AN ALGORITHMIC REGULARITY LEMMA FOR L_{p} REGULAR SPARSE MATRICES

THODORIS KARAGEORGOS AND SILOUANOS BRAZITIKOS

Abstract

We prove an algorithmic regularity lemma for L_{p} regular matrices $(1<p \leqslant \infty)$, a class of sparse $\{0,1\}$ matrices which obey a natural pseudorandomness condition. This extends a result of Coja-Oghlan, Cooper and Frieze who treated the case of L_{∞} regular matrices. We also present applications of this result for tensors and MAX-CSP instances.

1. Introduction

1.1. Overview. It is well known that it is NP-hard not only to compute the optimal solution for the MAX-CSP problem, but also to find "good" approximations of this optimal solution (see, e.g., $[10,11,17]$).

In a seminal paper [9], Frieze and Kannan proved several results concerning dense instances of the previous problems. Later on, Coja-Oghlan, Cooper and Frieze [4] showed that such results may be extended to the sparse setting if we assume a pseudorandomness condition known as (C, η)-boundedness (see [12, 13]). Specifically, in [4] the authors found an algorithm for approximating a sparse $\{0,1\}$ matrix f by a sum of cut matrices under the assumption that f is (C, η)-bounded. The crucial fact is that the number of summands is independent of the size of the matrix and its density. Then, using this result, they proved a similar theorem for tensors which in turn yields approximations for sparse MAX-CSP instances.

The purpose of this paper is to extend these results to a larger class of sparse $\{0,1\}$ matrices, namely, the L_{p} regular matrices introduced recently by Borgs, Chayes, Cohn and Zhao [3].
1.1.1. To proceed with our discussion it is useful at this point to introduce some pieces of notation and some terminology. Unless otherwise stated, in the rest of this paper by n_{1} and n_{2} we denote two positive integers. As usual, for every positive integer n we set $[n]:=\{1, \ldots, n\}$. The cardinality of a finite set S is denoted by $|S|$.

If X is a nonempty finite set, then by μ_{X} we denote the uniform probability measure on X, that is, $\mu_{X}(A):=|A| /|X|$ for every $A \subseteq X$. For notational simplicity, the probability measures $\mu_{\left[n_{1}\right]}, \mu_{\left[n_{2}\right]}$ and $\mu_{\left[n_{1}\right] \times\left[n_{2}\right]}$ will be denoted by μ_{1}, μ_{2}

[^0]and $\boldsymbol{\mu}$ respectively. If \mathcal{P} is a partition of $\left[n_{1}\right] \times\left[n_{2}\right]$, then by $\mathcal{A}_{\mathcal{P}}$ we denote the (finite) σ-algebra on $\left[n_{1}\right] \times\left[n_{2}\right]$ generated by \mathcal{P}.

Next, let X_{1}, X_{2} be nonempty finite sets and set

$$
\mathcal{S}_{X_{1} \times X_{2}}:=\left\{A_{1} \times A_{2}: A_{1} \subseteq X_{1} \text { and } A_{2} \subseteq X_{2}\right\}
$$

If X_{1} and X_{2} are understood from the context (in particular, if $X_{1}=\left[n_{1}\right]$ and $\left.X_{2}=\left[n_{2}\right]\right)$, then we shall denote $\mathcal{S}_{X_{1} \times X_{2}}$ simply by \mathcal{S}. Moreover, for every partition \mathcal{P} of $X_{1} \times X_{2}$ with $\mathcal{P} \subseteq \mathcal{S}_{X_{1} \times X_{2}}$ we set

$$
\iota(\mathcal{P}):=\min \left\{\min \left\{\mu_{X_{1}}\left(P_{1}\right), \mu_{X_{2}}\left(P_{2}\right)\right\}: P=P_{1} \times P_{2} \in \mathcal{P}\right\}
$$

Namely, the quantity $\iota(\mathcal{P})$ is the minimal density of each side of each rectangle $P_{1} \times P_{2}$ belonging to the partition \mathcal{P}.

