
Hierarchical Approximate Proper Orthogonal
Decomposition∗

Christian Himpe† Tobias Leibner‡ Stephan Rave§

June 21, 2017

Abstract

Proper Orthogonal Decomposition (POD) is a widely used technique
for the construction of low-dimensional approximation spaces from high-
dimensional input data. For large-scale applications and an increasing
number of input data vectors, however, computing the POD often becomes
prohibitively expensive. This work presents a general, easy-to-implement
approach to compute an approximate POD based on arbitrary tree hier-
archies of worker nodes, where each worker computes a POD of only a
small number of input vectors. The tree hierarchy can be freely adapted
to optimally suit the available computational resources. In particular, this
hierarchical approximate POD (HAPOD) allows for both simple paral-
lelization with low communication overhead, as well as incremental POD
computation under constrained memory capacities. Rigorous error es-
timates ensure the reliability of our approach, and extensive numerical
examples underline its performance.

1 Introduction
The construction of low-dimensional subspaces from high-dimensional data,
dynamics or operators is an essential mechanism in many applications, with the
aim to accelerate or merely enable numerical computations of large-scale models.
In the discipline of model reduction, this methodology is the central problem
under investigation.
∗Supported by the Deutsche Forschungsgemeinschaft, DFG EXC 1003 Cells in Motion

- Cluster of Excellence, Münster, Germany, by the Center for Developing Mathematics in
Interaction, DEMAIN, Münster, Germany, by Cells in Motion (CiM) Cluster of Excellence in
flexible funds project FF-2015-07, «««< HEAD by the German Federal Ministry of Education
and Research (BMBF) under contract number 05M13PMA and by the German Federal Ministry
for Economic Affairs and Energy (BMWi), in the joint project: “MathEnergy – Mathematical
Key Technologies for Evolving Energy Grids”, sub-project: Model Order Reduction (Grant
number: 0324019B).
†Contact: himpe@mpi-magdeburg.mpg.de, Computational Methods in Systems and Control

Theory Group at the Max Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstraße 1, D-39106 Magdeburg, Germany
‡Contact: tobias.leibner@uni-muenster.de, Applied Mathematics, University of Münster,

Einsteinstrasse 62, D-48149 Münster, Germany
§Contact: stephan.rave@uni-muenster.de, Applied Mathematics, University of Münster,

Einsteinstrasse 62, D-48149 Münster, Germany

1

ar
X

iv
:1

60
7.

05
21

0v
4

 [
m

at
h.

N
A

]
 2

1
Fe

b
20

18

mailto:himpe@mpi-magdeburg.mpg.de
mailto:tobias.leibner@uni-muenster.de
mailto:stephan.rave@uni-muenster.de

A well-known and popular approach for subspace construction is the Proper
Orthogonal Decomposition (POD), i.e. the computation of the left-singular
vectors associated with the dominant singular values of a given set of input
column vectors concatenated to a matrix. An important field of application for
the POD is the reduction of ordinary differential equation (ODE) models [35]
and partial differential equation (PDE) models [27, 28]. A landmark work in this
context is the use of the POD for compression of simulation data [46] where the
dominant modes are extracted from flow simulation time series by the method of
snapshots. For an elaborate review of the POD method see for example [16, 23].

Due to technical limitations of computational resources, such as memory-
space and acceptable computational complexities, not only the evaluation of
a large-scale problem, but even the computation of a low-rank approximation
by existing methods may be infeasible. This is particularly true for the POD,
as the (truncated) singular value decomposition (SVD) of large matrices is
a computationally demanding task. In order to speed up the computation,
various parallel algorithms are available for SVD computation [5]; more recently,
partitioning approaches were developed to obtain the SVD, or an approximation
thereof, such as [47, 48], [11, 12], [4], [50], as well as a related parallel QR
decomposition in [43]. A commonality of these methods is the horizontal slicing
of the argument matrix, which is similar to the partitioning of the spatial domain
of a discretized PDE model. However, such an approach is only possible when
complete horizontal slices of the argument matrix are available. This usually
means that all input data vectors have to be computed and stored before starting
the POD computation. For large problems, this might be impossible due to
insufficient memory or even mass storage space. Also, for parametrized problems
the input data might be distributed column-wise among several workers, and
horizontal slicing of the input would require heavy communication between the
workers, which may be impossible, for instance in grid-computing environments.

In comparison, the herein proposed Hierarchical Approximate Proper Or-
thogonal Decomposition (HAPOD) is based on a vertical slicing of the input
matrix and is targeted to extend POD-based methods which were designed with
“tall and skinny” matrices in mind towards settings where, due to enhanced
requirements such as parametrization, the actual matrix dimension is “tall and
not-so-skinny”.

Our method is based upon the simple idea of replacing subsets of input
vectors by POD approximations of these, which then form the input of additional
POD steps. As such, our algorithm can be applied on top of any pre-existing
POD implementation. Being formulated for arbitrary tree hierarchies of workers,
it allows sequential and parallel decompositions, as well as combinations thereof,
based on the partitioning of the time domain or parameter space.

The HAPOD is a single pass method in the sense that the input vectors at a
given HAPOD node are only required for a single local POD computation and
can be discarded afterwards. Rigorous error estimates allow a priori control of
the final `2-approximation error for the input data. At the same time, bounds
for the number of generated HAPOD modes guarantee quasi-optimality of the
generated approximation space. As long as the final depth of the HAPOD tree is
known, local PODs can be computed as soon as all input data for a given node
is available. As such, the HAPOD can also be seen as a general methodology for
approximation quality control when updating POD spaces with additional input
data.

2

Stochastic methods for SVD computation, e.g. [13, 17, 22, 42], share many
benefits with the HAPOD. In particular, these methods are easily parallelizable
with comparable communication requirements (at least when no power iteration is
performed), and single pass formulations do exist. However, most algorithms are
designed for a prescribed fixed approximation rank. Those which do guarantee
spaces with prescribed approximation error ([17, Section 4.4], [22] or the preprint
[25]) are based on iterative procedures which require multiple passes over the
input data. Also, our approach can be implemented more easily on top of already
existing POD codes.

For the incremental (updated) computation of an SVD we refer to the work
of Brand [6, 7], which allows the update of an existing SVD given new data.
Geared towards (POD-based) model reduction, [36] uses Brand’s algorithm
for an incremental POD algorithm. In this context, the HAPOD framework
provides local choices of truncation error tolerances to rigorously control the
overall approximation error, given that the maximum number of updates is
known. A similar updated POD algorithm is employed for the experiment in
Section 4.3. In [3], another family of rank-based approaches for incremental SVD
computations is presented.

Given the simplicity of the HAPOD, we do not claim to be first in investigating
this concept. In fact, we recently became aware of [37], wherein special cases
of the HAPOD (i.e. a distributed and an incremental HAPOD in the sense of
Section 3.2) are briefly discussed. Balanced n-ary tree structures are investigated
in [24]. In both cases, error bounds for prescribed truncation ranks are derived.
Another application of the distributed HAPOD is discussed in [8], which uses
the error bound derived in [37]. In the context of principal component analysis,
distributed methods have been introduced [32, 38, 39], which, apart from the
centering of the data set, correspond to a distributed HAPOD. No rigorous error
bounds are derived, however.

Main contribution of this work is a thorough study of the HAPOD with
the aim of showing that it should be a standard part in the toolbox of every
model reduction practitioner. In particular, in contrast to [37, 24, 8], we formally
analyze the algorithm in a general setting with arbitrary tree topologies, making
it suitable to more complex applications (cf. Section 4.3), and give, for prescribed
local POD truncation error tolerances, estimates for both the approximation error
as well as the obtained (local and final) numbers of POD modes. Based on these
estimates we provide rules for the selection of the local error tolerances to achieve
a given global target (mean) approximation error, with a user-definable tradeoff
between optimality of the generated approximation space and computational
efficiency. We show the performance of our method for input data with quickly
decaying singular values, as it is typically the case in model reduction applications
(cf. Remarks 3.6 and 3.7 and Section 3.4). Section 4 contains extensive numerical
experiments highlighting the applicability of our method.

Before introducing the HAPOD in Section 3, we start with a concise summary
of the POD and its properties in Section 2.

2 Proper Orthogonal Decomposition
Proper Orthogonal Decomposition is a technique for finding low-order approxi-
mation spaces for a given set of snapshot (data) vectors by computing the left-

3

singular vectors corresponding with the dominant singular values of the matrix
formed by the column-wise concatenation of the snapshot vectors. Designations
used in other fields are Principal Component Analysis, Empirical Eigenfunctions,
Empirical Orthogonal Functions or Karhunen-Loève Decomposition. A more
formal definition of the POD, which also applies to infinite-dimensional spaces,
is given as follows:

Definition 2.1 (Proper Orthogonal Decomposition (POD)). Let S be a finite
multiset of vectors contained in a Hilbert space V and denote by |S| its cardinality.
With e1, . . . , e|S| ∈ R|S| the canonical basis of R|S|, and {s1, . . . , s|S|} = S an
arbitrary enumeration of the elements of S, we call sequences ϕ1, . . . , ϕ|S| ∈ V ,
σ1, . . . , σ|S| ∈ R Proper Orthogonal Decomposition modes and singular values
of S if ϕm, σm are the left-singular vectors and singular values of the linear
mapping S given by

S : R|S| → V, em 7→ S(em) := sm 1 ≤ m ≤ |S|. (1)

Remark 2.2. Due to the uniqueness properties of the SVD, the POD singular
values of a given multiset S are uniquely defined. The POD modes are uniquely
defined up to orthogonal mappings of subspaces of V spanned by modes with the
same singular value.

