regularization is not a spectral filter, our preconditioner still
exhibits mesh independence and good scalability with respect to a decrease in the
regularization parameter by 10 orders of magnitude. As suggested by our theory,
we see that the performance of the preconditioner in the small regularization regime
actually improves as more data is included in the inversion.

1.2. Desirable properties of KKT preconditioners for inverse problems.
To evaluate the quality of a KKT preconditioner, it is useful to consider its perfor-
mance with respect to the following desired properties:

(a) Problem generality: A KKT preconditioner exhibits problem generality if
it applies to a wide variety of inverse problems.

(b) Efficient solvers for preconditioner subproblems: If applying the in-
verse of the preconditioner to a vector involves solving subproblems, efficient
solvers for those subproblems are required.

(c) Mesh scalability: Finite dimensional inverse problems often arise from dis-
cretizations of infinite dimensional inverse problems. Preconditioners for such
problems are mesh scalable if the effectiveness of the preconditioner (as mea-
sured in terms of either the condition number of the preconditioned KKT
operator, the clustering of the spectrum of the preconditioned KKT operator,
or the number of Krylov iterations required to converge to a fixed tolerance)
does not degrade substantially as the meshes used to discretize the problem
are refined.

(d) Regularization robustness: KKT preconditioners are regularization ro-
bust if their effectiveness does not degrade substantially as the regularization
parameter α is made smaller.

(e) Data scalability: KKT preconditioners are data scalable if their effectiveness
does not degrade substantially as more data—or rather, more informative
data—are included in the inverse problem.

Currently there is no known preconditioner that exhibits uniformly good performance
with respect to all of these properties. In this paper, we provide a combination of

4The condition number provides an upper bound on the required number of MINRES iterations.
An even sharper bound could by obtained by characterizing all four extreme eigenvalues (endpoints
of the positive and negative intervals in which the eigenvalues reside) of the preconditioned system
[28].
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theoretical results and numerical evidence demonstrating that our preconditioner pro-
vides substantial improvements over existing preconditioners, especially with respect
to problem generality and data scalability.

Within the scope of inverse problems, we view the goal of robustness to arbitrarily-
chosen values of the regularization parameter, (d), to be unwarranted and unneces-
sarily restrictive. In particular, for properly regularized inverse problems the regu-
larization operator and regularization parameter are not arbitrary. Rather, they are
chosen in response to the data available in the problem: that is, to constrain parame-
ter modes that are not informed by the data, while minimally modifying components
of the parameter that are informed by the data. Thus it is important that the pre-
conditioner performs well as the informative content of the data increases while the
regularization parameter decreases correspondingly. However, it is not important for
the preconditioner to perform well in the under-regularized regime in which the regu-
larization parameter is small but the data are uninformative. In this under-regularized
regime, a good preconditioner would simply accelerate convergence to noise, i.e., more
rapid solution of the wrong problem. Instead, we advocate designing preconditioners
that perform well with increasingly informative data, (e), for which the regularization
parameter is considered a dependent parameter chosen so that the inverse problem is
neither substantially over- nor under-regularized. This extra flexibility permits design
of the preconditioner to better address the entire set of desired properties (a)–(e).

Among data (e) and mesh scalable (c) preconditioners, ours is the most general
(a). The subproblems that must be solved (b) while applying the preconditioner are
of similar difficulty to those encountered by existing (less general) data-scalable pre-
conditioners. What remains for our preconditioner to fully satisfy all of the remaining
desirable properties, (a), (b), (c), and (e), is to generalize it to non-invertible T . As
mentioned above, this is ongoing research; nevertheless, there are many inverse prob-
lems characterized by invertible T operators. In addition to source inversion problems
(addressed in Sections 5 and 6), coefficient inverse problems in which the state and
parameter share the same discretization often give rise to invertible T .

1.3. Review of existing work. A wide variety of preconditioners for KKT op-
erators similar to (4) have been developed in a number of different contexts including
parameter estimation, optimal control, PDE constrained optimization, optimal de-
sign, and saddle point systems arising in mixed discretizations of forward problems
[11, 23, 45]. In the following subsections we discuss existing preconditioners based on
the reduced Hessian (Section 1.3.1), the adjoint Schur complement (Section 1.3.2),
block scaling (Section 1.3.3), and multigrid (Section 1.3.4).

We will see that existing preconditioners either scale poorly with increasing data
and decreasing regularization, or they only apply to specific problems, or they make
restrictive assumptions about the B, R, and T operators. In particular, in the liter-
ature it is common to assume that the parameter and/or observation spaces are L2

spaces, and one or more of the operators B, R, and T are spectrally equivalent to ei-
ther identity maps (I), or restriction maps (Γ) that restrict functions to a subdomain.
These assumptions on B, R and T may be inappropriate for the inverse problem at
hand. For example, they prevent one from using observations of derived quantities
such as flux, using smoothing Laplacian-like regularization, and inverting for material
coefficients. We will regularly note such assumptions by following references with a
parenthetical expression. E.g., “[61] (L2, R ≈ I, B ≈ Γ, T ≈ −I)” means that the
preconditioner in reference [61] assumes that the parameter and observation spaces
are L2 spaces, R is spectrally equivalent to an identity map (L2 regularization), B
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is spectrally equivalent to a restriction map (direct observations of the state on a
subdomain), and T is spectrally equivalent to a negative identity map (the parameter
enters the state equation on the right hand side as a source term).

1.3.1. The reduced Hessian. The reduced Hessian is the Hessian of the un-
constrained reformulation of optimization problem (3), in which the constraint is
eliminated by viewing the state u as an implicit function of the parameter q via so-
lution of the state equation. We discuss this reduced space problem in more detail
in Section 4.1. For linear inverse problems (as considered in this paper), the reduced
Hessian is equivalent to the Schur complement of the KKT operator with respect to
the parameter. In other words, it is the operator remaining when the state and adjoint
variables (and corresponding equations) are solved for and eliminated from the KKT
system. Likewise, the KKT operator can be derived by starting with the reduced
Hessian, defining auxiliary variables, and performing simple algebraic manipulations.
Thus performing solves with the reduced Hessian and performing KKT solves are
equivalent: if one can efficiently solve the former then one can efficiently solve the
later and vice versa. For this reason, a popular class of methods for solving (4) relies
on approximations or preconditioners for the reduced Hessian [13, 14, 37].

The most popular class of general purpose preconditioners for the reduced Hes-
sian is based on approximating this operator with just the regularization operator,
and either neglecting the data misfit term or dealing with it through some form of low
rank approximation. The regularization is typically an elliptic operator and can be
inverted using multigrid or other standard techniques. Furthermore, for ill-posed in-
verse problems the data misfit portion of the reduced Hessian at the optimal solution
is usually a compact operator in the infinite-dimensional limit [20, 21, 22, 64]. Thus
Krylov methods preconditioned by the regularization operator usually yield mesh in-
dependent, superlinear convergence rates5 [7, 33, 40]. However, the importance of the
regularization term in the reduced Hessian decreases as the regularization parameter
is made smaller, and the importance of the data misfit term increases as the informa-
tiveness of the data increases. Indeed, the numerical rank of the data misfit portion of
the reduced Hessian is roughly the number of parameter modes that are “informed”
by the data. In addition, the eigenvalues of the regularization preconditioned Hessian
are typically well-separated, which means that this approach will still require large
numbers of Krylov iterations on problems with highly informative data. Thus, the
best case scenario from a scientific standpoint (highly informative data) is the worse
case scenario from a computational standpoint (large numbers of Krylov iterations
required).

