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Continuous-time Markov decision processes with exponential utility

Yi Zhang ∗

Abstract: In this paper, we consider a continuous-time Markov decision process (CTMDP) in Borel
spaces, where the certainty equivalent with respect to the exponential utility of the total undiscounted
cost is to be minimized. The cost rate is nonnegative. We establish the optimality equation. Under
the compactness-continuity condition, we show the existence of a deterministic stationary optimal
policy. We reduce the risk-sensitive CTMDP problem to an equivalent risk-sensitive discrete-time
Markov decision process, which is with the same state and action spaces as the original CTMDP. In
particular, the value iteration algorithm for the CTMDP problem follows from this reduction. We do
not need impose any condition on the growth of the transition and cost rate in the state, and the
controlled process could be explosive.

Keywords: Continuous-time Markov decision processes. Exponential utility. Total undiscounted
criteria. Risk-sensitive criterion. Optimality equation.
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1 Introduction

In this paper we consider a continuous-time Markov decision process (CTMDP) in Borel state and
action spaces, where a risk averse decision maker aims at minimizing the certainty equivalent of the
total undiscounted cost with respect to the exponential utility. The cost rate is nonnegative. In the
literature, see e.g., [3, 5, 16, 19, 27], such a problem is traditionally also referred to as risk-sensitive, or
one with exponential utility or multiplicative cost. In this paper, we use these terms interchangeably.
The CTMDP with a linear utility is often called risk neutral.

Ever since the pioneering paper [19] in 1972, there have been a large number of works devoted
to risk-sensitive discrete-time Markov decision processes (DTMDPs), see [2, 4, 5, 10, 17, 21, 22, 23],
to name just a few, where the term “risk-sensitive” is endowed with a more general meaning in the
recent works [2, 17]. The interested reader is referred to the reference list of the aforementioned works
for more relevant literature. There are some significant differences between the risk-neutral and risk-
sensitive problems. For example, the criterion with exponential utility is not decomposable in the sense
of [10], so that the corresponding convex analytic approach is more delicate and underdeveloped, c.f.
[17]. Also, consider the model with the total discounted cost; if the state and action spaces are both
finite, then there is a stationary optimal policy in the risk neutral case, but not in the risk-sensitive
case, c.f. [21, 5]. There have also been numerous works on risk-sensitive controlled diffusions, see the
reference list of [16].

In comparison, it is safe to say that much less work has been done on the risk-sensitive CTMDPs.
To the best of our knowledge, the CTMDP with exponential utility was first considered in the less
known article [27], where the authors considered the problem on a finite time horizon. Only verification
theorems were given, i.e., the authors discussed the consequences after one has obtained a solution
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to the optimality equation, provided that it satisfies certain conditions. The question of when there
exits such a solution to the optimality equation was not discussed in [27]. For the same problem as in
[27], this question was only considered in the recent papers [16, 32]. In [16] the transition rates were
assumed to be bounded; and in [32] the growth of the transition rate was assumed to be bounded by
some Lyapunov function. As a consequence, the controlled process in [16, 32] is nonexplosive under
each policy. In [16, 32], the cost rate was assumed to be bounded, and the arguments are based on
Dynkin’s formula or the Feynman–Kac formula. The author of [32] explained why it was hard to relax
this boundedness condition on the cost rate if one follows the same approach as in there, see Section
7 therein. On the other hand, one should note that unbounded transition and cost rates appear in
many real-life applications; as a simplest example, consider an M/M/∞ queueing system with the
holding cost rate being proportional to the number of enqueued customers.

By the way, the CTMDP in [16, 27, 32] is assumed to be in a denumerable state space. In [16], the
infinite horizon discounted and average problems for the risk-sensitive CTMDP were also considered.

The present paper also deals with a CTMDP with exponential utility, but is rather different
from the aforementioned works [16, 27, 32] in the following aspects. (a) We consider the problem of
minimizing the expectation of the exponential utility of the total undiscounted cost over the infinite
time horizon. In the current literature, we are not aware of other work on the infinite horizon total
undiscounted cost criterion for the risk-sensitive CTMDP. (b) Our method of attack does not involve
the Dynkin’s formula or the Feyman-Kac formula, but is based on the reduction of the risk-sensitive
CTMDP to a risk-sensitive DTMDP. As an advantage of developing this approach, we do not need
bounds on the growth of the transition and cost rates, the controlled process is allowed to be explosive,
and the state space is a general Borel space. Such explosive processes are related to the “shattering
into dust” phenomenon in physics, see [31]. Our reduction method starts with a risk-sensitive adaption
of Yushkevich’s method [33], which was originally proposed for risk-neutral CTMDPs, and later also
developed to study piecewise deterministic Markov decision processes, see [1, 7, 8]. Compared with
the case of a risk-neutral CTMDP, now both the state and action spaces of the induced DTMDP are
more complicated than the original CTMDP. A new equivalent DTMDP model with the same state
and action spaces as the the original CTMDP will be induced later after further investigations. The
powerful Feinberg’s reduction method for risk-neutral CTMDP, see [12], is not applicable because the
criterion in the risk-sensitive CTMDP is not “decomposable”.

The contributions of this paper are as follows. For a risk-sensitive CTMDP in Borel state and
action spaces with the total undiscounted cost over an infinite horizon, we establish its optimality
equation. Under the compactness-continuity condition, we show the existence of a deterministic
stationary optimal policy. Moreover, we show that the risk-sensitive CTMDP problem is equivalent to
a risk-sensitive DTMDP problem, which, as we emphasize, is with the same state and action spaces as
the original CTMDP model. As a consequence of this, we also present the value iteration algorithm.
Note that we only need impose rather weak conditions; the transition rate is arbitrarily unbounded,
and the cost rate is arbitrarily unbounded in the state, and the controlled process can be explosive,
so that there might exist no Lyapunov function.

The rest of the paper is organize as follows. We describe the controlled process and concerned
optimal control problem in Section 2. In Section 3, we present some results for the risk-sensitive
DTMDPs that are needed for this paper. In Section 4, we develop Yushkevich’s method to reduce the
risk-sensitive CTMDP to a risk-sensitive DTMDP with more complicated state and action spaces. In
Section 5, we present and prove the main results in this paper, which is ended with a conclusion in
Section 6.

Notations and conventions. In what follows, B(X) is the Borel σ-algebra of the topological space
X, I stands for the indicator function, and δ{x}(·) is the Dirac measure concentrated on the singleton
{x}, assumed to be measurable. A measure is σ-additive and [0,∞]-valued. Below, unless stated
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otherwise, the term of measurability is always understood in the Borel sense. Throughout this article,
we adopt the conventions of

0

0
:= 0, 0 · ∞ := 0,

1

0
:= +∞, ∞−∞ := ∞. (1)

2 Model description and problem statement

The objective of this section is to describe briefly the controlled process similarly to [12, 25, 26], and
the associated optimal control problem of interest in this paper.

Let S be a nonempty Borel state space, A be a nonempty Borel action space, and q stand for a
signed kernel q(dy|x, a) on B(S) given (x, a) ∈ S ×A such that

q̃(ΓS |x, a) := q(ΓS \ {x}|x, a) ≥ 0

for all ΓS ∈ B(S). Throughout this article we assume that q(·|x, a) is conservative and stable, i.e.,

q(S|x, a) = 0, q̄x = sup
a∈A

qx(a) < ∞, (2)

where qx(a) := −q({x}|x, a). The signed kernel q is often called the transition rate. For simplicity
and to fix ideas, we do not consider the case of different admissible action spaces at different states.
Practically, the case of state-dependent admissible action spaces can be often reduced to the current
setup by assigning a cost rate of ∞ at an inadmissible action, c.f. p.402 of [13].

Let us take the sample space Ω by adjoining to the countable product space S × ((0,∞) × S)∞

the sequences of the form (x0, θ1, . . . , θn, xn,∞, x∞,∞, x∞, . . . ), where x0, x1, . . . , xn belong to S,
θ1, . . . , θn belong to (0,∞), and x∞ /∈ S is the isolated point. We equip Ω with its Borel σ-algebra F .

Let t0(ω) := 0 =: θ0, and for each n ≥ 0, and each element ω := (x0, θ1, x1, θ2, . . . ) ∈ Ω, let

tn(ω) := tn−1(ω) + θn,

and

t∞(ω) := lim
n→∞

tn(ω).

Obviously, (tn(ω)) are measurable mappings on (Ω,F). In what follows, we often omit the argument
ω ∈ Ω from the presentation for simplicity. Also, we regard xn and θn+1 as the coordinate variables,
and note that the pairs {tn, xn} form a marked point process with the internal history {Ft}t≥0, i.e.,
the filtration generated by {tn, xn}; see Chapter 4 of [26] for greater details. The marked point process
{tn, xn} defines the stochastic process on (Ω,F) of interest {ξt, t ≥ 0} by

ξt =
∑

n≥0

I{tn ≤ t < tn+1}xn + I{t∞ ≤ t}x∞. (3)

Here we accept 0 · x := 0 and 1 · x := x for each x ∈ S∞, and below we denote S∞ := S
⋃

{x∞}.