Now recall that a cut matrix is a matrix $g:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow \mathbb{R}$ for which there exist two sets $S \subseteq\left[n_{1}\right]$ and $T \subseteq\left[n_{2}\right]$, and a real number c such that $g=c \cdot \mathbf{1}_{S \times T}$; the set $S \times T$ is called the support of the matrix g. Also recall that for every matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow \mathbb{R}$ the cut norm of f is the quantity

$$
\|f\|_{\square}=\max _{\substack{\left.S \subseteq \subseteq n_{1}\right] \\ T \subseteq\left[n_{2}\right]}}\left|\sum_{\left(x_{1}, x_{2}\right) \in S \times T} f\left(x_{1}, x_{2}\right)\right|=\left(n_{1} \cdot n_{2}\right) \cdot \max _{\substack{S \subseteq\left[n_{1}\right] \\ T \subseteq\left[n_{2}\right]}}\left|\int_{S \times T} f d \boldsymbol{\mu}\right| .
$$

Finally, let $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$ be a matrix and let \mathcal{P} be a partition of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $\mathcal{P} \subseteq \mathcal{S}$. Recall that the conditional expectation of f with respect to $\mathcal{A}_{\mathcal{P}}$ is defined by

$$
\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)=\sum_{P \in \mathcal{P}} \frac{\int_{P} f d \boldsymbol{\mu}}{\boldsymbol{\mu}(P)} \mathbf{1}_{P}
$$

Notice, in particular, that $\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)$ is a sum of cut matrices with disjoint supports; this observation will be useful later on. Also note that if $1 \leqslant p<\infty$, then we have

$$
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p}}=\left(\sum_{P \in \mathcal{P}}\left|\frac{\int_{P} f d \boldsymbol{\mu}}{\boldsymbol{\mu}(P)}\right|^{p} \boldsymbol{\mu}(P)\right)^{1 / p}
$$

while if $p=\infty$, then

$$
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{\infty}}=\max \left\{\left|\frac{\int_{P} f d \boldsymbol{\mu}}{\boldsymbol{\mu}(P)}\right|: P \in \mathcal{P}\right\}
$$

In particular, observe that $\|f\|_{L_{1}}$ is equal to the density of f, that is, the number of ones in the matrix divided by $n_{1} \cdot n_{2}$. Also notice that $\|f\|_{\square}=\|f\|_{L_{p}}^{p} \cdot\left(n_{1} \cdot n_{2}\right)$ for every $1 \leqslant p<\infty$.
1.1.2. We are now in a position to introduce the class of $\{0,1\}$ matrices which we consider in this paper.

Definition $1.1\left(L_{p}\right.$ regular matrices [3]). Let $0<\eta \leqslant 1, C \geqslant 1$ and $1 \leqslant p \leqslant \infty$. A matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$ is called $\left(C, \eta, p\right.$)-regular (or simply L_{p} regular
if C and η are understood) if for every partition \mathcal{P} of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $\mathcal{P} \subseteq \mathcal{S}$ and $\iota(\mathcal{P}) \geqslant \eta$ we have

$$
\begin{equation*}
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p}} \leqslant C\|f\|_{L_{1}} \tag{1.1}
\end{equation*}
$$

Notice that, by the monotonicity of the L_{p} norms, if $1 \leqslant p_{1} \leqslant p_{2} \leqslant \infty$ and f is $L_{p_{2}}$ regular, then f is $L_{p_{1}}$ regular. Thus, L_{p} regularity is less restrictive when p gets smaller. Also observe that for $p=1$ the previous definition is essentially of no interest since every $\{0,1\}$ matrix is L_{1} regular. On the other hand, the case $p=\infty$ in Definition 1.1 is equivalent to the aforementioned (C, η)-boundedness condition. Indeed, recall that a matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$ is said to be (C, η)-bounded if for every $S \subseteq\left[n_{1}\right]$ and every $T \subseteq\left[n_{2}\right]$ with $\mu_{1}(S) \geqslant \eta$ and $\mu_{2}(T) \geqslant \eta$ we have

$$
\frac{\int_{S \times T} f d \boldsymbol{\mu}}{\boldsymbol{\mu}(S \times T)} \leqslant C\|f\|_{L_{1}}
$$

We have the following simple fact. (See also Lemma 3.1 below.)
Fact 1.2. Let $0<\eta \leqslant 1$ and $C \geqslant 1$, and let $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$ be a matrix. If f is (C, η)-bounded, then f is (C, η, ∞)-regular. Conversely, if f is (C, η, ∞)-regular, then f is $(4 C, \eta)$-bounded.

Between the extreme cases " $p=1$ " and " $p=\infty$ ", there is a large class of sparse matrices which are very well behaved. The examples which are easiest to grasp are random. Specifically, by [3, Theorem 2.14], for every symmetric measurable function $W:[0,1] \times[0,1] \rightarrow \mathbb{R}^{+}$with $W \in L_{p}(1<p \leqslant \infty)$ and every positive integer n there exists a natural model ${ }^{1}$ of sparse random n-by- $n\{0,1\}$ matrices which are L_{p} regular asymptotically almost surely. (On the other hand, if $W \notin L_{p}$, then a typical matrix in this model in not L_{p} regular.) Further (deterministic) examples, which are relevant from a number theoretic perspective, are given in [7].
1.2. The main result. The following theorem is the main result of this paper.

