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QUASINONLOCAL COUPLING OF NONLOCAL

DIFFUSIONS

XINGJIE HELEN LI AND JIANFENG LU

Abstract. We developed a new self-adjoint, consistent, and stable cou-
pling strategy for nonlocal diffusion models, inspired by the quasinonlo-
cal atomistic-to-continuum method for crystalline solids. The proposed
coupling model is coercive with respect to the energy norms induced
by the nonlocal diffusion kernels as well as the L2 norm, and it satis-
fies the maximum principle. A finite difference approximation is used
to discretize the coupled system, which inherits the property from the
continuous formulation. Furthermore, we design a numerical example
which shows the discrepancy between the fully nonlocal and fully local
diffusions, whereas the result of the coupled diffusion agrees with that
of the fully nonlocal diffusion.

Keywords: nonlocal diffusion, quasinonlocal coupling, stability

1. Introduction

Nonlocal models have been developed and received lot of attention in
recent years to model systems with important scientific and engineering
applications, for example, the phase transition [2, 14], the nonlocal heat
conduction [4], the peridynamics model for mechanics [33], just to name a
few. These nonlocal models give rise to new questions and challenges to
applied mathematics both in terms of analysis and numerical algorithms.

While it is established that the nonlocal formulations can often provide
more accurate descriptions of the systems, the nonlocality also increases the
computational cost compared to conventional models based on PDEs. As a
result, methodologies that couple nonlocal models with more localized de-
scriptions have been investigated in recent years. The goal is to combine
the accuracy of nonlocal models with the computational and modeling ef-
ficiency of local PDEs. The basic idea is to apply the nonlocal model to
those parts of the domain that require the improved accuracy, and use the
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more efficient local PDE model in other regions to reduce the computational
costs. Besides, from a modeling point of view, the nonlocal models usually
give rise to modeling challenges near the boundary, as volumetric boundary
conditions are needed and those are often hard to characterize or match
with the physical setup of the system. It is often easier to switch to the
local models near the boundary so that usual boundary conditions can be
used. Coupling different nonlocal models is also important as it has applica-
tions in modeling hierarchically structured materials [16, 40], nonlocal heat
conductors [4, 7], etc.

In the past decades, many works have been developed for numerical analy-
sis of nonlocal models, for example [6,9–11,20,36], which gave understanding
to properties and asymptotic behaviors. In particular, many strategies are
proposed to couple together local-to-nonlocal or two nonlocal models with
different nonlocality. For example, (1) Arlequin type domain decomposition,
see e.g., [17,28]; (2) Optimal-control based coupling, e.g., [7,8]; (3) Morphing
approach as in [23]; (4) Force-based blending mechanism, see e.g., [29, 30];
(5) Energy-based blending mechanism, see e.g., [12,35], just to name a few.

Nonlocal models are considered as top-down continuum approaches which
use integral formulations to represent nonlocal spatial interactions [18, 19,
33]. Within a nonlocal model, each material point interacts through short-
range forces with other points inside a horizon of prescribed radius δ, which
leads to a nonlocal integral-type continuum theory [33]. Complementary
to top-down nonlocal continuum approaches are bottom-up atomistic-to-
continuum (AtC) approaches, which give atomistic accuracy near defects
such as crack tips and continuum finite element efficiency elsewhere. No-
tice that top-down nonlocal models and bottom-up AtC models actually
share a lot interconnections (see for example, [3, 15, 16, 22] for more discus-
sions). Many of the coupling strategies developed for nonlocal models were
also inspired or connected to those of AtC coupling methods for crystalline
materials (see e.g., the review articles [24, 25]). The AtC coupling can be
indeed understood as a nonlocal-local coupling as well, since the atomistic
models typically involve interactions of atoms within the interaction range
(i.e., horizon) which are beyond the nearest neighbor. Additionally, the
nonlocal models and AtC models have some similarities in one-dimension
after finite difference discretization.

In fact, the coupling strategy we proposed in this work also borrows the
idea of quasinonlocal coupling [13, 32] which was developed in the context
of AtC method, and a detailed interpretation of quasinonlocal coupling will
be given in section 3. The proposed method gives a self-adjoint coupling
kernel in the divergence form using the terminology of [5]. In physics terms,
the coupling naturally satisfies the Newton’s third law since the coupling is
done on the energy level. Moreover, the coupling we proposed satisfies the
patch-test consistency, L2 stability, and the maximum principle. As far as
we know, none of existing coupling strategies satisfies all these properties.
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We believe the coupling strategy is more advantageous over the existing
methods.

The paper is organized as follows. In section 2, we give a brief review
of nonlocal diffusion problem. In section 3, we propose the quasinonlocal
coupling, and prove it is self-adjoint and patch-test consistent. In addition,
we prove that the quasinonlocal diffusion is positive-definite with respect
to the energy norm induced by the nonlocal diffusion kernels as well as the
L2 norm, and it satisfies the maximum principle. In section 4, we provide
a first order finite difference approximation for the purpose of numerical
implementation, which keeps the properties of continuous level. In section 5,
we verify our theoretical results by a few numerical examples.

2. The nonlocal diffusion

We first review the definition and properties of the nonlocal diffusion
problem, following mainly the notations in [9,10]. Consider an open domain
Ω ⊂ R

d and for u(x) : R
d → R, the (linear) nonlocal diffusion operator Lδ

is defined as

Lδu(x) :=

∫

Rd

(u(y)− u(x)) γδ(x, y)dy, ∀x ∈ Ω, (1)

where δ is the horizon parameter and γδ(x, y) : R
d×R

d → R denotes a non-
negative symmetric function. Under the assumption of translational invari-
ance and isotropy, the kernel γδ(x, y) reduces to a radial function depending
on the distance |x− y| and is given by [34]

γδ(x, y) = γδ(|x− y|) =
1

δd+2
γ

(

|x− y|

δ

)

, (2)

where d is the spatial dimension and γ is a non-negative radially symmetric
nonlocal diffusion kernel which satisfies

• Translational invariance and isotropy: γ(x, y) = γ(|y − x|) ≥ 0;
• Compact support: γ(x, y) = 0 if |x− y| ≥ 1;
• Finite second moment:

∫

s2γ(s)ds < ∞. Note that due to the scaling
choice in (2), the second moment is scale invariant, i.e.,

∫

s2γδ(s)ds
takes the same value for any δ.