Remark 2.3. A simple yet numerically robust algorithm for the computation of
the SVD of S is based on computing the eigenvalue decomposition of the Gramian
G := (si, sj)i,j to the snapshot set S = {s1, . . . , s|S|}. The k-th POD mode ϕk
is then obtained as

ϕk =
1√
λk

|S|∑
i=1

ψk,i · si,

where λk is the k-th largest eigenvalue of G and ψk,i the i-th component of the
corresponding eigenvector.1

The basic idea of the algorithm outlined in Remark 2.3, which in the context
of model reduction is also known as method of snapshots [46], is to replace
the difficult task of computing the SVD of a large snapshot matrix with the
easier task of computing the eigenvalue decomposition of the much smaller
(symmetric) Gramian, which can be obtained efficiently by optimized matrix-
matrix multiplication algorithms.

While this approach performs well if there are relatively few snapshot vectors
(i.e. “tall and skinny” snapshot matrices), it suffers from the quadratic growth
in computational complexity for computing the Gramian when the number
of snapshots increases. However, using this method in conjunction with the
herein proposed HAPOD algorithm can drastically reduce the overall required
computational effort, making it feasible even for large snapshot sets S (see
Section 3.4).

The main reason for the importance of the POD is the fact that it produces
best approximating spaces in the `2-sense:

Theorem 2.4 (Schmidt-Eckhard-Young-Mirsky). Let (σm, ϕm), 1 ≤ m ≤ |S|
be the singular values and modes of a POD of a given snapshot multiset S. Then

1Note that the condition number of G is the square of the condition number of S, limiting
the numerical accuracy of this method in comparison to other SVD algorithms.

4

for each 1 ≤ N ≤ |S|, VN := span{ϕ1, . . . , ϕN} is an `2-best approximating
space for S in the sense that

∑
s∈S
‖s− PVN (s)‖2 = min

X⊆V
dimX=N

∑
s∈S
‖s− PX(s)‖2 =

|S|∑
m=N+1

σ2
m, (2)

where ‖ · ‖ denotes the norm on V and PX is the V -orthogonal projection onto
the linear subspace X.

The HAPOD algorithm presented in Section 3 can be based on any pre-
existing POD implementation. We formalize the concept of a POD algorithm as
follows:

Definition 2.5. For a given Hilbert space V , let POD be the mapping

(S, ε) 7→ POD(S, ε) := {(σn, ϕn)}Nn=1,

which assigns to each finite multiset S ⊆ V and each ε > 0 the set given by the
first N pairs of singular values σn and modes φn of the POD of S, where N
is the smallest nonnegative integer such that the `2-best-approximation error is
bounded by ε, i.e.

∑
s∈S ‖s− PVN (s)‖2 ≤ ε2. According to (2), N is thus given

as:

N = min

{
N ′ ∈ {0, . . . , |S|}

∣∣∣∣ |S|∑
n=N ′+1

σ2
n ≤ ε2

}
.

Assuming that no SVD is performed for ε = 0 and the original snapshot multiset
is returned, we also define POD(S, 0) := {(1, s) | s ∈ S}.

3 Hierarchical Approximate POD (HAPOD)
In this section we introduce the HAPOD algorithm (Section 3.1) and provide
estimates that allow to control the approximation error as well as the number of
computed PODmodes (Section 3.3). Special cases for distributed and incremental
HAPOD computation are discussed in Section 3.2. A further discussion of the
advantages of the HAPOD is contained in Section 3.4, whereas proofs of our
main theorems can be found in Section 3.5. The notation used in this section is
summarized in Table 1.

CT (α) children of node α in tree T NT node set of tree T
D snapshot-to-leaf map NT (α) nodes below α in tree T
ε(α) error tolerance at node α ρT root node of tree T
LT depth of tree T S snapshot set
LT (α) level of node α in tree T Sα input snapshots at node α
LT leaf set of tree T S̃α snapshots below α in the tree

Table 1: Key notation. Additional notation required in the proofs of Theorems 3.3
and 3.4 is given in Definition 3.9.

5

3.1 Definition of the HAPOD
The basic idea of the HAPOD algorithm is to replace the task of computing
a POD of a given large snapshot set S by several small PODs, which only
depend on small subsets of S and previously computed PODs. To formalize this
procedure, we consider rooted trees where each node of the tree is associated
with a local POD.

A rooted tree is a connected acyclic graph of which one node is designated
as the root of the tree. The following equivalent definition will better suit our
needs:

Definition 3.1 (Rooted Tree). For an arbitrary set X, denote by Pow(X) its
power set. We then call a triple T = (NT , CT , ρT), where NT is a finite set,
ρT ∈ NT , and CT : NT → Pow(NT \ {ρT }), a rooted tree if the mapping CT
satisfies the following properties:

∀α, β ∈ NT : α 6= β ⇒ CT (α) ∩ CT (β) = ∅, (3)
∀ ∅ 6= X ⊆ NT \ {ρT } ∃α ∈ NT \X : CT (α) ∩X 6= ∅. (4)

We call elements α ∈ NT the nodes of T and the elements of CT (α) the children
of α. Condition (3) states that every node of T is the child of at most one node,
whereas condition (4) ensures that every node is connected to the root node ρT .
Together, (3) and (4) imply that there are no cycles in T .

The leaf set LT of T is given by

LT := {α ∈ NT | CT (α) = ∅}.

For each node α ∈ NT we define the nodes below α, NT (α), recursively by the
relation

NT (α) := {α} ∪
⋃

β∈CT (α)

NT (β).

Finally, we define the level map LT : NT → N recursively as

LT (α) := max({LT (β) | β ∈ CT (α)} ∪ {0}) + 1,

and call LT := LT (ρT) the depth of T .

Given a tree T , the HAPOD algorithm works by first assigning vectors of a
given snapshot set S to the leaves of the tree. Then, starting with the leaves, a
POD of the local input data is computed at each node. The resulting modes
are scaled by their corresponding singular values and passed on as input to the
parent node. The final HAPOD modes are collected as the output of the root
node ρT (cf. Figs. 1 and 8). The precise definition is given as follows:

Definition 3.2 (Hierarchical Approximate POD (HAPOD)). Let S ⊆ V be a
finite multiset of snapshot vectors in a Hilbert space V . Given a rooted tree T
and mappings

D : S → LT , ε : NT → R≥0,

define recursively for each α ∈ NT

HAPOD[S, T , D, ε](α) := POD(Sα, ε(α)),

6

ρ

β1 β2 β3 β4

(a) Distributed approximate POD. The
PODs at the leaves βi can be computed in
parallel. Afterwards an additional POD
is performed at the root node ρ.

ρ

α3

α2

α1 β1

β2

β3

(b) Incremental HAPOD. New snapshot
data enters at the nodes βi which is
then combined with the current modes
by PODs at the nodes αi.

Figure 1: Trees corresponding to distributed and incremental HAPOD computa-
tion.

where the local input data multiset Sα is given by

Sα :=

{
D−1({α}) α ∈ LT ,⋃
β∈CT (α)

{
σn · ϕn | (σn, ϕn) ∈ HAPOD[S, T , D, ε](β)

}
otherwise,

with D−1({α}) := {s ∈ S |D(s) ∈ {α}} = {s ∈ S |D(s) = α} being the multiset
of all snapshot vectors assigned to the leaf node α. We call HAPOD[S, T , D, ε] :=
HAPOD[S, T , D, ε](ρT) the hierarchical approximate POD of S for the tree T ,
the snapshot distribution D and the local tolerances ε.

3.2 Special Cases: Distributed and Incremental HAPOD
The HAPOD is defined for arbitrary rooted trees, yet two classes of tree topologies
present important special cases due to their ease of application. Both cases have
also been discussed in [37].

One special case of the HAPOD constitutes a “flat” tree (star), in which all
leaf nodes are the children of the root node, i.e. CT (ρT) = NT \ {ρT }, and the
snapshot set S is distributed evenly among the leaf nodes (see Fig. 1a). For such
a tree the HAPOD is given as:

HAPOD[S, T , D, ε](ρT) =

POD
(⋃
β∈LT

{
σn · ϕn

∣∣∣ (σn, ϕn) ∈ POD(D−1({β}), ε(β))
}
, ε(ρT)

)
.

From a numerical linear algebra perspective this distributed HAPOD is closely
related to the “horizontal slicing” distributed SVD methods [4, 11, 12, 43, 47,
48, 50]. The key algorithmic difference is the horizontal partitioning of the data
vectors forming the columns of the snapshot matrix into fat chunks as opposed
to the vertical partitioning into thin chunks of complete data vectors considered
here.

7

A second special case of the HAPOD is a “skinny” tree (totally unbalanced
binary tree). Each node of this tree is either a leaf or has exactly one leaf
and one non-leaf as children (see Fig. 1b). Formally, we then have NT =
({α1, . . . , αL} ∪ {β1, . . . , βL−1}), ρT = αL, CT (βl) = ∅ for all 1 ≤ l ≤ L − 1,
CT (α1) = ∅ and CT (αl) = {αl−1, βl−1} for 2 ≤ l ≤ L. Typically, one will perform
no additional PODs on the input data, so ε(βl) = 0. In this case, the HAPOD
is given as HAPOD[S, T , D, ε](α1) = POD(D−1({α1}), ε(α1)) and

HAPOD[S, T , D, ε](αl) =

POD
({
σn ·ϕn | (σn, ϕn) ∈ HAPOD[S, T , D, ε](αl−1)

}
∪D−1({βl−1}), ε(αl)

)
.

for 2 ≤ l ≤ L. Thus, the HAPOD can be computed incrementally by a simple
iterative procedure, where in each update step a POD of the current (scaled)
HAPOD modes together with the new input data is computed, whereas old
input data can be removed from memory.