Theorem 1.3. There exist absolute constants $a_{1}, a_{2}>0$, an algorithm and a polynomial ${ }^{2} \Pi_{0}$ such that the following holds. Let $0<\varepsilon<1 / 2$ and $C \geqslant 1$. Also let $1<p \leqslant \infty$, set $p^{\dagger}=\min \{2, p\}$ and let q denote the conjugate exponent of p^{\dagger} (that is, $1 / p^{\dagger}+1 / q=1$). We set

$$
\begin{equation*}
\tau=\left\lceil\frac{a_{1} \cdot C^{2}}{\left(p^{\dagger}-1\right) \varepsilon^{2}}\right\rceil \text { and } \eta=\left(\frac{a_{2} \cdot \varepsilon}{C}\right)^{\sum_{i=1}^{\tau+1}\left(\frac{2}{p^{\dagger}}+1\right)^{i-1} q^{i}} \tag{1.2}
\end{equation*}
$$

If we input
INP: $a(C, \eta, p)$-regular matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$,

[^1]then the algorithm outputs
OUT: a partition \mathcal{P} of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $\mathcal{P} \subseteq \mathcal{S},|\mathcal{P}| \leqslant 4^{\tau}$ and $\iota(\mathcal{P}) \geqslant \eta$, such that
\[

$$
\begin{equation*}
\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{\square} \leqslant \varepsilon\|f\|_{\square} \tag{1.3}
\end{equation*}
$$

\]

This algorithm has running time $\left(\tau 4^{\tau}\right) \cdot \Pi_{0}\left(n_{1} \cdot n_{2}\right)$.
Theorem 1.3 extends [4, Theorem 1] which corresponds to the case $p=\infty^{3}$. Note that, by (1.2) and (1.3), the matrix f is well approximated by a sum of at most 4^{τ} cut matrices with disjoint supports and, moreover, the positive integer τ is independent of the size of f and its density. Also observe that, as expected, the running time of the algorithm in Theorem 1.3 increases as p decreases to 1 .
1.3. Organization of the paper. The paper is organized as follows. In Section 2 we recall some results which are needed for the proof of Theorem 1.3, and in Section 3 we present some preparatory lemmas. The proof of Theorem 1.3 is completed in Section 4. Finally, in Section 5 we present applications for tensors and sparse MAX-CSP instances.

2. Background material

2.1. Martingale difference sequences. Recall that a finite sequence $\left(d_{i}\right)_{i=0}^{n}$ of integrable real-valued random variables on a probability space (X, Σ, μ) is said to be a martingale difference sequence if there exists a martingale $\left(f_{i}\right)_{i=0}^{n}$ such that $d_{0}=f_{0}$ and $d_{i}=f_{i}-f_{i-1}$ if $n \geqslant 1$ and $i \in[n]$. We will need the following result due to Ricard and Xu [15] which can be seen as an extension of the basic fact that martingale difference sequences are orthogonal in L_{2}. (See also [5, Appendix A] for a discussion on this result and its proof.)

Proposition 2.1. Let (X, Σ, μ) be a probability space and $1<p \leqslant 2$. Then for every martingale difference sequence $\left(d_{i}\right)_{i=0}^{n}$ in $L_{p}(X, \Sigma, \mu)$ we have

$$
\begin{equation*}
\left(\sum_{i=0}^{n}\left\|d_{i}\right\|_{L_{p}}^{2}\right)^{1 / 2} \leqslant\left(\frac{1}{p-1}\right)^{1 / 2}\left\|\sum_{i=0}^{n} d_{i}\right\|_{L_{p}} \tag{2.1}
\end{equation*}
$$

We point out that the constant $(p-1)^{-1 / 2}$ appearing in the right-hand side of (2.1) is best possible.
2.2. The algorithmic version of Grothendieck's inequality. We will need the following result due to Alon and Naor [1].

Proposition 2.2. There exist a constant $a_{0}>0$, an algorithm and a polynomial Π_{AN} such that the following holds. If we input

INP: a matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow \mathbb{R}$,

[^2]then the algorithm outputs
OUT: a set $A \in \mathcal{S}$ such that $\left(n_{1} \cdot n_{2}\right)\left|\int_{A} f d \boldsymbol{\mu}\right| \geqslant a_{0}\|f\|_{\square}$.
This algorithm has running time $\Pi_{\mathrm{AN}}\left(n_{1} \cdot n_{2}\right)$.
The constant a_{0} in Proposition 2.2 is closely related to Grothendieck's constant K_{G} (see, e.g., [14]).