With Dirichlet boundary condition, the initial-boundary value problem for
the nonlocal diffusion is then given by:


















∂un
∂t

= Lδun(x) =

∫

Bδ(x)
(un(y)− un(x)) γδ(x, y)dy, ∀x ∈ Ω, ∀t > 0

un(x, t) = 0, ∀x ∈ ΩI , ∀t ≥ 0,

un(x, 0) = u0n(x), ∀x ∈ Ω,

(3)
where the subscript in un stands for “nonlocal” and ΩI = R

d\Ω is known
as the interaction domain [11], on which the volumetric Dirichlet boundary
condition is imposed on un. Since the kernel γδ(x, y) is zero if |x − y| > δ,
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we have restricted the integration (3) in Bδ(x): the δ-ball around x and also
the interaction domain ΩI can be also restricted to the δ-neighborhood of
Ω:

ΩI := {y ∈ R
d \ Ω : |y − x|≤δ for some x ∈ Ω}. (4)

Other boundary conditions can be used, for example if Ω is a box region
Ω = [0, L)d, we can impose the periodic boundary conditions on un. The
corresponding initial-boundary value problem can be written down analo-
gously.

The nonlocal diffusion operator is associated with the Hilbert spaces given
by

Sδ :=

{

u ∈ L2(Ω ∪ΩI) :

∫

Ω∪ΩI

∫

Ω∪ΩI

γδ(x, y) (u(y)− u(x))2 dxdy < ∞, u
∣

∣

ΩI

= 0

}

.

The induced nonlocal energy norm is denoted as ‖ · ‖Sδ
:

‖u‖2Sδ
:=

∫

Ω∪ΩI

∫

Ω∪ΩI

γδ(x, y) (u(y)− u(x))2 dxdy, ∀u ∈ Sδ. (5)

The properties of the nonlocal kernel as well as the nonlocal energy norms
are investigated and discussed in many recent works, we refer the readers
to [7,10,36,37] and references therein. We remark in particular that the non-
local energy norm satisfies the nonlocal Poincaré inequality [7, Eq. (2.11)],
which will be used in our analysis in the sequel:

‖u‖L2(Ω∪ΩI) ≤ Cd,δ‖u‖Sδ
. (6)

The horizon parameter should be chosen according the physical property
of the underlying system. We are interested in the cases where the horizon
parameter changes across the domain of interest. In this case, we shall
couple two nonlocal diffusion operators with different horizon parameters
together. In the next section, we propose a way of coupling based on the
quasinonlocal idea. While we focus in this work the coupling of two nonlocal
diffusions, we note that the idea can be extended to coupling of local and
nonlocal diffusions, which will be considered in future works.

3. The quasinonlocal coupling

In this section, we propose a coupling scheme for multiscale nonlocal dif-
fusions, and prove the consistency, L2 stability and the maximum principle
for the new coupling operator.

To better convey the idea, we will limit our discussion to one dimensional
case in this work. For simplicity of notation, we assume that Ω = [−a, b] and
it is divided into two parts Ω1 = [−a, 0] and Ω2 = [0, b] with the interface
at 0. We assume that within Ω1, the nonlocal diffusion kernel γδ1 should
be employed and γδ2 should be used in Ω2. Without loss of generality, we
assume δ1 > δ2 and thus Ω1 is a more nonlocal region compared to Ω2. We
further assume that δ1 = Mδ2 with M ∈ N being an integer. Our coupling
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strategy requires M to be an integer; it might be interesting to study how
to extend to arbitrary ratio of δ1 and δ2.

To ensure the symmetry, we will derive the coupled nonlocal diffusion
operator (i.e., negative of the force) from a total energy. Recall that the
total energy associated with the kernel γδ is

Etot,δ(u) =
1

4

∫

R

∫

R

γδ(|y − x|) (u(y)− u(x))2 dxdy. (7)

An intuitive coupling idea is to combine the energies associated with δ1 and
δ2, respectively. For instance, we use γδ2 if x, y ∈ Ω2 and γδ1 otherwise. It
can be verified though, such coupling strategy does not satisfy the patch-test
consistency. The resulting operator (as the first variation of the energy) L
does not annihilate affine functions, which is of course a property one would
hope a diffusion operator should satisfy.

3.1. Quasinonlocal coupling with geometric reconstruction. To over-
come the difficulty of naive coupling strategies, our construction does not
simply try to vary δ in (7) across the domain, but instead, we follow the
geometric reconstruction reformulation for the quasinonlocal method [13].
Let us first present the formulation of the coupling before explaining the
ideas behind. Our proposed total energy of the quasinonlocal coupling is
given by

Etot,qnl(u) =
1

4

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|) (u(y)− u(x))2 dx dy (8)

+
1

4

∫

x,y∈R,x>0 and y>0
γδ1(|y − x|)

·
1

M

M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)2

M2 dx dy.

Note that the energy functional only uses one interaction kernel γδ1 (the
more non-local one) throughout the entire domain Ω = Ω1 ∪ Ω2. In the
subregion Ω2, instead of changing to the kernel γδ2 , we change the differ-
ence (u(y) − u(x))2 to an averaged version. This is coined as “geometric
reconstruction”, since it reconstructs u(y) − u(x) by differences of u eval-
uated at points that are at most of distance δ2 to each other. Therefore,
while a longer range kernel γδ1 is used in Ω2, the energy effectively still only
involves interaction no further than δ2 distance. More concretely, to link
the regions from kernel γδ1 to γδ2 with δ1 = Mδ2, in the local region Ω2, we
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replace γδ2(|y − x|) (u(y)− u(x))2 by (see Figure 1 for an illustration)

γδ1(|y − x|)
1

M

M−1
∑

j=0

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)2 (δ1
δ2

)2

= γδ1(|y − x|)
1

M

M−1
∑

j=0

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)2

M2.

Note that the kernel remains intact, and we adopt the geometric reconstruc-

tion to replace

u(y)− u(x) →

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)

M

for j = 0, . . . ,M − 1 and average the modulus square of the result over
the M possibilities. Note that if |x − y| ≤ δ1, the difference on the right

is u evaluated at points with distance at most δ1
M = δ2; thus effectively we

reconstruct the difference u(y)−u(x) by a more local interaction (and hence
the idea was referred as geometric reconstruction scheme in [13]). In fact, if
we adopt such reconstruction everywhere in the computational domain, we
will get the nonlocal diffusion with the kernel γδ2 , as shown in the following
Proposition.

