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Impulse control maximising average cost per unit time: a
non-uniformly ergodic case
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Abstract

This paper studies maximisation of an average-cost-pigttiore ergodic functional over im-
pulse strategies controlling a Feller-Markov process. diheontrolled process is assumed to be
ergodic but, unlike the extant literature, the convergeadevariant measure does not have to be
uniformly geometric in total variation norm; in particulave allow for non-uniform geometric or
polynomial convergence. Cost of an impulse may be unboyredgd proportional to the distance
the process is shifted. We show that the optimal value doedemend on the initial point and
provide optimal oe-optimal strategies.

Keywords: impulse control, ergodic control, non-unifoyrdrgodic Markov process, un-
bounded cost

1 Introduction

Let (X;) be a Feller-Markov process df, F, (F};)) with values in a locally compact spaéewith

the metricp and Borels field £. The process starting fromat time0 generates a probability measure
P*; E* denotes a related expectation operator. ProcEspis controlled by impulseér, £): at timer

the process is shifted from the stafe to the state at the cost of:( X, £) and follows its dynamics
until the next impulse. We assume that impulses shift thege®to a compact sétC F,i.e..{ € U

and the cost function is negative, continuous and uniformly bounded away fronoBen strategy

V = (1;,&) is admissiblefor z € E if 7; form an increasing sequence of stopping times (possibly
taking the valuexo) with lim; ., 7; = oo, P*-a.s. To describe the evolution of the controlled process
we introduce a construction df [18, Section 2] which folloideas of [15]. Namely, we consider
Q = D(R*,E)>, whereD(R™", E) is a canonical space of right continuous, left limited fimes

on R* taking values inE. We assume thdt"!) is a canonical filtration o (R*, F) and inductively
defineE[”rl = F'® F;. The stopping times; are adapted x {(), D(R*, E)}°° while the impulses
&itoFL x{0, D(R*, E)}*. The trajectory of the controlled process; ) is defined using coordinates
x™ of the canonical spad®, i.e. X; = z} for ¢t € [1,_1,7,), With 79 = 0. Given an impulse strategy
V following [18, Section 2] and [15, Chapter 5 and Appendix 2 define a probability measufe
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In a slightly misleading way, we call the cost. As it stands in functiondll (1) with a plus sign, iaEsumed to be
negative and bounded away from zero, i.e., there is a minicashof an impulse.
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on (). Although the controlled proce$;) and probability measur depend on the control strategy
V' in what follows we shall not indicate that explicitly.
Our goal is to maximize over all admissible strategies tmetional

i 'flEm ! X.)d 3 X 1
J(z, (1,&)) = im inf 7 {/0 F(Xs) S+izllngTC( nﬂﬁz‘)}, (1)

wheref is a continuous bounded function aid, _ is the state of the process before ikl impulse
with a natural meaning if there is more than one impulse as#énee time. Alternatively, we shall also
consider a weaker form dfl(1), namely
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assuming thatr,,) are such thak®{r,} < occ.

Controlling random systems by impulses, i.e., discreterimntions, is often the only feasible
strategy from an application point of view and, therefohe literature is extensive. For applications
in finance, the reader is referred td[[5] 10] and referenaa=ithh Intensive studies of impulse control
of diffusions and diffusions with jumps are presented.in [#hpulse control of Markov processes
with average cost per unit time criteridd (1) has been stlfiist in [16,[17] under uniform ergodicity
assumption for constant cost for impulses. These results ended to a separated cost (for defi-
nition see Proposition 3.13) in [18] and to quasicompactsitaon semigroups i [19]. The problem
was also studied under some compactness assumptidns iErddic impulse control of diffusion
processes on bounded domains was studie]in [9][and [14].eXtemsion to unbounded domains
although inR only, with linear impulse cost functiondepending on the size of an impulse and with
f < 0 was tackled in[[[7]. Average cost per unit time functionalsehalso been widely studied in a
different setting where the control affects diffusion prss continuously, see the monogrdph [2] for a
detailed discussion.

Solution of problems of the fornii1) anfl(2) usually followsdugh a study of an auxiliary
Bellman equation

r T—oo

w(z) = sup lim inf Ex{ /OT/\T(f(XS) —AN)ds + Mw(XT/\T)}, (3)

where Mw(z) = supgey[w() + c(x,&)]. The solution is a pair: a function : £ — R and
a constant\. One of the main contributions of this paper is showing thaemthe process is not
uniformly ergodic or the cost functionis unbounded[{3) has a solution. The functionwhich we
will often call the value function, is unbounded as\iko. We prove that the constaitin the solution
to the Bellman equatiofi{3) is an optimal value for the fumudil ./ and frequently also fog, while
an optimal stopping time fof{3) provides times of conse®utmpulses in the optimal strategy. The
impulses themselves are given by the maximisebfaf(z) which is shown to depend continuously
onzx and, therefore, is measurable.

The novelty of this paper is that

e the uncontrolled procegsY;) is not uniformly ergodic,

e the cost function is not bounded, hence, it can measurezbetan impulse using the distance
between the state before and after the impulse.



To the best of our knowledge, this paper is the first signifiextension of a general theory of ergodic
impulse control of Feller-Markov processes since 1980% rElaxation of uniform ergodicity opens
up the theory applicable to many ergodic processes enaegriteapplications, including an Ornstein-
Uhlenbeck process with Levy noise.

The paper is structured as follows. Section 2 provides mieéry results fora-potentials of
centredf. In Section 3 we address the impulse control problem withramyee cost per unit time
functional (1) and[(R) and an unbounded cost for a non-umifpiergodic underlying process under
an assumption that the zero-potential of centfed bounded from below. This restriction is relaxed
in Section 4, where, using approximation techniques, weghat the optimal values ifif1) ard (2) do
not depend omx. We also provides-optimal strategies through solutions to auxiliary imgutentrol
problems that satisfies assumptions of Section 3.

2 Preiminaries

We write P; for the semigroup, acting on bounded Borel functions, amoading the (uncontrolled)
Markov proces$X,): P;¢(x) = E*{¢(X;)}. Atransition probability measure is denotedByz, -) :=
P*{X; € -}. We make the following assumptions:

(A1) (Weak Feller property)
Pt CO C CO>

where(y is the space of continuous bounded functiéhs> R vanishing in infinity.

(A2) There is a unique probability measuyreon &, a functionK : E — (0,00) bounded on
compacts and a functiah: [0,00) — R such that[;™ h(t)dt < oo and for anyz € E

P, -) — u()llry < K(x)h(t),

where|| - ||7v denotes the total variation norm. Furthermdfg,{ K(Xr1)} < oo for each
T > 0, and for any compact s€tC F and a sequence of sels € Fr

lim supP* {Ar} =0 = lim supE*{14,K(Xr)} =0.

T—00 el T—00 gel

Assumption (AT]) is necessary to establish the existenceptimal stopping times for general
weak Feller processes (a counter-example when it is relexpdovided at the end of Section 3.1
in [I1]). The class of weakly Feller procesges (A1) comprisevy processe$ |1, Theorem 3.1.9],
solutions to stochastic differential equations with coatius coefficients driven by Levy processes
(see, e.g.[]1, Theorem 6.7.2)).

The first part of Assumptioh (AR) satisfied by non-uniform gestrically ergodic or polynomi-
ally ergodic processes with examples discussed ih [12jd@e6f. The second part of Assumption
is weaker than requiring that random variab{gs(X7), T > 0} are uniformly integrable for
initial statesz of (X;) from compact sets. However, the following condition whiotplies uniform
integrability is more explicit to verifysup, . supyo E*{K (X7)' P} < oo, for any compact set
I" and some3 > 0 possibly depending of. It is easy to verify using this condition that a standard
Ornstein-Uhlenbeck process satisfies Assumyjtion]|(A2).