Other problem-specific reduced Hessian solvers and preconditioners have been
developed using a diverse set of techniques including analysis of the symbol of the
reduced Hessian [5], matrix probing [24], approximate sparsity in curvelet frames
[38], and analytic expressions derived for model problems [2, 4, 31, 32, 34].

1.3.2. Schur complement for the adjoint variable. In contrast to the ap-
proaches based on the reduced Hessian described above (where the state and adjoint
are eliminated), another class of preconditioners of increasing interest in recent years
is based on block factorizations that eliminate the parameter and state, resulting in
a Schur complement operator for the adjoint variable. This approach requires one
to design preconditioners for the objective block (the 2×2 block corresponding to q

5Here, by superlinear, we mean that the norm of the error decays superlinearly with respect to
the number of Krylov iterations.
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and u in (4)) and for the Schur complement associated with the adjoint variable. In
the case of limited observations, the objective block is singular and requires special
handling; a common approach is to add a small positive diagonal shift to the block.

Mesh independent block diagonal preconditioners based on approximating the
objective block with mass matrices and the adjoint Schur complement with AA∗

have been proposed for L2 regularized optimal control problems with the Poisson
equation as a constraint and a control objective targeting the state variable directly
[55, 56] (L2, R ≈ I,B ≈ I, T ≈ −I), and extended to problems with parabolic PDE
constraints and limited observations [61] (L2, R ≈ I,B ≈ Γ, T ≈ −I). More nuanced
approximations of the Schur complement have been shown to yield robustness with
respect to the regularization parameter for problems in the elliptic case in [54] (L2,
R ≈ I,B ≈ I, T ≈ −I) and the parabolic case in [52] (L2, R ≈ Γ, B ≈ Γ, T ≈ −Γ).
Regularization robust adjoint Schur complement based KKT preconditioners have
also been developed for optimal control problems in cases where there are additional
box constraints on the control and state variables [53] (L2, R ≈ I, T ≈ −I). A general
framework for using the Schur complement for the adjoint variable to precondition
optimal control problems with box constraints is analyzed in an abstract function
space setting in [58], with only minimal assumptions on the operators B, R, and
T . However, the specific Schur complement preconditioners presented in [58] are not
regularization robust.

Certain non block diagonal approximations to KKT operators [8] have been used
to precondition elliptic PDE constrained optimal control problems with L2 regular-
ization and observations [39, 59] (L2, B ≈ I, R ≈ I, T ≈ −I). Preconditioners of this
type have also been shown to be Hermitian positive definite in certain nonstandard
inner products, allowing the use of conjugate gradient as a Krylov solver [18, 60].

Inner-outer methods where the Schur complement solve is performed (exactly or
approximately) with an additional inner stationary iteration have also been proposed
for several problems. These include optimal Stokes control with L2 regularization
and observations [57] (L2, B ≈ I, R ≈ I, T ≈ −I), and optimal transport with a
problem-specific diagonal regularization operator [12]. Recently, a method of this type
was proposed for optimal control problems with elliptic and parabolic PDE constraints
and smoothing regularization (L2, R∗R ≈ ∆ + I) [9]. Regularization robustness was
demonstrated for the case B = I.

1.3.3. Block scaling. An abstract framework for constructing parameter inde-
pendent (e.g., regularization robust) block diagonal preconditioners for saddle point
systems is studied in [67] and applied to optimal control problems with elliptic and
Stokes PDE constraints, with B ≈ I, R ≈ I, T ≈ −I. In [47], a certain class of block
diagonal KKT preconditioners for inverse problems (satisfying many assumptions)
was shown to be mesh independent and only weakly dependent on the regularization
parameter.6 One of the central assumptions of the theory for this block diagonal
preconditioner is that the spectrum of the observation operator decays exponentially.
In a subsequent paper this assumption was replaced with the similar assumption that
the spectrum of the un-regularized KKT system decays exponentially [48]. Since the
decay rates of these spectra depend on the informativeness of the data, these assump-
tions are not applicable (with good constants) in the context of inverse problems with
highly informative data. To overcome this limitation, recently the block diagonal

6Note that in several of the papers cited in this subsection, the meaning of B and T are switched
relative to their use here.
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preconditioner

(6)

αI B∗B + αÂ∗A
1
αI


was proposed in [44], where Â∗A is a 4th order elliptic operator that is spectrally
equivalent to A∗A. This preconditioner was proven to be mesh and regularization
robust for a specific source inversion problem with L2 regularization (L2, R ≈ I,
T ≈ −I). Despite substantial differences in motivation and analysis, our proposed
preconditioner (5) could be considered as a generalization of this work to more general
operators R and T . Specifically, setting ρ = α (instead of our suggestion ρ =

√
α), our

preconditioner has the same second and third diagonal blocks as the preconditioner
(6), but contains a more elaborate operator depending on R and T in the first block.

1.3.4. Multigrid. Another family of KKT preconditioners for parameter esti-
mation problems are based on multigrid (see the review paper [17] and references
therein). These techniques are classically categorized into three main categories: (1)
speeding up or preconditioning forward and adjoint solves, (2) using multigrid to
precondition the reduced Hessian, and (3) collective smoothing.

Methods in the first category do not use multigrid to address the fundamental
difficulties stemming from highly data informed inverse problems: speeding up the
forward (and adjoint) solves does not address the challenge of creating a preconditioner
that is data scalable, because the number of forward/adjoint solves that must be done
scales with the informativeness of the data.

The primary difficulty with category (2) is that when the regularization is chosen
appropriately, the regularization and data misfit terms of the reduced Hessian tend to
“fight” each other (more on this in Section 4). Thus smoothers for the regularization
term tend to be roughers for the data misfit term, and vice versa. As a result, multigrid
methods belonging to the second category tend to be restricted to the case R ≈ I.
We note in particular the following papers [1, 2, 3, 26, 27], on elliptic, parabolic, and
Stokes source inversion problems with this restriction.

In collective smoothing (3), one designs multigrid smoothers for the entire KKT
system (parameter, forward, and adjoint) at once [15, 16]. Collective smoothers also
tend to either require R ≈ I, e.g., [62], or substantially degrade in performance as the
regularization parameter decreases, e.g., [6].

1.4. Commentary on solving the preconditioner subsystems. Applying
our preconditioner (5) requires the solution of two subsystems with coefficient opera-
tors

(7) αR∗R+ ρT ∗T

and

(8) B∗B + ρA∗A,

respectively. This can be a challenge. However, reduced Hessian preconditioning
and KKT preconditioning for large scale inverse problems with highly informative
data are fundamentally difficult endeavors, and the operators (7) and (8) have many
advantages over the alternatives.
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To begin with, we typically have easy access to the entries of the concrete matrix
representations of these operators.7 Thus we have at our disposal the entire arsenal of
symmetric positive definite sparse preconditioning techniques that deal with matrix
entries; e.g., incomplete factorizations, factorized sparse approximate inverses [30],
and modern multilevel techniques including algebraic multigrid and hierarchical in-
terpolative factorizations [41]. This stands in direct contrast to the reduced Hessian,
which is dense owing to the inverses of the forward and adjoint operators within it,
and as such may be accessed only via matrix-vector multiplies.

Additionally, the data misfit Hessian (which often acts as a compact operator)
and the regularization operator (which often acts as a differential operator) tend to
act in opposition to each other by construction.8 Since the reduced Hessian is the
sum of these operators, it is difficult to design preconditioners that are effective for
both terms in the reduced Hessian at the same time. In contrast, the different terms
in our subsystems tend not to act in opposition to each other.