0−1 51

Figure 1. An example of quasinonlocal construction in one
dimension: x ≤ 0 is the region with kernel γδ1 and x >
0 is the region with kernel γδ2 (M = 5). The blue dash
bond representing the difference u(y)−u(x) is geometrically
reconstructed by the red solid bonds with length at most δ2.

Proposition 3.1. The energy functional defined on the entire domain Ω∪ΩI

with geometric reconstruction

Etot,gr(u) :=
1

4

∫

x,y∈Ω∪ΩI

γδ1(|y − x|) (9)

1

M

M−1
∑

j=0

(

u

(

x+
j + 1

M
(y − x)

)

− u

(

x+
j

M
(y − x)

))2

M2 dxdy
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is equivalent to the total nonlocal energy with diffusion kernel γδ2 :

Etot,δ2(u) :=
1

4

∫

x,y∈Ω∪ΩI

γδ2(|y − x|) (u(y)− u(x))2 dxdy.

Proof. Outside the support, the diffusion kernel is zero, and because of the
zero volumetric Dirichlet boundary condition, so the total energy (9) can be
recast as an integral of entire real line R:

Etot,gr(u) =
1

4

∫

x,y∈R
Mγδ1(|y − x|)

M−1
∑

j=0

(

u

(

x+
j + 1

M
(y − x)

)

− u

(

x+
j

M
(y − x)

))2

dxdy.

(10)

For each fixed 0 ≤ j ≤ M − 1 in (10), we introduce change of variables

z := x+
j + 1

M
(y − x) =

(

1−
j + 1

M

)

x+
j + 1

M
y

to replace y, thus we obtain

1

4

∫

x,y∈R
Mγδ1(|y − x|)

(

u

(

x+
j + 1

M
(y − x)

)

− u

(

x+
j

M
(y − x)

))2

dxdy

=
1

4

∫

x,z∈R
γδ1

(

M

j + 1
|z − x|

)

M2

j + 1

(

u (z)− u

(

z −
1

j + 1
(z − x)

))2

dzdx

=
1

4

∫

x,z∈R

1

M3
γδ2

(

1

j + 1
|z − x|

)

M2

j + 1

(

u (z)− u

(

z −
1

j + 1
(z − x)

))2

dzdx.

Next, let w = z − 1
j+1(z − x) = z + 1

j+1(x− z) to replace x, we further get

1

4

∫

x,z∈R

1

M3
γδ2

(

1

j + 1
|z − x|

)

M2

j + 1

(

u (z)− u

(

z −
1

j + 1
(z − x)

))2

dzdx

=
1

4

∫

w,z∈R

1

M
γδ2 (|w − z|) (u (z)− u (w))2 dzdw =

1

M
Etot,δ2(u).

Summing up all 0 ≤ j ≤ M − 1, we proved the proposition. �

Therefore, to couple diffusion kernels γδ1 and γδ2 with interface at x = 0,
we construct the total coupled energy by using the geometric reconstruction
when x, y ∈ Ω2 and obtain (8), recalled here

Etot,qnl(u) =
1

4

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|) (u(y)− u(x))2 dx dy

+
1

4

∫

x,y∈R,x>0 and y>0
γδ1(|y − x|)

·
1

M

M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)2

M2 dx dy.
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Clearly, when δ1 = δ2, we have M = 1 and thus Etot,qnl(u) = Etot,δ1(u).
The first variation of the above functional (8) then gives us a coupled

diffusion operator, for which we call the quasinonlocal diffusion, denoted
by Lqnl. After straightforward but somewhat lengthy calculation, which we
defer to the appendix, we obtain that

Lqnluqnl(x) := −
δEtot,qnl

δu
uqnl(x)

=



































































∫

R

(uqnl(y)− uqnl(x)) γδ1(|y − x|)dy, if x ≤ 0,
∫

x−δ1<y<0
(uqnl(y)− uqnl(x)) γδ1(|y − x|)dy

+
1

M

M−1
∑

j=1

[

∫

(x− 1
j
x)<y<(x+ 1

j
x)
(uqnl(y)− uqnl(x)) γδ2(|y − x|)

]

dy

+
1

M

∫

(x− 1
M

x)<y
(uqnl(y)− uqnl(x)) γδ2(|y − x|)dy, if 0 < x < δ1,

∫

R

(uqnl(y)− uqnl(x)) γδ2(|y − x|)dy, if x ≥ δ1.

(11)

Note that in the region {x ≤ 0}, the diffusion is just the nonlocal diffu-
sion with kernel γδ1 , while the diffusion kernel is given by γδ2 in the region
{x ≥ δ1}. The region in between {0 < x < δ1} can be viewed as a buffer re-
gion that connects the two nonlocal diffusion operators. We emphasize that
the coupled diffusion operator Lqnl is self-adjoint, as it is derived from the
coupled energy (8) and can be easily checked directly from the definition;
and hence the operator Lqnl is of divergence form (following the definition
in [5]). This is the main motivation behind our construction of the kernel.

The idea of the coupling strategy here is in fact borrowed from the
quasinonlocal coupling in the context of atomistic-to-continuum method
for crystalline solids, first proposed by [32], generalized and analyzed in
[13, 21, 26, 27, 31], in particular the geometric reconstruction point of view
[13]. Hence we adopt the name of the quasinonlocal coupling strategy. Ac-
tually, as only pairwise interaction is involved in the current context of
nonlocal diffusion operators, the coupling is considerably easier than the
atomistic-to-continuum coupling for crystals. In particular, the extension
of atomistic-to-continuum quasinonlocal coupling to higher dimension for
general long range potential is still an open challenge, despite progresses
in [13, 27, 31]. While for nonlocal diffusion, we expect the extension should
not pose serious difficulties and will be considered in future works.
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The initial-boundary value problem for the quasinonlocal coupling is given
as below:















∂uqnl
∂t

= Lqnluqnl(x), ∀x ∈ Ω,

uqnl(x, t) = 0, ∀x ∈ ΩI , ∀t ≥ 0,

uqnl(x, 0) = u0qnl(x), on Ω.

(12)

We now demonstrate the properties of the quasinonlocal diffusion operator
Lqnl in the following subsections.

3.2. Consistency.

Lemma 3.1. The quasinonlocal diffusion operator Lqnl defined in (11) is a

self-adjoint operator, and is consistent in the sense that Lqnlu = 0 for any

affine function u.

