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Impulse control maximising average cost per unit time: a
non-uniformly ergodic case∗
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Abstract

This paper studies maximisation of an average-cost-per-unit-time ergodic functional over im-
pulse strategies controlling a Feller-Markov process. Theuncontrolled process is assumed to be
ergodic but, unlike the extant literature, the convergenceto invariant measure does not have to be
uniformly geometric in total variation norm; in particular, we allow for non-uniform geometric or
polynomial convergence. Cost of an impulse may be unbounded, e.g., proportional to the distance
the process is shifted. We show that the optimal value does not depend on the initial point and
provide optimal orε-optimal strategies.

Keywords: impulse control, ergodic control, non-uniformly ergodic Markov process, un-
bounded cost

1 Introduction

Let (Xt) be a Feller-Markov process on(Ω, F, (Ft)) with values in a locally compact spaceE with
the metricρ and Borelσ field E . The process starting fromx at time0 generates a probability measure
P
x; Ex denotes a related expectation operator. Process(Xt) is controlled by impulses(τ, ξ): at timeτ

the process is shifted from the stateXτ to the stateξ at the cost ofc(Xτ , ξ) and follows its dynamics
until the next impulse. We assume that impulses shift the process to a compact setU ⊆ E, i.e.,ξ ∈ U
and the cost functionc is negative, continuous and uniformly bounded away from zero.1 A strategy
V = (τi, ξi) is admissiblefor x ∈ E if τi form an increasing sequence of stopping times (possibly
taking the value∞) with limi→∞ τi = ∞, Px-a.s. To describe the evolution of the controlled process
we introduce a construction of [18, Section 2] which followsideas of [15]. Namely, we consider
Ω = D(R+, E)∞, whereD(R+, E) is a canonical space of right continuous, left limited functions
onR+ taking values inE. We assume that(F 1

t ) is a canonical filtration onD(R+, E) and inductively
defineFn+1

t = Fn
t ⊗Ft. The stopping timesτi are adaptedF i

t ×{∅,D(R+, E)}∞ while the impulses
ξi toF i

τi
×{∅,D(R+, E)}∞. The trajectory of the controlled process(Xt) is defined using coordinates

xn of the canonical spaceΩ, i.e.Xt = xnt for t ∈ [τn−1, τn), with τ0 = 0. Given an impulse strategy
V following [18, Section 2] and [15, Chapter 5 and Appendix 2] we define a probability measureP

∗Research of both authors has been partly supported by NCN grant DEC-2012/07/B/ST1/03298.
†School of Mathematics, University of Leeds, LS2 9JT, Leeds,United Kingdom
‡Institute of Mathematics Polish Acad. Sci., Sniadeckich 8,00-656 Warsaw, Poland, and Vistula University
1In a slightly misleading way, we callc the cost. As it stands in functional (1) with a plus sign, it isassumed to be

negative and bounded away from zero, i.e., there is a minimumcost of an impulse.
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onΩ. Although the controlled process(Xt) and probability measureP depend on the control strategy
V in what follows we shall not indicate that explicitly.

Our goal is to maximize over all admissible strategies the functional

J
(

x, (τi, ξi)
)

= lim inf
T→∞

1

T
E
x
{

∫ T

0
f(Xs)ds+

∞
∑

i=1

1τi≤T c(Xτi−, ξi)
}

, (1)

wheref is a continuous bounded function andXτi− is the state of the process before thei-th impulse
with a natural meaning if there is more than one impulse at thesame time. Alternatively, we shall also
consider a weaker form of (1), namely

Ĵ
(

x, (τi, ξi)
)

= lim inf
n→∞

1

Ex{τn}
E
x
{

∫ τn

0
f(Xs)ds+

n
∑

i=1

1τi≤T c(Xτi−, ξi)
}

, (2)

assuming that(τn) are such thatEx{τn} < ∞.
Controlling random systems by impulses, i.e., discrete interventions, is often the only feasible

strategy from an application point of view and, therefore, the literature is extensive. For applications
in finance, the reader is referred to [5, 10] and references therein. Intensive studies of impulse control
of diffusions and diffusions with jumps are presented in [4]. Impulse control of Markov processes
with average cost per unit time criterion (1) has been studied first in [16, 17] under uniform ergodicity
assumption for constant cost for impulses. These results were extended to a separated cost (for defi-
nition see Proposition 3.13) in [18] and to quasicompact transition semigroups in [19]. The problem
was also studied under some compactness assumptions in [6].Ergodic impulse control of diffusion
processes on bounded domains was studied in [9] and [14]. Theextension to unbounded domains
although inR only, with linear impulse cost functionc depending on the size of an impulse and with
f ≤ 0 was tackled in [7]. Average cost per unit time functionals have also been widely studied in a
different setting where the control affects diffusion process continuously, see the monograph [2] for a
detailed discussion.

Solution of problems of the form (1) and (2) usually follows through a study of an auxiliary
Bellman equation

w(x) = sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds+Mw(Xτ∧T )

}

, (3)

whereMw(x) = supξ∈U [w(ξ) + c(x, ξ)]. The solution is a pair: a functionw : E → R and
a constantλ. One of the main contributions of this paper is showing that when the process is not
uniformly ergodic or the cost functionc is unbounded, (3) has a solution. The functionw, which we
will often call the value function, is unbounded as isMw. We prove that the constantλ in the solution
to the Bellman equation (3) is an optimal value for the functional Ĵ and frequently also forJ , while
an optimal stopping time for (3) provides times of consecutive impulses in the optimal strategy. The
impulses themselves are given by the maximiser ofMw(x) which is shown to depend continuously
onx and, therefore, is measurable.

The novelty of this paper is that

• the uncontrolled process(Xt) is not uniformly ergodic,

• the cost function is not bounded, hence, it can measure the size of an impulse using the distance
between the state before and after the impulse.
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To the best of our knowledge, this paper is the first significant extension of a general theory of ergodic
impulse control of Feller-Markov processes since 1980s. The relaxation of uniform ergodicity opens
up the theory applicable to many ergodic processes encountered in applications, including an Ornstein-
Uhlenbeck process with Levy noise.

The paper is structured as follows. Section 2 provides preliminary results forα-potentials of
centredf . In Section 3 we address the impulse control problem with average cost per unit time
functional (1) and (2) and an unbounded cost for a non-uniformly ergodic underlying process under
an assumption that the zero-potential of centredf is bounded from below. This restriction is relaxed
in Section 4, where, using approximation techniques, we show that the optimal values in (1) and (2) do
not depend onx. We also provideε-optimal strategies through solutions to auxiliary impulse control
problems that satisfies assumptions of Section 3.

2 Preliminaries

We writePt for the semigroup, acting on bounded Borel functions, corresponding the (uncontrolled)
Markov process(Xt): Ptφ(x) = E

x{φ(Xt)}. A transition probability measure is denoted byPt(x, ·) :=
P
x{Xt ∈ ·}. We make the following assumptions:

(A1) (Weak Feller property)
Pt C0 ⊆ C0,

whereC0 is the space of continuous bounded functionsE → R vanishing in infinity.

(A2) There is a unique probability measureµ on E , a functionK : E → (0,∞) bounded on
compacts and a functionh : [0,∞) → R+ such that

∫∞
0 h(t)dt < ∞ and for anyx ∈ E

‖Pt(x, ·)− µ(·)‖TV ≤ K(x)h(t),

where‖ · ‖TV denotes the total variation norm. Furthermore,E
x {K(XT )} < ∞ for each

T ≥ 0, and for any compact setΓ ⊂ E and a sequence of setsAT ∈ FT

lim
T→∞

sup
x∈Γ

P
x {AT } = 0 =⇒ lim

T→∞
sup
x∈Γ

E
x{1AT

K(XT )} = 0.

Assumption (A1) is necessary to establish the existence of optimal stopping times for general
weak Feller processes (a counter-example when it is relaxedis provided at the end of Section 3.1
in [11]). The class of weakly Feller processes (A1) comprises Levy processes [1, Theorem 3.1.9],
solutions to stochastic differential equations with continuous coefficients driven by Levy processes
(see, e.g., [1, Theorem 6.7.2]).

The first part of Assumption (A2) satisfied by non-uniform geometrically ergodic or polynomi-
ally ergodic processes with examples discussed in [12, Section 6]. The second part of Assumption
(A2) is weaker than requiring that random variables{K(XT ), T ≥ 0} are uniformly integrable for
initial statesx of (Xt) from compact sets. However, the following condition which implies uniform
integrability is more explicit to verify:supx∈Γ supT≥0 E

x{K(XT )
1+β} < ∞, for any compact set

Γ and someβ > 0 possibly depending onΓ. It is easy to verify using this condition that a standard
Ornstein-Uhlenbeck process satisfies Assumption (A2).
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Lemma 2.1. Under (A1) the operatorPt transforms continuous bounded from above functions into
upper semi continuous functions bounded from above.

Proof. By [11, Corollary 2.2] the semigroupPt transforms continuous bounded functions into contin-
uous bounded functions. Approximating a continuous functionϕ bounded from above by a sequence
of bounded functionsϕn = max(ϕ,−n) and applying Fatou’s lemma completes the proof.

