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Abstract. We study an inverse problem for the wave equation where localized wave sources in random scattering media
are to be determined from time resolved measurements of the waves at an array of receivers. The sources are far from the array,
so the measurements are affected by cumulative scattering in the medium, but they are not further than a transport mean
free path, which is the length scale characteristic of the onset of wave diffusion that prohibits coherent imaging. The inversion
is based on the Coherent Interferometric (CINT) imaging method which mitigates the scattering effects by introducing an
appropriate smoothing operation in the image formation. This smoothing stabilizes statistically the images, at the expense of
their resolution. We complement the CINT method with a convex (l1) optimization in order to improve the source localization
and obtain quantitative estimates of the source intensities. We analyze the method in a regime where scattering can be modeled
by large random wavefront distortions, and quantify the accuracy of the inversion in terms of the spatial separation of individual
sources or clusters of sources. The theoretical predictions are demonstrated with numerical simulations.

Key words. waves in random media, coherent interferometric imaging, l1 optimization, mutual coherence.

1. Introduction. Waves measured by a collection of nearby sensors, called an array of receivers, carry
information about their source and the medium through which they travel. We consider a typical remote
sensing regime with sources of small (point-like) support, and study the inverse problem of determining them
from the array measurements.

When the waves travel in a known and non-scattering (e.g. homogeneous) medium, the sources can be
localized with reverse time migration [4, 5] also known as backprojection [20]. This estimates the source
locations as the peaks of the image formed by superposing the array recordings delayed by travel times
from the receivers to the imaging points. The accuracy of the estimates depends on the array aperture, the
distance of the sources from the array, and the temporal support of the signals emitted by the sources. It may
be improved under certain conditions by using l1 optimization, which seeks to invert the linear mapping from
supposedly sparse vectors of the discretized source amplitude on some mesh, to the array measurements. The
fast growing literature of imaging with l1 optimization in homogeneous media includes compressed sensing
studies such as [19, 18], synthetic radar imaging studies like [1, 8], array imaging studies like [14], and the
resolution study [7].

In this paper we assume that the waves travel in heterogeneous media with fluctuations of the wave
speed caused by numerous inhomogeneities. The amplitude of the fluctuations is small, meaning that a
single inhomogeneity is a weak scatterer. However, there are many inhomogeneities that interact with the
waves on their way from the sources to the receivers, and their scattering effect accumulates. Because in
applications it is impossible to know the inhomogeneities in detail, and these cannot be estimated from the
array measurements as part of the inversion, the fluctuations of the wave speed are uncertain. We model this
uncertainty with a random process, and thus study inversion in random media. In this stochastic framework,
the actual heterogeneous medium in which the waves propagate is one realization of the random model. The
data measured at the array are uncertain and the question is how to mitigate the uncertainty to get images
that are robust with respect to arbitrary medium realizations, i.e., they are statistically stable.

The mitigation of uncertainty in the wave propagation model becomes important when the sources are
further than a few scattering mean free paths from the array. The scattering mean free path is the length
scale on which the waves randomize [23], meaning that their fluctuations from one medium realization
to another are large in comparison with their coherent (statistical expectation) part. The random wave
distortions registered at the array are very different from additive and uncorrelated noise assumed usually
in inversion. They are more difficult to mitigate and lead to poor and unreliable source reconstructions by
coherent methods like reverse time migration or standard l1 optimization. The Coherent Interferometric
(CINT) method [9, 6] is designed to deal efficiently with such random distortions, as long as there is some
residual coherence in the array measurements. This holds when the sources are separated from the array
by distances (ranges) that are large with respect to the scattering mean free path, but do not exceed a
transport mean free path, which is the distance at which the waves forget their initial direction [23]. The
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Fig. 2.1. Schematic for the inversion setup with an array of receivers that is planar square of side a. The range direction
is orthogonal to the array aperture. The sources are at ranges of order L in an imaging region D modeled as a rectangular
prism with size D3 in range and D in cross-range.

transport mean free path defines the range limit of applicability of coherent inversion methods. Beyond it
only incoherent methods based on transport or diffusion equations [2] can be used.

In this paper we assume a scattering regime where the CINT method is useful. It forms images by
superposing cross-correlations of the array measurements, delayed by travel times between the receivers and
the imaging points. As shown in [9, 10, 6], the cross-correlations must be computed locally, in appropriate
time windows, and over limited receiver offsets. This introduces a smoothing in the CINT image formation,
which is essential for stabilizing statistically the images, at the expense of resolution. The larger the random
distortions of the array measurements, the more smoothing is needed and the worse the resolution [9, 10].
Thus, it is natural to ask if it is possible to improve the source localization by using the prior information
that the sources have small support.

We show that under generic conditions, the CINT imaging function is approximately a discrete convolu-
tion of the vector of source intensities discretized on the imaging mesh, with a blurring kernel. To reconstruct
the sources we seek to undo the convolution using convex (l1) optimization. We present an analysis of the
method in a scattering regime where the random medium effects on the array measurements can be modeled
by large wavefront distortions, as assumed in adaptive optics [3]. We derive from first principles the CINT
blurring kernel in this regime, and state the inversion problem as an l1 optimization. We also quantify the
quality of the reconstruction with error estimates that depend on the separation of the sources, or of clusters
of sources, but are independent of the source placement on or off the imaging mesh, as long as the sources
are sufficiently far apart. The analysis shows that we can expect almost exact reconstructions when the
sources are further apart than the CINT resolution limits. This is similar to the super-resolution results in
[11], that show that one dimensional discrete convolutions can be undone by convex optimization, assuming
that the minimum distance between the points in the support of the unknown vectors is 2/fc, where fc is
the largest “frequency” in the Fourier transform of the convolution kernel. When the sources are clustered
together, the l1 reconstruction is not guaranteed to be close to the true vector of source intensities in the
point-wise sense. However, we show that its support is in the vicinity of the clusters, and its entries are
related to the average source intensities there.

The paper is organized as follows: We begin in section 2 with the formulation of the inverse problem
as an l1 optimization. The analysis of the method is in sections 3 - 5, and we demonstrate its performance
with numerical simulations in section 6. We end with a summary in section 7.

2. Formulation of the inverse problem. Consider the inversion setup illustrated in Figure 2.1,
where Ns sources located at ~ys, for s = 1, . . . , Ns, emit signals fs(t) that generate sound waves recorded at
a remote array of receivers placed at ~xr, for r = 1, . . . , Nr. For simplicity we assume that the array aperture
is planar and square, of side a. This allows us to introduce a system of coordinates centered at the array,
with range direction orthogonal to the array, and cross-range plane parallel to the array. In this system of
coordinates we have ~xr = (xr, 0), with cross-range vectors xr = (xr,1, xr,2) satisfying |xr,1|, |xr,2| ≤ a/2. The
sources are at ~ys = (ys, ys,3), with range coordinates ys,3 of order L, satisfying L� a, and two dimensional
cross-range vectors ys.
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In general, the signals fs(t) emitted by the sources may be pulses, chirps or even noise-like, with Fourier
transforms

f̂s(ω) =

∫ ∞
−∞

dt fs(t)e
iωt (2.1)

supported in the frequency interval [ωo − πB, ωo + πB], where ωo is the central frequency and B is the
bandwidth. We denote the recorded waves by p(~xr, t), and use the linearity of the wave equation to write

p(~xr, t) =

∫ ωo+πB

ωo−πB

dω

2π
p̂(~xr, ω)e−iωt, p̂(~xr, ω) =

Ns∑
s=1

f̂s(ω)Ĝ(~xr, ~ys, ω) + n̂(~xr, ω), (2.2)

for r = 1, . . . , Nr. Here the Green’s function Ĝ models the propagation of time harmonic waves in the
medium, and n̂ denotes additive and uncorrelated noise. The inverse problem is to determine the sources
from these array measurements.

2.1. Imaging in homogeneous media. The Green’s function in media with constant speed co is

Ĝo(~xr, ~ys, ω) =
exp[iωτ(~xr, ~ys)]

4π|~xr − ~ys|
, (2.3)

where

τ(~xr, ~ys) = |~xr − ~ys|/co (2.4)

is the travel time from the source at ~ys to the receiver at ~xr. The measurements are of the form

po(~xr, t) =

Ns∑
s=1

fs (t− τ(~xr, ~ys))

4π|~xr − ~ys|
+ n(~xr, t), (2.5)

and in reverse time migration they are synchronized using travel time delays with respect to a presumed
source location at a search point ~y, and then superposed to form an image

Jo(~y) =

Nr∑
r=1

po (~xr, τ(~xr, ~y)) . (2.6)

The resolution limits of the imaging function (2.6) are well known. The cross-range resolution is of order
λoL/a, where λo = 2πco/ωo is the central wavelength, and the range resolution is inverse proportional to
the temporal support of fs(t), which determines the precision of the travel time estimation. If the signals
fs(t) are pulses, their temporal support is of order 1/B, and the range resolution is of order co/B. If they
are chirps or other long signals that are known, then they must be compressed in time by cross-correlation
(matched filtering) with the time reversed fs(t) to achieve the co/B range resolution [15]. If the signals are
unknown and noise-like, then imaging must be based on cross-correlations of the array measurements, like
in CINT.

We refer to [7] for the formulation of the inverse source problem as an l1 optimization, and recall from
there that the resolution limits λoL/a and co/B also play a role in the successful recovery of the presumed
sparse source support.

2.2. Coherent interferometric imaging. The imaging function Jo(~y) does not work well in random
media at ranges L that exceed a few scattering mean free paths. This is because the measurements have large
random distortions that are very different than the additive noise n(~xr, t), and cannot be reduced by simply
summing over the receivers as in (2.6). To mitigate these distortions we image with the CINT function

J (~y) =

∫ ∞
−∞

dω

∫ ∞
−∞

dω̃ φ̂

(
ω̃

Ω

) Nr∑
r=1

Nr∑
r′=1

ψ

(
|xr − xr′ |
X(ω)

)
p̂(~xr, ω + ω̃/2)p̂(~xr′ , ω − ω̃/2)

× exp[−i(ω + ω̃/2)τ(~xr, ~y) + i(ω − ω̃/2)τ(~xr′ , ~y)], (2.7)
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where φ̂ and ψ are smooth window functions of dimensionless argument and support of order one, and the
domain of integration is restricted by the finite bandwidth that supports the measurements,

ω ± ω̃/2 ∈ [ωo − πB, ωo + πB].

As in reverse time migration, the travel times are used in (2.7) to synchronize the waves due to a presumed
source at the search location ~y. However, the image is formed by superposing cross-correlations of the array
measurements p(~xr, t), instead of the measurements themselves. The cross-correlations are convolutions
of p(~xr, t) with the time reversed p(~xr′ , t), for r, r′ = 1, . . . , Nr. The time reversal appears as complex
conjugation in the frequency domain, denoted with the bar in (2.7). The time window

φ (Ωt) =
1

2πΩ

∫ ∞
−∞

dω φ̂
(ω

Ω

)
e−iωt (2.8)

and spatial window ψ(|x|/X) ensure that the cross-correlations are computed locally, over receiver offsets
that do not exceed the distance X, and over time offsets of order 1/Ω. These threshold parameters account
for the fact that scattering in random media decorrelates statistically the waves at frequencies separated by
more than Ωd, the decoherence frequency, and points separated by more than Xd, the decoherence length.
We refer to [10, 6] and the next section for more details. Here it suffices to recall that (2.7) is robust∗ when
X . Xd and Ω . Ωd, and that the image J (~y) has a cross-range resolution of order λoL/X and a range
resolution of order co/Ω. The best focus occurs at X ≈ Xd and Ω ≈ Ωd, so the decoherence parameters Xd

and Ωd can be estimated with optimization, as explained in [9].
To state the inverse problem as a convex optimization, we make the simplifying assumption that the

sources emit the same known pulse f(t), so that

f̂s(ω) = f̂(ω)ρ(~ys), s = 1, . . . , Ns, (2.9)

for an unknown, complex valued amplitude ρ(~y). Using (2.9) in (2.2) and substituting in (2.7) we obtain

J (~y) ≈
Ns∑
s=1

Ns∑
s′=1

ρ(~ys)ρ(~ys′)κ(~y, ~ys, ~ys′), (2.10)

with kernel

κ(~y, ~ys, ~ys′) =

Nr∑
r=1

Nr∑
r′=1

ψ

(
|xr − xr′ |

X

)∫ ∞
−∞

dω

∫ ∞
−∞

dω̃ φ̂

(
ω̃

Ω

)
f̂ (ω + ω̃/2) f̂ (ω − ω̃/2)

× Ĝ (~xr, ~ys, ω + ω̃/2) Ĝ(~xr′ , ~ys′ , ω − ω̃/2) exp[−i(ω + ω̃/2)τ(~xr, ~y)] + i(ω − ω̃/2)τ(~xr′ , ~y)], (2.11)

where the approximation is because we neglect the additive noise†.
In the analysis of the next section we take the Gaussian pulse

f̂(ω) =

(√
2π

B

)1/2

exp

[
− (ω − ωo)2

4B2

]
, (2.12)

normalized by

‖f‖
2

=

[∫ ∞
−∞

dt |f(t)|2
]1/2

=

[∫ ∞
−∞

dω

2π
|f̂(ω)|2

]1/2

= 1.