To accelerate the computation of this incremental HAPOD, an incremental
SVD algorithm such as [6] might be used for the local POD computations. In this
case, then main theorems in Section 3.3 provide a means to select truncation error
tolerances for the individual SVD updates that guarantee final approximation
spaces of prescribed quality.

3.3 Main Theorems
Two central questions about the HAPOD are answered by the following theorems:
Given error tolerances ε, what is the approximation error for the computed
HAPOD modes (Theorem 3.3)? How many modes does the HAPOD produce in
comparison to a direct POD computation (Theorem 3.4)? Only by controlling
both quantities simultaneously can we arrive at an efficient approximation scheme.
The proofs to the following theorems are given in Section 3.5.

Theorem 3.3. Let S, T , D, ε be given as in Definition 3.2, let the multiset of all
snapshots subordinate to the node α be given by S̃α :=

⋃
γ∈LT ∩NT (α)D

−1({γ}),
and let Pα be the V -orthogonal projection onto the linear space spanned by the
modes of HAPOD[S, T , D, ε](α). The `2-approximation error for the HAPOD
space at node α is then bounded by:∑

s∈S̃α

‖s− Pα(s)‖2 ≤
∑

γ∈NT (α)

ε(γ)2. (5)

Theorem 3.4. With the same notation as in Theorem 3.3 we have for each
α ∈ NT the following bound for the number of HAPOD modes:∣∣∣HAPOD[S, T , D, ε](α)

∣∣∣ ≤ ∣∣∣POD
(
S̃α, ε(α)

)∣∣∣. (6)

In model reduction applications, the `2-mean approximation error is often the
desired quantity to optimize for, since in many cases neither the number of POD
input vectors is known a priori (think of adaptive time stepping schemes) nor the
number of vectors which are to be approximated by the generated POD space
(i.e. the number of reduced model evaluations). Thus, we want to define ε such
that the mean `2-error is bounded by a desired target tolerance ε∗, independently

8

from the total number of input modes |S|. At the same time, the number of
HAPOD output modes should not be much larger than the optimal quantity
|POD(S, ε∗)|, where

POD(S, ε∗) := POD(S,
√
|S| · ε∗).

In view of the above results, this motivates the following choice for ε, where the
parameter ω allows us to choose a trade-off between efficiency of the HAPOD
and the optimality of the resulting approximation space:

Theorem 3.5. Using the same notation as in Theorem 3.3, let for ε∗ > 0 the
HAPOD tolerances ε(ρT), ε(α), α ∈ NT \ {ρT } be given by:

ε(ρT) :=
√
|S| · ω · ε∗, ε(α) :=

√
|S̃α| · (LT − 1)

−1/2 ·
√

1− ω2 · ε∗,

where 0 ≤ ω ≤ 1 is an arbitrary parameter. Then we have the following bounds
for the final `2-mean approximation error and number of HAPOD modes:

1

|S|
∑
s∈S
‖s− PρT (s)‖2 ≤ ε∗2 and

∣∣∣HAPOD[S, T , D, ε]
∣∣∣ ≤ ∣∣∣POD(S, ω · ε∗)

∣∣∣.
(7)

Moreover, the number of HAPOD modes at the intermediate stages α is bounded
by: ∣∣∣HAPOD[S, T , D, ε](α)

∣∣∣ ≤ ∣∣∣POD(S̃α, (LT − 1)−1/2 ·
√

1− ω2 · ε∗)
∣∣∣. (8)

Remark 3.6. Note that the number of local POD modes |HAPOD[S, T , D, ε](α)|
determines the size of the input Sβ for the next POD at the parent node β, and
hence the effort required for its computation. Choosing a large ω → 1 will reduce
the number of final HAPOD modes at the price of larger local PODs. A small
ω → 0 will minimize the costs for computing the HAPOD in exchange for a
larger number of final modes to guarantee the prescribed error bound.

Remark 3.7. Since we consider the mean square approximation error, it is
possible for the bound (8) that we have

|POD(S̃α, δ)| > |POD(S, δ)|,

where δ := (LT − 1)−1/2 ·
√

1− ω2 · ε∗. This might be the case when the principal
directions of the snapshot set S̃α are underrepresented in the full snapshot set S.
However, if N ′ := min{N ∈ N

∣∣∣ dN (S) ≤ δ}, where

dN (S) := min
X⊆V lin subsp.

dimX≤N

max
s∈S
‖s− PX(s)‖,

is the so-called Kolomogorov N -width of S, and XN ′ is a minimizer for dN ′(S),
we always have

|S̃α|
−1 ∑

s∈S̃α

‖s− PXN′ (s)‖2 ≤ max
s∈S̃α

‖s− PXN′ (s)‖2 ≤ max
s∈S
‖s− PXN′ (s)‖2 ≤ δ.

9

Thus, due to the optimality of the POD (Theorem 2.4) we have |POD(S̃α, δ)| ≤
N ′, and the number of modes at α can be bounded by∣∣∣HAPOD[S, T , D, ε](α)

∣∣∣ ≤ min
{
N ∈ N

∣∣∣ dN (S) ≤ (LT − 1)−1/2 ·
√

1− ω2 · ε∗
}
.

(9)
In many cases it is known theoretically or heuristically that dN (S) shows rapid
(sub-)exponential decay for increasing N . In these cases, (9) will be an effective
upper bound for the number of local HAPOD modes, independent of the chosen
snapshot distribution D.

Remark 3.8 (Low-rank approximation of the snapshot mapping). By addition-
ally keeping track of the local right-singular vectors appearing in the HAPOD
algorithm, we easily obtain a low-rank approximation of the global snapshot map-
ping S̃α : R|S̃α| → V defined in Definition 3.9. More precisely, by Lemma 3.10
and (17) we immediately have the rank-

∣∣∣HAPOD[S, T , D, ε](α)
∣∣∣ approximation:

‖S̃α −Ψα ◦ Λ̃∗α‖22 ≤
∑

γ∈NT (α)

ε(γ)2 (10)

in the Hilbert-Schmidt (Frobenius) norm, with Ψα, Λ̃α given as in Definition 3.9.

3.4 Algorithmic Benefits
Theorems 3.3 and 3.4 show that, with an appropriate choice of local error
tolerances ε (Theorem 3.5), the HAPOD produces approximation spaces of a
quality comparable to a POD with the same target error tolerance. At the same
time, the HAPOD offers several benefits, which for problems with fast decaying
singular values can lead to dramatic speedups in computation time.

Reduced memory requirements If the input data for a POD cannot be
kept completely in memory, huge performance penalties are to be expected,
since for standard POD algorithms, repeated access of every snapshot vector is
required. If the data is kept on a mass storage device, the overall performance
of the algorithm will usually be bounded by the data transfer speed.

For the HAPOD, at each node α, only the vectors Sα are required as input
to a local POD where, typically, |Sα| � |S| so that Sα can be kept completely
in memory.

If only the POD, and not the snapshots themselves, is targeted by the
computation, the HAPOD can obtain the result without accessing mass storage
altogether (cf. Section 4.3). In particular, an incremental HAPOD of a time
series may be computed even if the whole time series would not fit into memory
(cf. Sections 3.2 and 4.1).

Simple parallelization To compute the local POD at node α, only the
output of the PODs at the child nodes CT (α) is required. In particular, for each
1 ≤ l ≤ LT , all PODs at the nodes {α ∈ NT | LT (α) = l} can be computed
in parallel without any communication, which is typically the bottleneck for
distributed computations. Intermediate results have to be communicated only
vertically up the tree, and the communicated data encompasses only low-rank

10

quantities of computed POD modes and singular values (cf. Sections 3.2, 4.2
and 4.3).

Generality The HAPOD can be applied using any pre-existing, optimized
POD algorithm. For instance, the HAPOD could be used to perform incremental
data compression for an MPI (Message Passing Interface) [33] distributed model,
where each sub-POD is computed via a parallelized SVD algorithm. In Section 4.3
we speed up the POD algorithm in Remark 2.3 by exploiting the block structure
of the local Gramian similar to Brand’s algorithm [7].

Lower algorithmic complexity A widely used, simple and reliable algo-
rithm for POD computation is to compute the eigenvalue decomposition of
the Gramian to S (cf. Remark 2.3). In the case of |S| � d := dim(V), the
Gramian computation dominates the overall runtime for the algorithm with a
computational complexity of O(|S|2d). For larger snapshots sets S the quadratic
increase in complexity makes this method expensive in comparison to more
advanced algorithms (such as Lanczos or randomized methods [10, 17]), which
scale only linearly in the number of snapshot vectors

Application of the HAPOD algorithm largely mitigates this issue. In particu-
lar, for a balanced n-ary tree T with single vectors attached to the leaves, the
HAPOD using this POD algorithm requires at most O(|S| log(|S|)N̂2d) opera-
tions for Gramian computation, where N̂ := maxα∈NT |HAPOD[S, T , D, ε](α)|
denotes the maximum number of local output modes. Assuming that the
error tolerances ε are chosen according to Theorem 3.5 for fixed ε∗, ω, and
assuming that the Kolmogorov widths dN (S) are bounded for growing S,
then, due to (9), N̂ will only depend on the depth LT of T . If we further-
more assume that dN (S) decays exponentially with increasing N , we have
N̂ = O(log(LT)) = O(log(log(|S|))). Thus, the overall effort for computing the
Gramians is reduced to O(|S| log(|S|) log(log(|S|))2d).