In typical applications R∗R is chosen to be an elliptic differential operator, and
T is either identity-like, or acts like a differential operator. Thus there is good reason
to believe that multilevel techniques will be effective on the system αR∗R+ ρT ∗T in
situations of practical interest. A similar argument applies to B∗B+ ρA∗A whenever
the forward operator A is amenable to multilevel techniques. In the numerical results
section (Section 6), we see that for a source inversion problem with an elliptic PDE
constraint, replacing the two subsystem solves with a few algebraic multigrid V-cycles
results in nearly the same convergence rate as performing the solves exactly.

Of course, the operators in our subsystems are squared, and such squaring should
always done with caution. However, subsystems involving squared operators are also
present in state of the art preconditioners that have been proposed in the literature
(see Sections 1.3.2 and 1.3.3). In particular, a matrix spectrally equivalent to B∗B +
ρA∗A shows up in the preconditioner proposed in [44].

1.5. Setting and notation. For the purposes of this paper we consider the
case for which all spaces are finite dimensional Hilbert spaces, as might arise in stable
discretize-then-optimize methods [36] for infinite dimensional problems. To fix ideas,
consider the case of an infinite dimensional function space U∞ approximated by a
finite dimensional function space U , the elements of which are in turn represented
on a computer by lists of degrees of freedom in Rn corresponding to a potentially
non-orthogonal basis Θ : Rn → U . Schematically,

U∞
∞−dimensional
function space

≈ U
n−dimensional
function space

Θ−1



Θ

Rn
representation

space

.

Here we work in intermediate finite dimensional function spaces like U . In a represen-
tation space associated with a particular non-orthogonal basis, all formulas from this
paper remain essentially the same, except linear operators are replaced with matrix
representations (arrays of numbers), abstract vectors are replaced with their concrete
representations (lists of numbers), and Gram matrices (mass matrices) and their in-
verses appear in various locations to account for the Riesz representation theorem for

7Although (dense) inverses of mass matrices can arise in concrete representations of these sub-
systems due to the adjoint operation, these inverse mass matrices can typically be replaced with
spectrally equivalent sparse lumped mass approximations.

8By “act in opposition,” we mean that modes that are amplified by one operator tend to be
diminished by the other operator, and vice versa. This is discussed more in Section 4.
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adjoints in a non-orthogonal basis.
The parameter q, state u, adjoint η, and observations y are assumed to reside in

finite dimensional Hilbert spaces Q, U , V, and Y with dimensions nq, nu, nu, and
nobs respectively. Linear operators, e.g., A : U → V, are viewed as abstract mappings
between vector spaces, without reference to any particular basis, except in the case
where the domain and/or range are of the form Rn. Although we work with oper-
ators, we make routine use of standard results for matrices that are easily extended
to the finite dimensional linear operator case, such as the existence and properties
of eigenvalues of certain classes of operators, and the existence of the singular value
decomposition. Transferring these results from the matrix setting to the finite di-
mensional linear operator setting is a straightforward process that involves working
with the matrix representations of the operators in bases that are orthonormal with
respect to the inner products on their domains and ranges.9 Concatenation of linear
operators such as BA denotes composition of linear maps, and concatenation of a lin-
ear operator with a vector, as in Au, denotes the action of the operator on the vector.
Adjoints of operators are denoted by superscript stars, as in A∗. Superscript stars
on a vector denote the linear functional that takes inner products with that vector.
Namely, u∗ : v 7→ (u, v), where (·, ·) is the inner product for the space u resides in.
Functions of a linear operator such as inverses and square roots (where defined) are
denoted in the standard way, i.e., A−1, A1/2. Unless otherwise noted, the norm of
a vector, e.g., ‖u‖, is the norm associated with the Hilbert space the vector resides
in, and the norm of an operator, e.g., ‖A‖, is the induced norm associated with the
norms on the domain and range spaces of the operator. Block operators, such as[

X Y
Z W

]
: domain(X)⊕ domain(Y )→ range(X)⊕ range(Z)

are defined by the blockwise action of their constituent operators, in the usual way, and
with the expected consistency restrictions on the domains and ranges of the various
blocks. Empty blocks are assumed to contain the zero operator with the appropriate
domain and range. We use the notation Λ = diag(λk)n,m to denote the linear map
Λ : Rm → Rn whose matrix representation in the standard basis is diagonal, with kth
diagonal entry λk. Likewise, when we write Φ =

[
φ1 φ2 . . . φm

]
for an operator

Φ : Rm → X and vectors φk ∈ X , we mean that φk is the result of applying Φ to the
kth standard basis vector in Rk (φk is the “kth column” of Φ). An operator is said
to be square if the dimension of the domain and range are equal, and rectangular if
the dimensions of the domain and range might differ.

The maximum and minimum singular values of an operator Y are denoted σmax(Y )
and σmin(Y ), respectively. Similarly, the maximum and minimum eigenvalues of an
operator X with strictly real eigenvalues are denoted λmax(X) and λmin(X), respec-
tively. The condition number of an operator X is denoted cond(X).

2. Derivation of the preconditioner. The preconditioner in (5) is derived
from a block diagonal approximation to the KKT operator associated with an aug-
mented Lagrangian formulation of optimization problem (3). In the following deriva-
tion, it will be convenient to group the parameter and state variables into a single

vector x :=

[
q
u

]
. With this grouping, optimization problem (3) takes the following

9Note that such matrix representations with respect to orthonormal bases are generally not the
same as the matrix representations that arise computationally within, say, a finite element method.



10 N. ALGER, U. VILLA, T. BUI-THANH, AND O. GHATTAS

standard quadratic programming form,

(9)
min
x

1

2
x∗Mx− g∗x

such that Cx = f,

where g :=

[
0
B∗y

]
, C :=

[
T A

]
, and M is the (generally singular) operator,

M :=

[
αR∗R

B∗B

]
.

The KKT operator from equation (4) then becomes,

(10) K :=

αR∗R T ∗

B∗B A∗

T A

 =

[
M C∗

C

]
.

For non-singular M , it is well-established [46] that the following positive definite block
diagonal preconditioner,

(11)

[
M

CM−1C∗

]
,

clusters the eigenvalues of the preconditioned operator onto at most three distinct
values. Note that the positive operator CM−1C∗ is the negative Schur complement
for the adjoint variable. Since the objective block M is singular whenever B is not
full rank (i.e., in the case of limited observations), we cannot directly use this result.
However, (9) has the same solution as the following augmented optimization problem,

min
x

1

2
x∗Mx− g∗x+

ρ

2
‖Cx− f‖2

such that Cx = f,

where the constraint is enforced strictly, but an additional quadratic penalty term
is added to the objective function to further penalize constraint violations when an
iterate is away from the optimal point. The KKT operator for this augmented opti-
mization problem is

(12)

[
M + ρC∗C C∗

C

]
.

With this augmentation, the objective block is now nonsingular provided that M is
coercive on the null space of C (i.e., the optimization problem is well-posed).

The positive definite block diagonal preconditioner analogous to (11) but based
on the augmented KKT operator (12) is

(13)

[
M + ρC∗C

C(M + ρC∗C)−1C∗

]
.

This preconditioner clusters the spectrum of the original (non-augmented) KKT oper-
ator onto the union of two well-conditioned intervals [35]. However, this preconditioner
is not practical since it is computationally difficult to perform solves (M + ρC∗C)−1,
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as well as apply the Schur complement C(M + ρC∗C)−1C∗ and its inverse. Thus we
construct the preconditioner in (5) by replacing these blocks with cheaper approxi-
mations.