∗Robustness refers to statistical stability of the image with respect to the realizations of the random medium. It means
that the standard deviation of (2.7) is small with respect to its expectation near the peaks.
†Additive noise is considered in all the numerical simulations in section 6, but for simplicity we neglect it in the analysis.
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This choice allows us to obtain an explicit expression of the kernel (2.11). Naturally, in practice the pulses
may not be Gaussian, and the sources may emit different signals. The method described here still applies
to such cases, with ρ(~ys) replaced in (2.10) by ‖fs‖2 , and the substitution

f̂(ω + ω̃/2)f̂(ω − ω̃/2) 
f̂s(ω + ω̃/2)

‖fs‖
f̂s′(ω − ω̃/2)

‖fs′‖2
in (2.11). Since fs is unknown in general, we may only estimate the kernel κ up to unknown, constant
multiplicative factors. This still allows the determination of the location of the sources, but does not give
good estimates of their intensities.

2.3. The optimization problem. Let us consider a reconstruction mesh with Nz points denoted
generically by ~z, and name ρ the column vector with entries given by the unknown ρ(~z). We sample the
CINT image J (~y) at Ny < Nz points, and gather these samples in the “data” vector d. It is natural to take
Ny < Nz, because we seek to super-resolve the CINT image, which is blurred by the kernel (4.4).

At first glance it appears that we may use equation (2.10) to formulate the inversion as an optimization
problem for recovering the rank one matrix ρρ?, as in [12, 13]. However, as shown in the next section, in
strong random media where CINT is needed, the kernel κ(~y, ~z, ~z′) is large only when ~z and ~z′ are nearby. In
fact, for reasonable mesh sizes on which we can expect to obtain unique reconstructions, the kernel satisfies

κ(~y, ~z, ~z′) ≈
{
κ(~y, ~z, ~z) if ~z′ = ~z,
0 if ~z 6= ~z′.

(2.13)

Thus, only the diagonal entries |ρ(~z)|2 of ρρ? play a role. These are the source intensities and we denote by
u ∈ RNz the vector of unknowns formed by them. Equation (2.10) gives

Mu ≈ d, (2.14)

where M is the Ny ×Nz “measurement” matrix with entries κ(~y, ~z, ~z). We formulate the inversion as the
l1 optimization problem

min
u∈RNz

‖u‖1 such that ‖Mu− d‖2 ≤ tolerance, (2.15)

where the tolerance accounts for additive noise effects and the random fluctuations of the CINT imaging
function, which are small for large enough array aperture a and bandwidth B, as shown in [10, 6].

We prove in section 4 that the left hand side in (2.14) is approximately a discrete convolution. The l1
optimization is useful in this context, and recovers well sources that are well separated, as expected from
the results in [11]. We rediscover such results in this paper using a different analysis. We also consider cases
where the sources are clustered together, and show that although we cannot expect good reconstructions in
the point-wise sense, the l1 minimizer is supported in the vicinity of the clusters, and estimates the average
source intensity there.

3. Setup of the analysis. We introduce in this section the random wave speed model and the scaling
assumptions which define the relations between the wavelength λo, the typical size ` of the inhomogeneities
in the medium, the standard deviation σ of the fluctuations of the wave speed, the array aperture a, the
range L, and the extent of the imaging region. The scaling allows us to describe the scattering effects of the
random medium as large wavefront distortions. This is a simple wave propagation model that is convenient
for analysis, and captures qualitatively all the important features of imaging with CINT. That is to say,
equation (2.14) holds in general scattering regimes, and the CINT kernel κ has a similar form, but the
mathematical expression of the decoherence length Xd and frequency Ωd, which quantify the blurring by
the kernel, are expected to change. The expressions of Xd and Ωd in terms of λo, σ, ` and L are needed for
analysis, but they are unlikely to be known in practice. This is why one should determine the decoherence
parameters directly form the data or adaptively, during the CINT image formation, as in [9].

The model of the wave speed c(~x) is

c(~x) = co

[
1 + σµ

(
~x

`

)]−1/2

, (3.1)
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where µ is a mean zero, stationary random process of dimensionless argument. We suppose that µ is bounded
almost surely and denote by R its auto-correlation, assumed isotropic and Gaussian for convenience

R(~x) = E [µ(~x+ ~x′)µ(~x)] = e−|~x|
2/2. (3.2)

Then, σ � 1 quantifies the small amplitude of the fluctuations of c(~x), and ` is the correlation length, which
characterizes the typical size of the inhomogeneities in the medium.

We explain in section 3.1 how far the waves should propagate in media modeled by (3.1), so that the
cumulative scattering effects can be described by large wavefront distortions. We are interested in imaging
with finite size arrays at long distances, so the waves propagate in the range direction, within a cone (beam)
of small opening angle. This is the paraxial regime defined in section 3.2. We describe in section 3.3 the
wave randomization quantified by the scattering mean free path, and the statistical decorrelation quantified
by the decoherence length and frequency. We end the section with a summary of the scaling assumptions.

3.1. Wave scattering regime. We use a geometrical optics (Rytov) wave propagation model that
holds in high frequency regimes with separation of scales

λo � `� L, (3.3)

and standard deviation σ of the fluctuations satisfying

σ � min

{(
`

L

)3/2

,

√
`λo
L

}
. (3.4)

It is shown in [22] that the first bound in (3.4) ensures that the rays remain straight and the variance of the
amplitude of the Green’s function is negligible, so we can use the same geometrical spreading factor as in
the homogeneous medium. The second bound in (3.4) ensures that only first order (in σ) corrections of the
travel time matter, so the propagation model is

Ĝ(~x, ~y, ω) ≈ Ĝo(~x, ~y, ω) exp

[
iωτ(~x, ~y)

σ

2

∫ 1

0

dϑµ

(
(1− ϑ)~y + ϑ~x

`

)]
. (3.5)

Let us write the random phase correction in (3.5) as

ωδτ(~x, ~y) =
(2π)1/4

2
σk
√
`|~x− ~y| ν(~x, ~y), (3.6)

where k = ω/co is the wavenumber and

ν(~x, ~y) =
1

(2π)1/4

√
|~x− ~y|

`

∫ 1

0

dϑµ

(
(1− ϑ)~y + ϑ~x

`

)
(3.7)

is defined by the integral of the fluctuations along the straight ray between ~y and ~x. It is shown in [6,
Lemma 3.1] that ν(~x, ~y) converges in distribution as `/|~x− ~y| ∼ `/L→ 0 to a Gaussian process. Its mean

E [ν(~x, ~y)] = 0, (3.8)

and variance

E
[
ν2(~x, ~y)

]
=
|~x− ~y|
`
√

2π

∫ 1

0

dϑ

∫ 1

0

dϑ′R
(

(ϑ′ − ϑ)(~x− ~y)

`

)
≈ 1, (3.9)

are calculated from definition (3.7) and the expression (3.2) of R. The approximation is for `/L small.
We conclude from (3.6), (3.9) and k = O(ko), with ko = 2π/λo, that the random phase fluctuations

in (3.5) have standard deviation of order σ
√
`L/λo. When this is small, the random medium effects are
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negligible and any coherent imaging method works well. We are interested in the case of large fluctuations,
so we ask that

σ � λo√
`L
. (3.10)

This is consistent with (3.4) when

λo/
√
`L

(`/L)3/2
=
λoL

`2
� 1,

λo/
√
`L√

`λo/L
=

√
λoL

`
� 1,

so we tighten our assumption (3.3) on the correlation length as√
λoL� `� L. (3.11)

3.2. The paraxial regime. Suppose that the sources are contained in the search (imaging) region

D = [−D/2, D/2]× [−D/2, D/2] [−D3/2, D3/2] , (3.12)

which is a rectangular prism of sides D in cross-range and D3 in range, as illustrated in Figure 2.1. When
D and the array aperture a are small with respect to the range scale L, the rays connecting the sources
and the receivers are contained within a cone (beam) of small opening angle, and we can use the paraxial
approximation to simplify the calculations.

The paraxial regime is defined by the scaling relations

λo � D . a� L, D3 � L,
a4

λoL3
� 1,

a2D3

λoL2
� 1, (3.13)

so that for ~y = (y, y3) and ~x = (x, 0) we get

k|~x− ~y| = k

(
y3 +

|x|2

2L
− x · y

L
+
|y|2

2L

)
+O

(
a4

λoL3

)
+O

(
a2D3

λoL2

)
≈ k

(
y3 +

|x|2

2L
− x · y

L
+
|y|2

2L

)
, (3.14)

and

1

4π|~x− ~y|
=

1

4πL

[
1 +O

(
D3

L

)
+O

(
a2

L2

)]
≈ 1

4πL
. (3.15)

These approximations are proved in appendix A, and the deterministic factor in (3.5) becomes

Ĝo(~x, ~y, ω) ≈ 1

4πL
exp

[
ik

(
y3 +

|x|2

2L
− x · y

L
+
|y|2

2L

)]
. (3.16)

3.3. Randomization and statistical decorrelation of the waves. Here we quantify the scattering
mean free path S, the length scale on which the waves randomize (lose coherence), and the decoherence
length Xd and frequency Ωd, which describe the statistical decorrelation of the waves due to scattering.
These important scales appear in the definition of the CINT blurring kernel defined in section 4.

Proposition 3.1. The expectation of the Green’s function (3.5) is given by

E
[
Ĝ(~x, ~y, ω)

]
≈ Ĝo(~x, ~y, ω)e−

|~x−~y|
S(ω) ≈ 0, (3.17)

where S(ω) is the scattering mean free path defined by

S(ω) =
8√

2πσ2k2`
� L. (3.18)
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This result, proved in appendix B, shows that the wavefront distortions due to scattering in the random
medium do not average out. The expectation of Ĝ is not the same as the Green’s function in the homogeneous
medium, but decays exponentially with the distance of propagation on the scale S(ω), the scattering mean
free path. The scaling assumption (3.10) and definition (3.18) give

|~x− ~y|
S(ω)

= O

(
L

S(ω)

)
= O(σ2k2`L)� 1,

which is why the expectation in (3.17) is almost zero. The standard deviation of the fluctuations is approx-
imately

std[Ĝ(~x, ~y, ω)] ≈
√∣∣∣Ĝo(~x, ~y, ω)

∣∣∣2 − ∣∣∣E[Ĝ(~x, ~y, ω)
]∣∣∣2 ≈ ∣∣∣Ĝo(~x, ~y, ω)

∣∣∣,
where we used that |Ĝ(~x, ~y, ω)| ≈ |Ĝo(~x, ~y, ω)|. Thus, the random fluctuations of the waves dominate their
coherent part (the expectation) at the ranges considered in our analysis,∣∣∣E[Ĝ(~x, ~y, ω)

]∣∣∣
std[Ĝ(~x, ~y, ω)]

≈ e−
|~x−~y|
S(ω) ≈ 0,

and the wave is randomized. Reverse time migration or standard l1 optimization methods cannot mitigate
these large random distortions, as we illustrate with numerical simulations. This is why we base our inversion
on the CINT method.