3.5 Proofs of Main Theorems
In this section we prove our main results (Theorems 3.3 and 3.4). We will require
some additional notation:

Definition 3.9 (Additional notation). For each α ∈ NT \ LT fix an arbitrary
enumeration CT (α, 1), . . . , CT (α, |CT (α)|) of CT (α). For each α ∈ NT we define
mappings

Sα : R|Sα| → V, Ψα : RNα → V, Λα : RNα → R|Sα|,

Nα := |HAPOD[S, T , D, ε](α)|, simultaneously recursively as follows:
As in (1), let Sα map the n-th canonical basis vector of R|Sα| to the n-th

element of Sα for a given enumeration of Sα. For α ∈ LT , the enumeration
of Sα = D−1({α}) is chosen arbitrarily. For α ∈ NT \ LT , the enumeration is
chosen such that the following compatibility relation is satisfied

Sα = [ΨCT (α,1), . . . ,ΨCT (α,|CT (α)|)]. (11)

For ε(α) > 0, let Ψα, Λα be the linear mappings given by

Ψα(en) := σn · ϕn, Λα(en) := λn,

11

where en is the n-th canonical basis vector of RNα and σn, ϕn, λn denote the
n-th singular value, left singular vector and right singular vector of Sα. Thus,
Ψα ◦ Λ∗α is the truncated SVD of Sα. In particular, we have

Pα ◦ Sα = Ψα ◦ Λ∗α, Λ∗α ◦ Λα = 1. (12)

For ε(α) = 0 (in which case Nα = |Sα|), we simply let Ψα := Sα and let Λα be
the identity on RNα such that (12) holds as well.

Note that since Sα exactly consists of elements Ψβ(en) with β ∈ CT (α),
1 ≤ n ≤ Nβ, it is clear that (11) can always be satisfied.

Finally, we define cumulative mappings S̃α, R̃α : R|S̃α| → V , Λ̃α : RNα →
R|S̃α| recursively as

S̃α := Sα, R̃α := Sα, Λ̃α := Λα,

for α ∈ LT and

S̃α := [S̃CT (α,1), . . . , S̃CT (α,|CT (α)|)],

Λ̃α := diag(Λ̃CT (α,1), . . . , Λ̃CT (α,|CT (α)|)) ◦ Λα,

R̃α := [PCT (α,1) ◦ R̃CT (α,1), . . . , PCT (α,|CT (α)|) ◦ R̃CT (α,|CT (α)|)],

for all α ∈ NT \ LT . Similar to the definition of Sα, the map S̃α is of the form
(1) with respect to a specific enumeration of S̃α.

As a first step towards the proof of our main theorems, we will extend the
decomposition (12) to the accumulated mapping of projected snapshots R̃α:

Lemma 3.10. With the same notation as in Definition 3.9 we have for all
α ∈ NT :

Pα ◦ R̃α = Ψα ◦ Λ̃∗α, Λ̃∗α ◦ Λ̃α = 1. (13)

In particular, it follows for α ∈ NT \ LT that

R̃α = Sα ◦ diag(Λ̃∗CT (α,1), . . . , Λ̃
∗
CT (α,|CT (α)|)). (14)

Proof. We show the claim via induction over T . To this end, first note that for
α ∈ LT , (13) is precisely (12) by definition of R̃α, Λ̃α. For α ∈ NT \ LT , we
obtain using the induction hypothesis, the definition of Sα and (12):

Pα ◦ R̃α = Pα ◦ [PCT (α,1) ◦ R̃CT (α,1), . . . , PCT (α,|CT (α)|) ◦ R̃CT (α,|CT (α)|)]

= Pα ◦ [ΨCT (α,1) ◦ Λ̃∗CT (α,1), . . . ,ΨCT (α,|CT (α)|) ◦ Λ̃∗CT (α,|CT (α)|)]

= Pα ◦ Sα ◦ diag(Λ̃∗CT (α,1), . . . , Λ̃
∗
CT (α,|CT (α)|))

= Ψα ◦ Λ∗α ◦ diag(Λ̃∗CT (α,1), . . . , Λ̃
∗
CT (α,|CT (α)|))

= Ψα ◦ Λ̃∗α.

Moreover:

Λ̃∗α◦Λ̃α = Λ∗α◦diag(Λ̃∗CT (α,1)◦Λ̃CT (α,1), . . . , Λ̃∗CT (α,|CT (α)|)◦Λ̃CT (α,|CT (α)|))◦Λα = 1.

12

Thus, (13) is proved, and we have

R̃α = [PCT (α,1) ◦ R̃CT (α,1), . . . , PCT (α,|CT (α)|) ◦ R̃CT (α,|CT (α)|)]

= [ΨCT (α,1) ◦ Λ̃∗CT (α,1), . . . ,ΨCT (α,|CT (α)|) ◦ Λ̃∗CT (α,|CT (α)|)]

= Sα ◦ diag(Λ̃∗CT (α,1), . . . , Λ̃
∗
CT (α,|CT (α)|)).

As a final preparatory step, we show the following orthogonality lemma:

Lemma 3.11. With the same notation as in Definition 3.9 we have for all
α ∈ NT and arbitrary continuous linear maps X,Y : V → V :

(X ◦ (S̃α − R̃α), Y ◦ R̃α)2 = 0, (15)

where (A,B)2 is the Hilbert-Schmidt inner product given by tr(A∗B).

Proof. We prove the claim again via induction over T . For α ∈ LT the statement
is obvious since S̃α = Sα = R̃α. For α ∈ NT \ LT , we have

(X ◦ (S̃α − R̃α), Y ◦ R̃α)2

=
∑

β∈CT (α)

(X ◦ (S̃β − Pβ ◦ R̃β), Y ◦ Pβ ◦ R̃β)2

=
∑

β∈CT (α)

(X ◦ (S̃β − R̃β), Y ◦ Pβ ◦ R̃β)2

+
∑

β∈CT (α)

(X ◦ (1− Pβ) ◦ R̃β , Y ◦ Pβ ◦ R̃β)2.

(16)

The first sum on the right-hand side of (16) vanishes by induction hypothesis
(with Y := Y ◦ Pβ). To handle the second sum note that for β ∈ NT \ LT ,
ε(β) > 0 we can use (14) to write:

(1− Pβ) ◦ R̃β = (1− Pβ) ◦ Sβ ◦ diag(Λ̃∗CT (β,1), . . . , Λ̃
∗
CT (β,|CT (β)|))

= Ψc
β ◦ Λc∗β ◦ diag(Λ̃∗CT (β,1), . . . , Λ̃

∗
CT (β,|CT (β)|)),

where Ψc
β : R|Sβ |−Nβ → V,Λcβ : R|Sβ |−Nβ → R|Sβ | map the k-th canonical basis

vector to the (Nβ + k)-th scaled left (unscaled right) singular vector of Sβ . In
particular, Λ∗β ◦ Λcβ = 0. Using (13) and the invariance of the trace under cyclic
permutations, we obtain:

(X ◦ (1− Pβ) ◦ R̃β , Y ◦ Pβ ◦ R̃β)2

= tr({(1− Pβ) ◦ R̃β}∗ ◦X∗ ◦ Y ◦ Pβ ◦ R̃β)

= tr(X∗ ◦ Y ◦ Pβ ◦ R̃β ◦ {(1− Pβ) ◦ R̃β}∗)

= tr(X∗ ◦ Y ◦Ψβ ◦ Λ∗β ◦ diag(Λ̃∗CT (β,1), . . . , Λ̃
∗
CT (β,|CT (β)|))

◦ diag(Λ̃CT (β,1), . . . , Λ̃CT (β,|CT (β)|)) ◦ Λcβ ◦Ψc∗
β)

= tr(X∗ ◦ Y ◦Ψβ ◦ {Λ∗β ◦ Λcβ} ◦Ψc
β) = 0.

The same line of argument holds for β ∈ LT , where we have (1 − Pβ) ◦ R̃β =
Ψc
β ◦Λc∗β . Since for ε(β) = 0 we trivially have 1−Pβ = 0, we see that the second

sum in (16) always vanishes, proving the claim.

13

Proof of Theorem 3.3. First note that, due to the best approximation property
of the orthogonal projection Pα we have:

∑
s∈S̃α

‖s− Pα(s)‖2 =

|S̃α|∑
n=1

‖S̃α(en)− Pα(S̃α(en))‖2

≤
|S̃α|∑
n=1

‖S̃α(en)− Pα(R̃α(en))‖2

= ‖S̃α − Pα ◦ R̃α‖22,

where ‖A‖2 =
√

(A,A)2 =
√

tr(A∗A) denotes the Hilbert-Schmidt norm of A.
Thus, the theorem is proven if we can show the that for all α ∈ NT the following
estimate holds:

‖S̃α − Pα ◦ R̃α‖22 ≤
∑

γ∈NT (α)

ε(γ)2. (17)

We show (17) again via induction over T . For α ∈ LT we immediately have:

‖S̃α − Pα ◦ R̃α‖22 = ‖Sα − Pα ◦ Sα‖22 ≤ ε(α)2 =
∑

γ∈NT (α)

ε(γ)2,

according to Definition 2.5.
Now, let us assume that (17) holds for all β ∈ CT (α) for some α ∈ NT \ LT .

Using Lemma 3.11 with Y = I − Pα, we have

‖S̃α−Pα◦R̃α‖22 = ‖S̃α−R̃α+(I−Pα)◦R̃α‖22 = ‖S̃α−R̃α‖22+‖(I−Pα)◦R̃α‖22.