3. Preparatory Lemmas

In this section we prove some preparatory results concerning L_{p} regular matrices. We begin with the following lemma.

Lemma 3.1. There exist an algorithm and a polynomial Π_{1} such that the following holds. Let X_{1}, X_{2} be nonempty finite sets, and let $0<\vartheta<1 / 2$. If we input

INP: two sets $A_{1} \subseteq X_{1}$ and $A_{2} \subseteq X_{2}$ with $\mu_{X_{1}}\left(A_{1}\right) \geqslant \vartheta$ and $\mu_{X_{2}}\left(A_{2}\right) \geqslant \vartheta$, then the algorithm outputs
OUT1: a partition $\mathcal{Q} \subseteq \mathcal{S}$ with $|\mathcal{Q}| \leqslant 4$ and $\iota(\mathcal{Q}) \geqslant \vartheta$, and
OUT2: a set $B \in \mathcal{Q}$ such that $A_{1} \times A_{2} \subseteq B$ and $\mu_{X_{1} \times X_{2}}\left(B \backslash\left(A_{1} \times A_{2}\right)\right) \leqslant 2 \vartheta$.
This algorithm has running time $\Pi_{1}\left(\left|X_{1}\right| \cdot\left|X_{2}\right|\right)$.
Proof. We distinguish the following four (mutually exclusive) cases.
CASE 1: We have $\mu_{X_{1}}\left(A_{1}\right)<1-\vartheta$ and $\mu_{X_{2}}\left(A_{2}\right)<1-\vartheta$. In this case the algorithm outputs $\mathcal{Q}=\left\{A_{1} \times A_{2},\left(X_{1} \backslash A_{1}\right) \times A_{2}, A_{1} \times\left(X_{2} \backslash A_{2}\right),\left(X_{1} \backslash A_{1}\right) \times\left(X_{2} \backslash A_{2}\right)\right\}$ and $B=A_{1} \times A_{2}$. Notice that \mathcal{Q} and B satisfy the requirements of the lemma.

CASE 2: We have $\mu_{X_{1}}\left(A_{1}\right)<1-\vartheta$ and $\mu_{X_{2}}\left(A_{2}\right) \geqslant 1-\vartheta$. In this case the algorithm outputs $\mathcal{Q}=\left\{A_{1} \times X_{2},\left(X_{1} \backslash A_{1}\right) \times X_{2}\right\}$ and $B=A_{1} \times X_{2}$. Again, it is easy to see that \mathcal{Q} and B satisfy the requirements of the lemma.
CasE 3: We have $\mu_{X_{1}}\left(A_{1}\right) \geqslant 1-\vartheta$ and $\mu_{X_{2}}\left(A_{2}\right)<1-\vartheta$. This case is similar to Case 2. In particular, we set $\mathcal{Q}=\left\{X_{1} \times A_{2}, X_{1} \times\left(X_{2} \backslash A_{2}\right)\right\}$ and $B=X_{1} \times A_{2}$.

CASE 4: We have $\mu_{X_{1}}\left(A_{1}\right) \geqslant 1-\vartheta$ and $\mu_{X_{2}}\left(A_{2}\right) \geqslant 1-\vartheta$. In this case the algorithm outputs $\mathcal{Q}=\left\{X_{1} \times X_{2}\right\}$ and $B=X_{1} \times X_{2}$. As before, it is easy to see that \mathcal{Q} and B are as desired.

Finally, notice that the most costly part of this algorithm is to estimate the quantities $\mu_{X_{1}}\left(A_{1}\right)$ and $\mu_{X_{2}}\left(A_{2}\right)$, but of course this can be done in polynomial time of $\left|X_{1}\right| \cdot\left|X_{2}\right|$. Thus, this algorithm will stop in polynomial time of $\left|X_{1}\right| \cdot\left|X_{2}\right|$.

The next result is a Hölder-type inequality for L_{p} regular matrices. To motivate this inequality, let $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$ be a matrix, let $1<p<\infty$, let q denote its conjugate exponent and observe that, by Hölder's inequality, for every $A \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ we have

$$
\begin{equation*}
\int_{A} f d \boldsymbol{\mu} \leqslant\|f\|_{L_{1}}^{1 / p} \cdot \boldsymbol{\mu}(A)^{1 / q} \tag{3.1}
\end{equation*}
$$

Unfortunately, this estimate is not particularly useful if f is sparse - that is, in the regime $\|f\|_{L_{1}}=o(1)$-since in this case the quantity $\|f\|_{L_{1}}^{1 / p}$ is not comparable to the density $\|f\|_{L_{1}}$ of f. Nevertheless, we can improve upon (3.1) provided that the matrix f is L_{p} regular and $A \in \mathcal{S}$. Specifically, we have the following lemma (see also [6, Proposition 4.1]).