Let, forα ≥ 0

qα(x) = E
x

{
∫ ∞

0
e−αt(f(Xt)− µ(f))dt

}

(4)

with q := q0. We have

Lemma 2.2. Under (A1) and (A2) we have thatqα(x) → q(x) uniformly on compact sets asα → 0,
andq is a continuous function such that for any bounded stopping timeτ

q(x) = E
x

{
∫ τ

0
(f(Xt)− µ(f))dt+ q(Xτ )

}

. (5)

Moreover, for any compact setΓ ⊂ E and a sequence of setsAT ∈ FT we have

lim
T→∞

sup
x∈Γ

P
x {AT } = 0 =⇒ lim

T→∞
sup
x∈Γ

sup
α∈[0,1)

E
x{1AT

|qα(XT )|} = 0. (6)

Proof. By (A2) we have that|qα(x)| ≤ K(x)‖f‖
∫∞
0 h(t)dt for α ∈ [0, 1), where‖ · ‖ is the supre-

mum norm, soqα(x) is well defined. Now

|q(x)− qα(x)| ≤

∫ ∞

0
(1− e−αt)|Pt(f − µ(f))(x)|dt ≤

∫ ∞

0
(1− e−αt)K(x)‖f‖h(t)dt → 0 (7)

asα → 0 uniformly on compact sets, becauseK(x) is bounded on compact sets. Consequently, since
under (A1)qα is a continuous function, we have thatq is also continuous. We have

sup
x∈Γ

sup
α∈[0,1)

E
x{1AT

|qα(XT )|} ≤ sup
x∈Γ

E
x{1AT

K(XT )}‖f‖

∫ ∞

0
h(t)dt → 0

asT → ∞ provided thatlimT→∞ supx∈Γ Px {AT } = 0. It remains to show (5). Forα > 0 and

T ≥ 0 we haveqα(x) = E
x
{

∫ T

0 e−αt(f(Xt)− µ(f))dt+ e−αT qα(XT )
}

. Easily,

lim
α→0

E
x
{

∫ T

0
e−αt(f(Xt)− µ(f))dt

}

= E
x
{

∫ T

0
(f(Xt)− µ(f))dt

}

.

DenotingL = ‖f‖
∫∞
0 h(t)dt and using (A2) we obtain

∣

∣E
x
{

e−αtqα(Xt)
}

− E
x {q(Xt)}

∣

∣

≤ (1− e−αt)Ex {|qα(Xt)|} + E
x {|qα(Xt)− q(Xt)|}

≤ (1− e−αt)LE
x{K(Xt)}+ E

x
{

1ρ(x,Xt)<R|qα(Xt)− q(Xt)|
}

+ E
x
{

1ρ(x,Xt)≥RLK(Xt)
}

= aα + bα + cR.

Clearlyaα → 0 asα → 0. By (7) alsolimα→0 bα = 0 for any fixedR. By (A1) and [11, Proposition
2.1] taking into account integrability ofK(Xt) we obtain thatcR → 0 asR → ∞. Consequently,
q(Xt) is integrable andq(x) = E

x
{ ∫ T

0 (f(Xt) − µ(f))dt + q(XT )
}

, from which it follows that
Zs =

∫ s

0 (f(Xt)− µ(f))dt+ q(Xs) is a martingale and we immediately have (5).
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3 Optimal control when q is bounded from below

We make the following standing assumption for the cost function c:

(B1) There isc < 0 such thatc(x, x′) ≤ c for (x, x′) ∈ E × U , and forz, z′ ∈ U

c(x, z) ≥ c(x, z′) + c(z′, z). (8)

Definec(x) = infa∈U c(x, a) andc̄(x) = supa∈U c(x, a). Denote byS the family of stopping times
taking finite values only and bȳS the extension of the latter to stopping times with possibly infinite
values. We follow a convention that, unless specified otherwise, all stopping times are from̄S.

We will follow a vanishing discount approach, see e.g. [16].We consider first a discounted cost
impulse control problem which consists in maximization of the functional

Jα
(

x, (τi, ξi)
)

= E
x
{

∫ ∞

0
e−αsf(Xs)ds+

∞
∑

i=1

1τi<∞e−ατic(Xτi−, ξi)
}

(9)

over admissible impulse strategies2 (τi, ξi) with the optimal value denoted byvα(x). Usingvα we
will then obtain a sequence of functions converging, asα → 0, tow in (3). From there, we will derive
an optimal value and an optimal strategy for (1).

The following assumption is used for characterisation of the value functionvα as a fixed point of
an appropriate Bellman operator:

(B2) For any compact setΓ ⊂ E and anyT > 0, the random variableζT = supt∈[0,T ] |c(Xt)| is
uniformly integrable with respect toPy for y ∈ Γ, i.e.,

lim
n→∞

sup
y∈Γ

E
y{ζT 1ζT>n} = 0.

For a continuous functionv, consider an operator

T v(x) := sup
τ∈S̄

E
x
{

∫ τ

0
e−αsf(Xs)ds+ 1τ<∞e−ατMv(Xτ )

}

, (10)

whereMv(x) := supξ∈U [c(x, ξ) + v(ξ)] and its approximation

TLv(x) := sup
τ∈S̄

E
x
{

∫ τ

0
e−αsf(Xs)ds + e−ατMLv(Xτ )

}

with MLv(x) := supξ∈U [c(x, ξ)∨ (−L)+ v(ξ)]. In the definition of operatorTL, the indicator1τ<∞

is omitted intentionally asMLv is bounded, so for infinite value ofτ the discounting makes that term
equal0.

Define a functional with a truncated cost function

JL
α

(

x, (τi, ξi)
)

= E
x
{

∫ ∞

0
e−αsf(Xs)ds+

∞
∑

i=1

e−ατi
(

c(Xτi−, ξi) ∨ (−L)
)

}

, (11)

and denote its optimal value byvLα (x).

2Recall that(τi, ξi) is an admissible strategy if(τi) is a non-decreasing sequence of stopping times fromS̄ andξi ∈ U

areFτi -measurable random variables. For more details including construction of the controlled process, see the introduc-
tion.
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Lemma 3.1. Assume (B2) and thatv is a continuous function with‖v‖ ≤ ‖f‖/α. For eachn ≥ 1,
the limits

lim
L→∞

T n
L v(x) = T nv(x), lim

L→∞
MLT

n
L v(x) = MT nv(x)

are uniform inx from compact sets.

Proof. DefineTT v(x) = supτ E
x
{ ∫ τ∧T

0 e−αsf(Xs)ds + 1τ≤T e
−ατMv(Xτ )

}

. Take any stopping
time τ and letτ̂ = τ1τ≤T +∞1τ>T ∈ S̄. Thenτ̂ brings up the same value of the functional forT as
τ brings in functional forTT . HenceT v ≥ TT v. Due to the boundedness ofMv(x) from above by
‖f‖/α, we have for anyT > 0

T v(x)− TTv(x) ≤ sup
τ

E
x
{

∫ τ

τ∧T
e−αsf(Xs)ds+ 1T<τ<∞e−ατMv(Xτ )

}

≤ sup
τ

E
x
{‖f‖

α

(

e−α(τ∧T ) − e−ατ
)

+ 1T<τ<∞e−ατ ‖f‖

α

}

= sup
τ

E
x
{

1τ>T e
−αT ‖f‖

α

}

= e−αT ‖f‖

α
.

Similarly,

0 ≤ TLv(x) − sup
τ

E
x
{

∫ τ∧T

0
e−αsf(Xs)ds+ 1τ≤T e

−ατMLv(Xτ )
}

≤ e−αT ‖f‖

α
.

Hence,

0 ≤ TLv(x) − T v(x) ≤ sup
τ

E
x
{

1τ≤T e
−ατ

(

Mv(Xτ )−MLv(Xτ )
)}

+ 2e−αT ‖f‖

α

≤ E
x{ζT 1ζT>L}+ 2e−αT ‖f‖

α
,

whereζT is defined in assumption (B2). The second term can be made arbitrarily small by choos-
ing T sufficiently large. The first term converges to0 asL → ∞ uniformly in x from compact
sets by (B2). Hence,TLv(x) converges, asL → ∞, to T v(x) uniformly in x from compact sets.
Then,limL→∞MLTLv(x) = MT v(x) uniformly on compacts. Proceeding by induction and using
arguments similar to those above, the proof of the lemma is completed.

Lemma 3.2. Assume (B2) and thatv is a continuous function with‖v‖ ≤ ‖f‖/α. Then in(10) the
supremum can be restricted to finite stopping times:

T v(x) = sup
τ∈S

E
x

{
∫ τ

0
e−αsf(Xs)ds+ e−ατMv(Xτ )

}

. (12)

Proof. From the proof of Lemma 3.1,ε-optimal stopping timesτ for T v(x) take values in[0, T ] ∪
{∞} for someT depending onε. Under assumption (A2) there is a compact setK ⊂ E with µ(K) >
0, so it is recurrent. Defineσ1 = inf{t ≥ T : Xt ∈ K} andσn+1 = inf{t ≥ σn + 1 : Xt ∈ K}.
Thenσn < ∞ and limn→∞ σn = ∞. Set τn = τ ∧ σn. The boundedness ofMv on K and
boundedness off yield then

E
x

{
∫ τ

0
e−αsf(Xs)ds + 1τ<∞e−ατMv(Xτ )

}

= lim
n→∞

E
x

{
∫ τn

0
e−αsf(Xs)ds + e−ατnMv(Xτn)

}

.
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The finding of the above lemma that the supremum in (10) can be restricted to finite stopping
times will be used implicitely in the proof of Theorem 3.3.

Theorem 3.3. Under the assumptions (A1) and (B2), the functionvα is continuous and it is a solution
to the equation

vα(x) = sup
τ∈S

E
x

{
∫ τ

0
e−αsf(Xs)ds+ e−ατMvα(Xτ )

}

, (13)

whereMv(x) := supξ∈U [c(x, ξ) + v(ξ)]. Furthermore,|vα| ≤
‖f‖
α

and it is approximated byvLα(x)
uniformly inx from compact sets.