Using the induction hypothesis, we can bound the first summand by:

‖S̃α − R̃α‖22 =
∑

β∈CT (α)

‖S̃β − Pβ ◦ R̃β‖22

≤
∑

β∈CT (α)

∑
γ∈NT (β)

ε(γ)2

=
∑

γ∈NT (α)\{α}

ε(γ)2.

To bound the second summand, we use Lemma 3.10, the fact that ‖T ◦S‖2 ≤
‖T‖2 · ‖S‖ (for arbitrary T , S) and Definition 2.5 to obtain:

‖(I − Pα) ◦ R̃α‖22 = ‖(I − Pα) ◦ Sα ◦ diag(Λ̃∗CT (α,1), . . . , Λ̃
∗
CT (α,|CT (α)|))‖

2
2

≤ ‖(I − Pα) ◦ Sα‖22 · ‖ diag(Λ̃∗CT (α,1), . . . , Λ̃
∗
CT (α,|CT (α)|))‖

2

≤ ε(α)2.

Thus, (17) follows, which completes the proof.

Proof of Theorem 3.4. For α ∈ LT there is nothing to show, so let us assume
that α ∈ NT \LT . According to Lemma 3.10, R̃α and Sα have the same singular
values. Thus, with R̃α := {R̃α(en) | 1 ≤ n ≤ |S̃α|} we have:

|HAPOD[S, T , D, ε](α)| = |POD(Sα, ε(α))| = |POD(R̃α, ε(α))|.

14

Let P̃α be the orthogonal projection onto the linear span of the modes selected
by POD(S̃α, ε(α)). Due to Lemma 3.11 with X = Y = 1− P̃α, we have:

ε(α)2 ≥ ‖(1− P̃α) ◦ S̃α‖22
= ‖(1− P̃α) ◦ R̃α‖22 + ‖(1− P̃α) ◦ (S̃α − R̃α)‖22
≥ ‖(1− P̃α) ◦ R̃α‖22.

According to Definition 2.5 and due to the optimality of the POD we therefore
have

|POD(R̃α, ε(α))| ≤ |POD(S̃α, ε(α))|,

which concludes the proof.

Proof of Theorem 3.5. According to Theorem 3.3 we have

∑
s∈S
‖s− PρT (s)‖2 ≤ |S| · ω2 · ε∗2 +

LT −1∑
l=1

∑
γ∈NT
LT (γ)=l

|S̃γ | · (LT − 1)
−1 · (1− ω2) · ε∗2

≤ |S| · ω2 · ε∗2 +

LT −1∑
l=1

|S| · (LT − 1)
−1 · (1− ω2) · ε∗2

= |S| · ε∗2.

The stated bounds for the number of HAPOD modes follow directly from
Theorem 3.4 and the definition of POD.

4 Numerical Results
To demonstrate the applicability of the HAPOD, three numerical examples
comparing the POD with the HAPOD are presented and evaluated in terms
of accuracy and complexity. The first two experiments are implemented in the
Matlab language and performed using Octave [14]. For the POD and HAPOD2,
the built-in SVD of Octave is utilized, which in turn uses LAPACK [2]. The
third experiment is implemented in Python using the POD implementation of
the pyMOR library [41], which utilizes the method of snapshots by SciPy’s [26]
symmetric eigenvalue computation, also via LAPACK.

4.1 Incremental Data Compression
The first numerical experiment compares the POD and HAPOD through com-
pressing a trajectory of a randomly excited system. As an underlying system, a
forced one-dimensional inviscid Burgers equation is chosen:

∂tz(x, t) + z(x, t) · ∂xz(x, t) = b(x, t), (x, t) ∈ (0, 1)× (0, 1),

z(x, 0) = 0, x ∈ [0, 1],

z(0, t) = 0, t ∈ [0, 1],

2Internally the HAPOD implementation uses the same POD method as the plain POD.

15

100 10−1 10−2 10−3

100

10−1

10−2

10−3

Prescribed Mean Proj. Error

M
ea
n
P
ro
je
ct
io
n
E
rr
or

POD
HAPOD

ε∗

(a) Actual `2-mean projection error of
POD and incremental HAPOD compu-
tation for prescribed errors ε∗.

100 10−1 10−2 10−3

10
20
30
40
50
60
70
80
90

Prescribed Mean Proj. Error

N
um

be
r
of

M
od

es

POD
HAPOD
Bound

Intermed.

(b) Number of resulting POD and HAPOD
modes, bound (7) for number of HAPOD
modes at output node ρT and maximum
number of intermediate HAPOD output
modes (8).

Figure 2: Approximation error and mode counts vs. prescribed error tolerance
for the data compression example with state-space dimension N = 500 (cf.
Section 4.1).

with force term b ∈ L2([0, 1]× [0, 1]). A spatial discretization using a conservative
finite difference upwind scheme with N = 500 equidistant nodes yields a system
of nonlinear ordinary differential equations in time [30]:

ż(t) = A(z(t) ◦ z(t)) +Bu(t),

with ◦ denoting the element-wise Hadamard product. The experiment runs with
constant temporal resolution h = 10−4 resulting in 104 explicit Euler time steps.
As forcing term, a scaled Gaussian bell curve b(x, t) = u(t) exp(− 1

20 (x− 1
2)2) is

chosen with a time-dependent coefficient u(t) which is 99.9% of all time steps
zero, but at random instances over the whole time interval for 0.1% of all time
steps a constant value sampled from the uniform random distribution in the
interval [0, 15]. The full order model evolution is visualized in Fig. 3a.

An incremental HAPOD is performed as described in Section 3.2 to extract
the dominant modes for different accuracies on a subdivision of the full time
series into one-hundred uniform length blocks, of which results are compared
to a POD over the whole time series. The local error tolerances ε are chosen
according to Theorem 3.5 with ω = 0.75. The computation is conducted on a
Raspberry Pi3 single board computer device, which is a memory limited device,
comparable to embedded or power-aware environments.

In Fig. 2a, the `2-mean projection error (7) for the prescribed accuracies
of ε∗ ∈ {100, 10−1/2, 10−1, . . . , 10−3} is depicted. Due to shock formation in
the solution, a relatively large number of POD modes is required for accurate
approximation. Thus, in view of the low spatial resolution, the prescribed errors
are chosen in a manner to suppress effects of the discretization error in the

3Rasperry Pi Model 1B: ARMv6-CPU 700MHz, 512MB RAM, see also:
http://www.raspberrypi.org/products/model-b.

16

http://www.raspberrypi.org/products/model-b

1 0.8 0.6
Space

0.4 0.2 0

0

0.2

0.4

0.6

0.8

1

Time

1
0.8

0.6
0.4

0.2

(a) Visualization of the temporal evolution
of the Burgers equation example.

100 10−1 10−2 10−3

200

400

600

Prescribed Mean Proj. Error

C
om

pu
ta
ti
on

al
T
im

e
[s
]

POD
HAPOD

(b) Computational time for POD and in-
cremental HAPOD with state-space di-
mension N = 500.

Figure 3: Solution visualization and computational time vs. prescribed error for
the data compression example (cf. Section 4.1).

results. The approximation error of the POD and the incremental HAPOD decay
very similarly in rate and magnitude. In terms of the number of modes, Fig. 2b
shows that also the number of final HAPOD modes increases with the same rate
as the classic POD. The HAPOD requires at most four additional modes, and
the mode bound (7) overestimates the number of HAPOD modes by at most one.
At most 15 additional output modes are generated at the intermediate HAPOD
steps.

The time consumption is plotted in Fig. 3b for the different ε∗. Since the
used POD implementation fully factorizes the given input data, the required com-
putational time for the POD is (almost) constant for different accuracies. The
incremental HAPOD time requirements increase with higher accuracies, yet for all
tested ε∗ the HAPOD requires less time than the POD. Fig. 4a shows the compu-
tational time for the POD and incremental HAPOD for varying state-space dimen-
sion
N = {250, 500, 750, 1000, 1250, 1500, 1750, 2000}, but fixed prescribed approx-
imation error. For N > 750 the regular POD’s memory requirements exceed the
device capabilities, while the incremental HAPOD is still computable.

Furthermore, the dependence of the number of final HAPOD modes and
intermediate modes together with the required computational time is compared
for varying block sizes in Fig. 4b. While the number of final modes stays almost
constant, a smaller block size reduces the computational time at the expense of a
slightly larger number of intermediate modes. This demonstrates the HAPOD’s
configurable trade-off between memory and computation time: One can reduce
the computational time by using smaller data partitions, but has to take into
account higher memory consumption for the intermediate modes; on the other
hand by enlarging the block partition size, less memory is consumed during the
computation, yet the computational time is increased.

17

500 1,000 1,500 2,000

102

103

State Dimension

C
om

pu
ta
ti
on

al
T
im

e
[s
]

POD
HAPOD

(a) Computational time for POD and in-
cremental HAPOD with a prescribed error
ε∗ = 10−3/2 vs. different state-space di-
mensions.

101 102 103

102

103

Block Size

T
im

e
[s
]

40

50

60

70

N
um

be
r
of

M
od

es

Runtime
Final

Intermed.

(b) Number of final HAPOD modes and
maximum number of intermediate modes
as well as computational time for varying
input data block sizes, ε∗ = 10−3/2 and
N = 500.

Figure 4: Computational time and mode number vs. state dimension and block
size (the number of snapshots in a leaf node) for the data compression example
(cf. Section 4.1).

4.2 Distributed Empirical Cross Gramian
The second numerical experiment compares the POD with the distributed
HAPOD computation (cf. Section 3.2) in terms of the model reduction error
resulting from the respective output modes. Given a linear state-space control
system with the same number of inputs and outputs dim(u(t)) = dim(y(t)),

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(18)

the associated cross Gramian matrix [15] is defined as the composition of the
system’s controllability and observability operators:

WX := CO =

∫ ∞
0

eAtBC eAt dt.