Lemma 2.1. Under[(AT) the operatoi; transforms continuous bounded from above functions into
upper semi continuous functions bounded from above.

Proof. By [11], Corollary 2.2] the semigrouf; transforms continuous bounded functions into contin-
uous bounded functions. Approximating a continuous famcti bounded from above by a sequence
of bounded functiong,, = max(p, —n) and applying Fatou’s lemma completes the proof. [

Let, fora > 0 .
do(z) = E* { | et - <f>>dt} (@)
0
with ¢ := ¢¢. We have

Lemma 2.2. Under[(AT) and (A2) we have that (z) — ¢(z) uniformly on compact sets as— 0,
andgq is a continuous function such that for any bounded stopping t

o) =5 { [ (000~ (it + () | ©
Moreover, for any compact s€tC F and a sequence of setls € Fr we have
hm supP* {Ar} =0 = lim sup sup E“{14,|qa(X7)|} =0. (6)
T—00 ger T—00 2¢T ael0,1)

Proof. By [(A2))we have thatq, ()| < K(x)||f] [~ h(t)dt for a € [0,1), where| - | is the supre-
mum norm, say, (x) is well defined. Now

4(@) — gu(2)] < /0 T = e B - ) @)t < /0 T = e K@) fh0)dt =0 (7)

asa — 0 uniformly on compact sets, becaukgz) is bounded on compact sets. Consequently, since
undef (AT)q, is a continuous function, we have thgis also continuous. We have

sup sup B*{Luylaa(Xr)l} < supE* (Lo, K (X))} ] / Hdt 0
z€l’ a€l0,1)

asT — oo provided thatlimy_,o sup,cr Py {A7r} = 0. It remains to show({5). Far > 0 and
T > 0 we havega () = B* { [ e=/(f(X) — u(f))dt + e *Tga(X7) } . Easily,

T T
lim E* { / U (f(Xe) — u(f)dey = B /0 (F(Xe) — lf))de).

a—0

DenotingL = || f|| f,~ h(t)dt and using (AZ) we obtain
‘E$ {e_atq(x Xy } —E" {q(X3)} ‘
< (1= e E” {|ga(X0)[} + E” {lga(X:) — q(X1)[}
< (1— e Y LE{K (X))} + E* {1y x0<rlta(X0) — a(X01} + E {100x)2rLE (X))}
= aqg + by + CR.-

Clearlya, — 0 asa — 0. By (@) alsolim,,_, b, = 0 for any fixedR. By[(ATL) and [11, Proposition

2.1] taking into account integrability df((Xt) we obtain thatyp — 0 asR — oo. Consequently,
q(Xy) is mtegrable ang(z) = Ef{ fo (Xy) — u(f))dt + ¢(Xr)}, from which it follows that

Zs= [y (f w(f))dt + q(Xs) is a martingale and we immediately halé (5). O



3 Optimal control when ¢ isbounded from below
We make the following standing assumption for the cost fonat:

(B1l) Thereisc < 0 such that(z,2") < cfor (z,2") € E x U, and forz, 2’ € U

c(z,2) > c(z,2') + (7, 2). (8)

Definec(z) = inf,cy c(z, a) andé(x) = sup,y c(z, a). Denote bysS the family of stopping times
taking finite values only and by the extension of the latter to stopping times with possihfjnite
values. We follow a convention that, unless specified otrsanvall stopping times are fro.

We will follow a vanishing discount approach, see e.g.| [M consider first a discounted cost
impulse control problem which consists in maximizationtw functional

Ja (x’ (7i, 52)) = Ex{ /OOO e f(Xs)ds + il Lrcoce™ *Te(Xr, -, 52)} 9)

over admissible impulse strateﬂe(sn,gi) with the optimal value denoted hy, (x). Usingv, we
will then obtain a sequence of functions convergingyas 0, tow in (3). From there, we will derive
an optimal value and an optimal strategy far (1).

The following assumption is used for characterisation efwalue functiorv,, as a fixed point of
an appropriate Bellman operator:

(B2) For any compact sdf C E and anyI’ > 0, the random variablér = sup;c(o 1 le(Xy)| is
uniformly integrable with respect Y for y € I, i.e.,

lim sup EY{(71¢,>n} = 0.

n—o0 ye

For a continuous function, consider an operator
To(x) :=sup Ex{ / e “f(Xg)ds + 1T<Ooe_MMv(XT)}, (20)
reS 0
whereMwv(z) = supgcp[e(z, §) + v(&)] and its approximation
Tro(z) == supEm{ / e ¥ f(Xs)ds + e*aTMLv(XT)}
Tes 0

with Mpv(z) := supgepfe(z,§) V (= L) +v(€)]. In the definition of operatdfy, the indicatorl; <
is omitted intentionally ad/;,v is bounded, so for infinite value afthe discounting makes that term
equalo.

Define a functional with a truncated cost function

T (o (o)) =B [ eepx ds+z X6V (D)) D)

and denote its optimal value by (z)

2Recall that(r;, &;) is an admissible strategy () is a non-decreasing sequence of stopping times $aand¢; € U
are F-,-measurable random variables. For more details includimgtcuction of the controlled process, see the introduc-
tion.



Lemma 3.1. Assumé¢ (B2) and thatis a continuous function withv|| < ||f||/«. For eachn > 1,
the limits

lim 7T/'v(z) = T v(z), lim M7/ v(x) = MT"v(x)

L—o0 L—oo

are uniform inz from compact sets.

Proof. Define Trv(z) = sup, E*{ fOTAT e f(Xs)ds + lr<re T Muv(X;)}. Take any stopping
timer and letr = 71,<7 4+ col.~7 € S. Then7 brings up the same value of the functional folas

7 brings in functional for77. HenceTv > Trv. Due to the boundedness bfv(x) from above by
Il f|l/cv, we have for anyi” > 0

T

To(x) — Trv(xz) < sup Em{ / e Y f(Xg)ds + 1T<T<ooe*‘”Mv(XT)}
T TA\T

< sup EJC{M(e_a(TAT) - e_aT) + 1T<T<OOC_QTM}
T (6% a
= supE${1T>Te—aTM} _ e—ozTM.
T (0] o
Similarly,
w 11
0 S 711)(55) — SupEm{ / eiasf(Xs)dS + 1T<T67QTML’U(X7—)} S Bia s
T 0 - o
Hence,
0 < Tio(e) — To(e) < B {Leere™ (Mo(X,) = Mpo(X)) } + 27 L]
T a o

<E"{Crl¢>i) + 2€_aTHa—H,

where(r is defined in assumptidn (B2). The second term can be madeaailpi small by choos-
ing T sufficiently large. The first term converges@oas L — oo uniformly in x from compact
sets by (BZ). HenceT v(x) converges, ag — oo, to Tv(x) uniformly in = from compact sets.
Then,limy,_, o M Trv(z) = MTwv(z) uniformly on compacts. Proceeding by induction and using
arguments similar to those above, the proof of the lemmarigpteted. O

Lemma 3.2. Assumé (B2) and thatis a continuous function withwv|| < |/ f||/«. Then in(@Q) the
supremum can be restricted to finite stopping times:

Tv(x) = sup E* {/ e Y f(Xg)ds + e‘”Mv(XT)} . (12)
TES 0

Proof. From the proof of LemmB-3.k-optimal stopping times for 7v(z) take values irf0,7] U

{0} for someT depending om. Under assumptidn (AR) there is a compactiset E with u(K) >

0, soitis recurrent. Define; = inf{t > T : X; € K} ando,41 = inf{t > 0, +1: X; € K}.