Intuitively, when ρ is large, constraint violations are more strongly penalized by
the objective, so the adjoint variable does not need to “work as hard” to enforce the
constraint. This manifests in better conditioning of the Schur complement for the
adjoint, C(M + ρC∗C)−1C∗. Indeed, it is easy to see that C(M + ρC∗C)−1C∗ → 1

ρI
as ρ→∞. To this end, we expect the approximate preconditioner

(14)

[
M + ρC∗C

1
ρI

]
,

to perform well when ρ is large. The preconditioner (14) is, essentially, a mechanism
for using an unconstrained penalty method to precondition a constrained optimization
problem.

The augmented objective block, M + ρC∗C, takes the form

M + ρC∗C =

[
αR∗R+ ρT ∗T ρT ∗A

ρA∗T B∗B + ρA∗A

]
.

Since this 2× 2 block operator is difficult to solve, we cannot use preconditioner (14)
directly, and must make further approximations. In particular, the off-diagonal blocks
are scaled by ρ, so when ρ is small we expect the relative importance of these blocks
to be reduced. Dropping the off-diagonal blocks in M + ρC∗C and then substituting
the result into (14) yields our overall 3× 3 block diagonal preconditioner (5),

P :=

αR∗R+ ρT ∗T
B∗B + ρA∗A

1
ρI

 .
One hopes that it is possible to choose ρ large enough that the Schur complement

is well approximated by 1
ρI, but at the same time small enough that the objective block

is well-preconditioned by the block diagonal approximation. Our theory and numerical
results in subsequent sections suggest that these competing interests can be balanced
by choosing ρ =

√
α, provided that the inverse problem is appropriately regularized.

In the next section we provide an abstract theoretical analysis of the preconditioner
without making any assumptions about the value of ρ. A more specific analysis for
source inversion problems with spectral filtering regularization, which motivates our
choice of ρ, is performed in Section 5.

3. Abstract analysis of the preconditioner. In this section we analyze the
preconditioned KKT operator, showing that it is well-conditioned if bounds on the
arithmetic and geometric means of certain damped projectors are satisfied. First,
we highlight the structure of the preconditioned KKT operator, state the necessary
arithmetic and geometric mean bounds, and recall a prerequisite result from Brezzi
theory. Then we prove bounds on the condition number of the preconditioned KKT
operator based on the arithmetic and geometric mean bounds.

3.1. Prerequisites.

3.1.1. Preconditioned KKT operator. Let E denote the symmetrically pre-
conditioned KKT operator,

E := P−1/2KP−1/2,
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with P and K defined in (5) and (10), respectively. Direct calculation shows that the
symmetrically preconditioned KKT operator has the following block structure,

(15) E =

I − F ∗F F ∗

I −G∗G G∗

F G

 ,
where the operators F and G are defined as

F := T

(
α

ρ
R∗R+ T ∗T

)−1/2

, G := A

(
1

ρ
B∗B +A∗A

)−1/2

.

For convenience, we further denote the objective and constraint blocks of the precon-
ditioned system by X and Y , respectively, where

(16) X :=

[
I − F ∗F

I −G∗G

]
, Y :=

[
F G

]
,

so that the preconditioned KKT operator takes the form

(17) E =

[
X Y ∗

Y

]
.

3.1.2. Arithmetic and geometric mean assumptions. The quality of the
preconditioner depends on the arithmetic and geometric means of the following two
damped projectors,10

(18) QR := FF ∗ = T

(
α

ρ
R∗R+ T ∗T

)−1

T ∗,

and

QJ := GG∗ = A

(
1

ρ
B∗B +A∗A

)−1

A∗.

Note that if T is invertible, we have

(19) QJ = T

(
1

ρ
J∗J + T ∗T

)−1

T ∗,

where

(20) J := −BA−1T

is the parameter-to-observable map that transforms candidate parameter fields into
predicted observations.

As damped projectors, it is easy to show that the eigenvalues of QR and QJ are
bounded between 0 and 1. The degree to which the eigenvalues of QR are damped
below 1 is controlled by the strength of the damping term α

ρR
∗R and its interaction

10Recall that X(γI +X∗X)−1X∗ approximates the orthogonal projector onto the column space
of X for small γ. With this in mind, one can view an operator of the form X(Y ∗Y + X∗X)−1X∗

as an approximate projector onto the column space of X, damped by the operator Y . We call such
operators damped projectors.
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with the eigenstructure of T . Similarly, the degree of damping of the eigenvalues
of QJ is controlled by the strength of the damping term 1

ρJ
∗J and its interaction

with the eigenstructure of T (or the interaction of the damping term 1
ρB
∗B with the

eigenstructure of A, when T is not invertible).

Assumption 1 (Damped projector AM-GM bounds). We assume there exist
constants β, δ such that the following bounds on the spectrum of the arithmetic and
geometric means of the damped projectors hold:

a) 0 < δ ≤ 1

2
λmin (QR +QJ) ,

b) λmax (QRQJ)
1/2 ≤ β < 1.

Theorem 7 will establish that the larger δ is and the smaller β is, the more effective
preconditioner (5) is.

Qualitatively, if T is invertible and the regularization is chosen to act in opposition
to the data misfit, as desired for the problem to be properly regularized based on the
analysis that will be performed in Section 4, then R will act strongly on vectors that
J acts weakly on, and vice versa. Thus we expect the damping in QR to be strong
where the damping in QJ is weak, and vice versa. Consequently, it is reasonable
to hypothesize that Assumption 1 will be satisfied with good constants for inverse
problems that are properly regularized. Making this intuition precise requires careful
analysis of the interaction between the eigenstructures of R, J , and T , which must
be done on a case-by-case basis. We perform this analysis for the special case of
source inversion problems with spectral filtering regularization in Section 5, and expect
similar behavior to hold in more general situations.

3.1.3. Brezzi theory for well posedness of saddle point systems. The
proof of the coercivity bound for our preconditioned KKT operator invokes Brezzi
theory for saddle point systems [19, 25, 66]. In particular, we use a recently discovered
bound in [42], which is slightly sharper than bounds derived from the classical theory.
Here we state the prerequisite theorem (without proof), and refer the reader to [42]
for more details. This theory can be stated in much greater generality than what we
present here.

Theorem 2 (Krendl, Simoncini, and Zulehner). Let E be the saddle point sys-
tem

E =

[
X Y ∗

Y

]
,

where X : X → X is self-adjoint and positive semidefinite, and Y : X → Y. Further
suppose that

• X is coercive on the kernel of Y , i.e.,

0 < a ≤ inf
z∈Ker(Y )

z 6=0

z∗Xz

‖z‖2
.

• X is bounded, i.e., ‖X‖ < b.
• The singular values of Y are bounded from below, i.e.,

0 < c ≤ σmin(Y ).
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Then the minimum singular value of E is bounded from below, with the bound

(21)
a

1 +
(
b
c

)2 ≤ σmin(E).

3.2. Bound on the condition number of the preconditioned KKT op-
erator. To apply Brezzi theory (Theorem 2) to our problem, we need a coercivity
bound for X on the kernel of Y , a continuity bound for X on the whole space, and
a coercivity bound on Y , where the constants for these bounds are denoted a, b, and
c, respectively. We use the particular structure of the KKT operator (10), along with
Assumption 1, to derive these bounds in Section 3.2.1. In Proposition 3 we derive
bounds for a and b, and then in Proposition 4 we derive a bound for c.