The modes U resulting from a POD of the cross Gramian constitute an approxi-
mate balancing transformation, which can be truncated based on the associated
singular values:

WX
SVD
= UDV → U =

(
U1 U2

)
.

This truncated orthogonal projection induces a reduced order model for (18),

ẋr(t) = (Uᵀ
1AU1)xr(t) + (Uᵀ

1B)u(t),

yr(t) = (CU1)xr(t).
(19)

18

10−2 10−4 10−6 10−810−10
10−5

10−3

10−1

Prescribed Mean Proj. Error

M
od

el
R
ed
uc
ti
on

E
rr
or POD

HAPOD

(a) Actual model reduction output `2-error
of POD and distributed HAPOD for pre-
scribed errors ε∗.

10−2 10−4 10−6 10−810−1010−810−10

10−1

100

101

102

103

Prescribed Mean Proj. Error

C
om

pu
ta
ti
on

al
T
im

e
[s
]

POD
HAPOD
Minimal

(b) Computational time for POD, dis-
tributed HAPOD time (sequential com-
putation) and minimal required HAPOD
time if full parallelization is assumed.

Figure 5: Comparison of model reduction error and computational time for the
POD and distributed HAPOD computation for the distributed empirical cross
Gramian example (cf. Section 4.2) for varying prescribed projection error.

For further details we refer to [49]. Practically, the empirical cross Gramian [21]
can be utilized for the computation of the cross Gramian:

ŴX :=

M∑
m=1

∫ ∞
0

Ψm(t) dt ∈ RN×N ,

Ψm
ij (t) := 〈xmi (t), yjm(t)〉,

with xm(t) being the state trajectory for a perturbation of the m-th component
of an impulse input and yj(t) the output trajectory for a perturbation of the j-th
initial state component. The empirical cross Gramian matrix may be assembled
column-wise,

ŴX =
[M∑
m=1

∫ ∞
0

ψm1(t) dt, . . . ,

M∑
m=1

∫ ∞
0

ψmN (t) dt
]
,

ψmni (t) := 〈xmi (t), ynm(t)〉,

(20)

by sorting the Ψm(t) into columns. This distributed empirical cross Gramian
together with the distributed HAPOD computation then allows a fully parallel
assembly of the cross-Gramian-based approximate balancing truncated projection
U1.

This experiment utilizes the procedural “Synthetic” benchmark model4 from
[40]. For N = 10000 a single-input-single-output system is generated, and
we fix the parametrization to θ ≡ 1

10 . The system is excited by an impulse
input u(t) = δ(t) and evolves over a time span of T = [0, 1] with a fixed time
step width of h = 1

100 . An empirical cross Gramian ŴX is computed5 using
4See: http://modelreduction.org/index.php/Synthetic_parametric_model
5Computation on Intel Core i7-6700 (x86-64) CPU with 8GB RAM.

19

http://modelreduction.org/index.php/Synthetic_parametric_model

101 102 103
101

102

103

104

105

Block Size

Sp
ee
du

p
LT = 2
LT = 3
LT = 4
LT = 5

(a) Sequential runtime of the HAPOD.

101 102 103
101

102

103

104

105

Block Size

Sp
ee
du

p

LT = 2
LT = 3
LT = 4
LT = 5

(b) Maximal speedup of the HAPOD as-
suming full parallelization.

Figure 6: Speedup of the HAPOD for balanced trees of different depth and block
sizes (cf. Section 4.2), ε∗ = 10−6, in comparison to the classic POD. The runtime
for the classic POD is 2.98 · 103 seconds.

emgr – empirical Gramian framework [20, 18, 19], for which a regular POD and a
distributed HAPOD is used to determine the left singular vectors. For the latter,
the empirical cross Gramian ŴX ∈ R10000×10000 is partitioned column-wise into
100 blocks of size 10000× 100, which are assigned to the leafs of the distributed
HAPOD tree, and the local error tolerances chosen according to Theorem 3.5
with ω = 0.5.

Fig. 5a shows the error for the empirical cross Gramian-based state-space
reduction comparing the original system’s output and the reduced order model’s
output utilizing either the POD or the distributed variant of the HAPOD. For a
varying prescribed projection error, the model reduction error resulting from the
POD and HAPOD, i.e. the time-domain misfit between original system output
and reduced-order system output measured in the `2-norm εy = ‖y − yr‖`2 ,
decays with a similar rate as, and never exceeds the error resulting from the
classic POD.

Comparing the time consumption of the POD and HAPOD, the former, due
to its constant complexity, requires a fixed amount of time for each prescribed
error. The HAPOD assembly time is about three orders of magnitude smaller
than for the POD and increases slowly for more accurate approximations, as
shown in Fig. 5b. Furthermore, if enough processor cores would be available for
a full parallelization, meaning all leaf sub-PODs could be evaluated concurrently,
then for ε∗ ≥ 10−6 the time requirements can be reduced again by up to one
order of magnitude compared with the single worker setup used in the experiment.
For smaller prescribed errors, the final POD starts to require a large part of the
computational effort such that a balanced tree T with depth LT = 3 would be
required to gain an additional speedup.

The next experiment tests the influence of the depth of the tree and the block
size at the leafs on the runtime. To this end the 104 columns of the empirical
cross Gramian are organized in partitions of 10 × 1000, 40 × 250, 100 × 100,

20

(a) µ = (0, 0, 0) (b) µ = (0, 0, 6) (c) µ = (2, 6, 0) (d) µ = (8, 8, 4)

Figure 7: Solutions to the Checkerboard test case for the kinetic Boltzmann
equation (cf. Section 4.3) for different parameters µ = (Σs,1,Σa,1,Σa,2). Visual-
ized is the first component of the solution at time T = 3.2. The color scale is
logarithmic.

400× 25 and 1000× 10 columns. These partitions are each mapped to the leafs
of balanced n-ary trees of depth LT ∈ {2, 3, 4, 5}. The number of children per
node n is determined for each tree by the number of blocks s and the depth LT
of the tree via n = ds1/LT e.

Fig. 6 depicts the speedup of the HAPOD over a classic POD for varying tree
depths and block size at the leafs. Specifically, Fig. 6a shows the speedup for a
sequential execution of the HAPOD, while Fig. 6b shows the maximal speedup
assuming s processors by summing the maximum sub-POD runtimes for each
level, as these sub-PODs could be processed in parallel.

This test shows that (balanced) trees with smaller blocks are preferable
in terms of runtime (Fig. 6a). For highly parallel computations, trees with
small block sizes and more levels (depth) perform better (Fig. 6b). While the
two-level tree with smallest block size performs worst in comparison, the larger
the individual leaf block, the more similar are the runtimes independent from
tree depth.

4.3 Reduction of a Large Kinetic Equation Model
The third numerical experiment utilizes a kinetic equation model. In such models,
the solution field does not only depend on time and space but also on velocity
variables. Hence, directly solving a kinetic equation with standard numerical
methods often causes a prohibitive amount of computational cost due to the curse
of dimensionality. Moment closure models are one approach to overcome this
difficulty by transferring the kinetic equation to a hyperbolic system of coupled
equations which do not depend on the velocity variable anymore (see [1, 9, 45]
and references therein). This significantly reduces the effort needed to solve the
problem, especially in several space dimensions. However, the computational
cost may still be too high to solve a parameter-dependent problem for a large
set of parameters in a reasonable amount of time. In this case, a POD-based
state-space Galerkin projection similar to (19) can be used to further reduce the
model.

Our experiment is based on the checkerboard test case for the P15 moment
closure approximation of the Boltzmann equation for neutron transport from [9].
The model equation in two dimensions is given by:

∂tp(t,x) + Ax∂xp(t,x) + Az∂zp(t,x) = s(t,x) + (Σs(x)Q− Σt(x)I)p(t,x),

21

αn

α2
n

α1
n

τ1n,1 · · · τ1n,12

τ2n,1 · · · τ2n,12

τsn,1 · · · τsn,12

(a) HAPOD on compute node n. The time steps are split
into s slices (s = d(2nt + 1)/le). Concurrently, each of
the 12 processor cores calculates one chunk at a time,
performs a POD and sends the resulting modes to the
main MPI rank on the processor. τ tn,c: t-th time slice on
core c.

ρ

α1 α2

α3

α11

(b) An incremental
HAPOD (cf. Section 3.2)
is performed on MPI
rank 0 with the modes
collected on each node.
αn: modes from node n.

Figure 8: HAPOD tree used for kinetic Boltzmann example (cf. Section 4.3) on
11 compute nodes with 12 cores each.

where p(t,x) ∈ R136 for fixed spatial coordinates x = (x, z) and time t, I is
the identity matrix and Q00 = 1, Qij = 0 otherwise. The positive coefficients
Σs and Σt = Σs + Σa describe scattering and total cross section, respectively,
and s is a particle source. The matrices Ax, Az ∈ R136×136 which describe the
coupling between the moments are sparse with at most four and two entries per
row, respectively. See [9, Eq. 8, 9] for the detailed definitions of the matrices.

The test case assumes a spatial domain [0, 7]× [0, 7] that is divided in 49 axis-
parallel cubes with unit edge width and composed of two different materials (see
Fig. 11a) that are characterized by their scattering and absorption cross-section
Σs and Σa, respectively. Initially, there are no neutrons in the domain. At time
t = 0, a neutron source s = (1, 0, . . . , 0)ᵀ is turned on in the center region.