Definition 2.1 A (history-dependent) policy π for the CTMDP is given by a sequence (πn) such
that, for each n = 0, 1, 2, . . . , πn(da|x0, θ1, . . . , xn, s) is a stochastic kernel on A, and for each ω =
(x0, θ1, x1, θ2, . . . ) ∈ Ω, t > 0,

π(da|ω, t) = I{t ≥ t∞}δa∞(da) +

∞
∑

n=0

I{tn < t ≤ tn+1}πn(da|x0, θ1, . . . , θn, xn, t− tn),

3



where a∞ /∈ A is some isolated point. A policy π = (πn) is called Markov if, with slight abuse of
notations, each of the stochastic kernels πn reads πn(da|x0, θ1, . . . , xn, s) = πn(da|xn, s). A Markov
policy is further called deterministic if the stochastic kernels πn(da|xn, s) all degenerate. A pol-
icy π = (πn) is called stationary if, with slight abuse of notations, each of the stochastic kernels
πn reads πn(da|x0, θ1, . . . , xn, s) = π(da|xn). A stationary policy is further called deterministic if
πn(da|x0, θ1, . . . , xn, s) = δ{f(xn)}(da) for some measurable mapping f from S to A. We shall identify
such a deterministic stationary policy by the underlying measurable mapping f .

The class of all policies for the CTMDP model is denoted by Π.
Under a policy π := (πn) ∈ Π, we define the following random measure on S × (0,∞)

νπ(dy, dt) :=

∫

A

q̃(dy|ξt−(ω), a)π(da|ω, t)dt

=
∑

n≥0

∫

A

q̃(dy|xn, a)πn(da|x0, θ1, . . . , θn, xn, t− tn)I{tn < t ≤ tn+1}dt

with qx∞
(a∞) = q(dy|x∞, a∞) := 0 =: qx∞

(a) for each a ∈ A. Then for each given initial distribution
γ on B(S), there exists a unique probability measure P π

γ such that

P π
γ (x0 ∈ dx) = γ(dx),

and with respect to P π
γ , ν

π is the dual predictable projection of the random measure associated with
the marked point process {tn, xn}; see [20, 26]. The process {ξt} defined by (3) under the probability
measure P π

γ is called a CTMDP. Below, when γ is a Dirac measure concentrated at x ∈ S, we use the
denotation P π

x . Expectations with respect to P π
γ and P π

x are denoted as Eπ
γ and Eπ

x , respectively.
The following remark follows from [20].

Remark 2.1 Under a fixed policy π = (πn), the conditional distribution of (θn+1, xn+1) with the
condition on x0, θ1, x1, . . . , θn, xn is given on {ω : xn(ω) ∈ S} by

P π
γ (θn+1 ∈ Γ1, xn+1 ∈ Γ2|x0, θ1, x1, . . . , θn, xn)

=

∫

Γ1

e−
∫ t

0

∫
A
qxn(a)πn(da|x0,θ1,...,θn,xn,s)ds

∫

A

q̃(Γ2|xn, a)πn(da|x0, θ1, . . . , θn, xn, t)dt,

∀ Γ1 ∈ B((0,∞)), Γ2 ∈ B(S);

P π
γ (θn+1 = ∞, xn+1 = x∞|x0, θ1, x1, . . . , θn, xn) = e−

∫
∞

0

∫
A
qxn(a)πn(da|x0,θ1,...,θn,xn,s)ds,

and given on {ω : xn(ω) = x∞} by

P π
γ (θn+1 = ∞, xn+1 = x∞|x0, θ1, x1, . . . , θn, xn) = 1.

Let the cost rate be given by a [0,∞)-valued measurable function c on S × A. In this paper, we
study the following optimal control problem:

Minimize over π ∈ Π: Eπ
x

[

e
∫
∞

0

∫
A
c0(ξt,a)π(da|ω,t)dt

]

=: V (x, π), x ∈ S. (4)

Here and below, we put c(x∞, a) := 0 for each a ∈ A.
The CTMDP problem (4) is equivalent to minimizing the certainty equivalent of the total cost

with respect to the exponential utility for a risk averse decision maker, see [4, 16, 19].
In what follows, we refer the CTMDP problem (4) with the exponential utility to as the CTMDP

model {S,A, q, c}.
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Definition 2.2 A policy π∗ is called optimal for problem (4) if

V (x, π∗) = inf
π∈Π

V (x, π) =: V ∗(x), ∀ x ∈ S.

Evidently, V ∗(x) ≥ 1 for each x ∈ S.
One powerful method of reducing a CTMDP to a DTMDP is due to Yushkevich [33], which

considers the case of a linear utility. However, the induced DTMDP is with a more complicated action
space, so that a deterministic stationary strategy in the induced DTMDP in general does not give
a deterministic stationary policy for the CTMDP model, but gives a specific Markov policy. This
approach has been further developed to study piecewise deterministic Markov decision processes, see
the books [1, 7, 8]. In Section 4, as a preparation for our main optimality result, we shall develop this
method for the case of exponential utility. In contrast to the linear utility case, now both the state
and action spaces of the reduced DTMDP are more complicated than those of the CTMDP; e.g., a
deterministic stationary strategy in this reduced DTMDP will no longer give a Markov policy for the
CTMDP model. A further reduction to a simpler DTMDP with the same state and action spaces as
the original CTMDP will be given in a subsequent section.

3 Discrete-time Markov Decision Process with exponential utility

To serve the investigations of the CTMDP, in this section we present briefly the dynamic programming
approach for the DTMDP model (with exponential utility). The presented results are mostly related
to [23], which however, is based on the compactness-continuity condition. For our purpose, we would
not assume any compactness-continuity condition here, except for Proposition 3.4, and would need to
consider a slightly more general cost function, as compared to [23]. Without assuming the compactness-
continuity condition, the dynamic programming approach for the DTMDP model was partially studied
in [3], which dealt with a bounded cost function and mainly a finite horizon, see p.90 and Section
11.3 therein. Instead of the dynamic programming approach, [10, 11] developed a different method
for studying a rather general class of DTMDP problems in Borel spaces. That method, which can be
traced back to Girsanov, is based on the investigations of strategic measures, and does not give all the
results we would need here.

Consider a discrete-time Markov decision process with the following primitives:

• X is a nonempty Borel state space.

• A is a nonempty Borel action space.

• p(dy|x, a) is a stochastic kernel on B(X) given (x, a) ∈ X×A.

• l a [0,∞]-valued measurable cost function on X×A×X.

Let us denote for each n = 1, 2, . . . ,∞, Hn := X × (A × X)n and H0 := X. A strategy σ =
(σn)

∞
n=0 in the DTMDP is given by a sequence of stochastic kernels σn(da|hn) on B(A) from hn ∈ Hn

for n = 0, 1, 2, . . . . A strategy σ = (σn) is called deterministic Markov if for each n = 0, 1, 2, . . . ,
σn(da|hn) = δ{ϕn(xn)}(da), where ϕn is an A-valued measurable mapping on X. We identify such a
deterministic Markov strategy with (ϕn).

Let Σ be the space of strategies, and ΣDM be the space of all deterministic strategies for the
DTMDP.

Let the controlled and controlling process be denoted by {Yn, n = 0, 1, . . . ,∞} and {An, n =
0, 1, . . . ,∞}. Here, for each n = 0, 1, . . . , Yn is the projection of H∞ to the 2n + 1st coordinate, and
An to the 2n+ 2nd coordinate.
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Under a strategy σ = (σn) and a given initial probability distribution ν on (X,B(X)), by the
Ionescu-Tulcea theorem, c.f., [18, 28], one can construct a probability measure Pσ

ν on (H∞,B(H∞))
such that

Pσ
ν (Y0 ∈ dx) = ν(dx),

Pσ
ν (An ∈ da|Y0, A0, . . . , Yn) = σn(da|Y0, A0, . . . , Yn), n = 0, 1, . . . ,

Pσ
ν (Yn+1 ∈ dx|Y0, A0, . . . , Yn, An) = p(dx|Yn, An), n = 0, 1, . . . .

As usual, equalities involving conditional expectations and probabilities are understood in the almost
sure sense. The probability measure Pσ

ν is called a strategic measure for the DTMDP. The expectation
taken with respect to Pσ

ν is denoted by Eσ
ν . When ν is concentrated on the singleton {x}, Pσ

ν and Eσ
ν

are written as Pσ
x and Eσ

x.
Consider the optimal control problem

Minimize over σ : Eσ
x

[

e
∑

∞

n=0 l(Yn,An,Yn+1)
]

=: V(x, σ), x ∈ X. (5)

We denote the value function of problem (5) by V∗. Then a strategy σ∗ is called optimal for problem
(5) if V(x, σ∗) = V∗(x) for each x ∈ X. We refer problem (5) to as the DTMDP model {X,A, p, l}
(with the exponential utility).