Proof. The self-adjointness has been shown above already. To check the
consistency, consider an affine function u(x) = Fx+ u0 with both F and u0
being constants. Thus, we have

u(y)− u(x) = F (y − x).

Plugging this into the definition of Lqnl (11), we have the following three
cases.

Case I: x ≤ 0, then

Lqnlu(x) =

∫

R

F (y − x) γδ1(|y − x|)dy =

∫

R

Fsγδ1(|s|)ds = 0,

which comes from the symmetry of the kernel.
Case II: 0 < x < δ1, then

Lqnlu(x) =

∫

x−δ1<y<0
F (y − x) γδ1(|y − x|)dy

+
1

M

M−1
∑

j=1

[

∫

(x− 1
j
x)<y<(x+ 1

j
x)
F (y − x) γδ2(|y − x|)

]

dy

+

∫

(x− 1
M

x)<y

1

M
F (y − x) γδ2(|y − x|)dy.

(13)
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Because of the symmetry of integral domain and the symmetry of the
kernel γδ2 , the second term in (13) equals zero. Thus, (13) becomes

Lqnlu(x)

=

∫

x−δ1<y<0
F (y − x) γδ1(|y − x|)dy

+
1

M

∫

(x− 1
M

x)<y
F (y − x) γδ2(|y − x|)dy

=

∫ 0

x−δ1

F (y − x) γδ1(|x− y|)dy

+
1

M

∫

(x− 1
M

x)<y
F (y − x)M3γδ1 (|M(y − x)|) dy

=

∫ −x

−δ1

Fsγδ1(|s|)ds +

∫ ∞

−x
F ŝγδ1(|ŝ|)dŝ =

∫ δ1

−δ1

Fsγδ1(|s|)ds = 0,

(14)

where we introduce the change of variables s := y − x and ŝ :=
M(y − x).

Case III: x ≥ δ1, then

Lqnlu(x) =

∫

R

F (y − x) γδ2(|y − x|)dy =

∫

R

Fsγδ2(|s|)ds = 0,

which again comes from the symmetry of the kernel.

Summarizing all the three cases, we thus obtain the patch-test consistency
of the coupled diffusion operator Lqnl. �

3.3. Stability analysis of QNL coupling. Let us now consider the sta-
bility of the QNL coupling (12) and (11). As the coupled diffusion operator
Lqnl is derived from the total energy (8), the bilinear form of the QNL
coupling operator is simply given by

bqnl(u, v) =

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|) (u(y)− u(x)) (v(y)− v(x)) dxdy

+

∫

x,y∈R,x>0 and y>0
Mγδ1(|y − x|)

M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

·

(

v(x+
j + 1

M
(y − x))− v(x+

j

M
(y − x))

)

dxdy.

(15)
The induced inner product space and norm associated with Lqnl are

Sqnl :=
{

u ∈ L2(Ω ∪ ΩI) : bqnl(u, u) < ∞, u
∣

∣

ΩI

= 0
}

;

‖u‖2Sqnl
: = bqnl(u, u), ∀u ∈ Sqnl.

(16)
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Also recall the bilinear form of the nonlocal kernel γδ1 :

bn(u, v) =

∫

Ω∪ΩI

dx

∫

Ω∪ΩI

γδ1(x, y) (u(y)− u(x)) (v(y)− v(x)) dy. (17)

Proposition 3.2 (Stability). For the nonlocal kernels γδ1(s) =
1
δ31
γ( s

δ1
) and

γδ2(s) =
1
δ32
γ( s

δ2
) with δ1 = Mδ2 for M being a given integer, where γ(s) is

a symmetric scaleless decreasing kernel supported on [0, 1], we have

bqnl(u, u) ≥ bn(u, u) = ‖u‖2Sδ1
. (18)

Proof. From the definition of the bilinear form (15), we have

bqnl(u, u) =

∫

x,y∈Ω∪ΩI ,x≤0 or y≤0
γδ1(|y − x|) (u(y)− u(x))2 dxdy

+

∫

x,y∈Ω∪ΩI ,x>0 and y>0
Mγδ1(|y − x|) (19)

·
M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)2

dxdy.

Comparing the difference between (19) and (17), in order to obtain the
statement (18) we only need show that

∫

x,y∈Ω∪ΩI ,x>0 and y>0
Mγδ1(|y − x|) (20)

·

M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)2

dxdy

≥

∫

x,y∈Ω∪ΩI ,x>0 and y>0
γδ1(|y − x|) (u(y)− u(x))2 dxdy.

Since

(a1 + · · · + aM )2 ≤ M(a21 + · · ·+ a2M ),



QUASINONLOCAL COUPLING OF NONLOCAL DIFFUSIONS 12

we have that
∫

x,y∈Ω∪ΩI ,x>0 and y>0
γδ1(|y − x|)

·M

M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)2

dxdy

≥

∫

x,y∈Ω∪ΩI ,x>0 and y>0
γδ1(|y − x|)

·





M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)





2

dxdy

=

∫

x,y∈Ω∪ΩI ,x>0 and y>0
γδ1(|y − x|) · (u(y)− u(x))2 dxdy,

which is exactly what we want in (20). Therefore, we proved the proposition
(18). �

Since all nonlocal norm ‖ · ‖Sδ
satisfies the Poincaré inequality [9, 39]

‖u‖Sδ
≥ c‖u‖L2(Ω∪ΩI),

as an immediate corollary of Proposition 3.2, we have the following L2 sta-
bility for the QNL coupling.

Corollary 3.1. The QNL coupling is L2 stable:

bqnl(u, u) ≥ c‖u‖2L2(Ω∪ΩI)
, ∀u ∈ Sqnl.

Besides the L2 stability (coercivity) of the bilinear form, we also have
the maximum principle (i.e., L∞ stability) of the coupled diffusion since the
kernels are non-negative.