Theno,, < oo andlim,_,. 0, = oco. Setr, = 7 A o,. The boundedness df/v on K and

boundedness of yield then

E” {/T e Y f(Xg)ds + 17<0060‘7MU(X7)} = lim E* {/Tn e “f(Xs)ds + eaT”Mv(XTn)} .
0

0 n— o0

O



The finding of the above lemma that the supremuniin (10) caresticted to finite stopping
times will be used implicitely in the proof of Theordm13.3.

Theorem 3.3. Under the assumptiofis (A1) ahd (B2), the functigris continuous and it is a solution
to the equation
Vo (x) = sup E* {/ e f(Xg)ds + eaTMva(XT)} , (13)
TES 0

whereMuv(z) := supgep[e(z, §) + v(€)]. Furthermore,|v, | < @ and it is approximated by’ (z)
uniformly inx from compact sets.

Proof. Without loss of generality we can assume tfiat 0 in (@). Notice also that ifjv|| < || f]|/«,
then || Tv|| < ||If|l/a. Letr(z) = E*{ [, e *f(X,)ds} be the resolvent of. The sequence
T"r(x) is nondecreasing and bounded, therefore converges to agdbiat of the equation[(13).
Thanks to the boundedness of the functiofig| classical results yield that the functigir(z) is
continuous. By Lemm@ 3.77,/"r(z) — 7 "r(x) asL — oo uniformly in z from compact sets, which
implies the continuity of7"r(x). Using standard supermartingale arguments of Theoren ¥
Lemma 11.2.2 in [15] one can show th@}'r(z) corresponds to the optimal value of the functional
JE (:c, (74, 51-)) over impulse strategies consisting of at mesimpulses. For a fixed stratedy;, &;)
monotone convergence theorem implies;, .« JZ (2, (1;,&)) = Ja(z, (13, &)). Hence,T"r(x) is
the optimal value of the functional, (:c, (74, 51-)) for strategies restricted to at mostmpulses.

Fore > 0, let V. be anc-optimal strategy fow, (z). Denote byNy the number of impulses of
this strategy up to and including tinié Then

_lAl /1]
«

e < Ja (5'3, Ve) < o + e T E® {Nr},

from which it follows thatE* { Ny} < e (2”%” + a) . Denote byV; ,, the strategyV restricted to

—C

n impulses. Fofl’ > 0 using the above bound f&&*{ N1}, we obtain
| Jo (2, V2) = Ja (2, Ve)| < 2@1@6 {emami} < 2@1@1 {e™T 1y ior + Lo i<t}

< 2M (eiO‘T +P*{Nr>n+ 1})
a

LA (o et L1
<2 (7 e (00 9))

Since the right-hand side does not depend: plettingn — oo thenT — oo and taking into account
the c-optimality of V. we have tha?"r(x) converge uniformly (inc € E) to v, (x). ldentically, we
provelim,, oo sup;~_. |77'r(x) — vE(x)| = 0 uniformly inz € E. This, together with assertions of
Lemma3.1, implies that” (z) — v, () uniformly in = from compact sets. O

Remark 3.4. In the case when is bounded the assertions of Theofen 3.3 follow directignffb5]
or [L8].

Fix z € U. Itwill be an anchor point for further definition of functism,,. We have the following
bounds forv, and for the difference, (z) — va(2).

Lemma3.5. We havev, (z) > ¢(z, z) + v, (z) for z € E and

c(x,2) Sva(x) —va(2) < —c(z,2) forzel. (14)



Proof. Clearly, vy (x) > Muvy(x) > c(z,2) + va(z). Wheneverz € U we also havey,(z)
Muva(z) > c(2,2) + va().
) =

>

]
Definew, (x) = vo(z U
which is independent of:

vo(z) for x € E. We deduce from Lemnia 3.5 a bound @p on

sup |we(z)] < sup {|e(x, 2)| V |e(z, 2)|} = k. (15)
zelU zelU

From [13) we obtain easily the following equation foy,

wa(z) = sup E { /0 " e (£(X,) — ava(2))ds + e‘”Mwa(XT)} . (16)

TES

DefineDy = inf {s > 0: X, € U} andt(x) = E* { Dy }. We make the following assumption

(B3) For any compact sét C E we havesup,cr t(z) < .

Lemma 3.6. Under assumptiop (BB)
o(x,2) < wa(z) <E*{Du}||f — ava(2)| + &. a7

Proof. Definew? (z) = vk (z) — vk (z). Similarly as above, we show

wk(z) = sup Ex{ /OT e (f(X,) — ava(z))ds + e—MMng(XT)}

andsup,; |wk(z)| < k. SinceMpw’ is bounded, standard supermartingale results yield tmat fo
any stopping timer

TN
wk(x) = sup E{ / e (f(Xa)—awk (2))ds+1cpe ™ Mpwk <XT>+1UgTeww§<Xo>}-
T 0
Apply the above formula fos = Dy and, taking into account negativity efand the upper bound
onw’ on U, observe that/;wk(X,) < x andwk(Xp,) < k. Hencewk(z) < E*{Dy}|f —
avk(2)|| + k. Since by Theorerh 3.3%(z) converges ta,(z) uniformly in z from compact sets,
taking in the above inequality the limit — oo gives [AT). Finally, by Lemm&3.5;(z,2) <
wWe (). O

Lemma3.7. Foreachz € £
lim inf av, (z) > w(f). (18)

a—0

Proof. Let R, f(z) := E* { [;~ e~ f(X,)ds} be the resolvent of. Fromu,(z) > R f(z) we
have

liminf av, (z) > liminf aR, f(x) = lim inf/ e “Pu f(x)du = p(f).
a—0 a—0 0 «

a—0

O

Recall thaty, (z) = E* { [;° e *(f(Xs) — u(f))ds}. We shall assume that, is uniformly in
a bounded from below.



(B4) sup |lq, | < oo, whereq, stands for the negative part @f.
a€(0,1]

Lemma 3.8. Under[(AT)[(A2) and (B3), if the sét; := {x € E: f(x) < p(f)} is compact then
[(B4) holds.

Proof. We havef(z) > u(f) onK$, so

o [PUPEE —aDyADg
ante) = { [ (00 i )ds + o a(Xopn0n,) |

—aD D —
> E® {e abuh Kfqa(XDUADKf)} >— sup g, (y),
yEUUKf

whereDKf = inf{t > 0: X; € Ky}. By LemmaZRg, is continuous, and converges ¢pas
a — 0, uniformly on compact sets, hence the last term in the egmesbove is uniformly bounded
ina €[0,1]. O

Since for any stopping time € S anda > 0

inte) =7 { [ (100 — s + a6}

we obtain from[(1b)

we(x) — qo(z) = sugEx {/0 e (u(f) — ava(z))ds + e T (Mwa(X7) — qa(XT))} . (19
TE

Clearly, =-optimal stopping times if(16) and_{19) coincide. In thddeing lemma we provide an

upper bound on them.

Lemma 3.9. Assumé¢ (B4) and that := limsup,_,qave(z) > p(f). Then for anyy < v — u(f)
and anya € A := {a’ : /vy (2) > p(f) + 6} we may restrict ourselves {f16) and (19) to stopping
timesr satisfying the bound

N l —BiaT —; x 67&7—5 2
; {a(l )} o) —p e ¢} < 2(@) (20)

rtetlge [4galr)—c(z:2) for an arbitrarily smalle > 0. Moreover, Z(z) is

whereZ(z) = sup,e(o,1)
bounded on compact sets.