Proposition 3.2. Consider two points ~x = (x, 0) and ~x′ = (x′, 0) in the array aperture and two points
~y = (y, y3) and ~y′ = (y′, y′3) in the imaging region. Assume that the bandwidth B is small with respect to
the central frequency ωo, so that |ω − ωo|, |ω′ − ωo| ≤ πB � ωo. Then, the second moments of (3.5) are

E
[
Ĝ(~x, ~y, ω)Ĝ(~x′, ~y′, ω′)

]
≈ Ĝo(~x, ~y, ω)Ĝo(~x′, ~y′, ω′)e

− |y3−y
′
3|

S − (ω−ω′)2

2Ω2
d

− |y−y′|2+(y−y′)·(x−x′)+|x−x′|2

2X2
d , (3.19)

with short notation S = S(ωo), and decoherence frequency Ωd and decoherence length Xd defined by

Ωd =
2ωo

(2π)5/4

(
λo

σ
√
`L

)
� ωo, Xd =

√
3`

Ωd
ωo
� `. (3.20)

Moment formula (3.19) is proved in appendix B, and the inequalities in (3.20) are due to assumption (3.10).
The first exponential factor in (3.19) accounts for the randomization due to the travel time fluctuations
between the two ranges. In our scaling |y3−y′3| . D3, and by the last inequality in (3.13), and the definition
of the scattering mean free path, we have

|y3 − y′3|
S(ωo)

= O

(
D3

σ2`

λ2
o

)
� O

(
λoL

2

a2

σ2`

λ2
o

)
� O

(
`2

a2

)
, (3.21)

where we used the bound (3.4) on σ. It is shown in [6, Section 4] that the standard deviation of the CINT
image is small with respect to the expectation of its peak value (i.e., the imaging function is statistically
stable) when

a > `. (3.22)

Stability is essential for imaging to succeed, so we ask that the array aperture satisfy (3.22), and conclude
from (3.21) that the second moments (3.17) simplify as‡

E
[
Ĝ(~x, ~y, ω)Ĝ(~x′, ~y′, ω′)

]
≈ Ĝo(~x, ~y, ω)Ĝo(~x′, ~y′, ω′)e

− (ω−ω′)2

2Ω2
d

− |y−y′|2+(y−y′)·(x−x′)+|x−x′|2

2X2
d , (3.23)

‡Although this moment formula is derived here using the model (3.5), the result is generic and can be obtained in other
scattering regimes. The only difference is the definition of Xd and Ωd. See for example [21].
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with Ĝo given in (3.16).
The exponential decay in (3.23) models the statistical decorrelation of the waves due to scattering. In

our context, the spatial decorrelation, modeled by the decay in x − x′ and y − y′, can be explained by
the fact that rays connecting sources to far apart receivers traverse through different parts of the random
medium. Because µ does not have long range correlations, the fluctuations of the travel time along such
different rays are statistically uncorrelated. The waves at far apart frequencies are uncorrelated because they
interact differently with the random medium. This gives the decay in ω − ω′ in equation (3.23).

Definition (2.11) of the CINT kernel involves the superposition of Ĝ(~x, ~y, ω)Ĝ(~x′, ~y′, ω′) over the array
elements and frequencies. If the array aperture a is large with respect to Xd, the superposition stabilizes
statistically because we sum many uncorrelated entries, as in the law of large numbers. This is why CINT
is robust with respect to the uncertainty of the fluctuations of the wave speed, as shown in [10, 6].

3.4. Summary of the scaling assumptions. We gather here the scaling assumptions stated through-
out the section, and complement them with extra assumptions on the bandwidth and the size of the imaging
region. We refer to appendix C for the verification of their consistency.

The wavelength λo is the smallest length scale, and the range L is the largest. The assumptions (3.22)
and (3.13) on the aperture are

` < a� (λoL
3)1/4. (3.24)

The upper bound ensures that we can use the paraxial approximation and the lower bound gives a > `� Xd,
so that the CINT image is statistically stable.

Assumption (3.11) combined with (3.24) gives that the correlation length of the wave speed fluctuations
should satisfy √

λoL� `� (λoL
3)1/4 � L. (3.25)

The standard deviation σ of the fluctuations is bounded above as in (3.4), and below as in (3.10),

λo√
`L
� σ �

√
`λo
L

. (3.26)

The cross-range and range sizes D and D3 of the imaging region should be large with respect to the
CINT resolution limits of λoL/X in cross-range and co/Ω in range (see next section), so we can observe the
image focus. We take the threshold parameters

X/Xd = O(1), Ω/min{Ωd, B} = O(1), (3.27)

and recalling the scaling assumptions (3.13) that allow us to use the paraxial approximation, we obtain

co
Ω
� D3 �

λoL
2

a2
and

λoL

X
� D . a. (3.28)

In general, the CINT image is statistically stable if in addition to having a � Xd, which follows from
(3.20) and (3.24), the bandwidth B is larger than the decoherence frequency Ωd. However, for the propagation
model (3.5) considered in this section, where the effect of the random medium consists only of wavefront
distortions and no delay spread (reverberations), the bandwidth B does not play a role in the stabilization of
CINT, as shown in [6, Section 4.4.4]. Thus, we study imaging in both narrowband and broadband regimes:

The narrowband regime is defined by B satisfying

ωo

( a
L

)2

� B � ωo min

{
1,
λoL

aXd

}
= ωo

λoL

aXd
. (3.29)

As verified in Appendix C,

λoL

Xd
� ` < a,

λoL

aXd
� Ωd

ωo
, (3.30)
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so B � Ωd. This choice leads to a simpler expression of the CINT blurring kernel, but since Ω is of the
order of B, the range resolution is the same as in the homogeneous medium, and cannot be improved with
optimization unless the sources are very far apart in range. However, the optimization can improve the
cross-range focusing.

The broadband regime is defined by

Ωd � B � ωo, (3.31)

so we may seek to improve the CINT resolution in both range and cross-range. The expression of the CINT
kernel is more complicated in this case, but it simplifies slightly when

λo√
`L
� λ

2/3
o `1/6

L5/6
� σ �

√
`λo
L

,
`

a
= O(1). (3.32)

We present the analysis that uses these conditions, which say that the fluctuations in the random medium
are even stronger than in (3.26), but the correlation length is not much smaller than a. Extensions to larger
apertures are possible, although the analysis is more complicated.

4. The CINT blurring kernel. Here we derive the CINT convolution model. To obtain an explicit
expression of the kernel (2.11), we use the Gaussian pulse (2.12) and the Gaussian threshold windows

φ̂

(
ω̃

Ω

)
= e−

ω̃2

2Ω2 , ψ

(
|x̃|
X

)
= e−

|x̃|2

2Ω2 , (4.1)

with X and Ω satisfying

X/Xd = O(1), Ω =

 B in narrowband regime

O(Ωd) in broadband regime.
(4.2)

As stated previously, and shown in [9], Xd and Ωd can be estimated adaptively, by optimizing the focusing
of the CINT image. This is why we can assume that Xd is known approximately. The same holds for Ωd,
if the bandwidth is big enough. The expression of the CINT kernel is simpler in the narrowband scaling
(3.29), where B � Ωd, as shown in section 4.1, and we take Ω = B. The broadband regime is discussed in
section 4.2.

Typically, the receivers are separated by distances of order λo, so that they behave collectively as an
array. Since λo � a, we have Nr = O

(
a2/λ2

o

)
� 1, and we can approximate the sums in (2.11) by integrals

N∑
r=1

 
Nr
a2

∫
A
dx,

where A denotes the array aperture, the square of side a. To avoid specifying the finite aperture in the
integrals, and to simplify the calculations, we use a Gaussian apodization factor

ψA(x) = exp

[
− |x|2

2(a/6)2

]
, (4.3)

which is negligible outside the disk of radius a/2.

4.1. The CINT kernel in the narrowband regime. The calculation of the kernel (2.11) is in
appendix D, and we state the results in the next proposition.

Proposition 4.1. Let ~z = (z, z3), ~z′ = (z′, z′3) and ~y = (y, y3) be three points in the imaging region
and define the center and difference vectors

~z + ~z′

2
= (z, z3), ~z − ~z′ = (z̃, z̃3).
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Under the assumptions (3.24)-(3.29), the CINT kernel (2.11) is approximated by

κ(~y, ~z, ~z′) ≈ C exp

[
−|z − y|

2

2R2
− (z3 − y3)2

2R2
3

]
M(~y, ~z, ~z′), (4.4)

where C is a constant, and

R =
L

koXe
, R3 =

co
Ωe
, (4.5)

with Xe and Ωe defined by

1

X2
e

=
1

X2
d

+
1

X2
+

1

4(a/6)2
,

1

Ω2
e

=
1

Ω2
d

+
1

Ω2
+

1

4B2
. (4.6)

The factor M(~y, ~z, ~z′) is complex, with absolute value

|M(~y, ~z, ~z′)| = exp

[
− z̃2

3

2R̃2
− |z̃|

2

2

(
1

γX2
d

+
1

R̃2

)]
, (4.7)

where

1

γ
= 1− X2

e

4X2
d

>
3

4
, R̃3 =

co
B
, R̃ = 6

√
2
L

koa
. (4.8)

The parameter R defined in (4.5) is the CINT cross-range resolution limit, the length scale of exponential
decay of the kernel κ(~y, ~z, ~z′) with z − y. Definitions (4.6), (3.20) and assumption (4.2) give that

Xe = O(Xd)� a,

so the resolution is worse than in homogeneous media,

R� L

koa
. (4.9)

This is due to the smoothing needed to stabilize statistically the image [9]. The goal of the convex optimiza-
tion (2.15) is to overcome this blurring and localize better the sources in cross-range.

The parameter R3 is the CINT range resolution limit. Because we are in the narrowband regime, we
obtain from definition (4.6) and (4.2) that Ωe ≈ B, and therefore R3 is similar to the range resolution in
homogeneous media,

R3 =
co
Ωe
≈ co
B
. (4.10)

The results obtained in [7] for imaging with l1 optimization in homogeneous media show that it is not possible
to improve the co/B range resolution, unless the sources are very far apart in range. We cannot expect to
do better in random media, so we do not seek any super-resolution in range, in the narrowband regime.

Note that by the first inequality in (3.30) we have R̃� Xd, so the kernel decays with the offsets z̃ and

z̃ on the length scales R̃ and R̃3. These scales are, up to a constant of order one, the resolution limits of
imaging in homogeneous media.

4.2. The CINT kernel in the broadband regime. The expression of the CINT kernel is stated in
the next proposition, proved in appendix D.

Proposition 4.2. Consider the same points and notation as in Proposition 4.1. Under the assumptions
(3.24)-(3.28) and (3.31)-(3.32), the CINT kernel is given by

κ(~y, ~z, ~z′) ≈ C√
1 + |z−y|2

2θ2R2

exp

[
−|z − y|

2

2R2
−
(
z3 − y3 + |z|2−|y|2

2L

)2
2R2

3

[
1 + |z−y|2

2θ2R2

] ]
M(~y, ~z, ~z′), (4.11)
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where C is a constant,

θ =
6ωoXe

Ωea
, (4.12)

and M(~y, ~z, ~z′) is a complex multiplicative factor with absolute value

|M(~y, ~z, ~z′)| = exp

− z̃2
3

2R̃2
3

− |z̃|
2

2

[
1

γX2
d

+
1

R̃2

]
+

∣∣∣ (z−y)
R · z̃

R̃

∣∣∣2
4θ2
[
1 + |z−y|2

2θ2R2

]
 (4.13)

Because Xe = O(Xd) and Ωe = Ωd, we obtain from definitions (4.12) and (3.20) that

θ = O

(
`

a

)
= O(1), (4.14)

where we used the assumption (3.32) on the aperture.§ The first term in the exponential in (4.11) gives the
focusing in cross-range, which is the same as in the narrowband case: |z − y| = O(R). This means that the
denominators in (4.11) are order one,

1 +
|z − y|2

2θ2R2
= O(1).

The second term in the exponential in (4.11) gives the focusing in range. In our setting we have by the
paraxial approximation that

z3 − y3 +
|z|2 − |y|2

2L
≈ |(z, z3)| − |(y, y3)|,

so CINT estimates the distance from the center of the array to (z, z3) with resolution of order R3. Since
Ωe � B, this resolution is worse than in homogeneous media

R3 =
co
Ωe

= O
(co
B

)
= O(R̃3),

so in the broadband regime it makes sense to seek an improvement of both the range and cross-range
resolution with optimization.

Equations (4.11) and (4.13) show that the kernel decays with the offset z̃3 on the same scale R̃3 as
before. To see the decay with the offset z̃, we note that the last two terms in (4.13) satisfy

|z̃|2

2

[
1

γX2
d

+
1

R̃2

]
−

∣∣∣ (z−y)
R · z̃

R̃

∣∣∣2
4θ2
[
1 + |z−y|2

2θ2R2

] =
|z̃|2

2R2
[
1 + |z−y|2

2θ2R2

] [1 +
R̃2
[
1 + |z−y|2

2θ2R2

]
γX2

d

]
+

|z−y|2
R2

|z̃|2

R̃2
−
∣∣∣ (z−y)

R · z̃
R̃

∣∣∣2
4θ2
[
1 + |z−y|2

2θ2R2

]
&

|z̃|2

2R2
[
1 + |z−y|2

2θ2R2

] ,
where we used that R̃ � Xd, as explained in the previous section. This shows that the kernel decays with
the cross-range offsets on the same scale R̃ as before.