The parameter dependence for the scattering and absorption cross-sections
Σs,1 and Σa,1 for the first material (red regions in Fig. 11a) and the absorption
cross-section Σa,2 for the second material (black regions in Fig. 11a) is to be
retained for the reduced order model, while the scattering cross-section of the
second material is fixed to Σs,2 = 0. The three parameters Σs,1, Σa,1, Σa,2

are each chosen in the range [0, 8]. For the POD, each parameter is uniformly
sampled by the five values {0, 2, 4, 6, 8} such that 125 solution trajectories have
to be calculated.

The model is solved by a finite volume solver for systems of hyperbolic
equations implemented in dune-gdt [29, 44], using a numerical Lax-Friedrichs
flux and an explicit Euler fractional step time stepping scheme (see [31, Ch. 17.1])

22

10−510−410−310−2

0

100

200

300

Prescribed Mean Proj. Error

C
om

pu
ta
ti
on

al
T
im

e
[s
] ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.75

ω = 0.9

ω = 0.95

ω = 0.99

ω = 0.999

Data gen.

(a) HAPOD execution wall time for dif-
ferent values of ω. For all values of ω,
the HAPOD is much faster than the POD
which took about 1600 seconds for each
prescribed tolerance ε∗. Snapshot genera-
tion (Data gen.) took 0.8 seconds.

10−510−410−310−2

0

10

20

Prescribed Mean Proj. Error

A
dd

it
io
na

lM
od

es

ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.75

ω = 0.9

ω = 0.95

ω = 0.99

ω = 0.999

(b) Number of additional HAPOD modes
(compared to POD) for different values of
ω. The POD resulted in 2, 10, 35 and 94
modes for a prescribed error ε∗ of 10−2,
10−3, 10−4 and 10−5, respectively.

Figure 9: Influence of ω on HAPOD execution wall time and number of resulting
modes for the kinetic Boltzmann equation example (cf. Section 4.3) on a grid
with k2 = 400 elements (N = 54400 degrees of freedom).

to incorporate the right-hand side into the solution. Solutions for some exemplary
parameter choices are visualized in Fig. 7.

As the P15 model consists of 136 coupled equations with 136 unknowns and
the finite volume scheme uses a uniform cube grid with k2 elements, the discrete
solution vector for the finite volume discretization at a fixed time contains
N = 136k2 entries. The test case is solved up to a time of T = 3.2 and the time
step length is determined by a Courant–Friedrichs–Lewy number of 0.4 which
leads to nt =

⌈
T

7/k·0.4

⌉
time steps per trajectory. To obtain an accurate reduced

order model, the intermediate steps in the fractional step discretization have to
be included into the snapshot set as well, such that 2nt discrete solution vectors
have to be stored per trajectory. Thus, a total of approximately 250nt snapshots
has to be handled. This corresponds to roughly 250 · T

7/k·0.4 · 136k2 ≈ 39000k3

double precision floating point numbers that have to be stored in memory. For a
grid with k = 40, these would take about 20 gigabytes of memory whereas for
k = 200 about 2.5 terabytes of memory were needed.

The numerical experiments are performed on eleven compute nodes of a
distributed memory computer cluster6 utilizing 125 processor cores. In the case
of the classical POD, each processor core calculates a solution trajectory for one
parameter of the sample parameter set, after which the resulting discrete solution
vectors are gathered on a single node where the POD is performed. For the
HAPOD, the local PODs are calculated in parallel whenever possible. On each
core a chunk of l = 10 time steps is calculated at a time, a POD is performed
with this chunk per core and the remaining modes are gathered per node and

6Each node encloses two Intel Xeon Westmere X5650 CPUs (2× 6 cores) and 48GB RAM.

23

10−510−410−310−2

0

100

200

300

Prescribed Mean Proj. Error

M
ax

.I
nt
er
m
ed
.M

od
es

ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.75

ω = 0.9

ω = 0.95

ω = 0.99

ω = 0.999

(a) Maximal number of intermediate
HAPOD modes for different values of ω.

10−510−410−310−2

10−4

10−3

Prescribed Mean Proj. Error

M
ea
n
M
od

el
R
ed

uc
ti
on

E
rr
or

ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.9

ω = 0.999

POD

(b) `2-mean model reduction errors for
1250 random parameters, k = 20.

Figure 10: Number of local HAPOD modes and model reduction errors for the
kinetic Boltzmann equation example (cf. Section 4.3).

another POD is computed. Subsequently, the next solution chunk is calculated
and compressed by a POD on each core. The resulting modes together with the
modes from the first POD on node level serve as input to a second POD on node
level. This is repeated until all time steps are calculated (cf. Fig. 8a). The result
is a set of modes on each node. Instead of gathering all modes on the main node
at once, which would exceed the main node’s memory, the modes are sequentially
sent to the main node where additional PODs for each node are performed (cf.
Fig. 8b). The underlying POD algorithm is provided by pyMOR [34, 41], which
is also used to compute and solve the resulting reduced order model. We use
an optimized, incremental variant of the POD algorithm in Remark 2.3, which
exploits the block structure of the Gramian with the diagonal blocks being given
by diagonal matrices containing the singular values of the PODs performed at
the child nodes. For k = 60, ω = 0.95 and ε∗ = 10−4, this improved the overall
HAPOD computation time compared to the unoptimized algorithm by 7.4%
from 457 to 423 seconds.

In Fig. 9, computational time and number of HAPOD modes for different
values of ω (see Theorem 3.5) are plotted against the prescribed `2-mean error
tolerance. A 20 × 20 grid was used (k = 20, N = 54400). With decreasing ω,
the computational time for the HAPOD reduces but the number of final modes
required to satisfy the error bound increases. Thus, choosing a larger value of
ω means trading some time spent in the HAPOD for a more efficient reduced
model.

Computing the classical POD takes about 1600 seconds for each tolerance. As
for the previous numerical examples, the HAPOD is notably faster than the POD
for all tested tolerances (see Fig. 9a). Note that the HAPOD is about five times
as fast as the POD, even for ω = 0.999 where at most one additional final mode
is obtained. The snapshot generation, i.e. the solution of the high-dimensional
problem, takes only a few seconds for this grid size, so the overall computational
time is dominated by the POD computation.

24

(a) Computational domain: red and black
regions represent common materials.

0 100 200
10−1

101

103

Grid Size k

C
om

pu
ta
ti
on

al
T
im

e
[s
]

POD
HAPOD
Data gen.

(b) Computational wall time for POD and
HAPOD (ε∗ = 10−4, ω = 0.95).

Figure 11: Computational domain and required time for the kinetic Boltzmann
equation example (cf. Section 4.3).

The maximal number of intermediate modes increases with ω (see Fig. 10a).
This may be important in terms of memory usage, especially if the intermediate
modes are gathered in one node’s memory at some time during the HAPOD. A
smaller value of ω may thus be preferable if a shortage of memory is expected.
Choosing ω = 0.95, the number of final HAPOD modes is only slightly higher
than the number of POD modes (at most two additional modes are needed),
while the computation is, depending on the tolerance, at least one order of
magnitude faster.

To get a measure for the model reduction error, the reduced model was solved
for 1250 random combinations of Σs,1, Σa,1, Σa,2 ∈ [0, 8] and compared to the
high-dimensional solution. For ω close to one, the resulting `2-mean error is
almost equal for POD and HAPOD (see Fig. 10b). For small values of ω, the
model reduction error decreases slightly due to the larger number of HAPOD
modes, which here result in slightly better approximation spaces than backed by
theory. Solving the reduced model takes about 5 · 10−2 seconds independent of
the grid size and is thus considerably faster than solving the full model which
takes up to 500 seconds on a 200× 200 grid.

The previous tests were performed on a coarse 20×20 grid. Since the memory
consumption scales with k3, refining the grid quickly leads to a situation where
the snapshots do not fit in memory simultaneously such that a classical POD
cannot be performed without access to mass storage. In Fig. 11b, a performance
comparison between POD and HAPOD (ω = 0.95) for different grid sizes can be
found. The HAPOD is up to two orders of magnitude faster than the POD for
the coarse grids where the POD is still feasible. For k ≥ 60, the POD fails to run
due to memory limitations while the HAPOD does not have this problem. Note
that the HAPOD is twice as fast on the 200× 200 grid than the classical POD
on a 40× 40 grid even though the amount of data that needs to be processed
increases by a factor of 125 between k = 40 and k = 200. The time used for
data generation plays a negligible role in the algorithm. Creating the snapshots
for POD and HAPOD takes less than 10 seconds for k = 40 and about 500

25

seconds for k = 200. Using the HAPOD thus directly translates into a much
faster overall reduced basis generation.

The final incremental PODs performed to collect the outputs of the individual
compute nodes (Fig. 8b) are not optimal in terms of parallelism as all calculations
are done on the main node. We thus tested another tree topology where a binary
tree of nodes is built. Indeed this improved computational wall times of the
HAPOD again, e.g. from 423 to 239 seconds (43% reduction) for k = 60,
ω = 0.95, ε∗ = 10−4, while the memory requirements and the quality of the
resulting HAPOD space were comparable.

5 Conclusion
With the HAPOD, this work introduces a general scheme for approximate
POD computation that allows to distribute the computational workload among
arbitrary trees of workers, making it easily adaptable to different computing
environments. Rigorous error and mode bounds are proven that ascertain the
reliability and performance of the method. Specialized variants for incremental
and distributed HAPOD computation are discussed, and numerical experiments
underscore the applicability of the HAPOD, from small embedded devices to
high performance computer clusters.

Code Availability
The source code used to compute the presented results is available under open
source licenses and is included in the supplementary material to this publication.