Proposition 3.3 (Maximum principle). If u ∈ C1(Ω) ∩ C(Ω ∪ ΩI) , then

the following Dirichlet initial-boundary value problem with quasinonlocal dif-

fusion














∂uqnl
∂t

= Lqnluqnl(x) + f(x), ∀x ∈ Ω,

uqnl(x, t) = gd(x, t), ∀x ∈ ΩI , ∀T ≥ t ≥ 0,

uqnl(x, 0) = u0qnl(x), ∀x ∈ Ω

satisfies the maximum principle. That is

u(x, t) ≤ max

{

gd(x, s)
∣

∣

∣

x∈ΩI , 0≤s≤t
, u0qnl(x)

∣

∣

∣

x∈Ω

}

if f(x) ≤ 0 for ∀x ∈ Ω, and similarly

u(x, t) ≥ min

{

gd(x, s)
∣

∣

∣

x∈ΩI , 0≤s≤t
, u0qnl(x)

∣

∣

∣

x∈Ω

}

if f(x) ≥ 0 for ∀x ∈ Ω.
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Proof. Let us consider only the case f(x) ≤ 0 since the other case is similar.
We denote QT := (Ω ∪ ΩI) × (0, T ). Fixing an arbitrary small positive
number ǫ > 0, we define an auxiliary function w := u − ǫt. We will first
study w and then conclude information about u by taking the limit ǫ ↓ 0.

Clearly, on QT , we have
{

w ≤ u ≤ w + ǫT, on QT ,

wt − Lqnlw(x) ≤ 0− ǫ < 0, ∀x ∈ Ω.
(21)

We claim that the maximum of w on QT−ǫ occurs on ∂pQT−ǫ := (Ω ∪ ΩI)×
{0} ∪ ΩI × (0, T − ǫ].

Suppose the contrary, that is, w(x, t) has its maximum at (x∗, t∗) ∈ QT−ǫ

with 0 < t∗ ≤ T − ǫ and x∗ ∈ Ω = (−1, 1). Because 0 < t∗ ≤ T − ǫ,
thus, wt(x

∗, t∗) must be equal to 0 if 0 < t∗ < T − ǫ, and wt(x
∗, t∗) ≥ 0

if t∗ = T − ǫ. Meanwhile, because w(x∗, t∗) is a maximum value and both
diffusion kernels γδ1 and γδ2 are non-negative, so from the definition of Lqnl

(11) we have

Lqnlw(x∗) ≤ 0.

This immediately leads to wt(x
∗, t∗)−Lqnlw(x∗) ≥ 0, which contradicts the

second expression of (21). Therefore, the maximum of w on QT−ǫ occurs on
∂pQT−ǫ.

Now, we are going to prove that the maximum of u occurs on ∂pQT .
Notice that







w ≤ u and ∂pQT−ǫ ⊂ ∂pQT ,

max
QT−ǫ

w = max
∂pQT−ǫ

w ≤ max
∂pQT−ǫ

u ≤ max
∂pQT

u, (22)

and u ≤ w + ǫT , so with (22), we also have

max
QT−ǫ

u ≤ max
QT−ǫ

w + ǫT ≤ max
∂pQT

u+ ǫT. (23)

Because u ∈ C(Ω ∪ ΩI), we can obtain that max
QT−ǫ

u ↑ max
QT

u as ǫ ↓ 0. By

allowing ǫ ↓ 0 and combining (23) together, we get

max
QT

u = lim
ǫ↓0

max
QT−ǫ

u ≤ lim
ǫ↓0

(

max
∂pQT

u+ ǫT

)

= max
∂pQT

u ≤ max
QT

u.

Therefore, we can conclude that max
QT

u = max
∂pQT

u, which corresponds to the

maximum principle when f(x) ≤ 0. �

4. Finite difference discretization

In this section, we discuss the discretization of the quasinonlocal diffu-
sion, for which the coupling is done at the continuous level. As our main
focus is to develop a consistent nonlocal coupling model within a contin-
uous framework, for the purpose of simplicity, we will follow the idea in
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references [37, 38] and just use a first order numerical scheme by a simple
Riemann sum approximation of the integral. Development of other type of
numerical discretization and higher order finite difference scheme will be left
for future works.

For concreteness, let us take the interval Ω = (−1, 1), which is decomposed
into Ω1 = (−1, 0) and Ω2 = (0, 1) with interface at x = 0. We divide the
interval into 2N uniform subintervals with equal length: h = 1/N and grid
points −1 = x0 < x1 < · · · < x2N = 1, so the interface grid point is xN = 0.
The volume constrained region is ΩI := [−δ1 − 1,−1] ∪ [1, 1 + δ1], where
Dirichlet boundary condition u = 0 is assumed.

We assume that δ1 = r1 h, δ2 = r2 h with M := r1/r2 ∈ N. As we take
a uniform mesh throughout the domain, the stencil width is different in the
two regions. We use the scaling invariance of second moments of γδ1 and
γδ2 and approximate the quasinonlocal diffusion operator Lqnl in the three
regimes.

Case 1. For grid point xi ∈ [x0, xN = 0], it corresponds to Ω1, thus,

Lqnlu(xi) =

∫ δ1

−δ1

(u(xi + s)− u(xi)) γδ1(s)ds

=

∫ δ1

0

(

u(xi + s)− 2u(xi) + u(xi − s)

s2

)

s2γδ1(s)ds

=

r1
∑

j=1

(

u(xi+j)− 2u(xi) + u(xi−j)

(jh)2

)∫ jh

(j−1)h
s2γδ1(s)ds+O(h).

Case 2. For grid point xi ∈ [xN+r1 = xN + δ1, x2N+1], it corresponds to
Ω2, thus,

Lqnlu(xi) =

∫ δ2

−δ2

(u(xi + s)− u(xi)) γδ2(s)ds

=

∫ δ2

0

(

u(xi + s)− 2u(xi) + u(xi − s)

s2

)

s2γδ2(s)ds

=

r2
∑

j=1

(

u(xi+j)− 2u(xi) + u(xi−j)

(jh)2

)∫ jh

(j−1)h
s2γδ2(s)ds+O(h).
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Case 3. For grid points xi ∈ [xN+1, xN+r1−1] ⊂ (0, δ1), this is the buffer
region, we have

Lqnlu(xi)

=

∫ −xi

−δ1

(u(xi + s)− u(xi)) γδ1(s)ds+
1

M

∫ δ2

− 1
M

xi

(u(xi + s)− u(xi)) γδ2(s)ds

+
1

M

M−1
∑

k=1

∫ 1
k
xi

− 1
k
xi

(u(xi + s)− u(xi)) γδ2(s)ds

=

∫ −xi

−δ1

(u(xi + s)− u(xi))

s2
s2γδ1(s)ds+

1

M

∫ δ2

− 1
M

xi

(u(xi + s)− u(xi))

s2
s2γδ2(s)ds

+
1

M

M−1
∑

k=1

∫ 1
k
xi

0

(u(xi + s)− 2u(xi) + u(xi − s))

s2
s2γδ2(s)ds

=:T1 + T2 + T3.