Proof. Without loss of generality we can assume thatf ≥ 0 in (9). Notice also that if‖v‖ ≤ ‖f‖/α,
then ‖T v‖ ≤ ‖f‖/α. Let r(x) = E

x
{∫∞

0 e−αsf(Xs)ds
}

be the resolvent off . The sequence
T nr(x) is nondecreasing and bounded, therefore converges to a fixedpoint of the equation (13).
Thanks to the boundedness of the functionalJL

α , classical results yield that the functionT n
L r(x) is

continuous. By Lemma 3.1,T n
L r(x) → T nr(x) asL → ∞ uniformly in x from compact sets, which

implies the continuity ofT nr(x). Using standard supermartingale arguments of Theorem V.2.1 and
Lemma II.2.2 in [15] one can show thatT n

L r(x) corresponds to the optimal value of the functional
JL
α

(

x, (τi, ξi)
)

over impulse strategies consisting of at mostn impulses. For a fixed strategy(τi, ξi)
monotone convergence theorem implieslimL→∞ JL

α

(

x, (τi, ξi)
)

= Jα
(

x, (τi, ξi)
)

. Hence,T nr(x) is
the optimal value of the functionalJα

(

x, (τi, ξi)
)

for strategies restricted to at mostn impulses.
For ε > 0, let Vε be anε-optimal strategy forvα(x). Denote byNT the number of impulses of

this strategy up to and including timeT . Then

−
‖f‖

α
− ε ≤ Jα

(

x, Vε

)

≤
‖f‖

α
+ e−αT cEx {NT } ,

from which it follows thatEx {NT } ≤ eαT

−c

(

2‖f‖
α

+ ε
)

. Denote byVε,n the strategyVε restricted to

n impulses. ForT > 0 using the above bound forEx{NT }, we obtain

∣

∣Jα
(

x, Vε

)

− Jα
(

x, Vε,n

)∣

∣ ≤ 2
‖f‖

α
E
x
{

e−ατn+1
}

≤ 2
‖f‖

α
E
x
{

e−αT 1τn+1>T + 1τn+1≤T

}

≤ 2
‖f‖

α

(

e−αT + P
x {NT ≥ n+ 1}

)

≤ 2
‖f‖

α

(

e−αT +
eαT

−(n+ 1)c

(

2
‖f‖

α
+ ε

))

.

Since the right-hand side does not depend onx, lettingn → ∞ thenT → ∞ and taking into account
theε-optimality ofVε we have thatT nr(x) converge uniformly (inx ∈ E) to vα(x). Identically, we
provelimn→∞ supL≥−c |T

n
L r(x)− vLα (x)| = 0 uniformly in x ∈ E. This, together with assertions of

Lemma 3.1, implies thatvLα (x) → vα(x) uniformly in x from compact sets.

Remark 3.4. In the case whenc is bounded the assertions of Theorem 3.3 follow directly from [15]
or [18].

Fix z ∈ U . It will be an anchor point for further definition of functionswα. We have the following
bounds forvα and for the differencevα(x)− vα(z).

Lemma 3.5. We havevα(x) ≥ c(x, z) + vα(z) for x ∈ E and

c(x, z) ≤ vα(x)− vα(z) ≤ −c(z, x) for x ∈ U. (14)
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Proof. Clearly, vα(x) ≥ Mvα(x) ≥ c(x, z) + vα(z). Wheneverx ∈ U we also havevα(z) ≥
Mvα(z) ≥ c(z, x) + vα(x).

Definewα(x) = vα(x) − vα(z) for x ∈ E. We deduce from Lemma 3.5 a bound onwα on U
which is independent ofα:

sup
x∈U

|wα(x)| ≤ sup
x∈U

{|c(x, z)| ∨ |c(z, x)|} := κ. (15)

From (13) we obtain easily the following equation forwα

wα(x) = sup
τ∈S

E
x

{
∫ τ

0
e−αs(f(Xs)− αvα(z))ds + e−ατMwα(Xτ )

}

. (16)

DefineDU = inf {s ≥ 0 : Xs ∈ U} andt(x) = E
x {DU}. We make the following assumption

(B3) For any compact setΓ ⊂ E we havesupx∈Γ t(x) < ∞.

Lemma 3.6. Under assumption (B3)

c(x, z) ≤ wα(x) ≤ E
x {DU} ‖f − αvα(z)‖ + κ. (17)

Proof. DefinewL
α(x) = vLα(x)− vLα (z). Similarly as above, we show

wL
α(x) = sup

τ
E
x

{
∫ τ

0
e−αs(f(Xs)− αvα(z))ds + e−ατMLw

L
α(Xτ )

}

andsupx∈U |wL
α(x)| ≤ κ. SinceMLw

L
α is bounded, standard supermartingale results yield that for

any stopping timeσ

wL
α(x) = sup

τ
E
x

{
∫ τ∧σ

0
e−αs(f(Xs)−αvLα (z))ds+1τ<σe

−ατMLw
L
α(Xτ )+1σ≤τ e

−ασwL
α(Xσ)

}

.

Apply the above formula forσ = DU and, taking into account negativity ofc and the upper bound
on wL

α on U , observe thatMLw
L
α(Xτ ) ≤ κ andwL

α(XDU
) ≤ κ. HencewL

α(x) ≤ E
x {DU} ‖f −

αvLα (z)‖ + κ. Since by Theorem 3.3vLα (x) converges tovα(x) uniformly in x from compact sets,
taking in the above inequality the limitL → ∞ gives (17). Finally, by Lemma 3.5,c(x, z) ≤
wα(x).

Lemma 3.7. For eachx ∈ E
lim inf
α→0

αvα(x) ≥ µ(f). (18)

Proof. Let Rαf(x) := E
x
{∫∞

0 e−αsf(Xs)ds
}

be the resolvent off . Fromvα(x) ≥ Rαf(x) we
have

lim inf
α→0

αvα(x) ≥ lim inf
α→0

αRαf(x) = lim inf
α→0

∫ ∞

0
e−uP u

α
f(x)du = µ(f).

Recall thatqα(x) = E
x
{∫∞

0 e−αs
(

f(Xs)− µ(f)
)

ds
}

. We shall assume thatqα is uniformly in
α bounded from below.
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(B4) sup
α∈[0,1]

‖q−α ‖ < ∞, whereq−α stands for the negative part ofqα.

Lemma 3.8. Under (A1), (A2) and (B3), if the setKf := {x ∈ E : f(x) ≤ µ(f)} is compact then
(B4) holds.

Proof. We havef(x) ≥ µ(f) onKc
f , so

qα(x) = E
x

{
∫ DU∧DKf

0
e−αs(f(Xs)− µ(f))ds+ e

−αDU∧DKf qα(XDU∧DKf
)

}

≥ E
x
{

e
−αDU∧DKf qα(XDU∧DKf

)
}

≥ − sup
y∈U∪Kf

q−α (y),

whereDKf
= inf{t ≥ 0 : Xt ∈ Kf}. By Lemma 2.2,qα is continuous, and converges toq, as

α → 0, uniformly on compact sets, hence the last term in the expression above is uniformly bounded
in α ∈ [0, 1].

Since for any stopping timeτ ∈ S andα > 0

qα(x) = E
x

{
∫ τ

0
e−αs(f(Xs)− µ(f))ds+ e−ατ qα(Xτ )

}

we obtain from (16)

wα(x)− qα(x) = sup
τ∈S

E
x

{
∫ τ

0
e−αs

(

µ(f)− αvα(z)
)

ds+ e−ατ
(

Mwα(Xτ )− qα(Xτ )
)

}

. (19)

Clearly, ε-optimal stopping times in (16) and (19) coincide. In the following lemma we provide an
upper bound on them.

Lemma 3.9. Assume (B4) and thatv := lim supα→0 αvα(z) > µ(f). Then for anyδ < v − µ(f)
and anyα ∈ Λ := {α′ : α′vα′(z) > µ(f) + δ} we may restrict ourselves in(16)and (19) to stopping
timesτ satisfying the bound

E
x

{

1

α
(1− e−ατ )

}

−
1

αvα(z) − µ(f))
E
x
{

e−ατ c̄(Xτ )
}

≤ Z(x), (20)

whereZ(x) = supα∈(0,1)
κ+ǫ+‖q−α ‖+qα(x)−c(x,z)

δ
for an arbitrarily small ε > 0. Moreover,Z(x) is

bounded on compact sets.

Proof. Lemma 2.2 and assumption (B4) imply thatsupα∈(0,1)
(

‖q−α ‖ + qα(x) − c(x, z)
)

is bounded
on compact sets and, therefore, so isZ(x). For a givenε > 0, everyε-optimal stopping time in (19)
satisfies

wα(x)− qα(x)− ε ≤ (µ(f)−αvα(z))E
x

{

1

α
(1− e−ατ )

}

+E
x

{

e−ατ sup
a∈U

c(Xτ , a)

}

+κ+ ‖q−α ‖.

Therefore,

(αvα(z) − µ(f))Ex

{

1

α
(1− e−ατ )

}

− E
x
{

e−ατ c̄(Xτ )
}

≤ κ+ ε+ ‖q−α ‖+ qα(x)− c(x, z) ≤ Z(x)(αvα(z)− µ(f)),

from which we obtain (20).
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Complementing the above result are the following simple lemmas.

Lemma 3.10. For any non-negative random variableτ andα > 0

P{τ > T} ≤
E
{

1
α
(1− e−ατ )

}

1
α
(1− e−αT )

.

Proof. Notice thatt 7→ 1
α
(1− e−αt) is increasing forα > 0, hence

E
{ 1

α
(1− e−ατ )

}

≥ P{τ > T}
1

α
(1− e−αT ).

Lemma 3.11. The mappingx 7→ Mwα(x) is uniformly inα ∈ (0, 1) equicontinuous on each compact
subset ofE.