§In the narrowband case the aperture may be much larger than `, as in (3.24). It is only in the broadband case that we
take ` = O(a) to simplify the expression of the CINT kernel.
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4.3. The approximate convolution model. Let us discretize the imaging region D defined in (3.12)

on a mesh with size ~h = (h, h, h3). In principle, the steps h and h3 may be chosen arbitrarily small, to avoid
discretization error due to sources being off the mesh. However, we know from [7] and the analysis below and
the numerical simulations that we cannot expect reconstructions at scales that are finer than the resolution
limits in homogeneous media. This motivates us to formulate the inversion using the assumption that the
sources are further apart than 3R̃ in cross-range and 3R̃3 in range. This leads to a simpler optimization
problem because by Propositions 4.1 and 4.2 we have

|M(~y, ~z, ~z′)| ≤ exp

(
−9

2

)
� 1, if |z − z′| ≥ 3R̃ or |z3 − z′3| ≥ 3R̃3,

and we may work only with the diagonal part of the CINT kernel.

We obtain the linear system of equations (2.14), with vector u of components |ρ(~z)|2 at the Nz mesh
points in D. The “data” vector d consists of the samples of the CINT image at Ny < Nz equidistant points
in D, and in the narrowband regime the Ny ×Nz matrix M has entries

m~y,~z = C exp

[
−|z − y|

2

2R2
− (z3 − y3)2

2R2
3

]
, B � Ωd, (4.15)

with constant C. This depends only on ~y − ~z, so we have a convolution as stated in section 2.3. In the
broadband regime, the entries of M are

m~y,~z =
C√

1 + |z−y|2
2θ2R2

exp

[
−|z − y|

2

2R2
−
|z3 − y3 + |z−y|2

2L + y·(z−y)
L |2

2R2
3

[
1 + |z−y|2

2θ2R2

] ]
, B � Ωd, (4.16)

with constant C. Were it not for the last term in (4.16), we would have a convolution. This term is large only
at points ~y = (y, y3) with y near the boundary of the imaging region (|y| ∼ D < a), because by definition
(4.12) and the assumption θ = O(1) we get∣∣∣∣y · (z − y)/L

R3

∣∣∣∣ = O

(
|y|
L

R

R3

)
= O

(
|y|
aθ

)
= O

(
|y|
a

)
.

For points with |y| � D < a the right hand side in (4.16) is approximately a function of ~y−~z, corresponding
to a convolution model.

5. Resolution analysis. In this section we analyze the reconstruction of the vector u of source inten-
sities using the convex optimization formulation described in section 2.3. To simplify the analysis, we treat
the approximation in (2.14) as an equality, and study the l1 optimization

min
u∈RNz

‖u‖1 such that Mu = d. (5.1)

This neglects additive noise and random fluctuations of the CINT function, which are small in our scaling.
It also implies that the sources are on the reconstruction mesh, so that the equality constraint in (5.1) holds
for the true discretized source intensity. Naturally, in practice the sources may lie anywhere in D, and noise
and distortions due to the random medium play a role. This is why we use the more robust formulation
(2.15) in the numerical simulations in section 6.

We expect from the study [11] of deconvolution using l1 optimization that the solution of (5.1) should
be a good approximation of the unknown vector of intensities if the sources are well separated. We show in
this section that this is indeed the case. We also consider the case of clusters of nearby sources, and show
that the l1 solution is useful when the clusters are well separated. The analysis is built on our recent results
in [7].
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5.1. Definitions. Let Y = {~ys, s = 1, . . . , Ns} be the set that supports the unknown, point-like
sources in D. We quantify the spatial separation between them using the following definition:

Definition 5.1. The points in Y are separated by at least ~H = (H,H,H3), if the intersection of Y
with any rectangular prism of sides less then H in cross-range and H3 in range consists of at most one
point.

For example, if the sources are all in the same cross-range plane, and the minimum distance between any
two of them is Hmin, we may take H = Hmin and H3 = D3.

We search the sources on a mesh with Nz points denoted generically by ~z. The mesh discretizes D, and
we call it Dz. For simplicity we let Y ⊂ Dz. To any ~z ∈ Dz, we associate the column vector m~z ∈ RNy
of the matrix M. Its entries are given in (4.15) in the narrowband regime and by (4.16) in the broadband
regime, for Ny < Nz points ~y at which we sample the CINT image.

Definition 5.2. We quantify the interaction between two presumed sources at ~z, ~z′ ∈ D~z using the
cross-correlation of the associated column vectors in M,

I~z,~z′ =
|〈m~z,m~z′〉|
‖m~z‖2‖m~z′‖2

. (5.2)

Here 〈·, ·〉 is the Euclidian inner product and ‖ · ‖2 is the Euclidian norm.

Note that (5.2) is symmetric and non-negative, and attains its maximum at ~z′ = ~z, where I~z,~z = 1. We will
show below that (5.2) decreases as the points ~z and ~z′ grow apart. This motivates the next definition which
uses I~z,~z′ to measure the distance between ~z and ~z′.

Definition 5.3. We define the semimetric ∆ : Dz ×Dz → [0, 1] by

∆(~z, ~z′) = 1− I~z,~z′ , ∀~z, ~z′ ∈ Dz, (5.3)

and let

Br(~z) = {~z′ ∈ Dz s.t. ∆(~z, ~z′) < r} (5.4)

be the open balls defined by ∆.

We will show that I~z,~z′ decays as ‖~z− ~z′‖2 grows. Thus, we say that points ~z′ outside Br(~z) have a weaker
interaction with ~z than points inside Br(~z). Moreover, we may relate intuitively ∆(~z, ~z′) to the Euclidian
distance ‖~z − ~z′‖2.

Definition 5.4. We define the interaction coefficient of the set Y of source locations by

I(Y ) = max
~z∈Dz

∑
~y∈Y \N (~z)

I~z,~y, (5.5)

where N (~z) is the closest point to ~z in Y , as measured with the semimetric ∆.

In general more than one point may be closest to ~z. If this is so, we let N (~z) be any such point.

5.2. Results. The results stated here describe the relation between the reconstruction u?, the solution
of the convex optimization problem (5.1), and the true unknown vector u of source intensities. The next
theorem shows that u? is essentially supported in the set Y , when the points there are well separated.

Theorem 5.5. Suppose that the source locations in Y are separated by at least ~H = (H,H,H3) in the
sense of Definition 5.1, where

H

R
= α,

H3

R3
= α3, (5.6)

for α, α3 > 1. Take r ∈ (0, 1) small enough so that the balls Br(~ys) centered at ~ys ∈ Y , for s = 1, . . . , Ns,

are disjoint. Let u? be the l1 minimizer in (5.1), and decompose it as u? = u
(i)
? +u

(o)
? , where u

(i)
? is supported
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in the union
⋃Ns
s=1 Br(~ys) of balls centered at the points in Y , and u

(o)
? is supported in the complement of

this union. Then, there exists a constant C that is independent of α and α3, such that

‖u(o)
? ‖1 ≤

C

r
F(α, α3)‖u?‖1, (5.7)

where F(α, α3) is function that decays with α and α3. In the narrowband case it is given by

F(α, α3) =

exp

[
−
(

min{α,α3}
4

)2
]

α2α3
, (5.8)

for arbitrary α, α3 > 1. In the broadband case α3 > 8α/θ, and

F(α, α3) =
exp

[
− 1

2

(
α
4

)2]
+ exp[−α]

α3
. (5.9)

Note that the scales of separation between the sources are the resolution parameters R and R3 of CINT.
The parameters α and α3 in the separation assumption may be any non-negative real numbers, but the
statement of the theorem is useful only when the coefficient in front of ‖u?‖1 in (5.7) is smaller than one.
This happens for large enough α and α3. The larger the separation between the sources, the smaller the
right hand side in (5.7) is, and the better the concentration of the support of u? near the points in Y . The
next corollary gives an estimate of the error of the reconstruction.

Corollary 5.6. Let u ∈ RNz be the vector of true source intensities, and use the same assumptions
and notation as in Theorem 5.5. Denote the entries of the l1 minimizer u? by u?(~z), where ~z are the Nz
points on the mesh Dz. Define the effective reconstructed source intensity vector u? ∈ RNz , with entries

u?(~z) =

{ ∑
~z′∈Br(~z) u?(~z

′) I~z,~z′ , if ~z ∈ Y ,
0, otherwise.

(5.10)

Then, we have the following estimate of the relative error

‖u− u?‖1
‖u‖1

≤ C

r
F(α, α3), (5.11)

with constant C independent of α and α3.

This result says that when the sources are far apart, the effective intensity vector u? is close to the true
solution u. By definition, the support of u? is at the source points in Y . Its entries u?(~z) at ~z ∈ Y are
weighted averages of the entries of u? at points ~z′ ∈ Br(~z), with weights I~z,~z′ . When r is small, these
weights are close to one, so u?(~z) is approximately the sum of the entries of u? supported in the ball Br(~z).

Theorem 5.5 and its corollary are not useful when the sources are clustered together. The next result
deals with this case, when the clusters are well separated.

Theorem 5.7. Let ε ∈ (0, 1) be such that there exists a subset Yε of Y , satisfying

Y ⊂
⋃
~z∈Yε

Bε(~z), Bε(~z)
⋂

Bε(~z
′) = ∅, ∀ ~z, ~z′ ∈ Yε, ~z 6= ~z′. (5.12)

Suppose that the points in Yε are separated by at least least ~H = (H,H,H3) in the sense of Definition 5.1,
where H and H3 satisfy (5.6), for some α, α3 > 1. Let r satisfy ε < r < 1, and decompose the l1 minimizer

u? in (5.1) as u? = u
(i)
? + u

(o)
? , where u

(i)
? is supported in the union

⋃
~z∈Yε Br(~z) of balls centered at the

points in Yε, and u
(o)
? is supported in the complement of this union. There exists a constant C that is

independent of α and α3, such that

‖u(o)
? ‖1 ≤

C

r
F(α, α3)‖u?‖1 +

ε

r
‖u‖1, (5.13)
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where u is the vector of true source intensities.

Equation (5.12) says that we can cover the sources with disjoint balls of radius ε, centered at the points in
Yε. Thus, we call Yε the effective support of the sources, and ε the radius of the clusters. The statement of
the theorem is that when the clusters are well separated, and they have small radius, the l1 minimizer will
be supported in their vicinity. As expected, (5.13) converges to (5.7) in the limit ε→ 0.

5.3. Proofs. We use [7, Theorem 4.1 and Corollary 4.2] which state that for the decomposition of the
l1 minimizer u? as in Theorem 5.5, and for the effective reconstructed source intensity vector u? defined in
(5.10), we have

‖u(o)
? ‖1 ≤

2I(Y )

r
‖u?‖1 and

‖u− u?‖1
‖u‖1

≤ 2I(Y )

r
. (5.14)

To determine the interaction coefficient I(Y ) of the sources, we estimate first the cross-correlations I~z,~z′ :
Lemma 5.8. The cross-correlations I~z,~z′ defined in (5.2) satisfy

I~z,~z′ ≈ exp

[
−|z − z

′|2

4R2
− (z3 − z′3)2

4R2
3

]
, (5.15)

in the narrowband regime and

I~z,~z′ ≤ C exp

−|z − z′|2
8R2

−
θ
∣∣∣z3 − z′3 + |z|2−|z′|2

2L

∣∣∣
R3

 , (5.16)

in the broadband regime, for all ~z, ~z′ ∈ Dz, with ~z = (z, z3) and ~z′ = (z′, z′3). The constant C in (5.16) is
given by

C =
3e−θ

2

2erfc(
√

2 θ)
, (5.17)

with θ defined in (4.12) of order one.

The proof is in Appendix E. The next lemma, proved in sections 5.3.1 and 5.3.2, gives the estimate of I(Y ),
that combined with (5.14) proves Theorem 5.5 and Corollary 5.6.

Lemma 5.9. Suppose that the points in Y are separated by at least ~H = (H,H,H3) in the sense of
Definition 5.1, where H and H3 are as in (5.6), for some α, α3 > 1. The interaction coefficient satisfies

I(Y ) ≤ CF(α, α3) (5.18)

for a constant C that is independent of α and α3 and F(α, α3) as defined in Theorem 5.5.