Proof. Lemma 2.2 and assumptipn (B4) imply thab,c( 1) (/4o | + ¢a(z) — ¢(, 2)) is bounded
on compact sets and, therefore, s&is). For a givere > 0, everys-optimal stopping time in (19)
satisfies

wa(7) = ga(2) —& < (u(f) — ava(2))E” {é(l - e‘”)} +E° {e‘” EEBC(XT’ a)} + ol
Therefore,
(@a(s) = (BT { 20— e ) ) B {6 7e(X,)}
<kt et llag |+ gale) — ez, 2) < Z(@)(ava(2) — u(f),
from which we obtain[(20). O



Complementing the above result are the following simplenters.
Lemma 3.10. For any non-negative random variabteanda > 0

E{1(1-c)}

P{r>T} < l(l "

Proof. Notice thatt — 1 (1 — ) is increasing forx > 0, hence

E{é(l o)) > Plr > T}é(l T,
O

Lemma3.11. The mapping — Mw,(x) is uniformly ina € (0, 1) equicontinuous on each compact
subset off.

Proof. The assertion is a consequence of the estimte,, (v) — Mw,(2')] < supgey |c(z, ) —
c(a’,€)l- O

Recalling that(z) = inf,ep ¢(z, a), we assume
(B5) For any compact sét C E and a sequence of evemts € Fp, T > 0, we have

lim supP*{Ar} =0 = lim supE*{1a, |c(Xr)[} =0.

T—00 e T—00 gl

In a classical case wheris bounded] (BB) is trivially satisfied.

Theorem 3.12. Under[(AT)(A2)[(BI)-(BY), ifim sup,_,o ava(z) =: A > u(f) then there exist a
continuous functiomw which is a solution to the following equation

TA\T
w(zx) = supliTlrILiolng"r {/0 (f(Xs) — N)ds + Mw(XT/\T)} . (21)
Moreoverw(z) = 0,
c(z,2z) <w(x) <ET{Du}[|f = Al + &, (22)
and
c(z) — k< Mw(z) < k. (23)

For any impulse strategy” = (7;,&;), such thatE” {r;} < oo for eachi, we have that

w(z) > B°{ /0 e ds+2 &) F ()}, (24)

where(X) denotes the process controlled by the stratb’gyNe have equality i@) for the strategy
V* = (7/,&) defined as followsr = inf {s > 0: w(X,) = Mw(Xs)}, 751 = 7 + 7 0 Orx,
where#d, is a Markov shift operator, and’ = §( )y where¢ : E + U is a Borel measurable

function such thaf/w(y) = c(y, £(y)) + w(é(y)) for y € E. Moreover,x — E*{7{} is bounded on
compact sets.

10



Proof. By local compactness of the state spdtand Lemma 3.11 there is a continuous function
such thatM w, () — v(z) uniformly on compact sets over a suitable sequence ef 0. Therefore,
we can choose a sequeneg — 0 such thatim,, ,~ a,vq, (2) = A, ayv,, (2) > p(f) + 0 for some
0 >0, andMw,,, (z) — v(x) uniformly on compact sets. Let

w(z) := sup lim inf El‘{ /OTAT (f(Xs) — N)ds + ?}(XT/\T)}. (25)

r T—oo

We are going to show that along a subsequenge(x) — w(x) uniformly on compact subsets as
n — oo. For this purpose we consider finite time approximationg. Le

wg, () = sup E”C{ /TAT ™ (f(Xs) = anta, (2))ds + e~ M, (XTAT)}, (26)
0

andw’ (z) = sup, E“*’{ OTAT(f(:cs) — N)ds + v(:cMT)}. Then

w(@) ~wa, (z) = (w(z) —w’ (2)) + (W (&) ~wa, () + (wg, (2) —wa, () = (I)+(I1)+(I1I).

(27)
To address the convergence of the third terni_of (27) we write
0 < wa, (z) — w? ()
=2eb E{ / () = it (2))ds + €T (Mg, (Xr) = Ga, (X7))
TES 0
TAT
- / e~ (u(f) = anva, (2))ds — e TN (Mwa,, (XoaT) = da, (XTAT))}
0
< supEf{ [ et ) — anve, (s
TES AT
Lz [€7 Muwa, (Xr) — €T Mua, (X7) — €7 qa, (Xr) + €~ Tqq, (X7)] 1.
(28)

Recall from Lemm@&3]9 that in the above we can restrict aterib stopping times which satisfy the
bound

E* {iu - eW)} < Z(x) (29)

On
for a function Z(z) which is independent from and bounded on compact sets. Note also that for
a > 0 we have

c(r) — K < Mwy(x) < K. (30)
Hence,
E {/’T‘/\T e (u(f) — anva, (2))ds
+ 1:>7 {e_o‘"TMwan (X,) — e T Mw,, (X7) — e % qq, (X;) + e Ty, (XT)] }
< E* {Lrore™ (26 + |4, | = (X7) + 40, (X7)) } (31)
Z(x)

< (26 + gz, )T +E” {Lrsre T (= e(X7) + ga, (X)) }

o (eanT _ 1)
< (2k+ gz, H)@ + B {Lrsre™ " (= e(X7) + Ga, (X1)) }

11



where we used (29) and Lemrha_3.10 and finally the fact ¢hat — 1 > «,, 7. Therefore, by
assumption§ (B#)-(Bb)[16) an@(31), for any> 0 and any compact sdt there isT" such that
Wa,, (¥) — wl (z) < nforallz € T and alln.

From [30) we have that
c(z) — k <wv(z) <k (32)

Notice that

[E? {Mwe,, (Xrar) = 0(Xrar)} | < [E” {1p2,x, ) <R (MWay, (XraT) = 0(XonT)) }]

| (33)
+ E {10(1'7XTAT)ZR(2K — Q(XT/\T))} = aan + bR.

For a fixed R we have thalim,,_,~, a,, = 0 for x in compact sets by the definition ofin the
beginning of the proof. The teribz can be made arbitrarily small uniformly inin compact subsets
of E, sincebr < E” {1, x.,,)>r(26 + L)} + E*{1¢,~(r}, where(y is defined i (BZ). Now
letting R — oo (using assumptiop (All) and 11, Proposition 2.1]) and ther> oo we obtain that
br — 0. Hence, for each fixed we have uniformly inz in compact subsets df that

TAT
wz;n (z) = sup Ex{ / e” " (f(Xs) — anva, (2))ds + e_an(T/\T)Mwan (XT/\T)}
T 0

- supEw{ /0 ") — Nds + v(XTm} = " (), -

T

which provides a uniform on compacts bound on term (11 .a}) (27
Finally, we estimate term (I) of (27). From the form 125)wfz) by Lemmd 2.2 usind{5) we
obtain

w(z) — q(x) = sup iminf E* {(u(f) = A\ (7 AT) + v(Xrar) — ¢(Xonr)} - (35)

re§ T—oo

Since for each > 0 there is a boundegtoptimal stopping time-, in analogy to the proof of Lemma
[3.9, using[(3R), we obtain

c(r) =k —q(x) —e <v(x) —q(x) —e Sw(x) —q(@) — < (u(f) = VEH{7} +r+ [l ||
Therefore, we may restrict ourselves[inl(35) as well ak i) {@Stopping times satisfying

26+ lg" || +q(x) —c(x) +1

E*{r} < pp—r (36)
Consequently, similarly t¢_(28) we have
0 < w(z) —w'(x) <sup {Lo>r(v(Xr) +lg || = v(X7) + ¢(X1)) }
’ (37)

< sup {1r>7 (26 + llg7l| - e(X7) +¢(X7)) } -

Since we may restrict ourselves to stopping timesatisfying [36), Tchebyshev inequality, Lemma
[2.2 and assumptiofs (BE)-(B5) imply that (z) — w(x) uniformly in 2 from compact subsets @.
Summarizing now[(31)[(34) and (37) we obtain that (x) — w(z) uniformly in z from com-
pact subsets of. ConsequentlyM w,, () — Mw(x) uniformly in z from compact subsets df.
This proves that(x) = Mw(z) which completes the proof of the first part of Theorem. Notiea