Note that

V∗(x) ≥ 1, ∀ x ∈ X. (6)

One can write

Eσ
x

[

e
∑

∞

n=0 l(Yn,An,Yn+1)
]

=

∫

H∞

e
∑

∞

n=0 l(Yn,An,Yn+1)Pσ
x(dh), x ∈ X. (7)

Then V(x, ·) is a measurable criterion in the sense of [10, 11]. In view of this, that V∗ is a lower
semianalytic function on X immediately follows from Theorem 4.2 of [11].

Proposition 3.1 The function V
∗ is an [1,∞]-valued lower semianalytic solution to

V(x) = inf
a∈A

{
∫

X

p(dy|x, a)el(x,a,y)V(y)

}

, x ∈ X. (8)

Proof. Let us verify that V∗ solves the optimality equation (8) as follows. (The other assertions in
the statement of this theorem have been justified in the previous discussions.)

Let σ be an arbitrarily fixed strategy. For each x ∈ X and b ∈ A, consider the shifted strategy

σ(x,b) = (σ
(x,b)
n ) by σ

(x,b)
n (da|hn) = σn+1(da|x, b, hn) for each n = 0, 1, . . . , and hn ∈ Hn. Then for each

fixed x ∈ X,

V∗(x) ≤ V(x, σ(x,b)) = Eσ
x

[

e
∑

∞

n=1 l(Yn,An,Yn+1)
∣

∣

∣
Y0 = x,A0 = b, Y1 = y

]

,

where the equality holds almost surely with respect to p(dy|x, b)σ0(db|x). Now for each x ∈ X,

V(x, σ) = Eσ
x

[

el(Y0,A0,Y1)e
∑

∞

n=1 l(Yn,An,Yn+1)
]

= Eσ
x

[

el(Y0,A0,Y1)Eσ
x

[

e
∑

∞

n=1 l(Yn,An,Yn+1)
∣

∣

∣
Y0, A0, Y1

]]

=

∫

A

∫

X

p(dy|x, b)el(x,b,y)Eσ
x

[

e
∑

∞

n=1 l(Yn,An,Yn+1)
∣

∣

∣
Y0 = x,A0 = b, Y1 = y

]

σ0(db|x)

≥

∫

A

∫

X

p(dy|x, b)el(x,b,y)V∗(y)σ0(db|x)

≥ inf
a∈A

{
∫

X

p(dy|x, a)el(x,a,y)V∗(y)

}

,

6



where and below integrals such as those in the above inequalities are well defined because V∗ is lower
semianalytic, see Lemma 7.30 as well as Proposition 7.48 of [3]. Thus,

V∗(x) ≥ inf
a∈A

{
∫

X

p(dy|x, a)el(x,a,y)V∗(y)

}

, x ∈ X. (9)

Next, we establish the opposite direction of the above inequality. Let z ∈ X, b ∈ A and ǫ > 0 be
arbitrarily fixed. It follows from Theorem 3.1 of [10] (c.f. Chapter 3 of [9]) that there exists a strategy
σ̂ such that

lnV∗(x) + ǫ ≥ lnEσ̂
x

[

e
∑

∞

n=0 l(Yn,An,Yn+1)
]

= lnV(x, σ̂)

for almost all x ∈ X with respect to p(dx|z, b). Consider the strategy σ′ = (δ{b}, σ̂0, σ̂1, . . . ). Then

V∗(z) ≤ Eσ′

z

[

e
∑

∞

n=0 l(Yn,An,Yn+1)
]

=

∫

X

p(dy|z, b)el(z,b,y)elnV(y,σ̂)

≤

∫

X

p(dy|z, b)el(z,b,y)elnV
∗(y)+ǫ

= eǫ
∫

X

p(dy|z, b)el(z,b,y)V∗(y).

Since ǫ > 0, z ∈ X and b ∈ A are arbitrarily fixed, it follows from the above that

V∗(x) ≤ inf
a∈A

{
∫

X

p(dy|x, a)el(x,a,y)V∗(y)

}

, x ∈ X.

Combing this with (9), we see that the statement holds. ✷

Proposition 3.2 For each x ∈ X,

inf
σ∈ΣDM

V(x, σ) = inf
σ∈Σ

V(x, σ),

where we recall that ΣDM is the set of all deterministic Markov strategies for the DTMDP.

The proof of this proposition is based on the next result.

Lemma 3.1 Let f be a [1,∞]-valued lower semianalytic function on the Borel space X×A, and f∗

be a function on X defined by f∗(x) = infa∈A f(x, a) for each x ∈ X. Then for each ǫ > 0, there exists
an analytically measurable mapping ϕ from X to A such that

f(x, ϕ(x)) ≤ f∗(x)eǫ, ∀ x ∈ X.

Proof. The reasoning of Proposition 7.50 of [3] can be easily modified to prove the statement of this
lemma. The details are omitted. ✷

Now we are in position to prove Proposition 3.2.

Proof of Proposition 3.2. Let ǫ > 0 and x0 ∈ X be arbitrarily fixed. We first show that there exists a
deterministic Markov strategy σ such that

V(x0, σ) ≤ V∗(x0)e
ǫ (10)

7



as follows.
Let (ǫk) be a sequence of positive constants such that

∑∞
k=0 ǫk = ǫ. By Proposition 3.1, there is a

Borel measurable mapping ϕ0 from X to A such that

V∗(x0) ≥ e−ǫ0

∫

X

p(dx1|x0, ϕ0(x0))e
l(x0,ϕ0(x0),x1)V∗(x1). (11)

(Remember, the above inequality is only required to hold for the fixed x0 ∈ X.) By Lemma 3.1 and
Proposition 3.1, for each k = 1, 2, . . . , there exists an analytically measurable mapping ϕ̃k from X to
A such that

V∗(x) ≥ e−ǫk

∫

X

p(dy|x, ϕ̃k(x))e
l(x,ϕ̃k(x),y)V∗(y), ∀ x ∈ X. (12)

Let ϕ1 be the Borel measurable modification of ϕ̃1 with respect to the probability measure p(·|x0, ϕ0(x0)).
Then

V∗(x0) ≥ e−ǫ0−ǫ1

∫

X

p(dx1|x0, ϕ0(x0))e
l(x0,ϕ0(x0),x1)

∫

X

p(dx2|x1, ϕ̃1(x1))e
l(x1,ϕ̃1(x1),x2)V∗(x2)

≥ e−ǫ0−ǫ1

∫

X

p(dx1|x0, ϕ0(x0))e
l(x0,ϕ0(x0),x1)

∫

X

p(dx2|x1, ϕ1(x1))e
l(x1,ϕ1(x1),x2),

where the first inequality is by (11) and (12), and the second inequality is by (6). Inductively, for
each k = 2, 3, . . . , let ϕk be a Borel measurable modification of ϕ̃k with respect to the probability
measure

∫

X
k−1 p(·|xk−1, ϕk−1(xk−1))p(dxk−1|xk−2, ϕk−2(xk−2)) . . . p(dx1|x0, ϕ0(x0)). Let σ = (ϕn)

∞
n=0

be the deterministic Markov strategy. Then

V∗(x0) ≥ e−
∑k

n=0 ǫnEσ
x0

[

e
∑k

n=0 l(Yn,An,Yn+1)
]

, ∀ k = 0, 1, . . . .

By passing to the limit as k → ∞ in the above inequality, we see that (10) holds.
Now the statement of the theorem follows from (10) and the arbitrariness of ǫ > 0 and x0 ∈ X. ✷

Proposition 3.3 The following two assertions hold.

(a) Let U be a [1,∞]-valued lower semianalytic function on X. If

U(x) ≥ inf
a∈A

{
∫

X

p(dy|x, a)el(x,a,y)U(y)

}

, ∀ x ∈ X,

then U(x) ≥ V
∗(x) for each x ∈ X. In particular, if the function U satisfying the above relation

is [1,∞)-valued, then so is the value function V
∗.

(b) Let ϕ be a deterministic stationary strategy for the DTMDP model {X,A, p, l}. If

V
∗(x) =

∫

X

p(dy|x, ϕ(x))el(x,ϕ(x),y)V∗(y), ∀ x ∈ X, (13)

then V
∗(x) = V(x, ϕ) for each x ∈ X.

Proof. (a) Let x ∈ X and ǫ > 0 be fixed. Then by using Lemma 3.1, one can follow the reasoning
in the proof of Proposition 3.2, and see the existence of a deterministic Markov strategy σ, which
satisfies

U(x) ≥ e−ǫV(x, σ) ≥ e−ǫV∗(x).
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Since ǫ > 0 and x ∈ X are arbitrarily fixed, the statement follows.
(b) Consider the given deterministic stationary strategy ϕ. Let x ∈ X be fixed. Then by simple

iterations based on (13), and keeping in mind that V∗ is [1,∞]-valued, we see

V∗(x) = Eϕ
x

[

e
∑m

n=0 l(Yn,An,Yn+1)V(Ym+1)
]

≥ Eϕ
x

[

e
∑m

n=0 l(Yn,An,Yn+1)
]

for each m = 1, 2, . . . . Thus, the statement holds after passing to the limit as m → ∞. ✷

Condition 3.1 (a) The function l is lower semicontinuous on X×A×X.