References
[1] Graham W. Alldredge, Cory D. Hauck, and André L. Tits. High-order

entropy-based closures for linear transport in slab geometry II: A compu-
tational study of the optimization problem. SIAM Journal on Scientific
Computing, 34(4):B361–B391, 2012.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[3] C.G. Baker, K.A. Gallivan, and P. Van Dooren. Low-rank incremental
methods for computing dominant singular subspaces. Linear Algebra and
its Application, 436(8):2866–2888, 2012.

[4] C. Beattie, J. Borggaard, S. Gugercin, and T. Iliescu. A domain decompo-
sition approach to POD. In Proceedings of the 45th IEEE Conference on
Decision and Control, pages 6750–6756, 2006.

[5] M.W. Berry, D. Mezher, B. Philippe, and A. Sameh. Parallel algorithms
for the singular value decomposition. In Handbook of Parallel Computing
and Statistics, pages 117–164. Chapman and Hall/CRC, 2005.

26

[6] M. Brand. Fast online SVD revisions for lightweight recommender systems.
In Proceedings of the 2003 SIAM International Conference on Data Mining,
pages 37–46, 2003.

[7] M. Brand. Fast low-rank modifications of the thin singular value decompo-
sition. Linear Algebra and its Applications, 415:20–30, 2006.

[8] Benjamin Brands, Julia Mergheim, and Paul Steinmann. Reduced-order
modelling for linear heat conduction with parametrised moving heat sources.
GAMM-Mitteilungen, 39(2):170–188, 2016.

[9] T.A. Brunner and J.P. Holloway. Two-dimensional time dependent Riemann
solvers for neutron transport. Journal of Computational Physics, 210(1):386–
399, 2005.

[10] J. Chen and Y. Saad. Lanczos vectors versus singular vectors for effective di-
mension reduction. IEEE Transactions on Knowledge and Data Engineering,
21(8):1091–1103, 2009.

[11] P.G. Constantine and D.F. Gleich. Tall and skinny QR factorizations in
MapReduce architectures. In MapReduce ’11 Proceedings of the second
international workshop on MapReduce and its applications, pages 43–50,
2011.

[12] P.G. Constantine, D.F. Gleich, Y. Hou, and J. Templeton. Model Reduction
with MapReduce-Enabled Tall and Skinny Singular Value Decomposition.
SIAM Journal on Scientific Computing, 36(5):S166–S199, 2014.

[13] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo
algorithms for matrices II: Computing a low-rank approximation to a matrix.
SIAM Journal on Computing, 36(1):158–183, 2006.

[14] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave
version 4.2.1 manual: a high-level interactive language for numerical com-
putations, 2017.

[15] K.V. Fernando and H. Nicholson. On the structure of balanced and other
principal representations of SISO systems. IEEE Transactions on Automatic
Control, 28(2):228–231, 1983.

[16] M. Gubisch and S. Volkwein. Proper orthogonal decomposition for linear-
quadratic optimal control. In Model Reduction and Approximation: Theory
and Algorithms, pages 3–63. SIAM, 2016.

[17] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Review, 53(2):217–288, 2011.

[18] C. Himpe. emgr - the Empirical Gramian Framework. arXiv e-prints
1611.00675, Cornell University, 2016. cs.MS.

[19] C. Himpe. emgr - EMpirical GRamian framework (Version: 5.1). http:
//gramian.de, 2017.

27

http://gramian.de
http://gramian.de

[20] C. Himpe and M. Ohlberger. A unified software framework for empirical
Gramians. Journal of Mathematics, 2013:1–6, 2013.

[21] C. Himpe and M. Ohlberger. Cross-Gramian based combined state and
parameter reduction for large-scale control systems. Mathematical Problems
in Engineering, 2014:1–13, 2014.

[22] Michael P. Holmes, Jr. Isbell, Charles Lee, and Alexander G. Gray. QUIC-
SVD: Fast SVD using cosine trees. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems
21, pages 673–680. Curran Associates, Inc., 2009.

[23] P. Holmes, J.L. Lumley, G. Berkooz, and C.W. Rowley. Turbulence, Coherent
Structures, Dynamical Systems and Symmetry. Cambridge Monographs on
Mechanics. Cambridge University Press, 2012.

[24] M.A. Iwen and B.W. Ong. A distributed and incremental SVD algorithm
for agglomerative data analysis on large networks. SIAM Journal on Matrix
Analysis and Applications, 37(4):1699–1718, 2017.

[25] Hao Ji, Wenjian Yu, and Yaohang Li. A rank revealing randomized singular
value decomposition (R3SVD) algorithm for low-rank matrix approximations.
Technical report, arXiv e-print: 1605.08134, 2016.

[26] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2017.

[27] K. Kunisch and S. Volkwein. Control of the Burgers equation by a reduced-
order approach using proper orthogonal decomposition. Journal of Opti-
mization Theory and Applications, 102(2):345–371, 1999.

[28] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition
methods for a general equation in fluid dynamics. SIAM Journal on Nu-
merical Analysis, 40(2):492–515, 2002.

[29] T. Leibner. Numerical methods for kinetic equations. Master’s thesis,
Westfälische Wilhelms-Universität Münster, 2015.

[30] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser
Basel, 1990.

[31] R. J. LeVeque. Finite volume methods for hyperbolic problems, volume 31.
Cambridge university press, 2002.

[32] S. V. Macua, P. Belanovic, and S Zazo. Consensus-based distributed
principal component analysis in wireless sensor networks. In 2010 IEEE
Eleventh International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pages 1–5, 2010.

[33] Message Passing Interface Forum. MPI: A message-passing inter-
face standard (version 3.1). http://www.mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf, 2015.

28

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[34] René Milk, Stephan Rave, and Felix Schindler. pyMOR – Generic algorithms
and interfaces for model order reduction. SIAM Journal on Scientific
Computing, 38(5):S194–S216, 2016.

[35] B.C. Moore. Principal component analysis in nonlinear systems: Preliminary
results. In 18th IEEE Conference on Decision and Control including the
Symposium on Adaptive Processes, volume 2, pages 1057–1060, 1979.

[36] G.M. Oxberry, T. Kostova-Vassilevska, W. Arrighi, and K. Chand. Limited-
memory adaptive snapshot selection for proper orthogonal decomposition.
International Journal for Numerical Methods in Engineering, 109(2):198–
217, 2017.

[37] A. Paul-Dubois-Taine and D. Amsallem. An adaptive and efficient greedy
procedure for the optimal training of parametric reduced-order models.
International Journal for Numerical Methods in Engineering, 102(5):1262–
1292, 2015.

[38] H. Qi, T.-W. Wang, and J. D. Birdwell. Global principal component analysis
for dimensionality reduction in distributed data mining. In Statistical data
mining and knowledge discovery, pages 327–342, 2004.

[39] Y. Qu, G. Ostrouchov, N. Samatova, and A. Geist. Principal component
analysis for dimension reduction in massive distributed data sets. In Pro-
ceedings to the Second SIAM International Conference on Data Mining,
pages 1–12, 2002.

[40] MORwiki Community. MORwiki - Model Order Reduction Wiki. http:
//modelreduction.org, 2018.

[41] pyMOR developers. pyMOR - Model Order Reduction with Python. http:
//pymor.org, 2013–2017.

[42] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm
for principal component analysis. SIAM Journal on Matrix Analysis and
Applications, 31(3):1100–1124, 2010.

[43] T. Sayadi, C.W. Hamman, and P.J. Schmid. Parallel QR algorithm for
data-driven decompositions. In Center for Turbulence Research, Proceedings
of the Summer Program 2014, pages 335–343, 2014.

[44] F. Schindler. dune-gdt. http://github.com/dune-community/dune-gdt,
2016.

[45] Florian Schneider, Graham Alldredge, Martin Frank, and Axel Klar. Higher
order mixed moment approximations for the Fokker-Planck equation in one
space dimension. SIAM Journal on Applied Mathematics, 74(4):1087–1114,
2014.

[46] L. Sirovich. Turbulence and the dynamics of coherent structures part I:
Coherent structures. Quarterly of Applied Mathematics, 45(3):561–571,
1987.

29

http://modelreduction.org
http://modelreduction.org
http://pymor.org
http://pymor.org
http://github.com/dune-community/dune-gdt

[47] S.A. Solovyev and S. Tordeux. Compute SVD of a very large matrix
in the context of geological prospection. In 6th EAGE Saint Petersburg
International Conference and Exhibition, 2014.

[48] S.A. Solovyev and S. Tordeux. Large SVD computations for analysis of
inverse problems in geophysics. In Proceedings of the WCCM XI - ECCM
V - ECFD VI, pages 2861–2869, 2014.

[49] D.C. Sorensen and A.C. Antoulas. The Sylvester equation and approximate
balanced reduction. Linear Algebra and its Applications, 351–352:671–700,
2002.

[50] Z. Wang, B. McBee, and T. Iliescu. Approximate partitioned method of
snapshots for POD. Journal of Computational and Applied Mathematics,
307:374–384, 2016.

30

	1 Introduction
	2 Proper Orthogonal Decomposition
	3 Hierarchical Approximate POD (HAPOD)
	3.1 Definition of the HAPOD
	3.2 Special Cases: Distributed and Incremental HAPOD
	3.3 Main Theorems
	3.4 Algorithmic Benefits
	3.5 Proofs of Main Theorems

	4 Numerical Results
	4.1 Incremental Data Compression
	4.2 Distributed Empirical Cross Gramian
	4.3 Reduction of a Large Kinetic Equation Model

	5 Conclusion