In Section 3.2.2 we derive well posedness and continuity bounds on the precondi-
tioned KKT operator, E, and then combine these bounds to provide an upper bound
on the condition number of E. Well posedness of E is proven in Proposition 5, us-
ing Brezzi theory in the form of Theorem 2. Continuity of E is proven directly in
Proposition 6. Finally, the overall condition number bound for E is given in Theorem
7.

3.2.1. Bounds on X and Y .

Proposition 3 (Bounds a, b for X). The eigenvalues of X restricted to the
kernel of Y are bounded below by 1− β, where β is defined in Assumption 1. That is,

0 < 1− β ≤ inf
z∈Ker(Y )

z 6=0

z∗Xz

‖z‖2
.

Additionally,

‖X‖ ≤ 1.

Proof. For vectors z ∈ Ker(Y ), we have,

(22) z∗Xz = z∗(X + Y ∗Y )z ≥ λmin(X + Y ∗Y )||z||2.

This augmented operator has the following block structure,

X + Y ∗Y =

[
I − F ∗F

I −G∗G

]
+

[
F ∗

G∗

] [
F G

]
=

[
I F ∗G

G∗F I

]
.

Thus the eigenvalues λ of X + Y ∗Y satisfy,[
I F ∗G

G∗F I

] [
v
ξ

]
= λ

[
v
ξ

]
,

or,

(23)

[
F ∗G

G∗F

] [
v
ξ

]
= (λ− 1)

[
v
ξ

]
.

Solving for u from the block equation associated with the first row block of (23) and
substituting into the second yields,

G∗FF ∗Gξ = (λ− 1)2ξ.
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Thus, the magnitudes of the shifted eigenvalues, |λ − 1|, are the square roots of the
eigenvalues of G∗FF ∗G. By a similarity transform, the eigenvalues of G∗FF ∗G are
the same as the eigenvalues of the operator FF ∗GG∗, and by the second part of
Assumption 1, we know that these eigenvalues are bounded above by β. Thus,

|λ− 1| ≤ λmax(FF ∗GG∗)1/2 ≤ β.

which implies,

1− β ≤ λ,

so that,

z∗Xz ≥ (1− β) ‖z‖2 ,

from which the inf-sup bound directly follows.
Since FF ∗ and GG∗ are damped projectors, their eigenvalues reside in the interval

[0, 1], as do the eigenvalues of F ∗F and G∗G. Using the definition of X in (16), this
implies that the singular values of X reside in the interval [0, 1], and so we have the
upper bound ||X|| ≤ 1.

Proposition 4 (Bound c for Y ). The singular values of the preconditioned
constraint are bounded below, with bound,

0 <
√

2δ ≤ σmin(Y ).

Proof. Since G is invertible, Y =
[
F G

]
has full row rank. Thus the singular

values of Y are the square roots of the eigenvalues of

Y Y ∗ = FF ∗ +GG∗.

Recalling the arithmetic mean assumption (Assumption 1a), we have

0 < δ ≤ 1

2
λmin (FF ∗ +GG∗) =

1

2
λmin (Y Y ∗) ,

or

0 <
√

2δ ≤ σmin(Y ).

3.2.2. Well posedness, continuity, and conditioning of the precondi-
tioned KKT operator, E.

Proposition 5 (Well posedness of E). The singular values of E have the fol-
lowing lower bound:

0 <
2

3
(1− β)δ ≤ σmin(E).

Proof. Based on the results of Propositions 3 and 4, and the block structure of E
from (17), we can apply bound (21) from Theorem 2 to E with a = 1− β, b = 1, and
c2 = 2δ. Doing this and then using the fact that 0 < δ ≤ 1, we get the desired lower
bound on the minimum singular value:

σmin(E) ≥ 1− β
1 + 1

2δ

=
2(1− β)δ

1 + 2δ
≥ 2

3
(1− β)δ.
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Proposition 6 (Continuity of E). The singular values of E are bounded above
by 2. I.e.,

σmax(E) ≤ 2.

Proof. To prove the upper bound, we directly estimate the quantity |w∗1Ew2| for
arbitrary w1, w2. Denote the blocks of w1 and w2 by,

w1 =

p1

v1

ξ1

 , w2 =

p2

v2

ξ2

 .
Recalling the blockwise definition of E from (15) and using the triangle inequality, we
have

|w∗1Ew2| =

∣∣∣∣∣∣[p∗1 v∗1 ξ∗1
] I − F ∗F F ∗

I −G∗G G∗

F G

p2

v2

ξ2

∣∣∣∣∣∣
= |p∗1(I − F ∗F )p2 + p∗1F

∗ξ2 + v∗1(I −G∗G)v2 + v∗1G
∗ξ2 + ξ∗1Fp2 + ξ∗1Gv2|

≤ |p∗1(I − F ∗F )p2|+ |p∗1F ∗ξ2|+ |v∗1(I −G∗G)v2|+ |v∗1G∗ξ2|+ |ξ∗1Fp2|+ |ξ∗1Gv2|.
(24)

Since the operators F and G have singular values between zero and one, we can
eliminate all of the intermediate operators in (24), yielding

(25) |w∗1Ew2| ≤ ‖p1‖ ‖p2‖+‖p1‖ ‖ξ2‖+‖v1‖ ‖v2‖+‖v1‖ ‖ξ2‖+‖ξ1‖ ‖p2‖+‖ξ1‖ ‖v2‖ .

By Cauchy-Schwarz, three of the terms on the right hand side of (25) can be estimated
as follows:

‖p1‖ ‖p2‖+ ‖v1‖ ‖ξ2‖+ ‖ξ1‖ ‖v2‖ ≤
(
‖p1‖2 + ‖v1‖2 + ‖ξ1‖2

)1/2 (
‖p2‖2 + ‖v2‖2 + ‖ξ2‖2

)1/2

= ‖w1‖ ‖w2‖ .

The other three terms can be estimated similarly:

‖p1‖ ‖ξ2‖+ ‖v1‖ ‖v2‖+ ‖ξ1‖ ‖p2‖ ≤ ‖w1‖ ‖w2‖ .

Thus we have the overall estimate

|w∗1Ew2| ≤ 2 ‖w1‖ ‖w2‖ ,

which implies σmax(E) ≤ 2, as required.

Theorem 7 (Conditioning of E).

cond (E) ≤ 3

(1− β)δ
.

Proof. Divide the upper bound from Proposition 6 by the lower bound from
Proposition 5.
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4. Spectral filtering and appropriate regularization assumptions. To
better characterize the constants δ and β in the condition number bound in Theorem
7, in this section we propose appropriate regularization assumptions (Assumption 9)
that limit the degree to which the inverse problem can be over- or under- regularized.
These assumptions are motivated by an analysis of the error in the reconstruction of
the parameter (Sections 4.1 and 4.2), and apply to spectral filtering regularization
operators (Definition 8). Since one part of Assumption 9 (specifically, Assumption
9b) is novel, we discuss that part in greater detail. Much of the development we
present leading up to (but not including) Assumption 9 mirrors the classical treatment
presented in [29].

Since construction of spectral filtering regularization operators is too expensive
for large scale inverse problems with highly informative data, Assumption 9 is used
for theoretical analysis only. In Section 5 we will prove that satisfying Assumption 9
implies the existence of good constants δ and β for source inversion problems, thereby
guaranteeing that our preconditioner will perform well on these problems.