(b) For each bounded continuous function f on X,
∫

X
f(y)p(dy|x, a) is continuous in (x, a) ∈ X×A.

(c) The space A is a compact Borel space.

Condition 3.2 (a) The function l(x, a, y) is lower semicontinuous in a ∈ A for each x, y ∈ X.

(b) For each bounded measurable function f on X and each x ∈ X,
∫

X
f(y)p(dy|x, a) is continuous

in a ∈ A.

(c) The space A is a compact Borel space.

Proposition 3.4 (a) Suppose Condition 3.1 is satisfied. Then the value function V
∗ is the minimal

[1,∞]-valued lower semicontinuous solution to (8).

(b) Suppose Condition 3.2 is satisfied. Then the value function V
∗ is the minimal [1,∞]-valued

measurable solution to (8).

(c) Suppose Condition 3.1 or Condition 3.2 is satisfied. Let V(0)(x) := 0 for each x ∈ X, and for
each n = 1, 2, . . . ,

V
(n)(x) := inf

a∈A

{
∫

X

p(dy|x, a)el(x,a,y)V(n−1)(y)

}

, ∀ x ∈ X.

Then (V(n)(x)) increases to V
∗(x) for each x ∈ X, where V

∗ is the value function for problem
(5). Furthermore, there exists a deterministic stationary strategy ϕ satisfying (13), and so in
particular, there exists a deterministic stationary optimal strategy for the DTMDP problem (5).

Proof. This statement can be proved as in [23], even though in [23] the function l(x, a, y) does not
depend on y ∈ X. ✷

4 First reduction to a DTMDP model

In this section, we reduce the risk-sensitive CTMDP to a risk-sensitive DTMDP with more complicated
state and action spaces. As in [33], this is based on viewing a policy π = (πn) as a sequence of
measurable mappings taking values in the (quotient) space of P(A)-valued measurable mappings,
where and below, the set P(A) is the space of probability measures on B(A), and is equipped with the
standard weak topology, so that P(A) is a Borel space, see Chapter 7 of [3]. The details are as follows.

Let R denote the set of (Borel) measurable mappings ρt(da) from t ∈ (0,∞) → P(A). Here, we
do not distinguish between two measurable mappings in t ∈ (0,∞) which coincide almost everywhere
with respect to the Lebesgue measure.
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We endow R with the σ-algebra as the minimal one with respect to which, the function

ρ ∈ R →

∫ ∞

0
e−tf(t, ρt)dt

is measurable in ρ ∈ R for each bounded measurable function f on (0,∞) × P(A). Lemma 1 of [33]
asserts that R is a Borel space.

For the rest of this paper, it is convenient to introduce the following notations. For each µ ∈ P(A),

qx(µ) :=

∫

A

qx(a)µ(da);

q̃(dy|x, µ) :=

∫

A

q̃(dy|x, a)µ(da);

c(x, µ) :=

∫

A

c(x, a)µ(da).

It follows from [33] that we can legitimately consider a DTMDP model {X,A, p, l} with exponential
utility with the following primitives, where all the functions and mappings are measurable.

• The state space is X := ((0,∞)×S)
⋃

{(∞, x∞)}. Whenever the topology is concerned, (∞, x∞)
is regarded as an isolated point in X.

• The action space is A := R.

• The transition kernel p on B(X) from X×A is given for each ρ ∈ A by

p(Γ1 × Γ2|(θ, x), ρ) :=

∫

Γ2

e−
∫ t

0
qx(ρs)dsq̃(Γ1|x, ρt)dt,

∀ Γ1 ∈ B(S), Γ2 ∈ B((0,∞)), x ∈ S, θ ∈ (0,∞),

p({∞} × {x∞}|(θ, x), ρ) := e−
∫
∞

0
qx(ρs)ds, ∀ x ∈ S, θ ∈ (0,∞);

p({(∞, x∞)}|(∞, x∞), ρ) := 1.

(14)

• The cost function l is a [0,∞]-valued measurable function on X×A×X given by

l((θ, x), ρ, (τ, y)) :=

∫ ∞

0
I{s < τ}c(x, ρs)ds =: l̂(x, ρ, τ), ∀ ((θ, x), ρ, (τ, y)) ∈ X×A×X. (15)

(Recall that c(x∞, a) := 0 and qx∞
(a) := 0 =: q̃(S|x∞, a) for each a ∈ A.) For each strategy σ for the

DTMDP {X,A, p, l}, the function V(·, σ) is defined by (5).
The controlled process in the above DTMDP model {X,A, p, l} is denoted by {Yn, n = 0, 1, . . . },

where Yn = (Θn,Xn), and the controlling process is denoted by {An, n = 0, 1, . . . }. Let Σ0
DM be the

class of deterministic Markov strategies for the DTMDP model {X,A, p, l} in the form σ = (ϕn)
where ϕ0((θ, x)) does not depend on θ ∈ (0,∞) for each x ∈ S.

For each fixed θ̂ ∈ (0,∞) and a deterministic Markov strategy σ = (ϕn),

V((θ̂, x), σ) = V((θ̂, x), σ̂) = V((θ, x), σ̂), ∀ x ∈ S, θ ∈ (0,∞), (16)

where σ̂ = (ϕ̂0, ϕ1, ϕ2, . . . ) with ϕ̂0((θ, x)) = ϕ0((θ̂, x)) for each θ ∈ (0,∞). Indeed, since θ̂ is fixed,
under the strategy σ̂, the decision is made independently of the first coordinate of the initial state.
This, together with the definitions of the transition kernel p and the cost function l given by (14) and
(15), justifies (16). See also Theorem 2 of [13].
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Proposition 3.2 and (16) imply that

V∗((θ, x)) = inf
σ∈Σ0

DM

V((θ, x), σ), ∀ x ∈ S, θ ∈ (0,∞),

where V∗ is the value function of the DTMDP problem (5). This together with (16) then leads to
that V∗((θ, x)) does not depend on θ ∈ (0,∞). Therefore, we write V∗(x) instead of V∗((θ, x)) and
V(x, σ) instead of V((θ, x), σ) when σ is in Σ0

DM . The previous equality now reads

V∗(x) = inf
σ∈Σ0

DM

V(x, σ), ∀ x ∈ S. (17)

Consider a policy π = (πn) for the CTMDP model {S,A, q, c}. Note that each stochastic kernel

πn(da|x0, θ1, x1, θ2, . . . , θn, xn, s)

can be identified with a measurable mapping say πn(x0, θ1, x1, θ2, . . . , θn, xn)(s, da) from S × Xn to
R, and vice versa. Therefore, each policy π = (πn) for the CTMDP model {S,A, q, c} is identified
with a deterministic strategy denoted by σ(π) for the DTMDP model {X,A, p, l}, where, under this
strategy σ(π), at the time step n, the decision in A is made based only on X0, Y1, Y2, . . . , Yn and n,
and is independent on Θ0 and the past actions. Therefore, under the policy π = (πn) for the CTMDP
model {S,A, q, c}, for each x ∈ S and θ ∈ (0,∞),

V (x, π) = Eπ
x

[

e
∫
∞

0

∫
A
c(x,a)π(da|ω,t)dt

]

= Eπ
x

[

e
∑

∞

n=0

∫ θn+1
0

∫
A
c(xn,a)πn(da|x0,θ1,...,θn,xn,s)ds

]

= E
σ(π)
(θ,x)

[

e
∑

∞

n=0 l(Yn,An,Yn+1)
]

= E
σ(π)
(θ,x)

[

e
∑

∞

n=0 l̂(Xn,An,Θn+1)
]

= V(x, σ(π)),

c.f. Remark 2.1, (14) and (15) for the third equality, and Theorem 2 of [13] for the last equality. Thus,

V ∗(x) ≥ V∗(x), ∀ x ∈ S.

On the other hand, each deterministic Markov strategy σ = (ϕn) ∈ Σ0
DM can be identified with a

policy say π(σ) for the CTMDP model {S,A, q, c} such that

V (x, π(σ)) = V(x, σ), ∀ x ∈ S.

This and (17) imply

V ∗(x) ≤ V∗(x), ∀ x ∈ S.

Now we come to the following conclusion.

Theorem 4.1 The value function V ∗ for the CTMDP problem (4) is lower semianalytic on S and
satisfies

V ∗(x) = V
∗(x), ∀ x ∈ S.