For the first term T1, we approximate it by

T1 =

∫ −xi

−δ1

(u(xi + s)− u(xi))

s2
s2γδ1(s)ds =

∫ δ1

xi

(u(xi − s)− u(xi))

s2
s2γδ1(s)ds

=

r1
∑

j=i−m+1

(

u(xi−j)− u(xi))

(jh)2

)∫ jh

(j−1)h
s2γδ1(s)ds+O(h).

For the second term T2, we have

T2 =
1

M

∫ δ2

− 1
M

xi

(u(xi + s)− u(xi))

s2
s2γδ2(s)ds

=
1

M

∫ 0

− 1
M

xi

(u(xi + s)− u(xi))

s2
s2γδ2(s)ds

+
1

M

∫ δ2

0

(u(xi + s)− u(xi))

s2
s2γδ2(s)ds

=: T21 + T22.

(24)

For T21:

T21 =
1

M

∫ 0

− 1
M

xi

(u(xi + s)− u(xi))

s2
s2γδ2(s)ds

=
1

M2

∫ 0

−xi

(

u(xi +
s
M )− u(xi)

)

s2
s2γδ2(

s

M
)ds.

Note that xi −
xi

M corresponding to the left end of the above integration
domain is not a grid point; we will use an interpolation for the value of u at
xi +

s
M which leads to

(

u(x+
s

M
)− u(x)

)

≈
1

M
(u(x+ s)− u(x)) ,
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hence, we approximate T21 by

T21 =
1

M2

∫ 0

−xi

(

u(xi +
s
M )− u(xi)

)

s2
s2γδ2(

s

M
)ds

=
1

M2

∫ 0

−xi

1

M

(u(xi + s)− u(xi))

s2
s2γδ2(

s

M
)ds+O(h)

=
1

M3

i−m
∑

j=1

(u(xi−j)− u(xi))

(jh)2

∫ jh

(j−1)h
s2γδ2(

s

M
)ds+O(h)

=
i−m
∑

j=1

(u(xi−j)− u(xi))

(jh)2

∫ jh

(j−1)h
s2γδ1(s)ds +O(h).

For T22, it is

T22 =
1

M

∫ δ2

0

(u(xi + s)− u(xi))

s2
s2γδ2(s)ds

=
1

M2

∫ δ1

0

(

u(xi +
s
M )− u(xi)

)

s2
s2γδ2(

s

M
)ds

=
1

M3

∫ δ1

0

(u(xi + s)− u(xi))

s2
s2γδ2(

s

M
)ds +O(h)

=

r1
∑

j=1

(u(xi+j)− u(xi))

(jh)2

∫ (j)h

(j−1)h
s2γδ1(s)ds+O(h).

For T3, considering each 1 ≤ k ≤ M − 1, we have two cases 1
kxi < δ2 and

1
kxi ≥ δ2:

• If 1
kxi < δ2, we then handle T3k in a similar way to T21 and get

T3k :=
1

M

∫ 1
k
xi

0

(u(xi + s)− 2u(xi) + u(xi − s))

s2
s2γδ2(s)ds

=
1

Mk2

∫ xi

0

(u(xi + s)− 2u(xi) + u(xi − s))

s2
s2γδ2(

s

k
)ds+O(h)

=
1

Mk2

i−m
∑

j=1

(u(xi+j)− 2u(xi) + u(xi−j))

(jh)2

∫ jh

(j−1)h
s2γδ2(

s

k
)ds +O(h).
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• If 1
kxi ≥ δ2, then T3k is computed by

T3k :=
1

M

∫ 1
k
xi

0

(u(xi + s)− 2u(xi) + u(xi − s))

s2
s2γδ2(s)ds

=
1

M

∫ δ2

0

(u(xi + s)− 2u(xi) + u(xi − s))

s2
s2γδ2(s)ds

=
1

M2

∫ δ2

0

(

u(xi +
s
M )− 2u(xi) + u(xi −

s
M )

)

s2
s2γδ2(

s

M
)ds

=

∫ δ1

0

(u(xi + s)− 2u(xi) + u(xi − s))

s2
s2γδ1(s)ds+O(h)

=

r1
∑

j=1

(u(xi+j)− 2u(xi) + u(xi−j))

(jh)2

∫ (j)h

(j−1)h
s2γδ1(s)ds +O(h).

It is straightforward to check that the resulting finite difference approxi-
mation to the diffusion operator preserves the symmetry and is also positive
definite.

5. Numerical results

In this section, we will consider serval benchmark problems to check the
accuracy and stability performance of the numerical scheme. The expression
of γδ(s) is fixed to be

γδ(s) =
2

δ2s
.

The time discretization is just the simple Euler method with ∆t = κcflh
2,

κcfl is set to be 1/4. The patch-test consistency, symmetry and positive
definiteness of the finite difference matrix are validated numerically.

We first consider the following one-dimensional volume-constrained Dirich-
let problem

u(x, 0) = x2 (1− x2), f(x) = e−t(12x2 − 2)− e−tx2(1− x2).

The corresponding limiting local diffusion problem as δ → 0 is










∂u
∂t − uxx = f(x), −1 < x < 1, ∀ t > 0,

u(x, 0) = x2 (1− x2), −1 < x < 1,

u(−1, t) = u(1, t) ≡ 0, ∀ t > 0.

(25)

The exact solution for the limiting local diffusion problem is

uexact,local = e−t x2 (1− x2).

We consider three cases: Case A: δ1 = 6h and δ2 = 2h, with M = 3; Case
B: δ1 = 3h and δ2 = h, and Case C: δ1 = 4h and δ2 = 2h, with M = 2.
Note that in Case B, the numerical scheme is effectively a coupling of local
kernel with a three-point stencil, and thus can be viewed as a nonlocal-to-
local coupling (on the level of numerical discretization). The final simulation
time is T = 1. Note that as h → 0, not only that we refine the mesh, but
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also the nonlocal diffusion model converges to the local one. This numerical
test thus verifies both convergence (i.e., both the discretization error and
modeling discrepancy go to 0). We compute the L∞ difference between the
quasinonlocal solutions and the limiting local solution. The results are listed
in Table 1. We observe the first order convergence rate due to the numerical
discretization of the quasinonlocal diffusion in all three cases.

h Case A Order Case B Order Case C Order
1/50 6.132e-2 - 2.506e-2 - 3.720e-2 -
1/100 3.018e-2 1.02 1.259e-2 0.99 1.856e-2 1.00
1/200 1.506e-2 1.00 6.340e-3 0.99 9.320e-3 0.99
1/400 7.556e-3 1.00 3.192e-3 0.99 4.687e-3 1.00

Table 1. L∞ difference (diff) of (25) Case A : δ1 = 6h and
δ2 = 2h; Case B: δ1 = 3h and δ2 = h; Case C: δ1 = 4h and
δ2 = 2h. The final simulation time is T = 1.