Lemma 3.2. Let $0<\eta<1 / 2$ and $C \geqslant 1$. Also let $1<p \leqslant 2$ and let q denote its conjugate exponent. Finally, let $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$ be (C, η, p)-regular. Then for every $A \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ with $A \in \mathcal{S}$ we have

$$
\begin{equation*}
\int_{A} f d \boldsymbol{\mu} \leqslant C\|f\|_{L_{1}}(\boldsymbol{\mu}(A)+6 \eta)^{1 / q} . \tag{3.2}
\end{equation*}
$$

Proof. Fix a nonempty subset A of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $A \in \mathcal{S}$, and let $A_{1} \subseteq\left[n_{1}\right]$ and $A_{2} \subseteq\left[n_{2}\right]$ such that $A=A_{1} \times A_{2}$. If $\mu_{1}\left(A_{1}\right) \geqslant \eta$ and $\mu_{2}\left(A_{2}\right) \geqslant \eta$, then we claim that

$$
\begin{equation*}
\int_{A} f d \boldsymbol{\mu} \leqslant C\|f\|_{L_{1}}(\boldsymbol{\mu}(A)+2 \eta)^{1 / q} . \tag{3.3}
\end{equation*}
$$

Indeed, by Lemma 3.1 applied for $X_{1}=\left[n_{1}\right]$ and $X_{2}=\left[n_{2}\right]$, we obtain a partition \mathcal{Q} of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $\mathcal{Q} \in \mathcal{S}$ and $\iota(\mathcal{Q}) \geqslant \eta$, and a set $B \in \mathcal{Q}$ such that $A \subseteq B$ and $\boldsymbol{\mu}(B \backslash A) \leqslant 2 \eta$. By the L_{p} regularity of f, we have

$$
\frac{\int_{B} f d \boldsymbol{\mu}}{\boldsymbol{\mu}(B)} \boldsymbol{\mu}(B)^{1 / p} \leqslant\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{Q}}\right)\right\|_{L_{p}} \leqslant C\|f\|_{L_{1}}
$$

and so

$$
\int_{A} f d \boldsymbol{\mu} \leqslant \int_{B} f d \boldsymbol{\mu} \leqslant C\|f\|_{L_{1}} \boldsymbol{\mu}(B)^{1 / q} \leqslant C\|f\|_{L_{1}}(\boldsymbol{\mu}(A)+2 \eta)^{1 / q}
$$

Next, we assume that $\mu_{1}\left(A_{1}\right) \geqslant \eta$ and $\mu_{2}\left(A_{2}\right)<\eta$ and observe that we may select a set $B \subseteq\left[n_{2}\right]$ with $\eta<\mu_{2}(B) \leqslant 2 \eta$. Then, we have

$$
\begin{aligned}
\int_{A} f d \boldsymbol{\mu} & \leqslant \int_{A_{1} \times\left(A_{2} \cup B\right)} f d \boldsymbol{\mu} \stackrel{(3.3)}{\leqslant} C\|f\|_{L_{1}}\left(\boldsymbol{\mu}\left(A_{1} \times\left(A_{2} \cup B\right)\right)+2 \eta\right)^{1 / q} \\
& \leqslant C\|f\|_{L_{1}}\left(\boldsymbol{\mu}(A)+2 \eta \mu_{1}\left(A_{1}\right)+2 \eta\right)^{1 / q} \leqslant C\|f\|_{L_{1}}(\boldsymbol{\mu}(A)+4 \eta)^{1 / q}
\end{aligned}
$$