4.1. The reduced problem and decomposition of error. Although we take
a full space approach for solving optimization problem (3), for the purpose of analysis
it is useful to consider the reduced version of the problem in which the constraint
is eliminated by viewing the state u as an implicit function of the parameter q via
solution of the state equation. This yields the following unconstrained optimization
problem in q only:

(26) min
q

1

2
‖Jq − y‖2 +

α

2
‖Rq‖2 ,

where we recall from (20) that the parameter-to-observable map J is defined as J :=
−BA−1T . The solution q to this reduced problem is the solution to the normal
equations,

(27) Hq = J∗y,

where

(28) H := J∗J + αR∗R

is the Hessian of the reduced optimization problem (26), which we call the reduced
Hessian. The reduced Hessian has been the target of much of the previous work
on preconditioners for inverse problems (see Section 1.3.1), including the method we
numerically compare our preconditioner to in Section 6.

From an optimization perspective, the purpose of the regularization is to make
optimization problem (26) well-posed by introducing curvature in the objective func-
tion in directions that are in the (numerical) null space of J . However, in the context
of inverse problems the regularization is primarily seen as a means of stabilizing the
inversion with respect to noise in the observations.

Recall from (1) that the observations we use for the inversion are corrupted by
additive noise ζ via the formula

(29) y = ytrue + ζ = Jqtrue + ζ,

where qtrue is the unknown true parameter and ytrue = Jqtrue are the observations
that would have been obtained if there were no noise. Substituting (29) into (27) and
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then subtracting the result from qtrue, we see that the error takes the form

qtrue − q = eζ + eq,

consisting of a term

(30) eζ := − (J∗J + αR∗R)
−1
J∗ζ

that depends on the noise, and a term

(31) eq :=
(
I − (J∗J + αR∗R)

−1
J∗J

)
qtrue

that does not. From the form of equations (30) and (31), a trade-off is evident:
strengthening the regularization tends to reduce eζ at the expense of increasing eq,
and weakening the regularization tends to reduce eq at the expense of increasing
eζ . To achieve a good reconstruction of the parameter, it is desirable for both of
these terms to be as small in magnitude as possible. To investigate this trade-off
in more detail, we restrict our subsequent analysis to the special case of spectral
filtering regularization, which we define and discuss in the following section. This
will provide convenient bases to diagonalize the operators − (J∗J + αR∗R)

−1
J∗ and

(I − J∗J + αR∗R)
−1
J∗J , and hence allow us understand the errors eζ and eq in a

per-component manner.

4.2. Spectral filtering regularization.

Definition 8. An operator R is a spectral filtering regularization operator for a
linear inverse problem with parameter-to-observable map J if R and J share a common
basis of right singular vectors. That is, there exist

• unitary operators U : Rnobs → Y, V : Rnq → Q, and Φ : Rnq → Q, and
• non-negative diagonal operators ΣJ = diag(dk)nobs,nq

, and ΣR = diag(rk)nq,nq

such that

(32)

{
J = UΣJΦ∗,

R = V ΣRΦ∗.

By convention we order the singular values dk of J in descending order (dk ≥ dk+1).
In the case where nobs < nq, for convenience we define dk := 0 for k = nobs+1, . . . , nq.
Note that the descending order for dk forces an order (possibly non-monotone) for the
singular values rk of R. We use φk to denote the kth right singular vector shared by
J and R. That is, Φ =

[
φ1 φ2 . . . φnq

]
.

Spectral filtering regularization is ideally suited for inverse problems—by manip-
ulating the regularization singular values rk, one can selectively filter out undesirable
components of the parameter from the reconstruction without affecting the recon-
struction of the desirable components. The larger rk, the more component φk is
penalized, and vice versa. Limiting cases of spectral filtering regularization include:

• identity regularization (R = I), where all singular vectors are penalized
equally, and

• truncated SVD, where singular vectors φk are not penalized at all if dk is
above a given threshold, but are penalized infinitely11 otherwise.

11That is, the reconstruction of the component of q in the direction φk is set to zero.
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Spectral filtering regularization is routinely used for small to moderate sized inverse
problems, and for large inverse problems that admit low-rank approximations to the
parameter-to-observable map. However, aside from identity regularization, spectral
filtering regularization is generally computationally infeasible for large-scale inverse
problems with highly informative data. In fact, spectral filtering regularization re-
quires computing the dominant singular vectors and singular values of J in order
to construct R, and the number of dominant singular vectors of J scales with the
informativeness of the data. Thus we view spectral filtering as an idealized form of
regularization that practical regularization operators attempt to approximate. For a
more comprehensive discussion of spectral filtering and its relation to other regular-
izations, we refer the reader to the classic monograph [29].

For spectral filtering regularization, we can formulate expressions for the errors
in the reconstruction on a per-component manner. Substituting the singular value
decomposition factors from (32) into the error expressions from (30) and (31), and
then performing some algebraic manipulations, yields

eζ = −Φ diag

(
dk

d2
k + αr2

k

)
U∗ζ,(33)

eq = Φ diag

(
αr2

k

d2
k + αr2

k

)
Φ∗qtrue.(34)

From (33), we see that the regularization should not be weak (small αr2
k) in directions

φk to which the observations are insensitive (small d2
k). Otherwise the noise associated

with observations of those directions will be highly amplified, leading to large errors.
In such a scenario we say that the problem is under-regularized.

On the other hand, (34) shows that strong regularization can also lead to large
errors. In directions φk for which observation data is lacking (or dominated by noise),
there is no hope to reconstruct the component of the parameter in that direction,
so some degree of error in eq is to be expected. However, if dk is large then the
observations are highly sensitive to changes to the parameter in direction φk, so it
is likely that the observations associated with direction φk contain more signal than
noise. That is, when dk is large, it is likely that the component of the parameter qtrue

in direction φk can, in principle, be inferred from the data. Hence, if the regularization
is strong (large αr2

k) in directions for which the parameter-to-observable map is also
strong (large d2

k), the reconstruction will contain substantial unnecessary error due
to the regularization. In this scenario we say that the problem is over-regularized.
To simultaneously avoid under- and over- regularization, the regularization should
be strong in directions where the parameter-to-observable map is weak, and weak in
directions where the parameter-to-observable map is strong.

4.3. Appropriate regularization assumptions. In light of the preceding dis-
cussion of over- and under- regularization error and spectral filtering, we propose the
following appropriate regularization assumptions.

Assumption 9 (Appropriate regularization). There exist constants µ and ν such
that,

a) 0 < µ ≤ d2
k + αr2

k,

b) dkrk ≤ ν <∞,

for all k = 1, 2, . . . , nq.
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Assumption 9a is already required for linear optimization problem (3) to be well-
posed. It says that the regularization cannot be arbitrarily small in basis directions φk
to which the observations are insensitive, but allows the regularization to be arbitrarily
small in directions φk to which the observations are sensitive. In contrast, Assumption
9b prevents the regularization from being large in basis directions φk to which the
observations are sensitive, but still allows the regularization singular values to diverge
(rk →∞ as k →∞), as long as the sensitivity of the observations to changes to the
parameter, dk, goes to zero in the inverse manner. Informally, Assumption 9a says
that the problem is not under-regularized, and Assumption 9b says that the problem
is not over-regularized.

Since Assumption 9a is standard, we do not discuss it further. The motivation
for Assumption 9b is less obvious, so we provide a more in-depth discussion of it. To
begin with, the multiplicative nature of Assumption 9b makes it a relatively weak
assumption compared to other possible candidates for preventing over-regularization.
In particular, observe that the eigenvalues of the regularization preconditioned re-
duced Hessian, R−∗HR−1, are d2

k/r
2
k + α. Thus situations in which the strength of

the regularization operator on a mode is inversely proportional to how informed that
mode is (i.e., rk ≈ 1

dk
) can lead to arbitrarily poor conditioning of the regularization

preconditioned reduced Hessian while still satisfying Assumption 9b with a constant
of order one.