We also computed the errors measured in the energy norm, which is de-
fined as

Energy err := max
0≤t≤T

‖∇u(x, t)−∇uexact,local(x, t)‖L2(Ω∪ΩI). (26)

The discrete gradients are approximated by second order central finite dif-
ference. The results are listed in Table 2. We observe that the convergence
order is just around 0.5 rather than 1. This is due to the artificial boundary
layer of ∇u because the local limiting solution uexact,local is not equal to zero
on ΩI = [−1− δ1,−1]∪ [1, 1+ δ1] (see Figure 2 for demonstration). To fur-

h Energy err of Case A Order Energy err of Case B Order
1/50 2.820e-1 − 2.679e-1 −
1/100 2.065e-1 0.45 1.983e-1 0.43
1/200 1.486e-1 0.47 1.434e-1 0.47
1/400 1.060e-1 0.49 1.025e-1 0.49

Table 2. Errors of quasinonlocal solution and local limiting
solution (25) measured in the energy norm (26). Case A :
δ1 = 6h and δ2 = 2h; Case B: δ1 = 4h and δ2 = 2h. The final
simulation time is T = 1.

ther study the origin of the loss of convergence order, we compute the errors
of quasinonlocal solution and local limiting solution (25) measured in the
energy norm within the interior of Ω, that is, the errors are only measured
within [−1/2, 1/2] that contains the interface x0 = 0:

Int energy err := max
0≤t≤T

‖∇u(x, t)−∇uexact,local(x, t)‖L2([−1/2, 1/2]). (27)
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(c) h = 1/200

Figure 2. Plots of displacement gradients (strains) for the
quasinonlocal diffusion with δ1 = 6h and δ2 = 2h versus the
local limiting diffusion at T = 1 with various h. The sizes of
boundary layers are of O(2δ1) and O(2δ2) on both sides, re-
spectively.

This time, we clearly observe the first order convergence rate in Table 3,
further confirming that the loss of convergence is from boundary layer. In
fact, this is a known problem for numerically imposing volumetric boundary
condition (see e.g., [37]), which we will not go into further details here.

h Int energy err of Case A Order Int energy err of Case B Order
1/50 2.920e-2 − 1.779-2 −
1/100 1.383e-2 1.07 8.629e-3 1.04
1/200 6.716e-3 1.04 4.247e-3 1.02
1/400 3.063e-3 1.13 2.106e-3 1.01

Table 3. Interior errors of quasinonlocal solution and local
limiting solution (25) measured in energy norm (27). Case
A: δ1 = 6h and δ2 = 2h; Case B: δ1 = 4h and δ2 = 2h. The
final simulation time is T = 1.

Next we fix h = 1/200, δ1 = 5h, δ2 = h, and consider initial datum which
has a singularity at x∗ = −0.45 + h/2.

u(x, 0) =
sin(πx)

x− x∗
, f(x) = 0.

The solution u(x, t) is plotted for T = 1/4 in Figure 3. We can see that
the quasinonlocal diffusion matches the fully nonlocal model, whereas the
result of the fully local diffusion is distinguishable from that of fully nonlocal
model.
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Figure 3. The solution u(x, t) is plotted for T = 1/4.

6. Conclusion

We have proposed a new self-adjoint, consistent and stable coupling strat-
egy for nonlocal diffusion problems in one dimensional space, which couples
two nonlocal operators associated with different horizon parameters δ1 and
δ2 with M := δ1

δ2
being an integer. This new coupling model is proved to

be self-adjoint and patch-test consistent. In addition, the quasinonlocal dif-
fusion is also stable (coercive) with respect to the energy norm induced by
the nonlocal diffusion kernels as well as the L2 norm, and it satisfies the
maximum principle.

We also consider a first order finite difference approximation to discretize
the continuous coupling model. This numerical approximation preserves the
self-adjointness, consistency, coercivity and the maximum principle. The
numerical scheme is validated through several examples.

Also, as for future works, another immediate direction is extending the
coupling scheme to higher dimensions; as already mentioned, since the
nonlocal diffusion model only involves pairwise interactions in the form of
u(y) − u(x), the extension should not pose serious difficulties. Better nu-
merical approximation to the continuous quasinonlocal diffusion operator is
also another interesting direction to pursue. Another interesting topic is to
couple the nonlocal diffusion operator directly with local diffusion (Laplace)
operator in the framework of the quasinonlocal coupling (see [1,8,12,17,30]
for some recent works that couple the local and nonlocal diffusions together).

Appendix A. Derivation of Lqnl

We give the deviation of the coupled diffusion operator Lqnl (11), stated as
the following Proposition. The calculation is straightforward but somewhat
tedious.
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Proposition A.1. The coupled quasinonlocal energy functional Etot,qnl in-

duces the quasinonlocal diffusion operator Lqnl defined in (11).

Proof. The first variation of Etot,qnl with test function ∀v ∈ Sqnl is

〈∂Etot,qnl(u), v〉

=
1

2

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|)dxdy (u(y)− u(x)) (v(y)− v(x))

+
1

2

∫

x,y∈R,x>0 and y>0
dxdy

[

γδ1(|y − x|)

·
1

M

M−1
∑

j=0

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

(

v(x+
j + 1

M
(y − x))− v(x+

j

M
(y − x))

)

M2
]

=: T1 + T2.

Because of the symmetry in the T1 integral in x and y, we can convert T1 to

T1 =
1

2

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|)dxdy (u(y)− u(x)) (v(y)− v(x))

=

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|)dxdy (u(x)− u(y)) · v(x).

(28)
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We now focus on T2.