The case $\mu_{1}\left(A_{1}\right)<\eta$ and $\mu_{2}\left(A_{2}\right) \geqslant \eta$ is identical.
Finally, assume that $\mu_{1}\left(A_{1}\right)<\eta$ and $\mu_{2}\left(A_{2}\right)<\eta$, and observe that there exist $B_{1} \subseteq\left[n_{1}\right]$ and $B_{2} \subseteq\left[n_{2}\right]$ such that $\eta<\mu_{1}\left(B_{1}\right) \leqslant 2 \eta$ and $\eta<\mu_{2}\left(B_{2}\right) \leqslant 2 \eta$. Then,

$$
\begin{aligned}
\int_{A} f d \boldsymbol{\mu} & \leqslant \int_{\left(A_{1} \cup B_{1}\right) \times\left(A_{2} \cup B_{2}\right)} f d \boldsymbol{\mu} \\
& \stackrel{(3.3)}{\leqslant} C\|f\|_{L_{1}}\left(\boldsymbol{\mu}\left(\left(A_{1} \cup B_{1}\right) \times\left(A_{2} \cup B_{2}\right)\right)+2 \eta\right)^{1 / q} \\
& \leqslant C\|f\|_{L_{1}}\left(\boldsymbol{\mu}(A)+8 \eta^{2}+2 \eta\right)^{1 / q} \leqslant C\|f\|_{L_{1}}(\boldsymbol{\mu}(A)+6 \eta)^{1 / q}
\end{aligned}
$$

and the proof of the lemma is completed.
Lemmas 3.1 and 3.2 will be used in the proof of the following result.

Lemma 3.3. There exist an algorithm and a polynomial Π_{2} such that the following holds. Let $0<\varepsilon<1 / 2$ and $C \geqslant 1$. Let $1<p \leqslant \infty$, set $p^{\dagger}=\min \{2, p\}$ and let q denote the conjugate exponent of p^{\dagger}. Also let a_{0} be as in Proposition 2.2, and set

$$
\vartheta=\frac{a_{0} \varepsilon}{16 C} \quad \text { and } \quad \eta \leqslant\left(\vartheta \cdot \iota(\mathcal{P})^{\frac{2}{p \dagger}+1}\right)^{q}
$$

If we input
INP1: a partition \mathcal{P} of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $\mathcal{P} \subseteq \mathcal{S}$,
INP2: a subset A of $\left[n_{1}\right] \times\left[n_{2}\right]$ with $A \in \mathcal{S}$, and
INP3: $a(C, \eta, p)$-regular matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$,
then the algorithm outputs
OUT1: a refinement \mathcal{Q} of \mathcal{P} with $\mathcal{Q} \subseteq \mathcal{S},|\mathcal{Q}| \leqslant 4|\mathcal{P}|$ and $\iota(\mathcal{Q}) \geqslant\left(\vartheta \cdot \iota(\mathcal{P})^{\frac{2}{p^{\dagger}+1}}\right)^{q}$, and OUT2: a set $B \in \mathcal{A}_{\mathcal{Q}}$ such that

$$
\begin{equation*}
\int_{A \triangle B} \mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right) d \boldsymbol{\mu} \leqslant 2 C\|f\|_{L_{1}} \vartheta \text { and } \int_{A \triangle B} f d \boldsymbol{\mu} \leqslant 6 C\|f\|_{L_{1}} \vartheta \tag{3.4}
\end{equation*}
$$

If we additionally assume that the matrix f in INP3 satisfies

$$
\begin{equation*}
\left|\int_{A}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu}\right| \geqslant a_{0} \varepsilon\|f\|_{L_{1}} \tag{3.5}
\end{equation*}
$$

then the partition \mathcal{Q} in OUT2 satisfies

$$
\begin{equation*}
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{Q}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p^{\dagger}}} \geqslant \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2} \tag{3.6}
\end{equation*}
$$

Finally, this algorithm has running time $|\mathcal{P}| \cdot \Pi_{2}\left(n_{1} \cdot n_{2}\right)$.
Lemma 3.3 is an algorithmic version of [6, Lemmas 5.1 and 5.2]. We notice that if the matrix f satisfies the estimate in (3.5), then inequality (3.6) implies that the partition \mathcal{Q} is a genuine refinement of \mathcal{P}. We also point out that the polynomial Π_{2} obtained by Lemma 3.3 is absolute and independent of the parameters ε, C and p. We proceed to the proof.

Proof of Lemma 3.3. We may (and we will) assume that A is nonempty. We select $A_{1} \subseteq\left[n_{1}\right]$ and $A_{2} \subseteq\left[n_{2}\right]$ such that $A=A_{1} \times A_{2}$, and we set