(22) follows directly from [1V), while[(23) follows froni. (30
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Take any impulse stratedy = (7;,&;) with integrable impulse times. For amy> 0, by strong
Markov property of(X;) and using approximations with bounded cost operatdfsas in the proof
of Theoreni 3.3 we show

Tk k
Va(x) > E:”{ /0 e Y f(Xg)ds + Z e Mie(Xr_, &) + e*m’“va(gk)}.
i=1

Subtractv, (z) from both sides to get

Tk k
wa(z) > B*{ / e (F(X.) — ova(2)) ds + 3 e e(Xr 1, 6) + e Hun(6) ). (38)
=1

Sincew,,, converges uniformly on compact setsuo lim,, ,cc apvq, (2) = A, andE* {7} < oo

we obtain [2#) from[(38). By [13, Theorem Zﬁ&he stopping timer;" is optimal for the Bellman
equation[(2lL). By((36) we have that— E* {7} is bounded on compact sets. Therefore for strategy
V* we have equality if(24), which completes the proof. O

Proposition 3.13. Under assumptions of Theorém 3.12 if the cost for impulsiesaseparated form
c(z, &) = d(x) + e(€), whered ande are continuous functions, we have

AT
sup sup lim infEm{ /0 (f(Xs) — AN)ds +d(Xar) + e(az)} =0, (39)

xecU T T—o00

and

=iy A F(Xo)ds +d(Xs) +e(x)}
A= xeg Tp E= {T} ’

The suprema iif39) and (@0) are attained fori = argmazecy [w(€) +e(§)] and7 = inf {s > 0 :
w(X,) = Mw(X,)}. Furthermore, the measure

n(A) = - {f(ﬁlf}()ds}

(40)

(41)
for A € £ is a unique invariant measure for controlled proc€ss!) using the strategy™ = (7, £;)
defined agy = 7,7, ,, =7, + 7" 0 0., and¢; = 7.
Proof. Note thatMw(x) = supgeys [w(§) + e(§)] + d(z). Then[21) has the form
TAT
w(x) = sup lim inf Ex{ / (f(Xs) = Nds + d(Xrar) + sup [w(€) + e(§)] }
T T—oo 0 ceu

Whenx € U we have

TAT
w(z) > sup liminf Ex{ /0 (f(Xs) = Nds + d( X ar) + [w(z) + e(z)] },

r T—oo

from which

r T—oo

TAT
0 > sup lim inf Ex{ /0 (f(Xs) = Nds + d( X ar) + e(w)} (42)

3All assumptions of Theorem 4.8 iR [13] apart from (C3) areially satisfied. Assumption (C3) follows frofn (B4) and
[13, Remark 4.6].
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with equality forxz = #. Recall from Theorerh 3.12 th&"{7} < oo for x € E, so in [42) we can
consider integrable stopping times only and, thereforip thle limit (c.f. [13, Lemma 4.2]). Hence,
for any stopping time- andz € U such thafE” {7} < co we obtain

> E:’:{ fOT f(XS)ICéi;;f(XT) + e(x)}

with equality whenevet = & andr = 7. Finally, under control* = (7;*, £) the controlled process
(X3) is Markovian with the transition operat@ (z, A) := Y7 E"{1s<iere 1a(zi™)}, with

7, := 0 andzy as defined in Sectidd 1 where the construction of controlfedgss was sketched. By
direct calculation, similarly to the formula (4.14) in theopf of [8, Theorem 4.1], one can show that
n defined in[(41) is in fact an invariant measure far;). SinceE” {{'} < oo for x € E, the process
(X?) enterst infinitely often and therefore is the unique invariant measure. O

The proof of the following lemma follows immediately from3,lLemma 4.11].

Lemma 3.14. Under assumptions of Theorém3.12 , the procgss= [ (f(Xs) — A)ds +w(X,) is
a right-continuoudP*-supermartingale for any: € E. Moreover, for a bounded stopping tirreand
an arbitrary stopping time-

o TN
Eﬂﬁ{/o (f(Xs)—)\)ds+Mw(XU)} gE”C{/O (f(XS)—A)ds+1U<TMw(X0)+102Tw(XT)}.
(43)
Lemma 3.15. Under assumptions of Theorém 3.12
max {c(z, ), E* {Du} (=[[f| = A) — 5 — llc[lv}

< w() < min {g(x) + 5 + sup Iz I E” {Du}If = Al + 5}
ae(0,

(44)

forz € E, where||c||y = sup,¢y [c(y)]. If, additionally, f(z) — A < 0 for z outside of some compact
setK, thenw is bounded from above.

Proof. In view of (22), to prove[(44) it remains to show

E*{Du} (=fl = A) =k = llello < w(z) < q(z) + 5+ up 1o I- (45)
ae(0,

From [21) we have that(z) > E* { JPU(F(Xs) = A)ds + Mw(XDu)} and, therefore, by [23) we
obtain the first inequality i (45). Combining_(19) with {23¢lds

Wa(x) — ga(x) < supE”““{ / e (u(f) — ava(z))ds + e (K + sup anH)}- (46)
T 0 ac(0,1
Take a sequence,, — 0 such thatw,,, (z) — w(z). By Lemma 2.2y, () — ¢(z). Hence[(4B)
impliesw(x) < q(z) + £ + Supac(0,1) 194 1), Which completes the proof of the second inequality in
@3).
Let nowI" be a compact set that contains the $étsnd K. Since the supremum in the definition
of w can be taken over bounded stopping times, from Leinma 3.14etve g

TADp
U)(I’) < sup Em{ / (f(XS) — )\)ds + 17—<DFMU}(XT) + 1DF§TU)(XDF)}- (47)
0

T-bounded
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Using [23) and observing that the integrand is negativeiadeitsf I", we obtain

w(r) <supE* {1, <ppk + Ipr<rl|lwlr},
T

where|jw||r = sup,r [w(y)| < oo by the continuity ofw. Consequentlyv(x) < x V [lw||r, which
completes the proof. O

To infer from the solution of the Bellman equatidn21) thas the optimal value, we will need
the following Tauberian theorem.

Lemma 3.16. For a bounded functiorf and sequences of random variablés< 0, 7; > 0 with (7;)
being an increasing sequence we have

e =
hTrglO%ff(/o f(s)ds—i—E{iZ:;lﬂgTYi}>

- liénjgfa < /Ooo e,asf(s)ds + E{ il 1T¢<oo€a”Yi}> )

Proof. Leta = lim infT_,oo% (fOT f(s)ds + E{ D] 1n-gTYi}>- If « = —oo then the inequality
is obvious. Otherwise, for eveery> 0 there isM > 0 such that

a—e< %(/()Tf(s)ds—FE{ngiSTﬁ‘})

forall T > M. Using the representation ® = [ ce™*“du we write

o ( /000 e “f(s)ds+ E{ ;il 1Ti<ooe_miYg}>

:/ f(s)/ a26_a“duds+E{ZY;/ (X2€_au1ﬁ§udu}. (49)
0 s i—1 0

For anyL > 0 and any positive integet we can apply Fubini’s theorem:

(48)

n

E{ Z (YZ vV (—L)) /00 azef‘mlngudu} = /000 04267CWE{ Zil 1r,<u (YZ vV (—L)) }du.

i=1 0
Letting L. — oo andn — oo, monotone convergence theorem yields

S) 0o 0o S)
E{ Z Y; /0 @2€_au1n§udu} = /0 aQe_O‘“E{ Z 1n§uYi}dU-
i=1 i=1

Therefore from[(49) we obtain

a(/ooo e *¥f(s)ds + IE{ Z 1Ti<ooeaTiYi}>

i=1
— /OOO a26_au</0u f(s)ds + E{ gi@lﬁgu}>du

> a2M<HfH + E{ iY}lnSM}> + (a—¢) /Moo a?e™ %%y du.
i=1
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Letting« — 0, the right-hand side convergesdeo- ¢, since the finiteness afimplies that

o0
E{ Z ln<mYi} > —o00
i—1

for all M > 0. This completes the proof sineecan be taken arbitrarily small. O

Recall that a strategy’ = (7;,&;) is admissiblefor = € E if stopping timesr; increase to infinity
P*-a.s. If, further E*{r;} < oo for all i, we call the strategintegrable The aim of the paper is to
maximise two types of functionals: the function&lz, V') defined in[(1) over admissible strategies
V and the functionalf(:c, V') defined in[(2) over admissible integrable stratediesThe following
theorem links the solution to the auxiliary Bellman equat{@1) with the optimal value of the above
functionals.