T2 =
1

2

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[

Mγδ1(|y − x|) (29)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

(

v(x+
j + 1

M
(y − x))− v(x+

j

M
(y − x))

)

]

=
1

2

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

(

v(x+
j + 1

M
(y − x))− v(x+

j

M
(y − x))

)

]

=
1

2

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

v

(

x+
j + 1

M
(y − x)

)

]

−
1

2

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

v

(

x+
j

M
(y − x)

)

]

.
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Let k := (M − 1)− j = M − (j + 1) in the second summation term of (29),
we get

T2 =
1

2

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

(30)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

v

(

x+
j + 1

M
(y − x)

)

]

−
1

2

M−1
∑

k=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(
k

M
x+ (1−

k

M
)y)− u(

k + 1

M
x+ (1−

k + 1

M
)y)

)

v

(

k + 1

M
x+ (1−

k + 1

M
)y

)

]

=
1

2

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

v

(

x+
j + 1

M
(y − x)

)

]

+
1

2

M−1
∑

k=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(y +
k + 1

M
(x− y))− u(y +

k

M
(x− y))

)

v

(

y +
k + 1

M
(x− y)

)

]

.

Changing the notation order of x and y in the second integral of (30), we
have

T2 =

M−1
∑

j=0

∫

x,y∈R,x>0 and y>0
dxdy

[ 1

M2
γδ2

(

|y − x|

M

)

·

(

u(x+
j + 1

M
(y − x))− u(x+

j

M
(y − x))

)

v

(

x+
j + 1

M
(y − x)

)

]

.

(31)

Now let z := x+ j+1
M (y − x) to replace y, then the integration interval for z

becomes

z =

(

1−
j + 1

M

)

x+
j + 1

M
y >

(

1−
j + 1

M

)

x.
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(31) thus becomes

T2 =

M−1
∑

j=0

∫

x>0 and z>(1− j+1
M

)x

[ 1

M(j + 1)
(32)

γδ2

(

|z − x|

j + 1

)

·

(

u(z)− u(z +
1

j + 1
(x− z))

)

v (z)
]

dxdz

=
1

M

M−1
∑

j=0

∫

z>0 and 0<x< M
M−(j+1)

z
dxdz

[ 1

(j + 1)
γδ2

(

|z − x|

j + 1

)

·

(

u(z)− u(z +
1

j + 1
(x− z))

)

v (z)
]

,

where M
M−(j+1)z is formally regarded as +∞ when j = M − 1.

Now let w = z+ 1
j+1(x−z) = j

j+1z+
1

j+1x to replace x, thus the integration

interval for w is

z −
1

j + 1
z < w < z +

1

M − (j + 1)
z,

and we have T2:

T2 =
1

M

M−1
∑

j=0

∫

z>0 and z− 1
j+1

z<w<z+ 1
M−(j+1)

z

[

γδ2 (|w − z|) · (u(z) − u(w)) v (z)
]

dwdz

=
1

M

M
∑

j=1

∫

z>0 and z− 1
j
z<w<z+ 1

M−(j)
z

[

γδ2 (|w − z|) · (u(z)− u(w)) v (z)
]

dwdz

=
1

M

M−1
∑

j=1

∫

z>0 and z− 1
j
z<w<z+ 1

j
z

[

γδ2 (|w − z|) · (u(z) − u(w)) v (z)
]

dwdz

+
1

M

∫

z>0 and z− 1
M

z<w<∞

[

γδ2 (|w − z|) · (u(z)− u(w)) v (z)
]

dwdz.

(33)
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Now, we combine T1 (28) and T2 (33) together, we have

〈∂Etot,qnl(u), v〉

=

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|) (u(x)− u(y)) · v(x)dxdy

+
1

M

M−1
∑

j=1

∫

z>0 and z− 1
j
z<w<z+ 1

j
z

[

γδ2 (|w − z|) · (u(z)− u(w)) v (z)
]

dwdz

+
1

M

∫

z>0 and z− 1
M

z<w<∞

[

γδ2 (|w − z|) · (u(z)− u(w)) v (z)
]

dwdz

=

∫

x,y∈R,x≤0 or y≤0
γδ1(|y − x|) (u(x)− u(y)) · v(x)dxdy

+
1

M

M−1
∑

j=1

∫

x>0 and x− 1
j
x<y<x+ 1

j
x

[

γδ2 (|y − x|) · (u(x)− u(y)) v (x)
]

dxdy

+
1

M

∫

x>0 and x− 1
M

x<y<∞

[

γδ2 (|y − x|) · (u(x)− u(y)) v (x)
]

dxdy,

(34)

where we just replaces the notations z by x and w by y.
The corresponding diffusion operator Lqnl is equal to negative of the first

order variation of Etot,qnl(u), which can be discussed in three cases below:

(1) Case I: x ≤ 0:

Lqnlu(x) =

∫

y∈R
γδ1(|y − x|) (u(x)− u(y)) dy.

(2) Case II: 0 < x < δ1:

Lqnlu(x) =

∫

x−δ1<y<0
γδ1(|y − x|) (u(x)− u(y)) dy

+
1

M

M−1
∑

j=1

∫

x− 1
j
x<y<x+ 1

j
x
γδ2 (|y − x|) · (u(x)− u(y)) dy

+
1

M

∫

x− 1
M

x<y<∞

γδ2 (|y − x|) · (u(x)− u(y)) dy.

(3) Case III: x ≥ δ1:

Lqnlu(x) =
1

M

M−1
∑

j=1

∫

x− 1
j
x<y<x+ 1

j
x
γδ2 (|y − x|) · (u(x)− u(y)) dy

+
1

M

∫

x− 1
M

x<y<∞

γδ2 (|y − x|) · (u(x)− u(y)) dy.



QUASINONLOCAL COUPLING OF NONLOCAL DIFFUSIONS 26

Notice that x ≥ δ1, thus

x−
1

j
x < x−

1

M
x < x−

1

M
δ1 = x− δ2,

and

x+
1

j
x > x+

1

M
x > x+

1

M
δ1 = x+ δ2.

Because outside the support, the diffusion kernel is zero, therefore,
we have

Lqnlu(x) =
1

M

M−1
∑

j=1

∫

x−δ2<y<x+δ2

γδ2 (|y − x|) · (u(x)− u(y)) dy

+
1

M

∫

x−δ2<y<∞

γδ2 (|y − x|) · (u(x)− u(y)) dy

=

∫

x−δ2<y<x+δ2

γδ2 (|y − x|) · (u(x)− u(y)) dy

=

∫

y∈R
γδ2 (|y − x|) · (u(x)− u(y)) dy.

Hence, we get (11). �
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