Furthermore, V ∗ satisfies

V ∗(x) = inf
ρ∈R

{
∫ ∞

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

(
∫

S

V ∗(y)q̃(dy|x, ρτ )

)

dτ + e−
∫
∞

0 qx(ρs)dse
∫
∞

0 c(x,ρs)ds

}

,

∀ x ∈ S. (18)
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Proof. The equality between V ∗ and V∗ on S follows from the discussions above the theorem. The
other parts of the statement are then by Proposition 3.1. ✷

In (18), it is possible that
∫∞
0 qx(ρs)ds = ∞ =

∫∞
0 c(x, ρs)ds, so that by (1)

e−
∫
∞

0
qx(ρs)dse

∫
∞

0
c(x,ρs)ds = 0 · ∞ = 0 6= ∞ = e∞ = e−∞+∞ = e−

∫
∞

0
qx(ρs)ds+

∫
∞

0
c(x,ρs)ds.

On the other hand, by (2),

e−
∫ τ

0 (qx(ρs)−c(x,ρs))ds = e−
∫ τ

0 qx(ρs)dse
∫ τ

0 c(x,ρs)ds

for each τ ∈ (0,∞).

5 Optimality result

In this section, we establish the optimality equation for the CTMDP problem (4); show, under some
compactness-continuity conditions, the existence of a deterministic stationary optimal policy for prob-
lem (4); and further reduce the CTMDP model {S,A, q, c} to a simpler DTMDP model with the same
state and action spaces as the CTMDP, in contrast to the DTMDP model in Section 4. As a corollary
of this reduction, we formulate the value iteration algorithm for problem (4).

5.1 Optimality equation

In this subsection, we establish the optimality equation satisfied by the value function V ∗ of the
CTMDP problem (4). This is done based on more detailed investigations of (18).

Theorem 5.1 (a) The value function V ∗ of the CTMDP problem (4) is an [1,∞]-valued lower
semianalytic function satisfying

0 = inf
a∈A

{

c(x, a)V ∗(x) +

∫

S

q(dy|x, a)V ∗(y)

}

(19)

for each x ∈ S such that V ∗(x) < ∞.

(b) If a deterministic stationary policy ϕ for the CTMDP model {S,A, q, c} satisfies

0 = inf
a∈A

{

c(x, a)V ∗(x) +

∫

S

q(dy|x, a)V ∗(y)

}

= c(x, ϕ(x))V ∗(x) +

∫

S

q(dy|x, ϕ(x))V ∗(y) (20)

for each x ∈ S such that V ∗(x) < ∞, then the deterministic stationary policy ϕ is optimal for
the CTMDP problem (4). (The definition of ϕ on {x ∈ S : V ∗(x) = ∞} can be put arbitrarily,
so long ϕ is measurable on S.)

We call (19) the optimality equation for the CTMDP problem (4), and call an [1,∞]-valued lower semi-
analytic function V a solution to the optimality equation (19) if it satisfies (19) with V ∗ being replaced
by V for each x ∈ S, where V (x) < ∞. To guarantee the existence of such a deterministic stationary
policy ϕ as in Theorem 5.1(b), in the next subsection, we shall impose some compactness-continuity
conditions, under which the value function will be seen to be measurable or lower semicontinuous.

We postpone the proof of Theorem 5.1 after several lemmas.

Lemma 5.1 For each x ∈ S and ρ ∈ R,

t ∈ [0,∞) →

∫ t

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t

0 (qx(ρs)−c(x,ρs))dsV ∗(x)

is monotone nondecreasing in t ∈ [0,∞).
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Proof. Let 0 ≤ t1 < t2 < ∞ be arbitrarily fixed. For the statement of the lemma, it suffices to show

∫ t2

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t2
0 (qx(ρs)−c(x,ρs))dsV ∗(x)

≥

∫ t1

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t1
0 (qx(ρs)−c(x,ρs))dsV ∗(x) (21)

as follows.
Assume that

∫ t2

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ < ∞;

e−
∫ t2
0 (qx(ρs)−c(x,ρs))dsV ∗(y) < ∞. (22)

There is no loss of generality in doing so because otherwise (21) trivially holds.
Then

∫ t2

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t2
0 (qx(ρs)−c(x,ρs))dsV ∗(x)

−

∫ t1

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ

−e−
∫ t1
0 (qx(ρs)−c(x,ρs))dsV ∗(x)

=

∫ t2

t1

e−
∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ

+e−
∫ t1
0 (qx(ρs)−c(x,ρs))ds

(

e−
∫ t2
t1

(qx(ρs)−c(x,ρs))ds − 1
)

V ∗(x)

=

∫ t2−t1

0
e−

∫ t1+τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+e−
∫ t1
0 (qx(ρs)−c(x,ρs))ds

(

e−
∫ t2
t1

(qx(ρs)−c(x,ρs))ds − 1
)

V ∗(x)

=

∫ t2−t1

0
e−

∫ t1
0 (qx(ρs)−c(x,ρs))dse−

∫ t1+τ

t1
(qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+e−
∫ t1
0 (qx(ρs)−c(x,ρs))ds

(

e−
∫ t2
t1

(qx(ρs)−c(x,ρs))ds − 1
)

V ∗(x)

= e−
∫ t1
0 (qx(ρs)−c(x,ρs))ds

{
∫ t2−t1

0
e−

∫ τ

0
(qx(ρs+t1)−c(x,ρs+t1))ds

×

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ + e−
∫ t2
t1

(qx(ρs)−c(x,ρs))dsV ∗(x)− V ∗(x)

}

. (23)

Let δ > 0 be arbitrarily fixed. By (18), there exists some ρ̂ ∈ R such that

V ∗(x) + δ ≥

∫ ∞

0

∫

S

V ∗(y)q̃(dy|x, ρ̂τ )e
−

∫ τ

0
(qx(ρ̂s)−c(x,ρ̂s))dsdτ + e−

∫
∞

0
qx(ρ̂s)dse

∫
∞

0
c(x,ρ̂s)ds. (24)

Define ρ̃ ∈ R by

ρ̃s =

{

ρt1+s, if s ≤ t2 − t1;
ρ̂s−(t2−t1) if s > t2 − t1.

(25)
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Then

V ∗(x) ≤

∫ ∞

0
e−

∫ τ

0 (qx(ρ̃s)−c(x,ρ̃s))ds

(
∫

S

V ∗(y)q̃(dy|x, ρ̃τ )

)

dτ + e−
∫
∞

0 qx(ρ̃s)dse
∫
∞

0 c(x,ρ̃s)ds

=

∫ t2−t1

0
e−

∫ τ

0 (qx(ρs+t1 )−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+

∫ ∞

t2−t1

e−
∫ τ

0
(qx(ρ̃s)−c(x,ρ̃s))ds

(
∫

S

V ∗(y)q̃(dy|x, ρ̃τ )

)

dτ + e−
∫
∞

0
qx(ρ̃s)dse

∫
∞

0
c(x,ρ̃s)ds

=

∫ t2−t1

0
e−

∫ τ

0
(qx(ρs+t1 )−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+

∫ ∞

0
e−

∫ τ+(t2−t1)
0 (qx(ρ̃s)−c(x,ρ̃s))ds

∫

S

V ∗(y)q̃(dy|x, ρ̃τ+t2−t1)dτ + e−
∫
∞

0 qx(ρ̃s)dse
∫
∞

0 c(x,ρ̃s)ds

=

∫ t2−t1

0
e−

∫ τ

0 (qx(ρs+t1 )−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+

∫ ∞

0
e−

∫ t2−t1
0 (qx(ρ̃s)−c(x,ρ̃s))dse−

∫ τ+(t2−t1)
t2−t1

(qx(ρ̃s)−c(x,ρ̃s))ds
∫

S

V ∗(y)q̃(dy|x, ρ̃τ+t2−t1)dτ

+e−
∫
∞

0
qx(ρ̃s)dse

∫
∞

0
c(x,ρ̃s)ds,

where the first inequality is by (18). Substituting (25) in the last expression, we see

V ∗(x) ≤

∫ t2−t1

0
e−

∫ τ

0
(qx(ρs+t1)−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+e−
∫ t2−t1
0 (qx(ρs+t1 )−c(x,ρs+t1))ds

∫ ∞

0
e−

∫ τ+(t2−t1)
t2−t1

(qx(ρ̂s−(t2−t1)
)−c(x,ρ̂s−(t2−t1)

))ds

×

∫

S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫ t2−t1
0 (qx(ρt1+s)−c(x,ρt1+s))dse

−
∫
∞

t2−t1
qx(ρ̂s−(t2−t1)

)ds

×e
∫
∞

t2−t1
c(x,ρ̂s−(t2−t1)

)ds

=

∫ t2−t1

0
e−

∫ τ

0 (qx(ρs+t1)−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+e−
∫ t2−t1
0 (qx(ρt1+s)−c(x,ρt1+s))ds

×

{
∫ ∞

0
e−

∫ τ

0 (qx(ρ̂s)−c(x,ρ̂s))ds

∫

S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫
∞

0 qx(ρ̂s)dse
∫
∞

0 c(x,ρ̂s)ds

}

≤

∫ t2−t1

0
e−

∫ τ

0 (qx(ρs+t1)−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+e−
∫ t2−t1
0 (qx(ρt1+s)−c(x,ρt1+s))dsV ∗(x) + e−

∫ t2−t1
0 (qx(ρt1+s)−c(x,ρt1+s))dsδ,

where the last inequality is by (24). Since δ > 0 is arbitrarily fixed, and keeping in mind (22), this
amounts to

V ∗(x) ≤

∫ t2−t1

0
e−

∫ τ

0 (qx(ρs+t1 )−c(x,ρs+t1))ds

∫

S

V ∗(y)q̃(dy|x, ρt1+τ )dτ

+e−
∫ t2−t1
0 (qx(ρt1+s)−c(x,ρt1+s))dsV ∗(x).