Proof. The assertion is a consequence of the estimate|Mwα(x) − Mwα(x
′)| ≤ supξ∈U |c(x, ξ) −

c(x′, ξ)|.

Recalling thatc(x) = infa∈U c(x, a), we assume

(B5) For any compact setΓ ⊂ E and a sequence of eventsAT ∈ FT , T > 0, we have

lim
T→∞

sup
x∈Γ

P
x {AT } = 0 =⇒ lim

T→∞
sup
x∈Γ

E
x{1AT

|c(XT )|} = 0.

In a classical case whenc is bounded, (B5) is trivially satisfied.

Theorem 3.12. Under (A1)-(A2), (B1)-(B5), iflim supα→0 αvα(z) =: λ > µ(f) then there exist a
continuous functionw which is a solution to the following equation

w(x) = sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds +Mw(Xτ∧T )

}

. (21)

Moreoverw(z) = 0,
c(x, z) ≤ w(x) ≤ E

x {DU} ‖f − λ‖+ κ, (22)

and
c(x)− κ ≤ Mw(x) ≤ κ. (23)

For any impulse strategyV = (τi, ξi), such thatEx {τi} < ∞ for eachi, we have that

w(x) ≥ E
x
{

∫ τn

0

(

f(Xs)− λ
)

ds+
n
∑

i=1

c(Xτi−, ξi) + w(ξn)
}

, (24)

where(Xs) denotes the process controlled by the strategyV . We have equality in(24) for the strategy
V ∗ = (τ∗i , ξ

∗
i ) defined as follows:τ∗1 = inf {s ≥ 0 : w(Xs) = Mw(Xs)}, τ∗n+1 = τ∗n + τ∗1 ◦ θτ∗n ,

whereθt is a Markov shift operator, andξ∗n = ξ̂(Xn
τ∗n
), whereξ̂ : E 7→ U is a Borel measurable

function such thatMw(y) = c(y, ξ̂(y)) +w(ξ̂(y)) for y ∈ E. Moreover,x 7→ E
x{τ∗1 } is bounded on

compact sets.
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Proof. By local compactness of the state spaceE and Lemma 3.11 there is a continuous functionv
such thatMwα(x) → v(x) uniformly on compact sets over a suitable sequence ofα → 0. Therefore,
we can choose a sequenceαn → 0 such thatlimn→∞ αnvαn(z) = λ, αnvαn(z) > µ(f)+ δ for some
δ > 0, andMwαn(x) → v(x) uniformly on compact sets. Let

w(x) := sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0

(

f(Xs)− λ
)

ds+ v(Xτ∧T )

}

. (25)

We are going to show that along a subsequencewαn(x) → w(x) uniformly on compact subsets as
n → ∞. For this purpose we consider finite time approximations. Let

wT
αn

(x) = sup
τ

E
x

{
∫ τ∧T

0
e−αns

(

f(Xs)− αnvαn(z)
)

ds+ e−αnτ∧TMwαn(Xτ∧T )

}

, (26)

andwT (x) = supτ E
x
{

∫ τ∧T
0 (f(xs)− λ)ds+ v(xτ∧T )

}

. Then

w(x)−wαn(x) =
(

w(x)−wT (x)
)

+
(

wT (x)−wT
αn

(x)
)

+
(

wT
αn

(x)−wαn(x)
)

= (I)+(II)+(III).
(27)

To address the convergence of the third term of (27) we write

0 ≤ wαn(x)− wT
αn

(x)

≤ sup
τ∈S

E
x

{
∫ τ

0
e−αns(µ(f)− αnvαn(z))ds + e−αnτ (Mwαn(Xτ )− qαn(Xτ ))

−

∫ τ∧T

0
e−αns(µ(f)− αnvαn(z))ds − e−αnτ∧T (Mwαn(Xτ∧T )− qαn(Xτ∧T ))

}

≤ sup
τ∈S

E
x

{
∫ τ

τ∧T
e−αns(µ(f)− αnvαn(z))ds

+ 1τ≥T

[

e−αnτMwαn(Xτ )− e−αnTMwαn(XT )− e−αnτqαn(Xτ ) + e−αnT qαn(XT )
]

}

.

(28)
Recall from Lemma 3.9 that in the above we can restrict attention to stopping times which satisfy the
bound

E
x

{

1

αn
(1− e−αnτ )

}

≤ Z(x) (29)

for a functionZ(x) which is independent fromn and bounded on compact sets. Note also that for
α > 0 we have

c(x)− κ ≤ Mwα(x) ≤ κ. (30)

Hence,

E
x

{
∫ τ

τ∧T
e−αns

(

µ(f)− αnvαn(z)
)

ds

+ 1τ≥T

[

e−αnτMwαn(Xτ )− e−αnTMwαn(XT )− e−αnτqαn(Xτ ) + e−αnT qαn(XT )
]

}

≤ E
x
{

1τ≥T e
−αnT

(

2κ+ ‖q−αn
‖ − c(XT ) + qαn(XT )

)}

≤ (2κ + ‖q−αn
‖)

Z(x)
1
αn

(eαnT − 1)
+ E

x
{

1τ≥T e
−αnT

(

− c(XT ) + qαn(XT )
)}

≤ (2κ + ‖q−αn
‖)
Z(x)

T
+ E

x
{

1τ≥T e
−αnT

(

− c(XT ) + qαn(XT )
)}

,

(31)
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where we used (29) and Lemma 3.10 and finally the fact thateαnT − 1 ≥ αnT . Therefore, by
assumptions (B4)-(B5), (6) and (31), for anyη > 0 and any compact setΓ there isT such that
wαn(x)− wT

αn
(x) ≤ η for all x ∈ Γ and alln.

From (30) we have that
c(x)− κ ≤ v(x) ≤ κ. (32)

Notice that

|Ex {Mwαn(Xτ∧T )− v(Xτ∧T )} | ≤
∣

∣E
x
{

1ρ(x,Xτ∧T )≤R(Mwαn(Xτ∧T )− v(Xτ∧T ))
}
∣

∣

+ E
x
{

1ρ(x,Xτ∧T )≥R(2κ− c(Xτ∧T ))
}

= aαn + bR.
(33)

For a fixedR we have thatlimn→∞ aαn = 0 for x in compact sets by the definition ofv in the
beginning of the proof. The termbR can be made arbitrarily small uniformly inx in compact subsets
of E, sincebR ≤ E

x
{

1ρ(x,Xτ∧T )≥R(2κ+ L)
}

+ E
x{1ζT>LζT }, whereζT is defined in (B2). Now

letting R → ∞ (using assumption (A1) and [11, Proposition 2.1]) and thenL → ∞ we obtain that
bR → 0. Hence, for each fixedT we have uniformly inx in compact subsets ofE that

wT
αn

(x) = sup
τ

E
x

{
∫ τ∧T

0
e−αns(f(Xs)− αnvαn(z))ds + e−αn(τ∧T )Mwαn(Xτ∧T )

}

→ sup
τ

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds + v(Xτ∧T )

}

= wT (x),

(34)

which provides a uniform on compacts bound on term (II) of (27).
Finally, we estimate term (I) of (27). From the form (25) ofw(x) by Lemma 2.2 using (5) we

obtain
w(x)− q(x) = sup

τ∈S̄

lim inf
T→∞

E
x {(µ(f)− λ)(τ ∧ T ) + v(Xτ∧T )− q(Xτ∧T )} . (35)

Since for eachε > 0 there is a boundedε-optimal stopping timeτ , in analogy to the proof of Lemma
3.9, using (32), we obtain

c(x)− κ− q(x)− ε ≤ v(x)− q(x)− ε ≤ w(x) − q(x)− ε ≤ (µ(f)− λ)Ex{τ}+ κ+ ‖q−‖.

Therefore, we may restrict ourselves in (35) as well as in (25) to stopping times satisfying

E
x {τ} ≤

2κ+ ‖q−‖+ q(x)− c(x) + 1

λ− µ(f)
. (36)

Consequently, similarly to (28) we have

0 ≤ w(x) −wT (x) ≤ sup
τ

{

1τ≥T

(

v(Xτ ) + ‖q−‖ − v(XT ) + q(XT )
)}

≤ sup
τ

{

1τ≥T

(

2κ+ ‖q−‖ − c(XT ) + q(XT )
)}

.
(37)

Since we may restrict ourselves to stopping timesτ satisfying (36), Tchebyshev inequality, Lemma
2.2 and assumptions (B4)-(B5) imply thatwT (x) → w(x) uniformly inx from compact subsets ofE.

Summarizing now (31), (34) and (37) we obtain thatwαn(x) → w(x) uniformly in x from com-
pact subsets ofE. Consequently,Mwαn(x) → Mw(x) uniformly in x from compact subsets ofE.
This proves thatv(x) = Mw(x) which completes the proof of the first part of Theorem. Noticethat
(22) follows directly from (17), while (23) follows from (30).
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Take any impulse strategyV = (τi, ξi) with integrable impulse times. For anyα > 0, by strong
Markov property of(Xt) and using approximations with bounded cost operatorsML as in the proof
of Theorem 3.3 we show

vα(x) ≥ E
x
{

∫ τk

0
e−αsf(Xs)ds+

k
∑

i=1

e−ατic(Xτi−, ξi) + e−ατkvα(ξk)
}

.

Subtractvα(z) from both sides to get

wα(x) ≥ E
x
{

∫ τk

0
e−αs (f(Xs)− αvα(z)) ds+

k
∑

i=1

e−ατic(Xτi−, ξi) + e−ατkwα(ξk)
}

. (38)

Sincewαn converges uniformly on compact sets tow, limn→∞ αnvαn(z) = λ, andEx {τk} < ∞
we obtain (24) from (38). By [13, Theorem 4.8]3 the stopping timeτ∗1 is optimal for the Bellman
equation (21). By (36) we have thatx 7→ E

x {τ∗1 } is bounded on compact sets. Therefore for strategy
V ∗ we have equality in (24), which completes the proof.