Theorem 3.17. Make the same assumptions as in Thedreml 3.12. Denote;by;) the optimal
strategy from Theorefn 3.112.

1. \ = supy j(m, (7i,&)) with the supremum over all integrable strategiés= (7;,&;). The
strategy(r, £) realizes the supremunk = J (z, (77, &F)).

2. X > J(z,(7;,&)) for any admissible strategyr;, &;).

3. The strategyr;",&;) is optimal for the functionall, that isA = J (z, (77, &f)), whenc(z, £) =
e(¢) (a separated cost witlh = 0), or whenw is bounded from above.

Proof. From [23) for any integrable strategy;, ;) we have
w(z) + XE” {r,} > E7{ / (X + 30 (X &) +wlEn) . (50)
0 i=1

Sincew is bounded o/, E* {r,,} < oo andr,, — oo we obtain that > J (z, (1, &;)) with equality
for the strategy(7;", &) defined in Theorein 3.12, which completes the proof of assetti

Fix z € F and an admissible strategy;, £;). Denote by(X) the controlled process. Recalling
thatv,, is the discounted value function and,(x) = v, (z) — v4(z) we have

Wa (x) + vo(2) > Ex{ / e Y f(Xg)ds + Z lrcoce” “Tie(Xo, -, 51)}
0 i=1

Multiply both sides by and takeim inf,_, using Lemm&3.16 to show > J (z, (7;,&)). Here we

also use the fact théitm inf,, o ws () < w(z).

In the case of separated cost we use Propodition 3.13 by wincimeasure) defined in [(41L)
is invariant for X* controlled by the strategyr*,¢’). Then for anyl” > 0 and~ we have that
E7{ f()T(f(Xg) —v)ds} = Tn(f — ), whereE” means that the process starts with measure
Moreover X* is a Harris Markov process. By ergodic theorem for Harris hd&rprocesses (see
Theorem 1.1 of [3]) we obtain that

i 4w+ { [0~ s} =7 =) (51)

T—o0 1
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for  almost allz. To show that the above limit holds for all € E use Assumptiof (BB) which
implies thatE” { Dy} < oo for anyz. Then by the proof of Theorem 3112 (c.f._[13, Theorem 4.8])
we havesup,c;; E* {7} < o0, i.e.,,E*{7{} < oo foranyz € E, which implies[(51) for alk:. Hence,

in particular, forz:

1 . T
Jim 255 [ (7002 = s} = (s =) (52)
— 00 0
Letting in the last limity = ({ )} we obtain
T o0 {fo s)ds + e(z )}
lim B /0 P+ Lrere(d)} = e Y

In the case of a general cost function andounded from above, we obtain from iterated appli-
cation of Bellman equatiofi (21) and Lemma3.14

TENT n—1
wle) + 27 =B [T fO0ds 4 Y Ly ere(X &)+ (X)) 69)
0 i=1

There is a finite number of impulses before tiffieP*-a.s., because(z,¢) < ¢ < 0 and f andw
are bounded from above. Henliey; ., 7" = oo, P*-a.s. Passing to the limit with using Fatou’s
lemma and boundedness from above of all terms under exjoectatd dividing both sides by yields

#+)\< E:” / (X ds+zl*<TCX* 7§z)+w(XT)}

Taking lim inf7_,, on both sides completes the proof of optimality (ef', ;) provided that one
shows thatim inf7_, . E*{w(X7}.)/T} < 0 and this is in the case becausés bounded from above.
U

Boundedness af), required above for proving the optimality 6f*, £¥) for the functionalJ, is
established in the following lemma.

Lemma 3.18. Assumg¢ (A1), (AR). Ifi(f) < liminf),_ f(z) thenq is bounded from below.

Assume additionally (BIf)-(B5), aitn sup,_,q ava(2) = A > p(f). If imsup, o f(z) < Aor
¢ is bounded from above thenis bounded from above.

Proof. Wheny(f) < liminf)j; . f(z), boundedness from below gffollows from Lemmd 3.B. If
lim sup g0 f(z) < Athe setF’ = {z: f(x) > A} is compact. Exploiting that i (21) one may
take bounded stopping times, Lemma 3.14 implies

T/\DFUU
w(x) < Sup Em{ / (f(XS) - )‘)ds + 1T§DFUUMU)(XT) + 1T>DFuUw(XDFuU)}
T-bounded 0
< sup w(y),

yeUUF

which means that is bounded form above. If is bounded from above then Hy {44) and Lenima 3.8
w is also bounded from above. O
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Theorem 3.19. Under[(AT)[(A2)[ (B3) whelim sup,_,, av,(z) = u(f) we have thatw, (z) —
wu(f), asa — 0, uniformly inz from compact sets and the strategy ‘do nothing’ is optimaltfie
functional J.

Proof. By Lemmd 3.V we havém,,_.o av,(z) = p(f). Assume that there is a sequengee U and
ay, — 0 for whichlim,, o ap v, (25) > p(f). Then

T}Lm nUa, (2) 2 nlggo Qn (C(Z7xn) + Va, (xn)) > u(f)
a contradiction. Combining it with Lemnia 3.7 proMés., o sup,cy ava(y) = p(f). Assume now
that a sequence, is from an arbitrary compact set Assumptiori (B3) yieldsup,, E*"{Dy } < oo,
and this is also true when the trajectory is controlled as the process may entéfr even earlier
because each impulse shiftslfo Therefore,

lim a,v,, (2,) < hm an(Hstupt(y) + sup va, (z)) = p(f),
n—00 yel xelU

which together with Lemma 3.7 gives,v,,, (z,) — u(f). Infact, the latter argument proves uniform
on compact sets convergencenaf, (=) to u(f). Now, by Lemma3.16

hmmf Ex / f(X ds+zlr,<TC Ti— 762)}

< liminf aIEx{ / e Y f(Xg)ds + Z 1Ti<ooefa”c(Xn._,§i)} < lim i(I)lf avg(z) = p(f).

a—0 a—
0 i=1

Sincesup ., ¢,y J (2, (13, &)) > p(f), itis clear that the strategy ‘do nothing’ is optimal. O

4 Relaxation of assumption on ¢

In the previous section we required that the functjors such that its potentiaj is bounded from
below, and we constructed an optimal strategy whenas bounded from above, c.f. Lemina3.18.
We shall now approximate a general continuous bourfdeglfunctions with potentials bounded from
below and corresponding being bounded above. Without loss of generality we canicesturselves
to functions f which are nonnegative. We also assume th# not constanj:-a.s.; otherwise the
control problem is trivial. The main result of this sectienliheoreni 418 which shows that the optimal
value of the functional{1) for a general continuous boundatbes not depend an and provides
explicit construction ot-optimal control strategies.

Let B, n be a ball with center in and radiusV (z € U is the point fixed in the previous section
for the definition ofw,). Forn € (u(f), | f]|) define

fn(x) = f(@)(1 = pla, B, n))" +n(1 — p(z, BS nja) T (54)

Lemma 4.1. We have||fny| < ||f]| andlimy_o p(fn) = p(f). For sufficiently largeN the set
{z: fn(z) < pu(fn)}is contained inB, ;.