This, (22) and (23) imply (21). ✷
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Lemma 5.2 For each t ≥ 0 and x ∈ S,

inf
ρ∈R

{
∫ t

0
e−

∫ s

0 (qx(ρv)−c(x,ρv))dv

∫

S

V ∗(y)q̃(dy|x, ρs)ds + e−
∫ t

0 (qx(ρs)−c(x,ρs))dsV ∗(x)

}

= V ∗(x).

Proof. We only need consider when t > 0; the case of t = 0 is trivial. Let δ > 0 be arbitrarily fixed.
Then by (18), there is some ρ̂ ∈ R such that

V ∗(x) + δ ≥

∫ ∞

0
e−

∫ τ

0 (qx(ρ̂s)−c(x,ρ̂s))ds

∫

S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫
∞

0 qx(ρ̂s)dse−
∫
∞

0 c(x,ρ̂s)ds.

Define ρ̃ ∈ R by

ρ̃s = ρ̂t+s, ∀ s > 0.

Direct calculations similar to those in the proof of Lemma 5.1 show

V ∗(x) + δ ≥

∫ t

0
e−

∫ τ

0 (qx(ρ̂s)−c(x,ρ̂s))ds

∫

S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫ t

0 (qx(ρ̂s)−c(x,ρ̂s))ds

×

{
∫ ∞

0
e−

∫ τ

0 (qx(ρ̃s)−c(x,ρ̃s))ds

∫

S

V ∗(y)q̃(dy|x, ρ̃τ )dτ + e−
∫
∞

0 qx(ρ̃s)dse−
∫
∞

0 c(x,ρ̃s)ds

}

≥

∫ t

0
e−

∫ τ

0 (qx(ρ̂s)−c(x,ρ̂s))ds

∫

S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫ t

0 (qx(ρ̂s)−c(x,ρ̂s))dsV ∗(x)

where the last inequality is by (18). Since δ > 0 is arbitrarily fixed, the above implies

V ∗(x) ≥ inf
ρ∈R

{
∫ t

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q(dy|x, ρτ )dτ + e−
∫ t

0 (qx(ρs)−c(x,ρs))dsV ∗(x)

}

.

On the other hand, Lemma 5.1 implies

V ∗(x) ≤ inf
ρ∈R

{
∫ t

0
e−

∫ τ

0
(qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t

0
(qx(ρs)−c(x,ρs))dsV ∗(x)

}

.

The statement follows from this and the previous inequality. ✷

Under extra conditions, including that the function qx(a) − c(x, a) is bounded, and 0 < δ <
qx(a)− c(x, a) for some constant δ > 0, as in [8], the minimization problem on the right hand side of
(18) can be reduced to a problem of Mayer form, and then Lemmas 5.1 and 5.2 follow from Lemma
(45.12) of [8].

For the next two lemmas, it is convenient to introduce the following notation. For each x ∈ S and
T > 0, let RV ∗,x,T be the set of ρ ∈ R such that

∫ t

0
e−

∫ s

0 (qx(ρv)−c(x,ρv))dv

∫

S

V ∗(y)q̃(dy|x, ρs)ds+ e−
∫ t

0 (qx(ρs)−c(x,ρs))dsV ∗(x) < ∞, ∀ t ∈ (0, T ).

Since V ∗(x) ≥ 1, the above inequality is equivalent to

∫ t

0
e−

∫ s

0 (qx(ρv)−c(x,ρv))dv

∫

S

V ∗(y)q̃(dy|x, ρs)ds < ∞, e−
∫ t

0 (qx(ρs)−c(x,ρs))ds < ∞, ∀ t ∈ (0, T );

V ∗(x) < ∞, (26)

for each ρ ∈ RV ∗,x,T . Note that if x ∈ S is such that V ∗(x) < ∞, then by Lemmas 5.1 and 5.2,
RV ∗,x,T 6= ∅.
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Lemma 5.3 Let x ∈ S and T > 0 be fixed. For each ρ ∈ RV ∗,x,T , it holds that
∫

S

V ∗(y)q̃(dy|x, ρs) ≥ V ∗(x)(qx(ρs)− c(x, ρs))

almost everywhere with respect to s ∈ (0, T ).

Proof. Since ρ ∈ RV ∗,x,T , one can apply the fundamental theorem of calculus and differentiate
∫ t

0
e−

∫ τ

0
(qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t

0
(qx(ρs)−c(x,ρs))dsV ∗(x)

with respect to t ∈ (0, T ), and deduce

e−
∫ t

0 (qx(ρs)−c(x,ρs))ds

∫

S

V ∗(y)q̃(dy|x, ρt)− e−
∫ t

0 (qx(ρs)−c(x,ρs))ds(qx(ρt)− c(x, ρt))V
∗(x) ≥ 0

for almost all t ∈ (0, T ) with respect to the Lebesgue measure, where the last inequality is by Lemma
5.1. The statement of the lemma immediately follows. (Recall that (26) holds for each ρ ∈ RV ∗,x,T .)
✷

Lemma 5.4 For each x ∈ S, where V ∗(x) < ∞, (19) is satisfied.

Proof. Let T > 0 be arbitrarily fixed, and so is x ∈ S, where V ∗(x) < ∞. Then RV ∗,x,T 6= ∅ as
explained earlier. Let some ρ ∈ RV ∗,x,T be arbitrarily fixed. One can legitimately write

e−
∫ t

0 (qx(ρs)−c(x,ρs))dsV ∗(x)− V ∗(x) = −

∫ t

0
(qx(ρτ )− c(x, ρτ ))e

−
∫ τ

0 (qx(ρs)−c(x,ρs))dsdτV ∗(x),

∀ t ∈ (0, T ).

Now,
∫ t

0
e−

∫ s

0 (qx(ρv)−c(x,ρv))dv

∫

S

V ∗(y)q̃(dy|x, ρs)ds+ e−
∫ t

0 (qx(ρs)−c(x,ρs))dsV ∗(x)− V ∗(x)

=

∫ t

0
e−

∫ τ

0 (qx(ρv)−c(x,ρv))dv

∫

S

V ∗(y)q̃(dy|x, ρτ )dτ

−

∫ t

0
(qx(ρτ )− c(x, ρτ ))e

−
∫ τ

0 (qx(ρs)−c(x,ρs))dsdτV ∗(x)

=

∫ t

0
e−

∫ τ

0
(qx(ρs)−c(x,ρs))ds

{
∫

S

V ∗(y)q̃(dy|x, ρτ )− (qx(ρτ )− c(x, ρτ ))V
∗(x)

}

dτ

=

∫ t

0
e−

∫ τ

0
(qx(ρs)−c(x,ρs))ds

∫

A

ρτ (da)

{
∫

S

V ∗(y)q̃(dy|x, a) − (qx(a)− c(x, a))V ∗(x)

}

dτ

for each t ∈ (0, T ).
By Lemma 5.2, we deduce from the above that

0

= inf
ρ∈RV ∗,x,T

{
∫ t

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds

∫

A

ρτ (da)

{
∫

S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x)

}

dτ

}

≥ inf
ρ∈RV ∗,x,T

{
∫ t

0
e−

∫ τ

0 (qx(ρs)−c(x,ρs))ds inf
a∈A

{
∫

S

V ∗(y)q̃(dy|x, a) − (qx(a)− c(x, a))V ∗(x)

}

dτ

}

≥ inf
ρ∈RV ∗,x,T

{
∫ t

0
e−τqx inf

a∈A

{
∫

S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x)

}

dτ

}

(27)
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where the first equality is also because of V ∗(x) < ∞. Let

B(x) =

{

a ∈ A :

∫

S

V ∗(y)q̃(dy|x, a) < ∞

}

.

Then

inf
a∈A

{
∫

S

V ∗(y)q̃(dy|x, a) − (qx(a)− c(x, a))V ∗(x)

}

= inf
a∈B(x)

{
∫

S

V ∗(y)q̃(dy|x, a) − (qx(a)− c(x, a))V ∗(x)

}

(28)

Each b ∈ B(x) is identified by an element ρb ∈ R such that ρbs(da) = δ{b}(da) for all s > 0.