To prove Theorem 5.7, we use [7, Theorem 4.4] which states that

‖u(o)
? ‖1 ≤

2I(Yε)

r
‖u?‖1 +

‖u‖ − ‖u‖1
r

, (5.19)

for u defined by

u(~z) =

{ ∑
~z′∈Bε(~z)∩Y u(~z′) I~z,~z′ , if ~z ∈ Yε,

0, otherwise.
(5.20)

The interaction coefficient of the effective support Yε is as in Lemma 5.9, so it remains to estimate the last
term in (5.19). Let us define the set

S~z,ε = {~z′ ∈ Y s.t. ~z′ ∈ Bε(~z)} ,
16



so that with definition (5.20) we can write

‖u‖1 =
∑
~z∈Yε

∣∣∣∣∣∣
∑

~z′∈S~z,ε

u(~z′) I~z,~z′

∣∣∣∣∣∣ =
∑
~z∈Yε

∑
~z′∈S~z,ε

|u(~z′)| I~z,~z′ ,

where we used that by definition I~z,~z′ ≥ 0 and u(~z′) = |ρ(~z′)|2 ≥ 0. Since the norm of the vector of the true
source intensities is given by

‖u‖1 =
∑
~z∈Y

|u(~z)| =
∑
~z∈Yε

∑
~z′∈S~z ε

|u(~z′)|,

we obtain that

‖u‖1 − ‖u‖1 =
∑
~z∈Yε

∑
~z′∈S~z,ε

|u(~z′)| (1− I~z,~z′) < ε
∑
~z∈Yε

∑
~z′∈S~z,ε

|u(~z′)| = ε‖u‖1. (5.21)

The inequality is because

∆(~z, ~z′) = 1− I~z,~z′ < ε, ∀ ~z′ ∈ Bε(~z).

The statement of Theorem 5.7 follows by substitution of (5.21) in (5.19), and using the estimate in Lemma
5.9, with Y replaced by Yε. �.

5.3.1. Proof of Lemma 5.9 in the narrowband regime. Recall Definition 5.4 of I(Y ), and let
~z ∈ Dz be the maximizer of the sum in (5.5), so that

I(Y ) =
∑

~y∈Y \N (~z)

I~z,~y. (5.22)

We denote the components of ~z by zj , for j = 1, 2, 3, and conclude from the source separation assumption
in the lemma that the set

S~z =
{
~z′ = (z′1, z

′
2, z
′
3) ∈ D s.t. |zj − z′j | < H, j = 1, 2, |z3 − z′3| < H3

}
(5.23)

contains at most one point in Y . This may be N (~z), the closest point in Y to ~z with respect to the
semimetric ∆, satisfying

I~z,N (~z) ≥ I~z,~y. ∀ ~y ∈ Y . (5.24)

Alternatively, S~z may be empty or contain another point in Y . In either case, we obtain from equations
(5.22) and (5.24) that

I(Y ) ≤
∑

~y∈Y \S~z

I~z,~y,

and from the bound in Lemma 5.8,

I(Y ) ≤ C
∑

~y∈Y \S~z

E~z,~y, for E~z,~y = exp

[
−|z − y|

2

8R2
− (z3 − y3)2

R3

]
. (5.25)

Using again the source separation assumption in the lemma, we conclude that for any ~y ∈ Y , we can
define a set H~y, in the form of a rectangular prism of sides H/2 in cross-range and H3/2 in range, satisfying

~y ∈H~y and H~y

⋂
H~y′ = ∅, ∀ ~y 6= ~y′ ∈ Y . (5.26)
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There are many such sets, but we make our choice so that ~y is the furthermost point to ~z in H~y, satisfying

E~z,~y ≤ E~z,~z′ , ∀ ~z′ ∈H~y. (5.27)

This allows us to write

E~z,~y ≤
8

H2H3

∫
H~y

d~z′E~z,~z′ , ∀ ~y ∈ Y , (5.28)

and obtain from (5.25) that

I(Y ) ≤ 8C2

H2H3

∑
y∈Y \S~z

∫
H~y

d~z′E~z,~z′ ≤
8C2

H2H3

∫
R3\S

~z, 1
2

d~z′E~z,~z′ , (5.29)

with S~z, 12
defined as in (5.23), with half the values of H and H3,

S~z, 12
=
{
~z′ = (z′1, z

′
2, z
′
3) ∈ D s.t. |zj − z′j | < H/2, j = 1, 2, |z3 − z′3| < H3/2

}
. (5.30)

The last inequality in (5.29) is because the integrand is positive, the sets H~y are disjoint, and⋃
~y∈Y \S~z

H~y ⊂ R3 \S~z, 12
.

We estimate the integral in (5.29) by decomposing the set S c
~z, 12

= R3\S~z, 12
in three components denoted

by C~z,j , where

C~z,j =
{
~z′ ∈ R3 s.t. |zj − z′j | ≥ H/2

}
, j = 1, 2,

and

C~z,3 =
{
~z′ ∈ R3 s.t. |zj − z′j | < H/2, |z3 − z′3| ≥ H3/2

}
.

We have

8

H2H3

∫
C~z,1

d~z′ E~z,~z′ =
8

H2H3

∫
|z′1−z1|≥H/2

dz′1 e
− (z′1−z1)2

4R2

∫ ∞
−∞

dz′2 e
− (z′2−z2)2

4R2

∫ ∞
−∞

dz′3 e
− (z′3−z3)2

4R2
3

=
32πRR3

H2H3
2

∫ ∞
H/2

dt e−
t2

4R2

=
64
√
π

α2α3
erfc

(α
4

)
, (5.31)

where we evaluated the integrals over z′3 and z′2 in the second line, and used (5.6) in the last line. The
integral over C~z,2 is the same, so it remains to estimate

8

H2H3

∫
C~z,3

d~z′ E~z,~z′ =
8

H2H3

∫
|z′1−z1|<H/2

dz′1 e
− (z′1−z1)2

4R2

∫
|z′2−z2|<H/2

dz′2 e
− (z′2−z2)2

4R2

×
∫
|z′3−z3|≥H3/2

dz′3 e
− (z′3−z3)2

4R2
3 . (5.32)

We bound the integrals over z′1 and z′2 by those of the real line, and rewrite the integral over z′3 in terms of
the complementary error function, to obtain

8

H2H3

∫
C~z,3

d~z′ E~z,~z′ ≤
64
√
π

α2α3
erfc

(α3

4

)
. (5.33)

The statement of Lemma 5.9 follows from (5.29), with right hand side given by the sum of the integrals over
C~z,1 and C~z,2 estimated in (5.31), and over C~z,3, estimated in (5.33). �
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5.3.2. Proof of Lemma 5.9 in the broadband regime. We obtain from Lemma 5.8, the same way
as above, and with the same notation, that

I(Y ) ≤ C
∑

~y∈Y \S~z

E~z,~y, for E~z,~y = exp

−|z − y|2
8R2

−
θ
∣∣∣z3 − y3 + |z|2−|y|2

2L

∣∣∣
R3

 . (5.34)

We also define as before, using the source separation assumption in the lemma, the set H~y, satisfying (5.26)
and (5.27). This leads us to the bound (5.29), with the set S~z, 12

defined in (5.30).

We estimate the integral in (5.29) by decomposing the set R3 \S~z, 12
in three parts S~z,j , where

S~z,j =
{
~z′ ∈ R3 s.t. |zj − z′j | ≥ H/2

}
, j = 1, 2,

and

S~z,3 =
{
~z′ ∈ R3 s.t. |zj − z′j | < H/2, |z3 − z′3| ≥ H3/2

}
.

We have

8

H2H3

∫
S~z,1

d~z′ E~z,~z′ =
8

H2H3

∫
|z′1−z1|≥H/2

dz′1 e
− (z′1−z1)2

8R2

∫ ∞
−∞

dz′2 e
− (z′2−z2)2

8R2

∫ ∞
−∞

dz′3 e
− θ
R3

∣∣∣∣z′3−z3+
|z|2−|z′|2

2L

∣∣∣∣

=
128πR2R3

H2H3θ
erfc

(
H

4
√

2R

)
≤ 128π

α2α3θ
e
−
(

h
4
√

2R

)2

≤ 16π

α3
e
−
(

α
4
√

2

)2

, (5.35)

where we evaluated the integrals over z′3 and z′2 in the second line. The first inequality is because the
complementary error function satisfies erfc(x) ≤ exp(−x2), and the second inequality is by the assumption
on α3. The integral over S~z,2 is the same, so it remains to estimate

8

H2H3

∫
S~z,3

d~z′ E~z,~z′ ≈
8

H2H3

∫
|z′1−z1|<H/2

dz′1 e
− (z′1−z1)2

8R2

∫
|z′2−z2|<H/2

dz′2 e
− (z′2−z2)2

8R2

×
∫
|z′3−z3|≥H3/2

dz′3 e
− θ
R3

∣∣∣∣z′3−z3+
|z′|2−|z|2

2L

∣∣∣∣
. (5.36)

Because |z′j − zj | < H/2 for j = 1, 2, and therefore |z′ − z| < H/
√

2, we have

θ

∣∣∣∣ |z′|2 − |z|22LR3

∣∣∣∣ ≤ θ|z′ − z||z′ + z|
2LR3

≤ θHD

2LR3
=
θαDR

2LR3
=

3Dα

a
. 3α. (5.37)

Here we used that |z′ + z| ≤ D
√

2 for all z, z′ ∈ [−D/2, D/2]× [−D/2, D/2], and substituted H = Rα and
definitions (4.5) and (4.12). The last inequality is by assumption (3.28). With this bound we can estimate
the integral over z′3 as follows∫

|z′3−z3|≥H3/2

dz′3 e
− θ
R3

∣∣∣∣z′3−z3+
|z′|2−|z|2

2L

∣∣∣∣
=
R3

θ

[∫ ∞
θH3
2R3

dt e
−
∣∣∣∣−t+ θ(|z′|2−|z|2)

2LR3

∣∣∣∣
+

∫ ∞
θH3
2R3

dt e
−
∣∣∣∣t+ θ(|z′|2−|z|2)

2LR3

∣∣∣∣]

≤ 2R3

θ

∫ ∞
θH3
2R3

dt e−(t−3α)

=
2R3

θ
e−( θα3

2 −3α)
∫ ∞

0

dte−t

≤ 2R3

θ
e−α, (5.38)
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where the last inequality is by the assumption H3/R3 = α3 ≥ 8α/θ. Substituting in (5.36) we get

8

H2H3

∫
S~z,3

d~z′ E~z,~z′ ≤
16R3

H2H3θ
e−α

∫
|z′1−z1|<H/2

dz′1 e
− (z′1−z1)2

8R2

∫
|z′2−z2|<H/2

dz′2 e
− (z′2−z2)2

8R2

≤ 128πR2R3

H2H3θ
e−α =

128π

α2α3θ
≤ 16π

α3
e−α. (5.39)

Here we bounded each Gaussian integral by 2
√

2πR, which is the integral over the real line, and used again
the assumption on α3.

The statement of Lemma 5.9 follows from (5.29), with right hand side given by the sum of the integrals
over S~z,1 and S~z,2 estimated in (5.35), and over S~z,3, estimated in (5.39). �

6. Numerical simulations. We present here numerical simulations obtained with the wave propaga-
tion model described in equation (3.5), with random travel time fluctuations computed by the line integrals
in (3.6), in one realization of the random process µ. We generate it numerically using random Fourier series
[17], for the Gaussian autocorrelation (3.2). All the length scales are normalized by ` in the simulations, and
are chosen to satisfy marginally the assumptions in section 3.4. Specifically, we take λo = 1.75 · 10−4 ` and
L = 800 `, so that √

λoL = 0.12 < ` < 9.72 ` = (λoL
3)1/4,

and the aperture is a = 16`. This is slightly larger than the bound in (3.24), but we also have the apodization
(4.3). We verify that

λo√
`L

= 6.17 · 10−7 �
√
λo`

L
= 5.22 · 10−6 �

(
`

L

)3/2

= 4.42 · 10−5,

and we take the strength of the fluctuations σ = 1.5 · 10−6. With this choice we obtain

Ωd
ωo

= 0.083 and Xd = 0.14`.

We show results in two dimensions, for a linear array and a narrowband regime with bandwidthB = 0.0032ωo.
Since in this regime we can only expect improvements in the cross-range localization of the sources, we focus
attention at a given range, and display cross-range sections of the images.

The migration and CINT images are calculated as in equations (2.6) and (2.7) from the data contam-
inated with 5% additive, uncorrelated, Gaussian noise. The thresholding parameters in the CINT image
formation are Ω = B/2 and X = Xd/2, and the sources are off the reconstruction mesh. The mesh size is
H = λoL/(6X), unless stated otherwise The optimization formulation is

min
u
‖u‖1 such that ‖Mu− d‖2 ≤ δ, (6.1)

with tolerance δ = 0.05‖d‖2. The entries of matrix M are as defined in (4.15), with constant C given in
appendix D. For comparison, we also present the results of a direct application of L1 optimization to the
array data, without using the CINT image formation, as in [7]. We call this method ”direct l1 optimization”
and refer to [7, Appendix A] for details. We also refer to (6.1) as ”l1 optimization” and solve it with the
software package [16].