Proof. The bound for the norm of y follows easily from the definition. Thep(fy) = u(f) +
p(fn — f) < 2| flln(Bz,n+1) — 0asN — oo. The remaining claim of the lemma is now obvious.
O
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For an admissible impulse strateby= (7;, ;) andé € (0, —c) we define three functionals

JNC(CE V)—hmlnf Em / fn(X ds—|—ZlT<Tc T,,&)}
JNC‘HS(:U V)—hmlnf Ex / fn(X d5+21n<T Xr ,50—{—6)}

TV (@, V) = liminf Eﬂﬁ{ / LX) — F(Xa))ds — Zlf.qa},
r 0 =

T—o00

related value functions

() = sup J(w, V), S\N’C(x) = sup JN’C(x, V),
1% 1%

S\N’CJH;(I') = sup JN-etd (m, V), XN"s(ac) = sup JN:0 (m, V),
|4 |4

and discounted value functions

e (x) = supEx{ / e fn(Xs)ds + Z 1rcoo” “Mie(X,,—, §i)},
v 0 i=1
Ué\ﬁché(w) _ supEm{ / eiast(Xs)dS + Z 17—i<ooeim—i (C(XTi—7 &) + 5)},
v 0 i=1

00 [e.e]
o 3(w) =supBr{ [ e ()~ fn(Xa))ds =53 e,
0 i=1

with v,, defined in Sectiohl3.

The introduction of the cost > 0 is only for technical reasons so that we can use results from
previous sections to characteria&®(z) which evaluates the difference between two running costs.
We will prove thatlimy_,., A9 (x) = 0 which, intuitively, should hold fos = 0 for most ergodic
processes. Indeed, impulses can only shift the processdmpact sel/ and uncontrolled process
will spend little time in the complement of a sufficientlydarball B , asu(BS 5 ) — 0 asN — oo.
Providing an accurate proof of this fact is beyond the scdpbi® péper and we will assunie> 0.

Our goal now is to choose suchin the definition of fy thatn < limsup,_,q avd“(2), ie.,
by Lemmd3.1B and Theordm 3117 functidfi-“(z) is constant and there is a strategy realising this
value. This will be further used to show thais constant and to provideoptimal strategies for the
functional.J. So far we can only establish thatis constant ot/ and this value is a lower bound for
AONE.

Lemma4.2. Function) is constant o/ and \(x) > A(z) for anyz € E.
z,y)

Proof. Takez,y € U. ThenJ(z,V) > limp_ C(T + J(y,V) = J(y,V). By symmetry we
obtain the equality. Similarly, for any € E we haveJ(z,V) > J(z,V). O

The following assumption will play a key role in establisgithatlimy .., AV (z) = 0. A
sufficient condition is discussed in Remérkl4.5.

E* T 1BC (XS ds
(C) supsup {fo = ) } =0 asN — oo.
zeU T Ex{T}
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Define )
fn(@) = f@)(1 = plz, Bo )T+ (IfIl + DA = pla, BE yyr))* (55)

Lemma4.3. We havefy (z) > fn(z)forz € E, || fx]| = ||f]|+1 and the se{z : fn(z) < u(fn)}
is contained inB, n1.

Proof. The first claim is obvious. Since(fx) < u(B. n)|If|l + w(B LI+ 1) = (1l + (1 =
(B2 n)) < | f|l + 1 we have that

{x : fN(x) < u(fN)} C {x : fN(x) < |IfII+ 1} C B, N1

O
Lemma 4.4. Under assumptioris (A1), (A2) ahd (B3) we have
p(f = fn) < AV0(z) < AN (56)
where either )
s B { J5 (v (Xe) = fn(X,)ds — 6 ]
A% = sup sup ) (57)
zeU T k= {T}
or ) )
MO = (v — f)- (58)
Moreover, )
w(f — fn) <lim igf avév"s(z) < lim sup avév"s(z) < AN, (59)
a—r a—0

If, in addition, we assunje () théim . [\N? ()| = 0 uniformly inz € F andlimy . A¥* =0
foranyd > 0.

Proof. Notice first that the seftz fn@) = fn(z) < p(fyv—fn)tis compact for a sufficiently large
N. Indeed.fx(z) — fn(z) = ([[f[| + 1 = 1)1 — p(z, BS yy1))" andp(fy — fv) < [fll+1-n
because:(B, y > 0 for N large enough.
Lemma 3.8 implies that assumptipn (B4) is satisfied witreplaced byfx — fx. LetvY (x) be
the optimal value of the discounted functional
El‘{/o e (F(Xs) — f(Xs))ds — Ze"mé}
i=1

and
AV (1) = sup lim inf lEm{ /T (fN(XS) — fn(Xs))ds — 5i 17—.<T}.
r 0 =

v T—oo

If lim sup,,_,q av (2) > u(fx — fn) then by PropositioR 3.13\V is constant and of the forfi(57).
In the case whetim sup,, ., av () = u(fy — fn), Theoren319 yield§(58). Inequalitids56)
now follow easily. Sincey* (z) < v (z) andlimsup,, .o av® (z) = AN, the right-hand inequality
in (59) holds. Lemm@a3]7 yields the left-hand inequality.

We have that eithek™:* = p(fy — fv) — 0 asN — oo or, from (57),

i @I+ 1E{ Ji e (Xo)ds |
)\N,& < g . zN
S 5}
by assumption (T). EasilYimy_,o0 p(f — fn) = 0. O

—0 asN — oo
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Remark 4.5. Notice that assumptidn (L) is satisfied wheé#}) is a continuous process and

supzeape 1)

Ngnoo inf,cp Ex{DBg N}

—0, (60)

which means that the process returns to thelsétom the boundary of57 \, much faster that enters
this set starting fronUU. Such property is typical for ergodic processes and is Ugatained by a
suitable Lyapunov condition.

Proposition 4.6. Assumé (A1), (AR, (BD-(B3), (C) andz) > u(f). Thereisy € (u(f), ||f]) to be

used in the definition ofy such thaf{z € £': fn(z) < u(fn)}is compact andim sup ;o /N ()
< AVe(2) for a sufficiently largeV. Furthermore \V:¢ is constant and the strategy given in Theorem
[3.12 is optimal.

Proof. By Tauberian theorem, Lemnia 3] 16m sup,, o ava(2) > A(2) > u(f). We will show
that for anye > 0 we haveliminf,_,oavd“(z) > A(z) — ¢ for a sufficiently largeN and any

€ (u(f), 1 f]l)- Foranys > 0 such that + ¢ < 0 (recall that the constamt< 0 is an upper bound
on the cost functior) we have:

lim sup o (va(z) — vl“(2)) < limsup a(va(z) — pNeto(y )) + limsup a(v Noetd () — vév’c(z)).
a—0 a—0 a—0

Sincevy(z) — v2 T (2) < vd*(2), LemmaZH implies thadim sup,, ,, a(va(z) R ) <

AN:9_ To bound the second term we study an estimate-fmptimal strategies for C+5( ). Fix such

a strategy. Then

Ué\f,c-i-é(z) —e< E${ /OO e_o‘st(Xs)ds + Z 1Ti<ooe—0m (C(XT,'—7 gl) + 5)}
0

i=1

SHf | C+5El«{ze om}7

00 L]l —UNC+6(Z) +e LAl —UN’C+6(2) +e
T § —ar |~ o o < o o )
E{ € }_ —c—90 - —c—90 (61)

i=1

Hence, in the definition On‘)é,v’ché strategies can be assumed to satisfy the above bound. Tdvisal
us to compute the bound