Proposition 3.13. Under assumptions of Theorem 3.12 if the cost for impulses isin a separated form
c(x, ξ) = d(x) + e(ξ), whered ande are continuous functions, we have

sup
x∈U

sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds + d(Xτ∧T ) + e(x)

}

= 0, (39)

and

λ = sup
x∈U

sup
τ

E
x
{∫ τ

0 f(Xs)ds + d(Xτ ) + e(x)
}

Ex {τ}
. (40)

The suprema in(39) and (40) are attained forx̂ = argmaxξ∈U [w(ξ) + e(ξ)] and τ̂ = inf
{

s ≥ 0 :
w(Xs) = Mw(Xs)

}

. Furthermore, the measure

η(A) :=
E
x̂
{

∫ τ̂

0 1A(Xs)ds
}

Ex̂ {τ̂}
. (41)

for A ∈ E is a unique invariant measure for controlled process(X∗
s ) using the strategyV ∗ = (τ∗i , ξ

∗
i )

defined asτ∗1 = τ̂ , τ∗n+1 = τ∗n + τ̂∗ ◦ θτ∗n , andξ∗i = x̂.

Proof. Note thatMw(x) = supξ∈U [w(ξ) + e(ξ)] + d(x). Then (21) has the form

w(x) = sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds + d(Xτ∧T ) + sup

ξ∈U
[w(ξ) + e(ξ)]

}

.

Whenx ∈ U we have

w(x) ≥ sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds + d(Xτ∧T ) + [w(x) + e(x)]

}

,

from which

0 ≥ sup
τ

lim inf
T→∞

E
x

{
∫ τ∧T

0
(f(Xs)− λ)ds + d(Xτ∧T ) + e(x)

}

(42)

3All assumptions of Theorem 4.8 in [13] apart from (C3) are trivially satisfied. Assumption (C3) follows from (B4) and
[13, Remark 4.6].
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with equality forx = x̂. Recall from Theorem 3.12 thatEx{τ̂} < ∞ for x ∈ E, so in (42) we can
consider integrable stopping times only and, therefore, skip the limit (c.f. [13, Lemma 4.2]). Hence,
for any stopping timeτ andx ∈ U such thatEx {τ} < ∞ we obtain

λ ≥
E
x
{ ∫ τ

0 f(Xs)ds + d(Xτ ) + e(x)
}

Ex{τ}

with equality wheneverx = x̂ andτ = τ̂ . Finally, under controlV ∗ = (τ∗i , ξ
∗
i ) the controlled process

(X∗
s ) is Markovian with the transition operatorP∗(x,A) :=

∑∞
i=0 E

x
{

1τ∗i ≤t<τ∗i+1
1A(x

i+1
t )

}

, with

τ∗0 := 0 andxit as defined in Section 1 where the construction of controlled process was sketched. By
direct calculation, similarly to the formula (4.14) in the proof of [8, Theorem 4.1], one can show that
η defined in (41) is in fact an invariant measure for(X∗

s ). SinceEx {τ∗1 } < ∞ for x ∈ E, the process
(X∗

s ) entersx̂ infinitely often and thereforeη is the unique invariant measure.

The proof of the following lemma follows immediately from [13, Lemma 4.11].

Lemma 3.14. Under assumptions of Theorem 3.12 , the processZt :=
∫ t

0

(

f(Xs)−λ
)

ds+w(Xt) is
a right-continuousPx-supermartingale for anyx ∈ E. Moreover, for a bounded stopping timeσ and
an arbitrary stopping timeτ

E
x
{

∫ σ

0

(

f(Xs)−λ
)

ds+Mw(Xσ)
}

≤ E
x
{

∫ τ∧σ

0

(

f(Xs)−λ
)

ds+1σ<τMw(Xσ)+1σ≥τw(Xτ )
}

.

(43)

Lemma 3.15. Under assumptions of Theorem 3.12

max {c(x, z),Ex {DU} (−‖f‖ − λ)− κ− ‖c‖U}

≤ w(x) ≤ min
{

q(x) + κ+ sup
α∈(0,1)

‖q−α ‖,E
x {DU} ‖f − λ‖+ κ

}

(44)

for x ∈ E, where‖c‖U = supy∈U |c(y)|. If, additionally,f(x)−λ ≤ 0 for x outside of some compact
setK, thenw is bounded from above.

Proof. In view of (22), to prove (44) it remains to show

E
x {DU} (−‖f‖ − λ)− κ− ‖c‖U ≤ w(x) ≤ q(x) + κ+ sup

α∈(0,1)
‖q−α ‖. (45)

From (21) we have thatw(x) ≥ E
x
{

∫DU

0 (f(Xs)− λ)ds +Mw(XDu)
}

and, therefore, by (23) we

obtain the first inequality in (45). Combining (19) with (23)yields

wα(x)− qα(x) ≤ sup
τ

E
x

{
∫ τ

0
e−αs(µ(f)− αvα(z))ds + e−ατ (κ+ sup

α∈(0,1)
‖q−α ‖)

}

. (46)

Take a sequenceαn → 0 such thatwαn(x) → w(x). By Lemma 2.2qαn(x) → q(x). Hence (46)
impliesw(x) ≤ q(x) + κ+ supα∈(0,1) ‖q

−
α ‖), which completes the proof of the second inequality in

(45).
Let nowΓ be a compact set that contains the setsU andK. Since the supremum in the definition

of w can be taken over bounded stopping times, from Lemma 3.14 we get

w(x) ≤ sup
τ -bounded

E
x

{
∫ τ∧DΓ

0
(f(Xs)− λ)ds+ 1τ<DΓ

Mw(Xτ ) + 1DΓ≤τw(XDΓ
)

}

. (47)
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Using (23) and observing that the integrand is negative outside ofΓ, we obtain

w(x) ≤ sup
τ

E
x {1τ<DΓ

κ+ 1DΓ≤τ‖w‖Γ} ,

where‖w‖Γ = supy∈Γ |w(y)| < ∞ by the continuity ofw. Consequentlyw(x) ≤ κ ∨ ‖w‖Γ, which
completes the proof.

To infer from the solution of the Bellman equation (21) thatλ is the optimal value, we will need
the following Tauberian theorem.

Lemma 3.16. For a bounded functionf and sequences of random variablesYi ≤ 0, τi ≥ 0 with (τi)
being an increasing sequence we have

lim inf
T→∞

1

T

(
∫ T

0
f(s)ds+ E

{

∞
∑

i=1

1τi≤TYi

}

)

≤ lim inf
α→0

α

(
∫ ∞

0
e−αsf(s)ds+ E

{

∞
∑

i=1

1τi<∞e−ατiYi

}

)

.

(48)

Proof. Let a = lim infT→∞
1
T

(

∫ T

0 f(s)ds+ E

{

∑∞
i=1 1τi≤TYi

})

. If a = −∞ then the inequality

is obvious. Otherwise, for everyε > 0 there isM > 0 such that

a− ε ≤
1

T

(

∫ T

0
f(s)ds+ E

{

∞
∑

i=1

1τi≤TYi

})

for all T ≥ M . Using the representatione−αt =
∫∞
t

αe−αudu we write

α

(
∫ ∞

0
e−αsf(s)ds+ E

{

∞
∑

i=1

1τi<∞e−ατiYi

}

)

=

∫ ∞

0
f(s)

∫ ∞

s

α2e−αududs+ E

{

∞
∑

i=1

Yi

∫ ∞

0
α2e−αu1τi≤udu

}

. (49)

For anyL > 0 and any positive integern we can apply Fubini’s theorem:

E

{

n
∑

i=1

(

Yi ∨ (−L)
)

∫ ∞

0
α2e−αu1τi≤udu

}

=

∫ ∞

0
α2e−αu

E

{

n
∑

i=1

1τi≤u

(

Yi ∨ (−L)
)

}

du.

LettingL → ∞ andn → ∞, monotone convergence theorem yields

E

{

∞
∑

i=1

Yi

∫ ∞

0
α2e−αu1τi≤udu

}

=

∫ ∞

0
α2e−αu

E

{

∞
∑

i=1

1τi≤uYi

}

du.

Therefore from (49) we obtain

α

(
∫ ∞

0
e−αsf(s)ds+ E

{

∞
∑

i=1

1τi<∞e−ατiYi

}

)

=

∫ ∞

0
α2e−αu

(
∫ u

0
f(s)ds+ E

{

∞
∑

i=1

Yi1τi≤u

}

)

du

≥ α2M
(

‖f‖+ E

{

∞
∑

i=1

Yi1τi≤M

})

+ (a− ε)

∫ ∞

M

α2e−αuu du.
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Lettingα → 0, the right-hand side converges toa− ε, since the finiteness ofa implies that

E
{

∞
∑

i=1

1τi≤MYi

}

> −∞

for all M > 0. This completes the proof sinceε can be taken arbitrarily small.

Recall that a strategyV = (τi, ξi) is admissiblefor x ∈ E if stopping timesτi increase to infinity
P
x-a.s. If, further,Ex{τi} < ∞ for all i, we call the strategyintegrable. The aim of the paper is to

maximise two types of functionals: the functionalJ(x, V ) defined in (1) over admissible strategies
V and the functionalĴ(x, V ) defined in (2) over admissible integrable strategiesV . The following
theorem links the solution to the auxiliary Bellman equation (21) with the optimal value of the above
functionals.

Theorem 3.17. Make the same assumptions as in Theorem 3.12. Denote by(τ∗i , ξ
∗
i ) the optimal

strategy from Theorem 3.12.