We begin with the results in Figure 6.1, for two sources that are at about 2λoL/X apart. The exact
source locations are indicated on the abscissa in the plots, where the units are in λoL/X. We display in
the top row the CINT and migration images, and in the bottom row the solutions of the l1 optimization
and the direct l1 optimization. Both migration and direct l1 optimization give spurious peaks, due to the
random medium. To confirm this, we show in Figure 6.2 the results of the direct l1 optimization for the
same sources in the homogeneous medium, where the reconstruction is very good. The CINT image shown
in the top left plot is blurry, and it cannot distinguish the two sources. The l1 optimization improves the
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Fig. 6.1. Results in one realization of the random medium. The abscissa is the cross-range in units λoL/X, and the
source locations are shown with the stars. We display the CINT and migration images in the top row, and the l1 and direct l1
optimization results in the bottom row.
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Fig. 6.2. Result of direct l1 optimization in the homogeneous medium. The abscissa is the cross-range in units λoL/X,
and the source locations are shown with the stars.

result, although there is a small shift in the estimate of the source locations. This shift changes from one
realization to another, and it is due to the small random fluctuations of the CINT image.

To illustrate the robustness of the methods to different realizations of the random medium, we display
in Figure 6.3 the histograms of the number of peaks found by each method at a given cross-range location.
We define filtered peaks as local maxima whose values are above 33% of the maximum of the image. The
height of the histograms varies among the plots in Figure 6.3 because each method finds a different number
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of peaks. On the average, the migration images have 9.5 peaks, the direct l1 method finds 9.65 peaks, the
CINT image has 1.01 peaks and the l1 optimization finds 2.04 peaks. While both migration and direct l1
find many spurious peaks, that are far from the source locations, the l1 optimization separates well the two
sources and almost always peaks at their true locations.
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Fig. 6.3. Histogram of the number of peaks obtained in 500 realizations of the random medium. The abscissa is the
cross-range in units λoL/X, and the source locations are shown with the stars. We display the results for the CINT and
migration images in the top row, and the l1 and direct l1 optimization results in the bottom row. The heights of the histograms
are different because each method finds a different number of peaks. On the average, the number of peaks found in simulations
are Migration: 9.5, CINT: 1.01, l1 optimization: 2.04, Direct l1 optimization: 9.65.

We display in Figure 6.4 the effect of the mesh size H on the l1 optimization results. Because we have 5
sources in this simulation, that are closer apart than λoL/X, we do not expect a nearly exact reconstruction
with the l1 optimization. Thus, we display in addition to the actual reconstructions the aggregated values
recovered in the intervals of length r = λoL/(4X), centered at the true source locations. We observe that
the results improve as we decrease the mesh size from H = λoL/X to λoL/(8X). This is due to the fact
that the sources are off the grid, and the discretization error decreases as we reduce H.

The last illustration, in Figure 6.5, shows the effect of the source separation on the quality of the
reconstructions. As expected from the results in section 5, the reconstruction is better when the sources are
further apart.

7. Summary. We studied receiver array imaging of remote localized sources in random media, using
convex optimization. The scattering regime is defined by precise scaling assumptions, and leads to large
random wavefront distortions of the waves measured at the array. Conventional imaging methods like
reverse time migration, also known as backprojection [4, 20], or standard l1 optimization [14, 19], cannot
deal with such distortions and produce poor and unreliable results. We base our imaging on the coherent
interferometric (CINT) method [9] which mitigates random media effects like wavefront distortions at the
expense of image resolution. The goal of the convex optimization is to remove the blur in the CINT images
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Fig. 6.4. We display l1 optimization results in one realization of the random medium, for 5 sources with locations indicated
by the stars in the abscissa. The units of the abscissa are in λoL/X. The dark thin bars show the reconstruction and the
light gray bars give the aggregated values of the reconstruction in the intervals of length r = Lλo/(4X), centered at the source
locations. The mesh size is, clockwise, starting from the top left, H = 1, 1/2, 1/8 and 1/4 of λoL/X. The results improve as
we refine the mesh.
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Fig. 6.5. We display l1 optimization results in one realization of the random medium, for 2 sources separated by, from
left to right, 3/4, 1 and 2 λoL/X. The units of the abscissa are in λoL/X.

and thus improve the source localization. We show with a detailed analysis that under generic conditions
the CINT imaging function is approximately a convolution of a blurring kernel with the discretized unknown
source intensity on the imaging mesh. The kernel has a generic expression, that depends on the known
CINT resolution limits obtained in [9, 10, 6] for various wave propagation models. The optimization seeks
to undo this convolution. The analysis and numerical simulations show that it gives very good estimates
of the source locations when they are sufficiently far apart. This is in agreement with the results in [11].
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We also show that when the sources are clustered together, the estimates are not close to the true locations
pointwise, but they are supported in their vicinity.

Acknowledgments. We gratefully acknowledge support from ONR Grant N00014-14-1-0077 and the
AFOSR Grant FA9550-15-1-0118.

Appendix A. The paraxial approximation. Equation (3.15) follows easily from the Taylor expansion

|~x− ~y| =
√
y2

3 + |x− y|2 = L

[
1 +O

(
D3

L

)
+O

(
a2

L2

)]
,

where we used that y3 = L+O(D3), |x| = O(a) and |y| = O(D) ≤ O(a). For the phase we obtain similarly

ko|~x− ~y| = ko

√
y2

3 + |y − x|2 = ko

(
y3 +

|x− y|2

2y3

)
+O

(
ko|x− y|4

y3
3

)
,

where ko = ωo/co = 2π/λo. Expanding the square in the right hand side and using that y3 = L+O(D3),

ko|~x− ~y| = ko

(
y3 +

|x|2 − 2x · y + |y|2

2L

)
+O

(
a4

λoL3

)
+O

(
a2D3

λoL2

)
+O

(
aDD3

λoL2

)
+O

(
D2D3

λoL2

)
.

The last two terms in the remainder are dominated by the previous ones, because D < a, and approximation
(3.14) follows.

Appendix B. Derivation of the statistical moments. We begin with the second moments of the
Gaussian process (3.7), with Gaussian autocorrelation (3.2), and then prove Propositions 3.1 and 3.2.

Consider points ~y and ~y′ in the imaging region, so that |~x− ~y| ≥ |~x′ − ~y′|, and write

E [ν(~x, ~y)ν(~x′, ~y′)] =

√
|~x′ − ~y′||~x− ~y|√

2π`

∫∫ 1

0

dϑdϑ′ e−
1

2`2
|(ϑ′−ϑ)(~x−~y)+ϑ′(~x′−~x)+(1−ϑ′)(~y′−~y)|2

=

√
|~x′ − ~y′|
|~x− ~y|

∫ 1

0

dϑ′
∫ ϑ′|~x−~y|/`

−(1−ϑ′)|~x−~y|/`

dϑ̃√
2π

e
− 1

2

∣∣∣ϑ̃ (~x−~y)
|~x−~y|+ϑ

′ (~x′−~x)
` +(1−ϑ′) (~y′−~y)

`

∣∣∣2
,

where we changed variables

(ϑ, ϑ′) (ϑ̃, ϑ′), ϑ̃ = (ϑ′ − ϑ)|~x− ~y|/`.

Let ~m = (~x− ~y)/|~x− ~y| and note that since |~x− ~y| ∼ L� ` and the Gaussian is negligible for |ϑ̃| > 3, we

can extend the ϑ̃ integral to the real line and obtain

E [ν(~x, ~y)ν(~x′, ~y′)] ≈

√
|~x′ − ~y′|
|~x− ~y|

∫ 1

0

dϑ e−
1

2`2
|(I− ~m ~mT )[ϑ(~x′−~x)+(1−ϑ)(~y′−~y)]|2 . (B.1)

In the system of coordinates centered at the array, we calculate

~m =
(x, 0)− (y, L+ y3)√
(L+ y3)2 + |x− y|2

=

[
−~e3 +

(x− y, 0)

L+ y3

] [
1 +O

(
a2

L2

)]
,

with ~e3 the unit vector in the range direction, and obtain

| ~m+ ~e3| = O
( a
L

)
� 1.

The projections on the plane orthogonal to ~m are

(I − ~m ~mT )
(~x′ − ~x)

`
=

(x′ − x, 0)

`
+O

(
a2

`L

)
, (B.2)

(I − ~m ~mT )
(~y′ − ~y)

`
=

(y′ − y, 0)

`
+O

(
aD

`L

)
+O

(
aD3

`L

)
, (B.3)
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with negligible residuals by assumptions (3.24)-(3.25) and (3.28), which give

a2

`L
�
√
λoL

`
� 1,

aD3

`L
� λoL

`a
<
λoL

`2
� 1.

Thus, we can approximate (B.1) as

E [ν(~x, ~y)ν(~x′, ~y′)] ≈

√
|~x′ − ~y′|
|~x− ~y|

∫ 1

0

dϑ e−
1

2`2
|ϑ(x′−x)+(1−ϑ)(y′−y)|2 . (B.4)

This expression can be simplified further for small offsets satisfying |y′ − y| � ` and |x′ − x| � `, by
expanding the exponential and then integrating in ϑ,

E [ν(~x, ~y)ν(~x′, ~y′)] ≈

√
|~x′ − ~y′|
|~x− ~y|

[
1− |y

′ − y|2 + (y′ − y) · (x′ − x) + |x′ − x|2

6`2

]
. (B.5)

Note that the small receiver offset condition is consistent with |x′ − x| � X ∼ Xd � ` used in the CINT
image formation.

The proof of Proposition 3.1 follows easily from (B.5) and definitions (3.5), (3.7). Because the process
ν(~x, ~y) is Gaussian, we have

E
[
Ĝ(~x, ~y, ω)

]
≈ Ĝo(~x, ~y, ω)E

[
exp

(
i
(2π)1/4

2
kσ
√
`|~x− ~y|ν(~x, ~y)

)]
≈ Ĝo(~x, ~y, ω) exp

{
−
√

2π

8
k2σ2`|~x− ~y|E

[
ν2(~x, ~y)

]}

= Ĝo(~x, ~y, ω) exp

[
−
√

2π

8
k2σ2`|~x− ~y|

]
. (B.6)

This is equation (3.17) with scattering mean free path S(ω) defined as in (3.18). �
To prove Proposition 3.2 we use again definitions (3.5) and (3.7), the Gaussianity of the process ν, and

result (B.1) to write

E
[
Ĝ(~x, ~y, ω + ω̃/2)Ĝ(~x′, ~y′, ω − ω̃/2)

]
≈ Ĝo(~x, ~y, ω + ω̃/2)Ĝo(~x′, ~y′, ω − ω̃/2) E , (B.7)

with

E = exp

{
−
√

2π

8

(
ω + ω̃/2

co

)2

σ2`|~x− ~y| −
√

2π

8

(
ω − ω̃/2

co

)2

σ2`|~x′ − ~y′|

+

√
2π(ω2 − ω̃2/4)

4c2o
σ2`|~x′ − ~y′|

∫ 1

0

dϑ e−
1

2`2
|ϑ(x′−x)+(1−ϑ)(y′−y)|2

}
. (B.8)

Note that

√
2π

8

(
ω + ω̃/2

co

)2

σ2`|~x− ~y| = |~x− ~y|
S(ω + ω̃/2)

� 1,

√
2π

8

(
ω − ω̃/2

co

)2

σ2`|~x′ − ~y′| = |~x′ − ~y′|
S(ω − ω̃/2)

� 1,

so E is exponentially small unless the last term in (B.8) compensates the first two. This happens only when
|y − y′| � `. For other offsets the integral over ϑ is small and, consequently, E ≈ 0.
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When |y − y′| � `, we can approximate the ϑ integral as in (B.5), and obtain

E ≈ exp

{
−
√

2π

8

(
ω + ω̃/2

co

)2

σ2`|~x− ~y| −
√

2π

8

(
ω − ω̃/2

co

)2

σ2`|~x′ − ~y′|

+

√
2π(ω2 − ω̃2/4)

4c2o
σ2`|~x′ − ~y′|

[
1− |y

′ − y|2 + (y′ − y) · (x′ − x) + |x′ − x|2

6`2

]}
. (B.9)

Rearranging the terms and using definition (3.18) of the scattering mean free path we get

E ≈ exp

{
−|
~x− ~y| − |~x′ − ~y′|

S(ω)
−
√

2πσ2`ω̃2

8c2o

(
|~x− ~y|+ 3|~x′ − ~y′|

4

)
−
√

2πσ2`ωω̃

8c2o
(|~x− ~y| − |~x′ − ~y′|)

−
√

2π(ω2 − ω̃2/4)σ2|~x′ − ~y′|
24c2o`

(
|y′ − y|2 + (y′ − y) · (x′ − x) + |x′ − x|2

)}
. (B.10)

Recall that |~x− ~y| ≥ |~x′ − ~y′|, and conclude from the decay of the first term that E is large if

|~x− ~y| − |~x′ − ~y| = O(S(ω)).