[eS) N,c+6
c c T —aT; — [e +
oz(v(]lvy +5(Z)_U(]1\/, (Z)) SOéSl‘ipE {5 Ele z} S(SHfH Oﬂic—(;( z) oze,

where supremum is over strategies satisfylnd (61). Usiegldtver boundvév’c”(z) > % we
obtainlim sup,,_, a(va ch5( ) — v(]lvc(z)) < 5%. Hence,

limsupa(va(z) _vé\’ (z )) < 3o 4 s 2 2||.f1]
a—0 _C_(S
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which gives

, , o s 2FL sV s 2l
hgn_}gfav “(2) zllréljgpava(z)—)\ —c— Az) — A _5ﬂ'

The last term can be made arbitrarily small by the choicé siifficiently close ta0. By Lemma
&4, \N can be made arbitrarily close tofor N sufficiently large. Take < A(z) — u(f) and
chooseN*, §* such that\M9 < /2 for aII N > N* and§ =2 2”f” < g/2for § < §* (notice that the
choice of N*, 6* holds uniformly inn € (u(f), || f))- Now, choosey € (u(f), M(z) — ). Recalling
limy oo p(fn) = w(f), we obtain thatp(fN) < n for sufficiently largeN. Hence{z € F :
In(z) < p(fn)} C B, v+ for large enoughV, so it is compact, and

limsup fy(z) =7 < A(2) — e < lim iglf avl(z) < limsup avl€(2).

N—o00 o— a—0

Let A = limsup,, .o avy “(z). ClearlyA > u(fy). Lemma3.IB, TheoreM 317 and TheofemB.12
imply that the strategy derived from the Bellman equatio reoren{ 3.1 is optimal foy V¢ and
ANe(z) = A for all 2. O

Corollary 4.7. By the same arguments as at the end of the proof of PropokEitirihe value function
ANVe+d s constant orF and the strategy from Theordm 3.12 is optimal.

Theorem 4.8. Assumg (A1), (AR, (BD-(BJ), (C) andz) > u(f) for somez € E. Then the function
X is constant onF and for anys > 0 there isN such that an optimal strategy for":¢ is e-optimal
for \.

The proof of the above theorem is split into several lemmast N (0, T) be the number of
impulses under contrdl” in the time interval0, T'].

Lemma4.9. For the value function\(z) (respectively\’V %), the strategies can be restricted to those
satisfying
hmsup IE:” {NV 0, T } <

T—o00

for a fixede > 0. For A\:t9 the bound changes %_‘fc”%; provided thatc + 6 < 0.

e (L 2oy )

—C

Proof. Consider the functiona!(x, V). Fore > 0, anye-optimal strategy. = (7;, ;) satisfies

5\()—6<hmmf Em / f(X ds+ZlT<Tc T,,fz)}
< || f]] + c¢lim sup —Ex {NY=(0,T)} .
T—o0 T

Since one can obviously constrain the supremum definipg to s-optimal strategies and taking
into account thai\(z) > 0, we obtain [(6R). For the other two functionals, we use theelobound
min (AN, A\N¢+9) > || f|| instead of0, and for A<t use the upper bound on the cost equal to
c+9. O

Lemma 4.10.

—AVO () — 5@ < AV X(x) < VO 4 52!"; I, (63)
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where either .
B {7 (fv(X,) = J(X))ds — 8}
= sup sup

j\N,&
zeU T E» {T} ,

(64)

or ~
MO = p(fn = 1), (65)
and both converge td whenN — co.

Proof. We start from the lower bound ib_(63). Notice that

Az) — AV < sup (J(x, V) — Vet (g, V))
\%4

_ 1. (F - NG
< Sléphqrﬂnj;p TE { /0 (f(Xs) - fN(Xs))ds - ZZ:; 17‘1’§T5} = A"(x),
where the last equality follows from Propositibn 3.13 andanioea[4.4 which imply integrability of
impulse times in optimal strategy for¥:9 () and the monotone convergence theorem which implies
equivalence of functionals witlim sup andlim inf under this integrability condition.

For anys > 0 and a strategy’ that ise-optimal for \(z), we have

Mz) = AV < J(2, Vo) — JVe(x, V) + ¢
< (@, Vo) = IV (@, Vi) + TN (@, Vo) — TN (2, Ve) e
< S\N’é(l') +5||f|| +e
C

+ €, (66)

where the second term in(66) follows from the fact that weadl@ved to restrict ourselves to strate-
giesV satisfying [62) while the first term results from the caltigias in the preceding part of the
proof. From arbitrariness afwe obtain [6B).

For the upper bound ifiL(63), take aroptimal strategy/. for \'V-¢ satifying [62). Then

AV X)) < IN(2, V2) = TV (@, Vo) + TN (2, V) — T (2, Vo) + €. (67)

Since the cost + ¢ is smaller than the cost we haveJV:¢(z, V.) — JV:¢+9 (2, V.) < 0. Esimation
of the other difference is more involved:

1 T S
JNeH (¢ VL) — J(x, V2) < limsup ?Ex{ /0 (fN(Xs) — [(Xs))ds + Z 1TiST6}
i=1

T—0c0

T—oc0

T o0
< limsup LE7{ /0 (f(Xs) = F(X,))ds — ;1@5}

2| fll +e

T—o00 c

1 > z
+ lim sup TIE:”{Z(S E 1TiST} < AN 4§
i=1

where the first term is requires a proof identical as in LefndadAd the reasoning about integrability
of impulse times as for the lower bound. The second termvalivom Lemmad 4.9. Inserting above
estimates into[{87) and exploiting the arbitratiness pfoves the upper bound ih(63). The claim

about convergence of" to zero requires identical arguments as in the proof of Le@i@la [
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Proof of Theorerh 418The upper and lower bound ih_(63) do not dependzoand can be made
arbitrarily small by choosing sufficiently large€ and smalb. This provedimy_,o, AV:¢ = \(z), SO
)\ is a constant function. Clearly, for aay> 0 there isN such that\™¢ — \(z)| < e and an optimal
strategy for\™V:¢ is e-optimal for \. O

Corollary 4.11. Under assumptions of Theoréml4.8, the value fundti(@r) = supy jgx, V), where
the supremum is over integrable strategies, coincides ivahd optimal strategies fak™:¢ are inte-
grable andz-optimal for \.

We will present below a significantly shorter proof tlciatc) does not depend anand there are
e-optimal strategies under the same assumptions as thodeofdni4.B. Let

Ve, v)_lgng{T E*{ / Fu(X ds+z i)} (68)

An(x) = supy JV¢(z, V) and\(z) = supy, J (z, V'), where the suprema are taken over integrable
strategies. Theorefm 3]17 implies that does not depend on while the following theorem will
prove it for A.

Theorem 4.12. Under[(AI)F(A2)[ (B1)-(B3), (Bb) ar{d (C) ifm sup,_,g ava( ) = A > u(f) we

have thatAN is a constant function for sufficiently largé and Ay (z) — A(x), asN — oo, SO, in
particular, ) is a constant function.

Proof. We assume without loss of generality thfat 0. Sincefy > f andlimy_,o0 p1(fn) = u(f),
thenlim sup,, o a9d(2) > u(fy) for sufficiently largen, whered is the analogue of)" with
fn replaced byfy. Therefore, by Theorefi 3112 ahd 3.1%(x) does not depend an. For any
integrable strategy’, we have

0< IV, V) — J(x V) <hmsupE {T }E‘T{/Om (fn(Xs) —f(Xs))dS}

<l 1

< lim sup Ex{Tn} < (/1 + )SLTlp Ex{T}
By assumptiof (C) the rlght hand side converge8 &8 N — oo. Since the bound does not depend
on V, this implies that\y converges, a&V — oo, to A(z). This also implies tha(z) does not
depend on.

O
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