1. λ = supV Ĵ
(

x, (τi, ξi)
)

with the supremum over all integrable strategiesV = (τi, ξi). The

strategy(τ∗i , ξ
∗
i ) realizes the supremum:λ = Ĵ

(

x, (τ∗i , ξ
∗
i )
)

.

2. λ ≥ J
(

x, (τi, ξi)
)

for any admissible strategy(τi, ξi).

3. The strategy(τ∗i , ξ
∗
i ) is optimal for the functionalJ , that isλ = J

(

x, (τ∗i , ξ
∗
i )
)

, whenc(x, ξ) =
e(ξ) (a separated cost withd ≡ 0), or whenw is bounded from above.

Proof. From (24) for any integrable strategy(τi, ξi) we have

w(x) + λEx {τn} ≥ E
x
{

∫ τn

0
f(Xs)ds +

n
∑

i=1

c(Xτi−, ξi) + w(ξn)
}

. (50)

Sincew is bounded onU , Ex {τn} < ∞ andτn → ∞ we obtain thatλ ≥ Ĵ
(

x, (τi, ξi)
)

with equality
for the strategy(τ∗i , ξ

∗
i ) defined in Theorem 3.12, which completes the proof of assertion 1.

Fix x ∈ E and an admissible strategy(τi, ξi). Denote by(Xs) the controlled process. Recalling
thatvα is the discounted value function andwα(x) = vα(x)− vα(z) we have

wα(x) + vα(z) ≥ E
x
{

∫ ∞

0
e−αsf(Xs)ds +

∞
∑

i=1

1τi<∞e−ατic(Xτi−, ξi)
}

.

Multiply both sides byα and takelim infα→0 using Lemma 3.16 to showλ ≥ J
(

x, (τi, ξi)
)

. Here we
also use the fact thatlim infα→0 wα(x) ≤ w(x).

In the case of separated cost we use Proposition 3.13 by whichthe measureη defined in (41)
is invariant forX∗ controlled by the strategy(τ∗i , ξ

∗
i ). Then for anyT > 0 and γ we have that

E
η
{ ∫ T

0 (f(X∗
s ) − γ)ds

}

= Tη(f − γ), whereEη means that the process starts with measureη.
MoreoverX∗ is a Harris Markov process. By ergodic theorem for Harris Markov processes (see
Theorem II.1 of [3]) we obtain that

lim
T→∞

1

T
E
x
{

∫ T

0
(f(X∗

s )− γ)ds
}

= η(f − γ) (51)
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for η almost allx. To show that the above limit holds for allx ∈ E use Assumption (B3) which
implies thatEx {DU} < ∞ for anyx. Then by the proof of Theorem 3.12 (c.f. [13, Theorem 4.8])
we havesupx∈U E

x {τ̂} < ∞, i.e.,Ex{τ∗1 } < ∞ for anyx ∈ E, which implies (51) for allx. Hence,
in particular, forx̂:

lim
T→∞

1

T
E
x̂
{

∫ T

0
(f(X∗

s )− γ)ds
}

= η(f − γ). (52)

Letting in the last limitγ = − e(x̂)
Ex̂{τ̂}

we obtain

lim
T→∞

1

T
E
x̂
{

∫ T

0
f(X∗

s )ds +

∞
∑

i=1

1τ∗i ≤T e(x̂)
}

=
E
x̂
{

∫ τ̂

0 f(Xs)ds + e(x̂)
}

Ex̂ {τ̂}
= λ.

In the case of a general cost function andw bounded from above, we obtain from iterated appli-
cation of Bellman equation (21) and Lemma 3.14

w(x) + λT = E
x
{

∫ τ∗n∧T

0
f(X∗

s )ds+

n−1
∑

i=1

1τ∗i ≤T c(X
n
τ∗i −

, ξ∗i ) + w(X∗
τ∗n∧T

)
}

. (53)

There is a finite number of impulses before timeT , Px-a.s., becausec(x, ξ) ≤ c < 0 andf andw
are bounded from above. Hencelimi→∞ τ∗i = ∞, Px-a.s. Passing to the limit withn using Fatou’s
lemma and boundedness from above of all terms under expectation and dividing both sides byT yields

w(x)

T
+ λ ≤

1

T
E
x
{

∫ T

0
f(X∗

s )ds+
∞
∑

i=1

1τ∗i ≤T c(X
n
τ∗i −

, ξ∗i ) + w(X∗
T )

}

.

Taking lim infT→∞ on both sides completes the proof of optimality of(τ∗i , ξ
∗
i ) provided that one

shows thatlim infT→∞ E
x{w(X∗

T )/T} ≤ 0 and this is in the case becausew is bounded from above.

Boundedness ofw, required above for proving the optimality of(τ∗i , ξ
∗
i ) for the functionalJ , is

established in the following lemma.

Lemma 3.18. Assume (A1), (A2). Ifµ(f) < lim inf‖x‖→∞ f(x) then q is bounded from below.
Assume additionally (B1)-(B5), andlim supα→0 αvα(z) = λ > µ(f). If lim sup‖x‖→∞ f(x) < λ or
q is bounded from above thenw is bounded from above.

Proof. Whenµ(f) < lim inf‖x‖→∞ f(x), boundedness from below ofq follows from Lemma 3.8. If
lim sup‖x‖→∞ f(x) < λ the setF = {x : f(x) ≥ λ} is compact. Exploiting that in (21) one may
take bounded stopping times, Lemma 3.14 implies

w(x) ≤ sup
τ -bounded

E
x
{

∫ τ∧DF∪U

0
(f(Xs)− λ)ds + 1τ≤DF∪U

Mw(Xτ ) + 1τ>DF∪U
w(XDF∪U

)
}

≤ sup
y∈U∪F

w(y),

which means thatw is bounded form above. Ifq is bounded from above then by (44) and Lemma 3.8
w is also bounded from above.
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Theorem 3.19. Under (A1), (A2), (B3) whenlim supα→0 αvα(z) = µ(f) we have thatαvα(x) →
µ(f), asα → 0, uniformly inx from compact sets and the strategy ‘do nothing’ is optimal for the
functionalJ .

Proof. By Lemma 3.7 we havelimα→0 αvα(z) = µ(f). Assume that there is a sequencexn ∈ U and
αn → 0 for which limn→∞ αnvαn(xn) > µ(f). Then

lim
n→∞

αnvαn(z) ≥ lim
n→∞

αn

(

c(z, xn) + vαn(xn)
)

> µ(f)

a contradiction. Combining it with Lemma 3.7 proveslimα→0 supy∈U αvα(y) = µ(f). Assume now
that a sequencexn is from an arbitrary compact setΓ. Assumption (B3) yieldssupn E

xn{DU} < ∞,
and this is also true when the trajectory is controlled as then the process may enterU even earlier
because each impulse shifts toU . Therefore,

lim
n→∞

αnvαn(xn) ≤ lim
n→∞

αn

(

‖f‖ sup
y∈Γ

t(y) + sup
x∈U

vαn(x)
)

= µ(f),

which together with Lemma 3.7 givesαnvαn(xn) → µ(f). In fact, the latter argument proves uniform
on compact sets convergence ofαvα(x) to µ(f). Now, by Lemma 3.16

lim inf
T→∞

1

T
E
x
{

∫ T

0
f(Xs)ds+

∞
∑

i=1

1τi≤T c(Xτi−, ξi)
}

≤ lim inf
α→0

αEx
{

∫ ∞

0
e−αsf(Xs)ds+

∞
∑

i=1

1τi<∞e−ατic(Xτi−, ξi)
}

≤ lim inf
α→0

αvα(x) = µ(f).

Sincesup(τi,ξi) J
(

x, (τi, ξi)
)

≥ µ(f), it is clear that the strategy ‘do nothing’ is optimal.

4 Relaxation of assumption on q

In the previous section we required that the functionf is such that its potentialq is bounded from
below, and we constructed an optimal strategy whenw was bounded from above, c.f. Lemma 3.18.
We shall now approximate a general continuous boundedf by functions with potentials bounded from
below and correspondingw being bounded above. Without loss of generality we can restrict ourselves
to functionsf which are nonnegative. We also assume thatf is not constantµ-a.s.; otherwise the
control problem is trivial. The main result of this section is Theorem 4.8 which shows that the optimal
value of the functional (1) for a general continuous boundedf does not depend onx and provides
explicit construction ofε-optimal control strategies.

Let Bz,N be a ball with center inz and radiusN (z ∈ U is the point fixed in the previous section
for the definition ofwα). Forη ∈ (µ(f), ‖f‖) define

fN (x) = f(x)(1− ρ(x,Bz,N ))+ + η(1 − ρ(x,Bc
z,N+1))

+. (54)

Lemma 4.1. We have‖fN‖ ≤ ‖f‖ and limN→∞ µ(fN ) = µ(f). For sufficiently largeN the set
{x : fN (x) ≤ µ(fN )} is contained inBz,N+1.