An instructive model problem that illustrates Assumption 9b is the Poisson source
inversion problem on a rectangular domain, with Laplacian regularization, zero Dirich-
let boundary conditions for both A and R, and distributed observations of the first
nobs Fourier modes of the state variable in the domain. That is,

• T = I,
• A = R = ∆D, where ∆D is the Laplacian operator with zero Dirichlet bound-

ary conditions, and
• B : U → Rnobs is a wide rectangular operator with Fourier modes as right

singular vectors (the same as A and R), but with singular values σk = 1,
k = 1, . . . , nobs.

Recalling that J = −BA−1T = −B∆−1
D , we see that

dk =

{
1
λk
, k = 1, . . . , nobs,

0, k > nobs,

where λk is the kth eigenvalue of the Laplacian ∆D. At the same time, the singular
values of R are rk = λk. Thus dkrk = 1 for k = 1, . . . , nobs and dkrk = 0 for k > nobs,
so Assumption 9b holds with constant ν = 1, regardless of the number of observations,
nobs.

5. Analysis of the source inversion problem with spectral filtering reg-
ularization. In Section 3.1.2 we hypothesized that the damped projector arithmetic
and geometric mean assumptions (Assumption 1) are satisfied with good constants
δ and β whenever an inverse problem is properly regularized. Then in Section 4 we
formulated another assumption (Assumption 9) that quantifies the concept of proper
regularization for spectral filtering regularization operators. Here we show that As-
sumption 9 implies Assumption 1 for the source inversion problem. Specifically, in
Theorem 11 and Corollary 12 we prove quantitative bounds on the constants δ and
β for source inversion problems that are neither over- nor under- regularized in the
manner made precise by Assumption 9. The more appropriate to the problem the
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regularization is, the better the bounds.

Definition 10. An inverse problem is a source inversion problem if the parame-
ter q being inverted for is the right-hand-side of the state equation. That is, T = −I,
and state equation (2) takes the form,

Au = q.

Theorem 11. Let R be a spectral filtering regularization operator for a source
inversion problem (see Definitions 8 and 10). If R satisfies appropriate regulariza-
tion Assumption 9 with constants µ and ν, then Assumption 1 is also satisfied, with
constants

δ =
1

2

(
1 +

α

ρ2
ν2

)−1

and β =

(
1 +

1

ρ
µ

)−1/2

.

Proof. For δ, we seek a lower bound on the eigenvalues of the arithmetic mean of
the damped projectors QR and QJ (as defined in (18) and (19), respectively), while
for β we seek an upper bound on their geometric mean. For source inversion problems
these damped projectors take the form

QR =

(
α

ρ
R∗R+ I

)−1

and QJ =

(
1

ρ
J∗J + I

)−1

.

Furthermore, for spectral filtering regularization, R∗R and J∗J share the same eigen-
vectors, and have eigenvalues r2

k and d2
k, respectively. Thus the eigenvalues δk of the

arithmetic mean 1
2 (QR +QJ) can be estimated as

δk =
1

2

(
1

α
ρ r

2
k + 1

+
1

1
ρd

2
k + 1

)
≥ 1

2

(
1 +

α

ρ2
d2
kr

2
k

)−1

≥ 1

2

(
1 +

α

ρ2
ν2

)−1

.

In the first inequality we have combined fractions, and used the non-negativity of
r2
k, d

2
k and monotonicity of the function f(x) = x/(a + x). In the second inequality

we have used Assumption 9b.
Similarly, we use the Assumption 9a to bound the eigenvalues βk of the geometric

mean (QRQJ)1/2 as

βk =

(
1

α
ρ r

2
k + 1

· 1
1
ρd

2
k + 1

)1/2

≤
(

1 +
α

ρ
r2
k +

1

ρ
d2
k

)−1/2

≤
(

1 +
1

ρ
µ

)−1/2

.

The following corollary of Theorem 11 shows that the preconditioner will be
effective in the low to moderate regularization regime (α ≤ 1) if we choose ρ =

√
α.

Corollary 12. If the conditions of Theorem 11 are satisfied, and α ≤ 1, and
the regularization parameter is chosen as ρ =

√
α, then Assumption 1 is satisfied,

with constants

δ =
1

2

(
1 + ν2

)−1
and β = (1 + µ)

−1/2
.

Proof. Substituting in ρ =
√
α into the results of Theorem 11, we immediately

have the desired lower bound on the arithmetic mean of damped projectors with
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constant δ = 1
2

(
1 + ν2

)−1
. For the geometric mean, Theorem 11 implies

λmax (QRQJ)
1/2 ≤

(
1 + α−1/2µ

)−1/2

.

But note that for α ≤ 1 we have

(35)
(

1 + α−1/2µ
)−1/2

≤ (1 + µ)−1/2,

and so we get the desired upper bound with β = (1 + µ)−1/2.

6. Numerical results. We apply our method to a Poisson source inversion
problem with pointwise observations randomly distributed throughout a rectangular
domain Ω = [0, 1.45] × [0, 1], using Laplacian regularization. Specifically, we take q,
u, and v to reside in the space of continuous piecewise linear functions on a uniform
triangular mesh with mesh size parameter h, with the L2 inner product. The state
equation

Au := ∆Du = q,

is the Poisson equation discretized by the finite element method, with homogeneous
Dirichlet boundary conditions enforced by the symmetric Nitsche method [49]. Point-
wise observations of the form

yk = u(xk),

are taken for a collection of points {xk ∈ Ω}nobs

k=1 , shown in Figure 1. Noise is not
included in the inverse problem since we are interested in preconditioners for the low
noise, high data, small regularization limit. The regularization operator is defined by

R∗R := ∆N + tI,

where ∆N is the Laplacian operator with Neumann boundary conditions discretized
by the finite element method, and t = 1/10. The combined operator R∗R is used
directly; in fact, the solution algorithm does not require R explicitly.12

Fig. 1. Left: True source field qtrue used for all inversions. Center: Reconstruction q for
the case of nobs = 2000 observations with regularization parameter α = 10−8 and mesh size h =√

2 · 10−2. Right: Observation locations xk, denoted by dots.

The true source field, qtrue, used to generate the observations, yk, is a grayscale
image of the Peter O’Donnell Jr. building at the University of Texas at Austin, scaled

12Both A and R∗R should be viewed as finite dimensional discretizations of densely defined
unbounded operators acting L2(Ω).
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to contain values in [0, 1], and shown in Figure 1. The combination of sharp edges
and smooth features in this image make this an ideal test case for highly informative
data and small regularization.

Abstract vectors q, u, η are represented concretely by lists of nodal degrees of
freedom q,u,η, respectively. The norm of a concrete vector, e.g., ‖q‖, is the Euclidean
norm (square root of the sum of the squares of the entries). Since we use uniform
meshes and present only relative errors, this is spectrally equivalent to using the
function space L2 norm on the underlying function being represented by the concrete
vector. We use the FEniCS [43] package to assemble concrete matrix representations of
A, R∗R, T , and I, which are denoted A, R∗R, T, and W, respectively. The diagonal
lumped mass matrix is denoted WL, with diagonal entries given by row sums of the
mass matrix: (WL)ii =

∑
j Wij . The concrete sparse matrix representation of the

observation operator is denoted B. Its (i, j) entry, Bij , equals the evaluation of the
jth basis function at the ith observation location.