Substituting in (B.10), and using the scales

Ωd =
2co

(2π)1/4σ
√
`|~x− ~y|

, X(ω) =

√
3`Ωd
ω

, (B.11)

we get

E ≈ exp

{
−|
~x− ~y| − |~x′ − ~y′|

S(ω)
− ω̃2

2Ω2
d

[
1 +O

(
S(ω)

L

)]
+O

(
σ2`ωω̃S(ω)

c2o

)
− (|y′ − y|2 + (y′ − y) · (x′ − x) + |x′ − x|2)

2X(ω)2

[
1 +O

(
S(ω)

L

)
+O

(
Ω2
d

ω2

)]}
. (B.12)

This equation simplifies because S(ω) � L and Ωd � ω = O(ωo). Moreover, (B.12) is large only when
|ω̃| . Ωd, so we estimate using definitions (3.18) and (B.11) and the assumption (3.26) that

σ2`ωω̃S
c2o

. O

(
σ2`ωoΩdS

c2o

)
= O

(
λo

σ
√
`L

)
� 1.

Similarly, E is large for cross-range offsets of at most O(X), so we can write

|~x− ~y| − |~x′ − ~y′| ≈ y3 − y′3 +
|x|2 − |x′|2

2L
+
|y|2 − |y′|2

2L
− x · y − x

′ · y′

L
= y3 − y′3 +O

(
aX

L

)
.

We also have X ∼ Xd, and

aXd

SL
= O

(
aXd

L

σ2`

λ2
o

)
= O

(
aσ`3/2

λoL3/2

)
� O

[
σ`3/2

(λoL)3/4

]
� O

(
`2

λ
1/4
o L1+3/4

)
� O

[(
λo
L

)1/4
]
� 1,

where the two equalities are by definition (3.18) and (3.20) of S and Xd, the first inequality is by (3.24),
the second by (3.26), the third by (3.25), and the last by (3.3). Gathering the results we arrive at the
approximation

E ≈ exp

[
−|y3 − y′3|
S(ω)

− ω̃2

2Ω2
d

− |y
′ − y|2 + (y′ − y) · (x′ − x) + |x′ − x|2

2X2(ω)

]
. (B.13)
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The statement of Proposition 3.2 follows from this equation and |ω − ωo| . πB � ωo. �

Appendix C. Consistency of scaling. The scaling (3.26) is consistent because

(`/L)3/2

√
`λo/L

=
`√
λoL

� 1 and

√
`λo/L

λo/
√
`L

=
`√
λoL

� 1,

where we used (3.25).
The scaling (3.29) is consistent because by assumption (3.24) and (3.20),

(a/L)2

λoL/(aXd)
=

a4

λoL3

Xd

a
� `

a
< 1.

We also have

λoL/(aXd)

Ωd/ωo
= O

(
λ0L

a`(Ωd/ωo)2

)
= O

(
σ2L2

aλo

)
� `

a
< 1,

so (3.29) implies B � Ωd.
Definition (3.20) and assumptions (3.25), (3.26) give

λoL

Xd
= O

(
λoL

`

ωo
Ωd

)
= O

(
σ
L3/2

`1/2

)
�
√
λoL� `.

This verifies that the assumptions (3.28) on D are consistent.
The assumptions (3.28) on D3 are consistent in the narrowband regime, when (3.29) holds, because by

(3.27) we have Ω/B = O(1) and

co/B

λoL2/a2
= O

(
ωo
B

a2

L2

)
� 1.

In the broadband regime Ω = Ωd and assumptions (3.28) on D3 are consistent because

co/Ωd
λoL2/a2

= O

(
σ
√
`L

λoL2/a2

)
� `

L
� 1,

by definition (3.20) and assumptions (3.24) and (3.26). Moreover, assumption (3.32) is consistent because

λ
2/3
o `1/6/L5/6

λo/
√
`L

=

(
`√
λoL

)2/3

� 1,
λ

2/3
o `1/6/L5/6

√
λo`/L

=

(√
λoL

`

)1/3

� 1,

by assumption (3.25).

Appendix D. Derivation of the CINT kernel. We begin with the expression (2.11) of the CINT
kernel, and use the Gaussian pulse, thresholding windows and apodization to obtain

κ(~y, ~z, ~z′) ≈N
2
r

√
2π

a4B

∫
dx e

− |x|2

(a/6)2

∫
dx̃ e

− |x̃|
2

2X2−
|x̃|2

4(a/6)2

∫
dω e−

(ω−ωo)2

2B2

∫
dω̃ e−

ω̃2

2Ω2− ω̃2

8B2

× Ĝ ((x+ x̃/2, 0) , ~z, ω + ω̃/2) Ĝ ((x− x̃/2, 0) , ~z′, ω − ω̃/2)

× exp

[
−i (ω + ω̃/2)

co
|(x+ x̃/2, 0)− ~y|+ i

(ω − ω̃/2)

co
|(x− x̃/2, 0)− ~y|

]
, (D.1)

for points ~y = (y, y3), ~z = (z, z3) and ~z′ = (z′, z′3) in the imaging region. The integration over x and x̃
extends to the whole plane R2, and those over ω and ω̃ to the real line, with the aperture and bandwidth
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restrictions ensured by the Gaussians. Because CINT is statistically stable in our scaling, we may approx-
imate the right hand side of (D.2) by its expectation. Using (3.23) and the paraxial approximation (3.16),
we obtain

κ(~y, ~z, ~z′) ≈ N2
r

√
2π

a4B(4πL)2
e
− |z−z′|2

2X2
d

∫
dx e

− |x|2

(a/6)2

∫
dx̃ e

− |x̃|
2

2X2
e
− x̃·(z−z′)

2X2
d

∫
dω e−

(ω−ωo)2

2B2

∫
dω̃ e

− ω̃2

2Ω2
e

× exp

{
i
ω̃

co

[
z3 + z′3

2
− y3 +

1

2L

(
|z|2 + |z′|2

2
− |y|2

)
− x
L
·
(
z + z′

2
− y

)
− x̃

4L
· (z − z′)

]}
× exp

{
i
ω

co

[
z3 − z′3 +

|z|2 − |z′|2

2L
− x · (z − z

′)

L
− x̃
L
·
(
z + z′

2
− y

)]}
, (D.2)

with Xe = O(Xd) and Ωe = O(B) defined in (4.6). Note that the last term in the second line of (D.2) is
negligible, because by assumptions (3.24), (3.29) and definition (3.20),

ω̃x̃ · (z − z′)
4Lco

= O

(
BX2

d

coL

)
= O

(
B

ωo

aXd

λoL

Xd

a

)
� 1,

in the narrowband case. Moreover, in the broadband case

ω̃x̃ · (z − z′)
4Lco

= O

(
ΩdX

2
d

coL

)
= O

(
`2

λoL

Ω3
d

ω3
o

)
= O

(
λ2
o`

1/2

σ3L5/2

)
� 1,

where the first equalities are by definitions (3.20), and the bound is by (3.32). Let us introduce the center
and difference coordinates

z =
z + z′

2
, z̃ = z − z′, z3 =

z3 + z′3
2

, z̃3 = z3 − z′3, (D.3)

and note that

ω̃

coL

(
|z|2 + |z′|2

2
− |y|2

)
=
ω̃

co

(|z|2 − |y|2)

L
+
ω̃|z̃|2

4coL
≈ ω̃

co

(|z|2 − |y|2)

L
,

because

ω̃

co

|x̃|2

L
= O

(
ΩdX

2
d

coL

)
� 1.

The kernel (D.2) simplifies as

κ(~y, ~z, ~z′) ≈ N2
r

√
2π

a4B(4πL)2
e
− |z̃|

2

2X2
d

∫
dω̃ exp

[
− ω̃2

2Ω2
e

+ iω̃

(
z3 − y3

co
+
|z|2 − |y|2

2Lco

)]
×
∫
dω exp

[
− (ω − ωo)2

2B2
+ iω

(
z̃3

co
+
z · z̃
Lco

)]
×
∫
dx̃ exp

[
− |x̃|

2

2X2
e

− x̃ ·
(
z̃

2X2
d

+
iω(z − y)

Lco

)]
×
∫
dx exp

[
− |x|

2

(a/6)2
− ix ·

(
ω̃(z − y)

Lco
+
ωz̃

Lco

)]
, (D.4)

with Ωe and Xe defined in (4.6), and after evaluating the last two integrals, we get

κ(~y, ~z, ~z′) ≈N
2
r

√
2πX2

e

288Ba2L2
e
− |z̃|

2

2X2
d

∫
dω̃ exp

[
− ω̃2

2Ω2
e

+ iω̃

(
z3 − y3

co
+
|z|2 − |y|2

2Lco

)]
×
∫
dω exp

[
− (ω − ωo)2

2B2
+ iω

(
z̃3

co
+
z · z̃
Lco

)]
× exp

[
−X

2
e

2

∣∣∣∣ω(z − y)

Lco
− iz̃

2X2
d

∣∣∣∣2 − 1

2

(
a

6
√

2

)2 ∣∣∣∣ ω̃(z − y)

Lco
+
ωz̃

Lco

∣∣∣∣2
]
. (D.5)
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Let us change variables w = ω − ωo and use the notation

ζ =
z − y

L/(koXe)
, ζ̃ =

z̃

6
√

2L/(koa)
, β =

z3 − y3

co/Ωe
+
|z|2 − |y|2

2Lco/Ωe
, θ =

ωoXe

Ωe(a/6)
. (D.6)

Define also

1

γ
= 1− X2

e

4X2
d

>
3

4
, (D.7)

with the inequality implied by the definition of Xe. Substituting in (D.5) we get

κ(~y, ~z, ~z′) ≈N
2
r

√
2πX2

e

288Ba2L2
exp

[
− |z̃|

2

2γX2
d

− |ζ|
2

2
− |ζ̃|

2

2
+ iko

(
z̃3 +

z̃ · z
L

+
X2
e z̃ · (z − y)

2X2
dL

)]

×
∫
dw exp

[
−w2

2

( 1

B2
+
|ζ|2 + |ζ̃|2

ω2
o

)
+
iw

co

(
z̃3 +

z · z̃
L

+
X2
e z̃ · (z − y)

2X2
dL

)
− w(|ζ|2 + |ζ̃|2)

ωo

]

×
∫
dω̃ exp

[
− ω̃2

2Ω2
e

(
1 +
|ζ|2

2θ2

)
+
iω̃

Ωe

(
β +

i(ωo + w)ζ · ζ̃√
2ωoθ

)]
, (D.8)

and integrate next over ω̃. We obtain after rearranging the terms that

κ(~y, ~z, ~z′) ≈ πN2
rX

2
eΩe

144Ba2L2

√
1 + |ζ|2

2θ2

exp

[
− |z̃|

2

2γX2
d

− ∆2

2
− β2

2(1 + |ζ|2
2θ2 )

]

× exp

[
iko

(
z̃3 +

z̃ · z
L

+
X2
e z̃ · (z − y)

2X2
dL

)
− iβζ · ζ̃
√

2θ(1 + |ζ|2
2θ2 )

]

×
∫
dw exp

[
− w2

2B2

(
1 +

∆2B2

ω2
o

)
+
iwη

B
− w∆2

ωo

]
, (D.9)

with notation

η =
B

co

[
z̃3 +

z · z̃
L

+
X2
e z̃ · (z − y)

2X2
dL

− βcoζ · ζ̃
√

2ωoθ(1 + |ζ|2
2θ2 )

]
, (D.10)

∆2 = |ζ|2 + |ζ̃|2 − |ζ · ζ̃|2

2θ2(1 + |ζ|2
2θ2 )

. (D.11)

Note that (D.11) is non-negative because

|ζ̃|2 − |ζ · ζ̃|2

2θ2(1 + |ζ|2
2θ2 )

=
|ζ̃|2

(1 + |ζ|2
2θ2 )

+
(|ζ|2|ζ̃|2 − |ζ · ζ̃|2)

(1 + |ζ|2
2θ2 )

≥ |ζ̃|2

(1 + |ζ|2
2θ2 )

.