Furthermore, compared with (26) and keeping in mind V ∗(x) < ∞, we see that ρb ∈ RV ∗,x,T . Thus,
{ρb : b ∈ B(x)} ⊆ RV ∗,x,T . Hence, for each a ∈ B(x), one can apply Lemma 5.3, and after that, see

inf
a∈B(x)

{
∫

S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x)

}

≥ 0.

Consequently, we see from (27), (28) and the above inequality that

0 ≥ inf
ρ∈RV ∗,x,T

{
∫ t

0
e−τqx inf

a∈B(x)

{
∫

S

V ∗(y)q̃(dy|x, a) − (qx(a)− c(x, a))V ∗(x)

}

dτ

}

≥ 0,

and thus

0 = inf
a∈A

{

c(x, a)V ∗(x) +

∫

S

q(dy|x, a)V ∗(y)

}

,

as required. (Recall that qx < ∞.) ✷

Now we are ready to present the proof of Theorem 5.1 as follows.

Proof of Theorem 5.1. Part (a) of this statement has been proved in Lemma 5.4. We prove part (b)
of the statement as follows. For each x ∈ S, we can view ϕ(x) as an element of R by identifying it
with ρx ∈ R such that

ρxt (da) := δ{ϕ(x)}(da), ∀ t > 0.

Then, x ∈ S → ρx clearly defines a specific deterministic stationary strategy for the DTMDP model
{X,A, p, l} defined in Section 4.

Let x ∈ S be arbitrarily fixed, where V ∗(x) < ∞. Then by (20),

(qx(ϕ(x)) − c(x, ϕ(x)))V ∗(x) =

∫

S

q̃(dy|x, ϕ(x))V ∗(y). (29)

Note that the right hand side is nonnegative, and is zero if and only if qx(ϕ(x)) = 0, because V ∗(x) ≥ 1
for each x ∈ S. In other words, there are only two possibilities;

qx(ϕ(x)) > c(x, ϕ(x)) ≥ 0, (30)

or

qx(ϕ(x)) = c(x, ϕ(x)) = 0. (31)
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In case of (30), we see

V ∗(x) = inf
ρ∈R

{
∫ ∞

0
e−

∫ τ

0 (qx(ρs))−c(x,ρs))ds

(
∫

S

V ∗(y)q̃(dy|x, ρτ )

)

dτ + e−
∫
∞

0 qx(ρs)dse
∫
∞

0 c(x,ρs)ds

}

≤

∫ ∞

0
e−

∫ τ

0 (qx(ρxs ))−c(x,ρxs ))ds

(
∫

S

V ∗(y)q̃(dy|x, ρxτ )

)

dτ + e−
∫
∞

0 qx(ρxs )dse
∫
∞

0 c(x,ρxs )ds

=

∫ ∞

0
e−(qx(ϕ(x))−c(x,ϕ(x)))τ (qx(ϕ(x)) − c(x, ϕ(x)))dτV ∗(x) + e−

∫
∞

0 qx(ϕ(x))dse
∫
∞

0 c(x,ϕ(x))ds

= V ∗(x),

where the first equality is by (18), and the second equality is by (29) and the definition of ρx, and the
last equality is by (30); recall (1). Thus,

inf
ρ∈R

{
∫ ∞

0
e−

∫ τ

0 (qx(ρs))−c(x,ρs))ds

(
∫

S

V ∗(y)q̃(dy|x, ρτ )

)

dτ + e−
∫
∞

0 qx(ρs)dse
∫
∞

0 c(x,ρs)ds

}

=

∫ ∞

0
e−

∫ τ

0
(qx(ρxs ))−c(x,ρxs ))ds

(
∫

S

V ∗(y)q̃(dy|x, ρxτ )

)

dτ + e−
∫
∞

0
qx(ρxs )dse

∫
∞

0
c(x,ρxs )ds

under (30). Similar calculation show that in case of (31), and in case of V ∗(x) = ∞, the above
equalities hold as well. It remains to apply Proposition 3.3(b); recall the discussions in Section 4
about the reduction of the CTMDP model {S,A, q, c} to the DTMDP model {X,A, p, l} therein. ✷

5.2 Existence of a deterministic stationary optimal policy

The objective of this subsection is to show the existence of a deterministic stationary optimal policy
for the CTMDP problem (4), under some compactness-continuity conditions.

From now on, the following assumption is always in place.

Assumption 5.1 For each x ∈ S,

sup
a∈A

{c(x, a)} =: c(x) < ∞.

We mention that the function c is upper semianalytic on S, and may be not Borel measurable; the
similar remark holds for the function q, see [3]. However, we have the following handy fact1.

Lemma 5.5 There exists a [1,∞)-valued Borel measurable function w on S such that

w(x) ≥ 1 + c(x) + qx, ∀ x ∈ S. (32)

Proof. This follows from the reasoning of the proof of Lemma 1(a) in [14] based on the Novikov
seperation theorem. ✷

The role of the function w can be also well appreciated in the next subsection.
Next we present two sets of compactness-continuity conditions, under either of which, the main

optimality results presented henceforth survive.

Condition 5.1 (a) The function w from Lemma 5.5 is continuous on S.

(b) For each bounded continuous function f on S,
∫

S
f(y)q̃(dy|x, a) is continuous in (x, a) ∈ S ×A.

1I was told the fact in Lemma 5.5 by Professor Eugene A. Feinberg.
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(c) The function c(x, a) is lower semicontinuous in (x, a) ∈ S ×A.

(d) The action space A is a compact Borel space.

Part (a) of Condition 5.1 is not restrictive, see p.48 of [30].

Condition 5.2 (a) For each bounded measurable function f on S and each x ∈ S,
∫

S
f(y)q̃(dy|x, a)

is continuous in a ∈ A.

(b) For each x ∈ S, the function c(x, a) is lower semicontinuous in a ∈ A.

(c) The action space A is a compact Borel space.

Condition 5.1 is called the compactness-weak continuity condition, and Condition 5.2 is called the
compactness-strong continuity condition. Often, the weak continuity condition is easier for verifica-
tions, and it is noted that in some practical applications, the weak continuity condition is satisfied
while the strong continuity condition is not, see e.g., Section 6 of [24]. Nevertheless, the two conditions
do not imply each other.

Theorem 5.2 Suppose Condition 5.1 (resp., Condition 5.2) is satisfied. Then there exists a deter-
ministic stationary policy ϕ satisfying (20) for each x ∈ S, where V ∗(x) < ∞, and so there exists a
deterministic stationary optimal policy ϕ for the CTMDP problem (4), and the value function V ∗ is
lower semicontinuous (resp., measurable) on S.

We postpone the proof of Theorem 5.2 after the next few lemmas and preliminaries.
Let us equip R with the Young topology, which is the weakest topology with respect to which the

function

ρ ∈ R →

∫ ∞

0

∫

A

f(t, a)ρt(da)dt

is continuous for each strongly integrable Carathéodory functions f on (0,∞)×A . Here a real-valued
measurable function f on (0,∞)×A is called a strongly integrable Carathéodory function if for each
fixed t ∈ (0,∞), f(t, a) is continuous in a ∈ A, and for each fixed a ∈ A, supa∈A |f(t, a)| is integrable
in t, i.e.,

∫∞
0 supa∈A |f(t, a)|dt < ∞. See more details in [8].

Lemma 5.6 Endowed with the Young topology, if the action space A is compact, then R is a compact
Borel space.

Proof. See Remark 8.2.3 of [1], or Chapter 4 of [8]. ✷

Lemma 5.7 (a) Suppose Condition 5.1 is satisfied. Then the DTMDP model {X,A, p, l} defined
in Section 4 satisfies Condition 3.1.

(b) Suppose Condition 5.2 is satisfied. Then the DTMDP model {X,A, p, l} defined in Section 4
satisfies Condition 3.2.

Proof. One can apply the reasoning in the proof of Lemma 3.2 of [29]. ✷
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Lemma 5.8 Define the stochastic kernel p̃ on B(S) from (x, a) ∈ S ×A by

p̃(dy|x, a) :=
q(dy|x, a)

w(x)
+ δ{x}(dy), ∀ (x, a) ∈ S ×A.

Then the following assertions hold.

(a) An [1,∞]-valued lower semianalytic function V on S satisfies

0 = inf
a∈A

{

c(x, a)V (x) +

∫

S

q(dy|x, a)V (y)

}

(33)

for each x ∈ S such that V (x) < ∞ if and only if V is an [1,∞]-valued lower semianalytic
solution to

V (x) = inf
a∈A

{

w(x)

w(x)− c(x, a)

∫

S

p̃(dy|x, a)V (y)

}

, ∀ x ∈ S. (34)

(b) Let V be an [1,∞]-valued lower semianalytic function on S satisfying (33) for each x ∈ S such
that V (x) < ∞. A deterministic stationary policy ϕ satisfies

0 = inf
a∈A

{

c(x, a)V (x) +

∫

S

q(dy|x, a)V (y)

}

= c(x, ϕ(x))V (x) +

∫

S

q(dy|x, ϕ(x))V (y) (35)

for each x ∈ S such that V (x) < ∞ if and only if this deterministic stationary policy ϕ satisfies

inf
a∈A

{

w(x)

w(x) − c(x, a)

∫

S

p̃(dy|x, a)V (y)

}

=
w(x)

w(x) − c(x, ϕ(x))

∫

S

p̃(dy|x, ϕ(x))V (y), ∀ x ∈ S.