In a concrete basis, the KKT operator (4) becomes,

(36)

αR∗R −W

BTB AT

−W A

q
u
η

 =

 0

BT y
0

 .
The reconstructed function q based on the exact13 solution of this KKT system with
regularization parameter α = 10−8 is shown in Figure 1.

In a concrete basis the preconditioner (5) becomes

(37) P =

αR∗R + ρW

BTB + ρATW−1A
1
ρW

 .
In our numerical experiments, we consider three variants of this preconditioner.

• BDAL, exact: all solves in preconditioner (37) are performed exactly.
• BDAL, lumped mass, exact: the mass matrix W is replaced with the

lumped mass matrix WL, but preconditioner solves are performed exactly
with this replacement.

• BDAL, lumped mass, multigrid: the mass matrix is replaced by the
lumped mass matrix, and the solves for αR∗R+ρWL and BTB+ρATW−1

L A
are replaced by a small number of algebraic multigrid V-cycles.

For algebraic multigrid we use the root-node smoothed aggregation [50, 63] method
implemented in PyAMG [10], with the default settings. One V-cycle is used for
αR∗R + ρWL, and three V-cycles are used for BTB + ρATW−1

L A.

6.1. Convergence comparison. In Figure 2, we show a convergence compar-
ison between between MINRES on the KKT system preconditioned by our block di-
agonal augmented Lagrangian preconditioner, and conjugate gradient on the reduced
Hessian preconditioned by the regularization term (CG-HESS). For our block diago-
nal augmented Lagrangian preconditioner, we also show results for lumped mass and
algebraic multigrid approximations to the subsystems being solved. The regulariza-
tion, forward, and adjoint solves used for the reduced Hessian solve are all performed
exactly. The mesh size is h =

√
2 · 10−2, the number of observations is 2000, and

the regularization parameter is α = 10−8. Error is measured with respect to the

13By “exact,” we mean that the result of a computation is accurate to tolerance 10−12 or smaller.
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Fig. 2. Relative error in the parameter, ‖q− qk‖ / ‖q‖, for the high data Poisson source
inversion problem, as a function of the number of Krylov iterations. The observation locations,
regularization parameter, and mesh size are the same as in Figure 1 (nobs = 2000, α = 10−8,
h =
√

2 · 10−2).

Fig. 3. Visual comparison of the 3rd, 15th, and 50th Krylov iterates (nobs = 2000, α = 10−8,
h =

√
2 · 10−2). Top row: reconstruction using MINRES on the KKT system with our “BDAL,

lumped mass, exact” preconditioner. Bottom row: reconstruction using CG on the reduced Hessian
with regularization preconditioning.
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Table 1
Mesh scalability study for our “BDAL, lumped mass, exact” preconditioner over a range of

meshes. The table shows the number of MINRES iterations required to achieve parameter conver-
gence to relative error 10−5. The number of observations is nobs = 2000, and the regularization
parameter is α = 10−8. The observation locations xk are the same for all mesh sizes.

h # triangles MINRES iterations
5.68e-02 1800 51
2.84e-02 7200 50
1.89e-02 16200 51
1.41e-02 29000 51
1.13e-02 45250 51
9.44e-03 65100 51
8.09e-03 88550 51
7.07e-03 116000 51
6.29e-03 146700 51
5.66e-03 181000 51

converged solution to the linear system (36), i.e., ‖q− qk‖ / ‖q‖. This allows us to
make a fair comparison between the reduced and full space methods.

In terms of Krylov iteration count, our preconditioner far outperforms regular-
ization preconditioning on the reduced Hessian. The error in our method after three
iterations is much less than the error after 50 iterations of regularization precondi-
tioning on the reduced Hessian. Performance with the lumped mass approximation
is almost identical to performance with exact solves. In the case with the multigrid
approximation, we see roughly the same asymptotic convergence rate as the exact
solve, but with a lag of 10 to 20 iterations. In our numerical experiments we also
observed that MINRES with our “BDAL, lumped mass, multigrid” preconditioner
takes considerably less time per iteration than CG on the reduced Hessian, which is
expected since applying the reduced Hessian requires solving the forward and adjoint
equations to a high tolerance within each CG iteration.

In Figure 3, we see that the reconstruction using the reduced Hessian starts off
smooth, then slowly includes information from successively higher frequency param-
eter modes as the CG iterations progress. In contrast, our preconditioner applied to
the KKT system reconstructs low and high frequency information simultaneously.

6.2. Mesh scalability. To test mesh scalability, we solve the Poisson source
inversion problem on a sequence of progressively finer meshes using MINRES with
our block diagonal augmented Lagrangian preconditioner. The same regularization
parameter, α = 10−8, and observation locations, {xk}2000

k=1 , are used for all meshes.
The numbers of iterations k required to achieve a relative error of ‖q− qk‖ / ‖q‖ <
10−5 are shown in Table 1. All meshes are uniform triangular meshes. The coarsest
mesh has size h = 5.7·10−2 with 1, 800 triangles, and the finest mesh has h = 5.7·10−3

with 181, 000 triangles. To quantify the error, the exact solution q was computed for
each mesh using a sparse factorization of the KKT matrix. All results are based on
the lumped mass approximation for mass matrices within the preconditioner.

The results clearly demonstrate mesh independence. The number of MINRES it-
erations required remains essentially constant over a two orders of magnitude increase
in problem size, differing by at most one iteration across all mesh sizes.
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Fig. 4. Regularization and data scalability study for our “BDAL, lumped mass, exact” pre-
conditioner. Plot shows the number of MINRES iterations k required to achieve relative error
‖q− qk‖ / ‖q‖ < 1e− 5.

6.3. Regularization and data scalability. A data and regularization robust-
ness study is shown in Figure 4. The number of MINRES iterations k required for
the method to converge to an error ‖q− qk‖ / ‖q‖ < 10−5 is plotted for values of the
regularization parameter in the range α ∈ [10−10, 1.0], and number of observations
nobs ∈ {150, 600, 2400, 9600}. The mesh size is fixed at h =

√
2 · 10−2, and for each

value of nobs, the observation locations, xk, are fixed as the regularization parameter
varies.

The overall performance of the preconditioner is relatively steady over a broad
range of values of α and nobs. The performance of the method does decrease as
the regularization parameter goes to zero for a fixed number of observations (upper
left, Figure 4). However, the combination of small regularization parameter and
small number of observations corresponds to the under-regularized regime, which
we would not find ourselves in for an appropriately regularized problem. As the
number of observations increases, the performance of the method improves in the
small regularization regime while slightly worsening in the large regularization (over-
regularized) regime, as suggested by our theory. This behavior is consistent with a
data scalable method: one can take small values for the regularization parameter if
that choice is supported by the data available in the problem.

7. Conclusion. Traditional methods for solving linear inverse problems either
scale poorly with increasing data and decreasing regularization, or are restricted to
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specific forms of regularization that may not be appropriate for the inverse problem
at hand, or apply only to very specific problems. To overcome these limitations, we
proposed a preconditioner based on a block diagonal approximation to the augmented
Lagrangian KKT operator. We proved bounds on the condition number of the precon-
ditioned system in an abstract setting, specialized the analysis to the case of source
inversion problems with spectral filtering regularization, and tested the preconditioner
numerically on a Poisson source inversion problem with highly informative data and
small regularization parameter. Our analysis and numerical results indicate that
the preconditioner is mesh and data scalable when the regularization does not over-
penalize highly informed parameter modes and does not under-penalize uninformed
modes.
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