Now we integrate in w in equation (D.9), and obtain

κ(~y, ~z, ~z′) ≈
√

2π3/2N2
rX

2
eΩe

144a2L2

√
1 + |ζ|2

2θ2

√
1 + ∆2B2

ω2
o

exp

[
− |z̃|

2

2γX2
d

− β2

2(1 + |ζ|2
2θ2 )

− η2

2(1 + B2∆2

ω2
o

)
− ∆2

2(1 + B2∆2

ω2
o

)

]

× exp

[
iko

(
z̃3 +

z̃ · z
L

+
X2
e z̃ · (z − y)

2X2
dL

)
− iβζ · ζ̃
√

2θ(1 + |ζ|2
2θ2 )

− iηB∆2

ωo(1 + B2∆2

ω2
o

)

]
. (D.12)
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This expression simplifies, because the exponential decay in ∆2 ensures that the kernel is large only
when ∆ = O(1). Since B/ωo � 1 by assumption, we see that

B2∆2

ω2
o

� 1. (D.13)

By the same reasoning, the kernel is large when |η| = O(1), but then∣∣∣∣∣ ηB∆2

ωo(1 + B2∆2

ω2
o

)

∣∣∣∣∣ ≈ |η|∆2 B

ωo
= O

(
B

ωo

)
� 1. (D.14)

We also have from ∆ = O(1) and definition (D.11) that both |ζ| and |ζ̃| are O(1). Then, using the definition

of ζ̃ in (D.6), we can estimate

B

co

∣∣∣∣z · z̃L
∣∣∣∣ ≤ O(Bco λoL/aaL

)
= O

(
B

ωo

)
� 1, (D.15)

and ∣∣∣∣∣βBζ · ζ̃ωoθ

∣∣∣∣∣ = O

(
B

ωoθ

)
= O

(
B

ωo

)
� 1. (D.16)

Here we used that θ−1 is at most of order 1, which follows from its definition in (D.6). Indeed, in the
broadband case we obtain from assumption (3.32) that

θ−1 =
aΩe

6ωoXe
= O

(
aΩd
ωoXd

)
= O

(a
`

)
= O(1). (D.17)

In the narrowband case we obtain

θ−1 =
aΩe

6ωoXe
= O

(
aB

ωoXd

)
� λoL

X2
d

= O

(
λoL

`2(Ωd/ωo)2

)
= O

(
σ2L2

`λo

)
� 1, (D.18)

where the second equality is because Ωe = O(B), the first inequality is by assumption (3.29), the following
equalities are by the definitions (3.20) of Xd and Ωd and the last inequality is by assumption (3.26). We also
have the estimate

B

co

∣∣∣∣X2
e z̃ · (z − y)

X2
dL

∣∣∣∣ = O

(
B

coL

L

koa

L

koXd

)
= O

(
B

ωo

λoL

aXd

)
= O

(
B

ωo

λoL

a`Ωd/ωo

)
= O

(
B

ωo

σL3/2

a`1/2

)
� B

ωo

√
λoL

a
� 1, (D.19)

where we used again definitions (3.20) and the assumption (3.26). Note that estimates (D.15)-(D.19) and
definition (D.10) imply that

η ≈ Bz̃3

co
. (D.20)

Substituting all the results in (D.12), we get the kernel

κ(~y, ~z, ~z′) ≈
√

2π3/2N2
rX

2
eΩe

144a2L2

√
1 + |ζ|2

2θ2

exp

[
− |z̃|

2

2γX2
d

− β2

2(1 + |ζ|2
2θ2 )

− z̃2
3

2(co/B)2
− ∆2

2

]

× exp

[
iko

(
z̃3 +

z̃ · z
L

+
X2
e z̃ · (z − y)

2X2
dL

)
− iβζ · ζ̃
√

2θ(1 + |ζ|2
2θ2 )

]
. (D.21)
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The statement of Proposition 4.2 follows.
In the narrowband case we know from (D.18) that θ � 1. We also have

Ωe
co

∣∣∣∣ (|z|2 − |y|2)

L

∣∣∣∣ = O

(
B|(z − y) · (z + y)|

coL

)
= O

(
B

co

L/(koXe)a

L

)
= O

(
λoL

X2
d

)
= O

(
σ2L2

λo`

)
� 1,

(D.22)

where we used that Ωe = O(B), Xe = O(Xd) and |ζ| = O(1) i.e., |z − y| = O(L/(koXd). This estimate
follows from definition (3.20) and assumptions (3.26) and (3.29). The expression (4.4) in Proposition 4.1
follows from (D.21) and definition (D.6) of β. �

Appendix E. Proof of Lemma 5.8. We estimate the inner product of the columns of the matrix
using the continuum approximation

〈m~z,m~z′〉 =
∑
~y∈Dz

m~y,~zm~y,~z′ ≈
1

h2h3

∫ D
2

−D2
dy1

∫ D
2

−D2
dy2

∫ D3
2

−D3
2

m~y,~zm~y,~z′ , (E.1)

where ~y = (y, y3), with y = (y1, y2), and h and h3 are the mesh sizes in cross-range and range.

E.1. The narrowband regime. With the expression (4.15) of m~y,~z we get

〈m~z,m~z′〉 ≈
C2

h2h3

∫
R2

dy exp

[
− (|y − z|2 + |y − z′|2)

2R2

] ∫ ∞
−∞

dy3 exp

[
− (y3 − z3)

2

2R2
3

− (y3 − z′3)
2

2R2
3

]
, (E.2)

where we used the paraxial approximation and extended the integrals to the whole space with negligible
error¶, due to the Gaussians. Evaluating the integrals,

〈m~z,m~z′〉 ≈
C2π3/2R2R3

h2h3
exp

[
−|z − z

′|2

4R2
− (z3 − z′3)2

4R2
3

]
. (E.3)

Obviously, the maximum of (E.3) is attained at ~z = ~z′, where

‖m~z‖22 = 〈m~z,m~z〉 ≈
C2π3/2R2R3

h2h3
.

The result in Lemma 5.8 follows. �

E.2. The broadband regime. With the expression (4.16) of m~y,~z we get

〈m~z,m~z′〉 ≈
C2

h2h3

∫
R2

dy
exp

[
− (|y−z|2+|y−z′|2)

2R2

]
[
1 + |y−z|2

2(θR)2

]1/2 [
1 + |y−z′|2

2(θR)2

]1/2
×
∫ ∞
−∞

dy3 exp

−
(
y3 − z3 + |y|2−|z|2

2L

)2

2R2
3

(
1 + |y−z|2

2θ2R2

) −

(
y3 − z′3 + |y|2−|z′|2

2L

)2

2R2
3

(
1 + |y−z′|2

2θ2R2

)
 , (E.4)

where we used the paraxial approximation and extended the integrals to the whole space with negligible
error‖, due to the Gaussians. Evaluating the integral over y3 and renaming the constant, we obtain

〈m~z,m~z′〉 ≈CR3

∫
R2

dy

exp

− (|y−z|2+|y−z′|2)
2R2 −

(
z3−z′3+

|z|2−|z′|2
2L

)2

4R2
3

(
1+
|y−z|2+|y−z′|2

4θ2R2

]


(
1 + |y−z|2+|y−z′|2

4θ2R2

)1/2
. (E.5)

¶This is assuming that ~z and ~z′ (i.e., the sources) are not near the edge of the imaging region.
‖This is assuming that ~z and ~z′ (i.e., the sources) are not near the edge of the imaging region.
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Note that

|y − z|2 + |y − z′|2

2
= |y − z|2 +

|z − z′|2

4
,

where z = (z + z′)/2. Substituting in (E.3) and changing variables as v = (y − z)/R, we get

〈m~z,m~z′〉 ≈CR2R3e
− |z−z′|2

4R2

∫
R2

dv

exp

−|v|2 −
(
z3−z′3+

|z|2−|z′|2
2L

)2

4R2
3

(
1+
|z−z′|2
8θ2R2 +

|v|2
2θ2

)


(
1 + |z−z′|2

8θ2R2 + |v|2
2θ2

)1/2
.

The integrand depends only on v = |v|, so we can write the integral in polar coordinates and obtain

〈m~z,m~z′〉 ≈ 2πCR2R3e
− |z−z′|2

4R2

∫ ∞
0

dv v

exp

−v2 −

(
z3−z′3+

|z|2−|z′|2
2L

)2

4R2
3

(
1+
|z−z′|2
8θ2R2 + v2

2θ2

)


(
1 + |z−z′|2

8θ2R2 + v2

2θ2

)1/2
. (E.6)

To eliminate the algebraic factors, let us change coordinates again

t = θ

[
2 +
|z − z′|2

4θ2R2
+
v2

θ2

]1/2

s.t. dt =
1

θ

[
2 +
|z − z′|2

4θ2R2
+
v2

θ2

]−1/2

vdv.

Equation (E.6) becomes

〈m~z,m~z′〉 ≈ 2πθCR2R3e
2θ2

∫ ∞√
2θ2+

|z−z′|2
4R2

dt exp

−
(
z3 − z′3 + |z|2−|z′|2

2L

)2

2R2
3t

2
− t2

 ,
with integral over t evaluated below, in terms of the complementary error function

〈m~z,m~z′〉 ≈
π3/2

4
θCR2R3e

2θ2

e
−
√

2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
−
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)


+ e

√
2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
+
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)

 . (E.7)

We are interested in the cross-correlation defined in (5.2). The norm ‖m~z‖2 is obtained by letting ~z = ~z′

in (E.7), and the result is

I~z,~z′ ≈
1

2erfc(
√

2θ)

e
−
√

2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
−
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)


+ e

√
2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
+
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)

 . (E.8)
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We can bound the right hand side using the elementary inequality erfc(t) ≤ e−t2 , for all t ≥ 0. This gives

e

√
2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
+
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)


≤ exp

−2θ2 − |z − z
′|2

4R2
−
θ2
(
z3−z′3
R3

+ |z|2−|z′|2
2LR3

)2

2
(

2θ2 + |z−z′|2
4R2

)


≤ exp

[
−θ2 − |z − z

′|2

8R2
− θ

∣∣∣∣z3 − z′3
R3

+
|z|2 − |z′|2

2LR3

∣∣∣∣] , (E.9)

where the last inequality is because2θ2 +
|z − z′|2

4R2
+
θ2
(
z3−z′3
R3

+ |z|2−|z′|2
2LR3

)2

2
(

2θ2 + |z−z′|2
4R2

)
− [θ2 +

|z − z′|2

8R2
+ θ

∣∣∣∣z3 − z′3
R3

+
|z|2 − |z′|2

2LR3

∣∣∣∣] =

√θ2 +
|z − z′|2

8R2
−
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣
2
√
θ2 + |z−z′|2

8R2

2

≥ 0.

For the other term in (E.8) the bound is the same when the argument of the complementary error function
is non-negative. If the argument is negative, then using that erfc(t) ≤ 2 for all t, we get

e
−
√

2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
−
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)
 ≤ 2e

−
√

2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
(E.10)

But since in this case

θ

∣∣∣∣z3 − z′3
R3

+
|z|2 − |z′|2

2LR3

∣∣∣∣ > 2
√

2

(
θ2 +

|z − z′|2

8R2

)
,

we can write

(
√

2− 1)θ

∣∣∣∣z3 − z′3
R3

+
|z|2 − |z′|2

2LR3

∣∣∣∣ > 2
√

2(
√

2− 1)

(
θ2 +

|z − z′|2

8R2

)
> θ2 +

|z − z′|2

8R2
.

Substituting in (E.10) we get that

e
−
√

2θ

∣∣∣∣ z3−z′3R3
+
|z|2−|z′|2

2LR3

∣∣∣∣
erfc


√

2θ2 +
|z − z′|2

4R2
−
θ
∣∣∣ z3−z′3R3

+ |z|2−|z′|2
2LR3

∣∣∣√
2
(

2θ2 + |z−z′|2
4R2

)
 ≤

2 exp

[
−θ2 − |z − z

′|2

8R2
− θ

∣∣∣∣z3 − z′3
R3

+
|z|2 − |z′|2

2LR3

∣∣∣∣] , (E.11)

and using this result and (E.9) in (E.8) we get

I~z,~z′ ≤
3e−θ

2

2erfc(
√

2θ)
exp

[
−|z − z

′|2

8R2
− θ

∣∣∣∣z3 − z′3
R3

+
|z|2 − |z′|2

2LR3

∣∣∣∣] . (E.12)

This is the result in Lemma 5.8. �
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