$$
\theta=\vartheta^{q} \cdot \iota(\mathcal{P})^{\frac{2 q}{p^{T}}}
$$

Also let

$$
\begin{aligned}
& \mathcal{P}^{1}=\left\{P=P_{1} \times P_{2} \in \mathcal{P}: \mu_{1}\left(A_{1} \cap P_{1}\right)<\theta \mu_{1}\left(P_{1}\right) \text { and } \mu_{2}\left(A_{2} \cap P_{2}\right)<\theta \mu_{2}\left(P_{2}\right)\right\}, \\
& \mathcal{P}^{2}=\left\{P=P_{1} \times P_{2} \in \mathcal{P}: \mu_{1}\left(A_{1} \cap P_{1}\right)<\theta \mu_{1}\left(P_{1}\right) \text { and } \mu_{2}\left(A_{2} \cap P_{2}\right) \geqslant \theta \mu_{2}\left(P_{2}\right)\right\}, \\
& \mathcal{P}^{3}=\left\{P=P_{1} \times P_{2} \in \mathcal{P}: \mu_{1}\left(A_{1} \cap P_{1}\right) \geqslant \theta \mu_{1}\left(P_{1}\right) \text { and } \mu_{2}\left(A_{2} \cap P_{2}\right)<\theta \mu_{2}\left(P_{2}\right)\right\}, \\
& \mathcal{P}^{4}=\left\{P=P_{1} \times P_{2} \in \mathcal{P}: \mu_{1}\left(A_{1} \cap P_{1}\right) \geqslant \theta \mu_{1}\left(P_{1}\right) \text { and } \mu_{2}\left(A_{2} \cap P_{2}\right) \geqslant \theta \mu_{2}\left(P_{2}\right)\right\} .
\end{aligned}
$$

Clearly, the family $\left\{\mathcal{P}^{1}, \mathcal{P}^{2}, \mathcal{P}^{3}, \mathcal{P}^{4}\right\}$ is a partition of \mathcal{P}.
Now for every $P \in \mathcal{P}$ we perform the following subroutine. First, assume that $P \in \mathcal{P}^{1} \cup \mathcal{P}^{2} \cup \mathcal{P}^{3}$ and notice that in this case we have $\boldsymbol{\mu}(A \cap P) \leqslant \theta \boldsymbol{\mu}(P)$. Then we set $B_{P}=\emptyset$ and $\mathcal{Q}_{P}=\{P\}$. On the other hand, if $P=P_{1} \times P_{2} \in \mathcal{P}^{4}$, then
we apply Lemma 3.1 for $X_{1}=P_{1}$ and $X_{2}=P_{2}$, and we obtain ${ }^{4}$ a partition \mathcal{Q}_{P} of P with $\mathcal{Q} \in \mathcal{S},\left|\mathcal{Q}_{P}\right| \leqslant 4$ and $\iota\left(\mathcal{Q}_{P}\right) \geqslant \theta \cdot \iota(\mathcal{P})$, and a set $B_{P} \in \mathcal{Q}_{P}$ such that $A \cap P \subseteq B_{P}$ and $\boldsymbol{\mu}\left(B_{P} \backslash(A \cap P)\right) \leqslant 2 \theta \boldsymbol{\mu}(P)$.

Once this is done, the algorithm outputs

$$
\mathcal{Q}=\bigcup_{P \in \mathcal{P}} \mathcal{Q}_{P} \text { and } B=\bigcup_{P \in \mathcal{P}} B_{P}
$$

Notice that there exists a polynomial Π_{2} such that this algorithm has running time $|\mathcal{P}| \cdot \Pi_{2}\left(n_{1} \cdot n_{2}\right)$. Indeed, recall that the algorithm in Lemma 3.1 runs in polynomial time and observe that we have applied Lemma 3.1 at most $|\mathcal{P}|$ times.

We proceed to show that the partition \mathcal{Q} and the set B satisfy the requirements of the lemma. To this end, we first observe that \mathcal{Q} satisfies the requirements in OUT1. Moreover, we have $B \in \mathcal{A}_{\mathcal{Q}}$ and

$$
\begin{equation*}
A \triangle B=\left(\bigcup_{i=1}^{3} \bigcup_{P \in \mathcal{P}^{i}}(A \cap P)\right) \cup\left(\bigcup_{P \in \mathcal{P}^{4}}\left(B_{P} \backslash(A \cap P)\right)\right) \tag{3.7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\boldsymbol{\mu}(A \triangle B) \leqslant 2 \theta \tag{3.8}
\end{equation*}
$$

and so, by the L_{p} regularity of f, Hölder's inequality, the monotonicity of the L_{p} norms and the fact that $p^{\dagger} \leqslant p$, we obtain that

$$
\begin{aligned}
\int_{A \triangle B} \mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right) d \boldsymbol{\mu} & \leqslant\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p^{\dagger}}} \cdot \boldsymbol{\mu}(A \triangle B)^{1 / q} \leqslant\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p}} \cdot \boldsymbol{\mu}(A \triangle B)^{1 / q} \\
& \leqslant C\|f\|_{L_{1}}(2 \theta)^{1 / q} \leqslant 2 C\|f\|_{L_{1}} \vartheta
\end{aligned}
$$