Proof. The bound for the norm offN follows easily from the definition. Thenµ(fN ) = µ(f) +
µ(fN − f) ≤ 2‖f‖µ(Bz,N+1) → 0 asN → ∞. The remaining claim of the lemma is now obvious.
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For an admissible impulse strategyV = (τi, ξi) andδ ∈ (0,−c) we define three functionals

JN,c
(

x, V
)

= lim inf
T→∞

1

T
E
x
{

∫ T

0
fN (Xs)ds+

∞
∑

i=1

1τi≤T c(Xτi−, ξi)
}

,

JN,c+δ
(

x, V
)

= lim inf
T→∞

1

T
E
x
{

∫ T

0
fN (Xs)ds+

∞
∑

i=1

1τi≤T

(

c(Xτi−, ξi) + δ
)

}

,

JN,δ
(

x, V
)

= lim inf
T→∞

1

T
E
x
{

∫ T

0
(f(Xs)− fN (Xs))ds −

∞
∑

i=1

1τi≤T δ
}

,

related value functions

λ̄(x) = sup
V

J
(

x, V
)

, λ̄N,c(x) = sup
V

JN,c
(

x, V
)

,

λ̄N,c+δ(x) = sup
V

JN,c+δ
(

x, V
)

, λ̄N,δ(x) = sup
V

JN,δ
(

x, V
)

,

and discounted value functions

vN,c
α (x) = sup

V

E
x
{

∫ ∞

0
e−αsfN(Xs)ds+

∞
∑

i=1

1τi<∞e−ατic(Xτi−, ξi)
}

,

vN,c+δ
α (x) = sup

V

E
x
{

∫ ∞

0
e−αsfN(Xs)ds+

∞
∑

i=1

1τi<∞e−ατi
(

c(Xτi−, ξi) + δ)
}

,

vN,δ
α (x) = sup

V

E
x
{

∫ ∞

0
e−αs

(

f(Xs)− fN(Xs)
)

ds− δ

∞
∑

i=1

e−ατi)
}

,

with vα defined in Section 3.
The introduction of the costδ > 0 is only for technical reasons so that we can use results from

previous sections to characteriseλ̄N,δ(x) which evaluates the difference between two running costs.
We will prove thatlimN→∞ λ̄N,δ(x) = 0 which, intuitively, should hold forδ = 0 for most ergodic
processes. Indeed, impulses can only shift the process to a compact setU and uncontrolled process
will spend little time in the complement of a sufficiently large ballBc

z,N asµ(Bc
z,N ) → 0 asN → ∞.

Providing an accurate proof of this fact is beyond the scope of this paper and we will assumeδ > 0.
Our goal now is to choose suchη in the definition offN that η < lim supα→0 αv

N,c
α (z), i.e.,

by Lemma 3.18 and Theorem 3.17 functionλ̄N,c(x) is constant and there is a strategy realising this
value. This will be further used to show thatλ̄ is constant and to provideε-optimal strategies for the
functionalJ . So far we can only establish thatλ̄ is constant onU and this value is a lower bound for
λ̄ onE.

Lemma 4.2. Functionλ̄ is constant onU and λ̄(x) ≥ λ̄(z) for anyx ∈ E.

Proof. Takex, y ∈ U . ThenJ(x, V ) ≥ limT→∞
c(x,y)
T

+ J(y, V ) = J(y, V ). By symmetry we
obtain the equality. Similarly, for anyx ∈ E we haveJ(x, V ) ≥ J(z, V ).

The following assumption will play a key role in establishing that limN→∞ λ̄N,δ(x) = 0. A
sufficient condition is discussed in Remark 4.5.

(C) sup
x∈U

sup
τ

E
x
{ ∫ τ

0 1Bc
z,N

(Xs)ds
}

Ex{τ}
→ 0 asN → ∞.
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Define
f̃N (x) = f(x)(1− ρ(x,Bz,N ))+ + (‖f‖+ 1)(1 − ρ(x,Bc

z,N+1))
+. (55)

Lemma 4.3. We havef̃N (x) ≥ fN(x) for x ∈ E, ‖f̃N‖ = ‖f‖+1 and the set{x : f̃N(x) ≤ µ(f̃N )}
is contained inBz,N+1.

Proof. The first claim is obvious. Sinceµ(f̃N ) ≤ µ(Bz,N )‖f‖ + µ(Bc
z,N)(‖f‖ + 1) = ‖f‖ + (1 −

µ(Bz,N )) < ‖f‖+ 1 we have that
{

x : f̃N (x) ≤ µ(f̃N )
}

⊂
{

x : f̃N (x) < ‖f‖+ 1
}

⊂ Bz,N+1.

Lemma 4.4. Under assumptions (A1), (A2) and (B3) we have

µ(f − fN ) ≤ λ̄N,δ(x) ≤ λ̃N,δ, (56)

where either

λ̃N,δ = sup
x∈U

sup
τ

E
x
{

∫ τ

0 (f̃N (Xs)− fN (Xs))ds − δ
}

Ex {τ}
, (57)

or
λ̃N,δ = µ(f̃N − fN ). (58)

Moreover,
µ(f − fN) ≤ lim inf

α→0
αvN,δ

α (z) ≤ lim sup
α→0

αvN,δ
α (z) ≤ λ̃N,δ. (59)

If, in addition, we assume (C) thenlimN→∞ |λ̄N,δ(x)| = 0 uniformly inx ∈ E andlimN→∞ λ̃N,δ = 0
for anyδ > 0.

Proof. Notice first that the set{x : f̃N(x)−fN (x) ≤ µ(f̃N −fN)} is compact for a sufficiently large
N . Indeed,f̃N (x)− fN (x) = (‖f‖+ 1− η)(1 − ρ(x,Bc

z,N+1))
+ andµ(f̃N − fN ) < ‖f‖+ 1− η

becauseµ(Bz,N > 0 for N large enough.
Lemma 3.8 implies that assumption (B4) is satisfied withf replaced byf̃N − fN . Let vNα (x) be

the optimal value of the discounted functional

E
x
{

∫ ∞

0
e−αs

(

f̃N (Xs)− fN (Xs)
)

ds−
∞
∑

i=1

e−ατiδ
}

and

λ̃N,δ(x) = sup
V

lim inf
T→∞

1

T
E
x
{

∫ T

0

(

f̃N(Xs)− fN (Xs)
)

ds − δ

∞
∑

i=1

1τi≤T

}

.

If lim supα→0 αv
N
α (z) > µ(f̃N −fN) then by Proposition 3.13,̃λN,δ is constant and of the form (57).

In the case whenlim supα→0 αv
N
α (z) = µ(f̃N − fN ), Theorem 3.19 yields (58). Inequalities (56)

now follow easily. SincevN,δ
α (z) ≤ vNα (z) andlim supα→0 αv

N
α (z) = λ̃N,δ, the right-hand inequality

in (59) holds. Lemma 3.7 yields the left-hand inequality.
We have that either̃λN,δ = µ(f̃N − fN) → 0 asN → ∞ or, from (57),

λ̃N,δ ≤ sup
x∈U

sup
τ

(2‖f‖ + 1)Ex
{

∫ τ

0 1Bc
z,N

(Xs)ds
}

Ex{τ}
→ 0 asN → ∞

by assumption (C). Easily,limN→∞ µ(f − fN ) = 0.
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Remark 4.5. Notice that assumption (C) is satisfied when(Xt) is a continuous process and

lim
N→∞

supx∈∂Bc
z,N

t(x)

infx∈U Ex{DBc
z,N

}
= 0, (60)

which means that the process returns to the setU from the boundary ofBc
z,N much faster that enters

this set starting fromU . Such property is typical for ergodic processes and is usually attained by a
suitable Lyapunov condition.

Proposition 4.6. Assume (A1), (A2), (B1)-(B3), (C) andλ̄(z) > µ(f). There isη ∈ (µ(f), ‖f‖) to be
used in the definition offN such that{x ∈ E : fN (x) ≤ µ(fN )} is compact andlim sup‖x‖→∞ fN(x)

< λ̄N,c(z) for a sufficiently largeN . Furthermore,̄λN,c is constant and the strategy given in Theorem
3.12 is optimal.

Proof. By Tauberian theorem, Lemma 3.16,lim supα→0 αvα(z) ≥ λ̄(z) > µ(f). We will show
that for anyε > 0 we havelim infα→0 αv

N,c
α (z) ≥ λ̄(z) − ε for a sufficiently largeN and any

η ∈ (µ(f), ‖f‖). For anyδ > 0 such thatc+ δ < 0 (recall that the constantc < 0 is an upper bound
on the cost functionc) we have:

lim sup
α→0

α
(

vα(z)− vN,c
α (z)

)

≤ lim sup
α→0

α
(

vα(z) − vN,c+δ
α (z)

)

+ lim sup
α→0

α
(

vN,c+δ
α (z)− vN,c

α (z)
)

.

Sincevα(z) − vN,c+δ
α (z) ≤ vN,δ

α (z), Lemma 4.4 implies thatlim supα→0 α
(

vα(z) − vN,c+δ
α (z)

)

≤

λ̃N,δ. To bound the second term we study an estimate forε-optimal strategies forvN,c+δ
α (z). Fix such

a strategy. Then

vN,c+δ
α (z)− ε ≤ E

x
{

∫ ∞

0
e−αsfN (Xs)ds +

∞
∑

i=1

1τi<∞e−ατi
(

c(Xτi−, ξi) + δ
)

}

≤
‖fN‖

α
+ (c+ δ)Ex

{

∞
∑

i=1

e−ατi
}

,

and for0 ≤ δ < −c

E
x
{

∞
∑

i=1

e−ατi
}

≤
‖fN‖
α

− vN,c+δ
α (z) + ε

−c− δ
≤

‖f‖
α

− vN,c+δ
α (z) + ε

−c− δ
. (61)

Hence, in the definition ofvN,c+δ
α strategies can be assumed to satisfy the above bound. This allows

us to compute the bound

α
(

vN,c+δ
α (z)− vN,c

α (z)
)

≤ α sup
V

E
x
{

δ

∞
∑

i=1

e−ατi
}

≤ δ
‖f‖ − αvN,c+δ

α (z) + αε

−c− δ
,

where supremum is over strategies satisfying (61). Using the lower boundvN,c+δ
α (z) ≥ −‖f‖

α
we

obtainlim supα→0 α
(

vN,c+δ
α (z) − vN,c

α (z)
)

≤ δ 2‖f‖
−c−δ

. Hence,

lim sup
α→0

α
(

vα(z)− vN,c
α (z)

)

≤ λ̃N,δ + δ
2‖f‖

−c− δ
,
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which gives

lim inf
α→0

αvN,c
α (z) ≥ lim sup

α→0
αvα(z)− λ̃N,δ − δ

2‖f‖

−c− δ
≥ λ̄(z)− λ̃N,δ − δ

2‖f‖

−c− δ
.