Proof. (a) We first show the “only if” part. Let V be a [1,∞]-valued lower semianalytic solution (33).
Let x ∈ S be fixed. If V (x) = ∞, then (34) is satisfied as the both sides are infinite. Suppose now
V (x) < ∞. Then

0 ≤ c(x, a)V (x) + w(x)

∫

S

q(dy|x, a)

w(x)
V (y) +w(x)V (x)− w(x)V (x)

= c(x, a)V (x) + w(x)

∫

S

p̃(dy|x, a)V (y)−w(x)V (x), ∀ a ∈ A.

Following from this and keeping in mind (32), simple calculations imply

V (x) ≤ inf
a∈A

{

w(x)

w(x)− c(x, a)

∫

S

p̃(dy|x, a)V (y)

}

.

To show the equality, let ǫ > 0 be arbitrarily fixed. By (33), there exists some â ∈ A such that

ǫ > c(x, â)V (x) +

∫

S

q(dy|x, â)V (y).

The above inequality implies

V (x) + ǫ ≥ V (x) +
ǫ

w(x)− c(x, â)
>

w(x)

w(x)− c(x, â)

∫

S

p̃(dy|x, â)V (y),

where the first inequality is by (32). Thus, (34) is satisfied.
The similar reasoning applies to show the “if” part; the details are omitted.
(b) This part can be proved as for part (a). ✷
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Lemma 5.9 (a) Suppose Condition 5.1 is satisfied. Then (x, a) ∈ S×A → w(x)
w(x)−c(x,a) is lower semi-

continuous, and for each bounded continuous function f on S, (x, a) ∈ S×A →
∫

S
f(y)p̃(dy|x, a)

is continuous.

(b) Suppose Condition 5.2 is satisfied. Then for each x ∈ S, a ∈ A → w(x)
w(x)−c(x,a) is lower semi-

continuous, and for each bounded measurable function f on S, a ∈ A →
∫

S
f(y)p̃(dy|x, a) is

continuous.

Proof. The statement of this lemma is immediate from Condition 5.1 and Condition 5.2, respectively,
as well as the definition of the stochastic kernel p̃. ✷

Now we are in position to prove Theorem 5.2.

Proof of Theorem 5.2. Suppose Condition 5.1 is satisfied. By Lemma 5.7, one can apply Proposition
3.4(a) to the DTMDP model {X,A, p, l} defined in Section 4. This and Theorem 4.1 imply that the
value function V ∗ of the CTMDP problem (4) is [1,∞]-valued and lower semicontinuous on S. By
Theorem 5.1(a), Lemmas 5.8 and 5.9, Proposition 7.31 of [3] and a well known measurable selection
theorem, see e.g., Proposition 7.33 of [3], we see that there is a deterministic stationary policy ϕ for
the CTMDP model such that (20) is satisfied for each x ∈ S, where V ∗(x) < ∞. By Theorem 5.1(b),
this deterministic stationary policy ϕ is optimal for the CTMDP problem (4).

The case when Condition 5.2 is satisfied can be proved in the same way, by applying Proposition
3.4(b) and the corresponding measurable selection theorem, see e.g., Proposition D.5 of [18]. ✷

5.3 Further reduction to a simpler DTMDP and value iteration

In this subsection, we reduce the CTMDP model {S,A, q, c} to a DTMDP {S,A, p̃, l̃} with the cost
function l̃ being defined below. Compared to the DTMDP model {X,A, p, l} defined in Section 4, the
DTMDP model here is simpler, with the same state and action space as the original CTMDP model.

Theorem 5.3 (a) Suppose Condition 5.1 is satisfied. Then the value function V ∗ for the CTMDP
problem (4) is the minimal [1,∞]-valued lower semicontinuous solution to the optimality equation
(19).

(b) Suppose Condition 5.2 is satisfied. Then the value function V ∗ for the CTMDP problem (4) is
the minimal [1,∞]-valued measurable solution to (19).

Proof. (a) Let V be a lower semicontinuous [1,∞]-valued function on S such that (33) is satisfied
wherever V (x) < ∞. By Proposition 7.33 of [3], there exists a deterministic stationary policy ϕ
satisfying (35) for each x ∈ S such that V (x) < ∞. Let x ∈ S be fixed. Assume for now V (x) < ∞.
Arguing as in the proof of Theorem 5.1(b), we see

inf
ρ∈R

{
∫ ∞

0
e−

∫ τ

0
(qx(ρs))−c(x,ρs))ds

(
∫

X

V (y)q̃(dy|x, ρτ )

)

dτ + e−
∫
∞

0
qx(ρs)dse

∫
∞

0
c(x,ρs)ds

}

≤

∫ ∞

0
e−τ(qx(ϕ(x))−c(x,ϕ(x)))(c(x, ϕ(x)) − qx(ϕ(x)))dτV (x) + e−

∫
∞

0 qx(ϕ(x))dse
∫
∞

0 c(x,ϕ(x))ds

≤ V (x),

where for the last inequality, recall that one only needs deal with two possibilities, namely, (30)
and (31), because of (35). The previous inequality holds trivially if V (x) = ∞. Now by applying
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Proposition 3.3 to the DTMDP model {X,A, p, l} in Section 4, c.f., (18), as well as Theorem 4.1, we
see V (x) ≥ V ∗(x) for each x ∈ S. This and Theorem 5.1(a) imply part (a) of this statement.

(b) This part can be proved in the same way as for part (a) by using the appropriate measurable
selection theorem, c.f. Proposition D.5 of [18]. ✷

Now we are in position to present the equivalent DTMDP model {S,A, p̃, l̃}.
Define for each (x, a, y) ∈ S ×A× S,

l̃(x, a, y) := ln
w(x)

w(x)− c(x, a)
.

Recall by (32), l̃(x, a, y) > 0 for each (x, a, y) ∈ S ×A× S.
Consider the DTMDP model {S,A, p̃, l̃} (with the exponential utility). Note that (34) is the

optimality equation for this DTMDP model. Suppose Condition 5.1 or Condition 5.2 is satisfied.
Then by Theorem 5.3, Proposition 3.4 applied to the DTMDP model {S,A, p̃, l̃}, and Lemma 5.8(b),
we see the DTMDP model {S,A, p̃, l̃} and the CTMDP model {S,A, q, c} are equivalent; the value
functions are the same, and a deterministic stationary optimal policy for the CTMDP model gives a
deterministic stationary optimal strategy for the DTMDP model {S,A, p̃, l̃}, and vice versa.

As a consequence, we can write down the value iteration algorithm for the CTMDP problem (4).

Corollary 5.1 Suppose Condition 5.1 or Condition 5.2 is satisfied. Define V (0)(x) := 1 for each
x ∈ S, and for each n = 1, 2, . . . ,

V (n)(x) = inf
a∈A

{
∫

S

p̃(dy|x, a)el̃(x,a,y)V (n−1)(y)

}

, ∀ x ∈ S.

Then for each x ∈ S, V (n)(x) increases to V ∗(x) as n ↑ ∞, where V ∗ is the value function of the
CTMDP problem (4).

Proof. The statement follows from the discussions above this theorem, and Proposition 3.4. Recall
Lemma 5.9. ✷

6 Conclusion

To sum up, for the CTMDP problem, where the certainty equivalent with respect to the exponential
utility of the total undiscounted cost is to be minimized, we established the optimality equation.
Under the compactness-continuity condition, we showed the existence of a deterministic stationary
optimal policy. By investigating the optimality equation, we reduced the CTMDP problem to an
equivalent DTMDP problem, which is with the same state and action space as the original CTMDP.
In particular, the value iteration algorithm for the CTMDP problem follows from this reduction. Note
that, we did not need impose any condition on the growth of the transition rate, and the cost rate is
unbounded, and the controlled process in the Borel state space could be explosive.

As for applications, we believe that our results will be useful for optimal control of queueing
systems. In fact, [6] considered the risk-sensitive control of a queueing system as a CTMDP with
the total discounted cost in a finite state and action space. Restricted to deterministic stationary
policies, although the authors of [6] applied the uniformization technique to reduce the CTMDP to
a DTMDP, they did not manage to investigate the continuous-time problem because the resulting
DTMDP was nonstandard. The reduction method here is different from the uniformization technique,
and its application to the discounted problem will be more delicate.
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