The last term can be made arbitrarily small by the choice ofδ sufficiently close to0. By Lemma
4.4, λ̃N,δ can be made arbitrarily close to0 for N sufficiently large. Takeε < λ̄(z) − µ(f) and
chooseN∗, δ∗ such that̃λN,δ < ε/2 for all N ≥ N∗ andδ 2‖f‖

−c−δ
< ε/2 for δ < δ∗ (notice that the

choice ofN∗, δ∗ holds uniformly inη ∈ (µ(f), ‖f‖)). Now, chooseη ∈ (µ(f), λ̄(z) − ε). Recalling
limN→∞ µ(fN ) = µ(f), we obtain thatµ(fN ) < η for sufficiently largeN . Hence{x ∈ E :
fN (x) ≤ µ(fN)} ⊂ Bz,N+1 for large enoughN , so it is compact, and

lim sup
N→∞

fN (x) = η < λ̄(z)− ε ≤ lim inf
α→0

αvN,c
α (z) ≤ lim sup

α→0
αvN,c

α (z).

Let λ = lim supα→0 αv
N,c
α (z). Clearlyλ > µ(fN ). Lemma 3.18, Theorem 3.17 and Theorem 3.12

imply that the strategy derived from the Bellman equation inTheorem 3.12 is optimal forJN,c and
λ̄N,c(x) = λ for all x.

Corollary 4.7. By the same arguments as at the end of the proof of Proposition4.6, the value function
λ̄N,c+δ is constant onE and the strategy from Theorem 3.12 is optimal.

Theorem 4.8. Assume (A1), (A2), (B1)-(B3), (C) andλ̄(z) > µ(f) for somez ∈ E. Then the function
λ̄ is constant onE and for anyε > 0 there isN such that an optimal strategy for̄λN,c is ε-optimal
for λ̄.

The proof of the above theorem is split into several lemmas. Let NV (0, T ) be the number of
impulses under controlV in the time interval[0, T ].

Lemma 4.9. For the value function̄λ(x) (respectively,̄λN,c), the strategies can be restricted to those
satisfying

lim sup
T→∞

1

T
E
x
{

NV (0, T )
}

≤
‖f‖+ ε

−c

(

≤
2‖f‖+ ε

−c

)

(62)

for a fixedε > 0. For λ̄N,c+δ the bound changes to2‖f‖+ε
−c−δ

provided thatc+ δ < 0.

Proof. Consider the functionalJ
(

x, V
)

. Forε > 0, anyε-optimal strategyVε = (τi, ξi) satisfies

λ̄(x)− ε ≤ lim inf
T→∞

1

T
E
x
{

∫ T

0
f(Xs)ds +

∞
∑

i=1

1τi≤T c(Xτi−, ξi)
}

≤ ‖f‖+ c lim sup
T→∞

1

T
E
x
{

NVε(0, T )
}

.

Since one can obviously constrain the supremum definingλ̄(x) to ε-optimal strategies and taking
into account that̄λ(x) ≥ 0, we obtain (62). For the other two functionals, we use the lower bound
min

(

λ̄N,c, λ̄N,c+δ
)

≥ −‖f‖ instead of0, and forλ̄N,c+δ use the upper bound on the cost equal to
c+ δ.

Lemma 4.10.

−λ̄N,δ(x)− δ
‖f‖

−c
≤ λ̄N,c − λ̄(x) ≤ ˜̃λN,δ + δ

2‖f‖

−c
, (63)
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where either

˜̃
λN,δ = sup

x∈U
sup
τ

E
x
{

∫ τ

0 (f̃N (Xs)− f(Xs))ds − δ
}

Ex {τ}
, (64)

or
˜̃λN,δ = µ(f̃N − f), (65)

and both converge to0 whenN → ∞.

Proof. We start from the lower bound in (63). Notice that

λ̄(x)− λ̄N,c+δ ≤ sup
V

(

J(x, V )− JN,c+δ(x, V )
)

≤ sup
V

lim sup
T→∞

1

T
E
x
{

∫ T

0

(

f(Xs)− fN (Xs)
)

ds −
∞
∑

i=1

1τi≤T δ
}

= λ̄N,δ(x),

where the last equality follows from Proposition 3.13 and Lemma 4.4 which imply integrability of
impulse times in optimal strategy for̄λN,δ(x) and the monotone convergence theorem which implies
equivalence of functionals withlim sup andlim inf under this integrability condition.

For anyε > 0 and a strategyVε that isε-optimal forλ̄(x), we have

λ̄(x)− λ̄N,c ≤ J(x, Vε)− JN,c(x, Vε) + ε

≤ J(x, Vε)− JN,c+δ(x, Vε) + JN,c+δ(x, Vε)− JN,c(x, Vε) + ε

≤ λ̄N,δ(x) + δ
‖f‖+ ε

−c
+ ε, (66)

where the second term in (66) follows from the fact that we areallowed to restrict ourselves to strate-
giesV satisfying (62) while the first term results from the calculations in the preceding part of the
proof. From arbitrariness ofε we obtain (63).

For the upper bound in (63), take anε-optimal strategyVε for λ̄N,c satifying (62). Then

λ̄N,c − λ̄(x) ≤ JN,c(x, Vε)− JN,c+δ(x, Vε) + JN,c+δ(x, Vε)− J(x, Vε) + ε. (67)

Since the costc + δ is smaller than the costc, we haveJN,c(x, Vε) − JN,c+δ(x, Vε) ≤ 0. Esimation
of the other difference is more involved:

JN,c+δ(x, Vε)− J(x, Vε) ≤ lim sup
T→∞

1

T
E
x
{

∫ T

0
(fN (Xs)− f(Xs))ds +

∞
∑

i=1

1τi≤T δ
}

≤ lim sup
T→∞

1

T
E
x
{

∫ T

0
(fN (Xs)− f(Xs))ds −

∞
∑

i=1

1τi≤T δ
}

+ lim sup
T→∞

1

T
E
x
{

2δ

∞
∑

i=1

1τi≤T

}

≤ ˜̃
λN,δ + δ

2‖f‖+ ε

−c
,

where the first term is requires a proof identical as in Lemma 4.4 and the reasoning about integrability
of impulse times as for the lower bound. The second term follows from Lemma 4.9. Inserting above
estimates into (67) and exploiting the arbitratiness ofε proves the upper bound in (63). The claim

about convergence of̃̃λN,δ to zero requires identical arguments as in the proof of Lemma4.4.
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Proof of Theorem 4.8.The upper and lower bound in (63) do not depend onx and can be made
arbitrarily small by choosing sufficiently largeN and smallδ. This proveslimN→∞ λ̄N,c = λ̄(x), so
λ̄ is a constant function. Clearly, for anyε > 0 there isN such that|λ̄N,c − λ̄(x)| ≤ ε and an optimal
strategy for̄λN,c is ε-optimal forλ̄.

Corollary 4.11. Under assumptions of Theorem 4.8, the value functionλ̂(x) = supV Ĵ(x, V ), where
the supremum is over integrable strategies, coincides withλ̄ and optimal strategies for̄λN,c are inte-
grable andε-optimal for λ̂.

We will present below a significantly shorter proof thatλ̂(x) does not depend onx and there are
ε-optimal strategies under the same assumptions as those of Theorem 4.8. Let

ĴN,c
(

x, V
)

= lim inf
n→∞

1

Ex {τn}
E
x
{

∫ τn

0
f̃N (Xs)ds +

n
∑

i=1

c(Xτi−, ξi)
}

, (68)

λ̂N (x) = supV ĴN,c
(

x, V
)

andλ̂(x) = supV Ĵ
(

x, V
)

, where the suprema are taken over integrable

strategies. Theorem 3.17 implies thatλ̂N does not depend onx while the following theorem will
prove it for λ̂.

Theorem 4.12. Under (A1)-(A2), (B1)-(B3), (B5) and (C) iflim supα→0 αvα(z) = λ > µ(f) we
have that̂λN is a constant function for sufficiently largeN and λ̂N (x) → λ̂(x), asN → ∞, so, in
particular, λ̂ is a constant function.

Proof. We assume without loss of generality thatf ≥ 0. Sincef̃N ≥ f andlimN→∞ µ(f̃N ) = µ(f),
thenlim supα→0 αv̂

N,c
α (z) > µ(f̃N) for sufficiently largeN , wherev̂N,c

α is the analogue ofvN,c
α with

fN replaced byf̂N . Therefore, by Theorem 3.12 and 3.17λ̂N (x) does not depend onx. For any
integrable strategyV , we have

0 ≤ ĴN,c
(

x, V
)

− Ĵ
(

x, V
)

≤ lim sup
n→∞

1

Ex{τn}
E
x
{

∫ τn

0

(

fN (Xs)− f(Xs)
)

ds
}

≤ lim sup
n→∞

E
x
{ ∫ τn

0 (‖f‖+ 1)1Bc
z,N

(Xs)ds
}

Ex{τn}
≤ (‖f‖+ 1) sup

τ

E
x
{ ∫ τ

0 1Bc
z,N

(Xs)ds
}

Ex{τ}
.

By assumption (C) the right-hand side converges to0 asN → ∞. Since the bound does not depend
on V , this implies that̂λN converges, asN → ∞, to λ̂(x). This also implies that̂λ(x) does not
depend onx.
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