which proves the first inequality in (3.4). For the second inequality, by (3.7), we have

$$
\begin{equation*}
\int_{A \triangle B} f d \boldsymbol{\mu}=\sum_{P \in \mathcal{P}^{1} \cup \mathcal{P}^{2} \cup \mathcal{P}^{3}} \int_{A \cap P} f d \boldsymbol{\mu}+\sum_{P \in \mathcal{P}^{4}} \int_{B_{P} \backslash(A \cap P)} f d \boldsymbol{\mu} \tag{3.9}
\end{equation*}
$$

and, by the definition of θ and the fact that $\eta \leqslant\left(\vartheta \cdot \iota(\mathcal{P})^{\frac{2}{p^{\dagger}}+1}\right)^{q}$, we have $\eta \leqslant \theta \boldsymbol{\mu}(P)$ for every $P \in \mathcal{P}$. Thus, if $P \in \mathcal{P}^{1} \cup \mathcal{P}^{2} \cup \mathcal{P}^{3}$, then, by Lemma 3.2 and our assumption that f is (C, η, p)-regular (and, consequently, $\left(C, \eta, p^{\dagger}\right)$-regular), we have

$$
\int_{A \cap P} f d \boldsymbol{\mu} \leqslant C\|f\|_{L_{1}}(\boldsymbol{\mu}(A \cap P)+6 \eta)^{1 / q} \leqslant 3 C\|f\|_{L_{1}}(\theta \boldsymbol{\mu}(P))^{1 / q}
$$

which yields that

$$
\begin{equation*}
\sum_{P \in \mathcal{P}^{1} \cup \mathcal{P}^{2} \cup \mathcal{P}^{3}} \int_{A \cap P} f d \boldsymbol{\mu} \leqslant 3 C\|f\|_{L_{1}} \theta^{1 / q} \sum_{P \in \mathcal{P}^{1} \cup \mathcal{P}^{2} \cup \mathcal{P}^{3}} \boldsymbol{\mu}(P)^{1 / q} . \tag{3.10}
\end{equation*}
$$

On the other hand, by the choice of the family $\left\{B_{P}: P \in \mathcal{P}^{4}\right\}$ and Lemma 3.2,

$$
\begin{equation*}
\sum_{P \in \mathcal{P}^{4}} \int_{B_{P} \backslash(A \cap P)} f d \boldsymbol{\mu} \leqslant 6 C\|f\|_{L_{1}} \theta^{1 / q} \sum_{P \in \mathcal{P}^{4}} \boldsymbol{\mu}(P)^{1 / q} \tag{3.11}
\end{equation*}
$$

[^3]Moreover, since $q \geqslant 2$ we have that $x^{1 / q}$ is concave on \mathbb{R}^{+}, and so

$$
\begin{equation*}
\sum_{P \in \mathcal{P}} \boldsymbol{\mu}(P)^{1 / q} \leqslant|\mathcal{P}|^{\frac{1}{p^{\dagger}}} \leqslant \iota(\mathcal{P})^{-\frac{2}{p^{\dagger}}} \tag{3.12}
\end{equation*}
$$

Combining (3.10)-(3.12), we see that the second inequality in (3.4) is satisfied.
Finally, assume that the matrix f satisfies (3.5). By (3.4) and the choice of ϑ,

$$
\begin{aligned}
\mid \int_{A}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) & d \boldsymbol{\mu}-\int_{B}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu} \mid \\
\leqslant & \int_{A \triangle B} \mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right) d \boldsymbol{\mu}+\int_{A \triangle B} f d \boldsymbol{\mu} \leqslant \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2}
\end{aligned}
$$

and so, by (3.5), we have

$$
\begin{equation*}
\left|\int_{B}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu}\right| \geqslant \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2} \tag{3.13}
\end{equation*}
$$

Moreover, the fact that $B \in \mathcal{A}_{\mathcal{Q}}$ yields that

$$
\begin{equation*}
\int_{B}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu}=\int_{B}\left(\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{Q}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu} \tag{3.14}
\end{equation*}
$$

Thus, by the monotonicity of the L_{p} norms, we conclude that

$$
\begin{aligned}
& \left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{Q}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p^{\dagger}}} \geqslant\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{Q}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{1}} \\
& \geqslant\left|\int_{B}\left(\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{Q}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu}\right| \stackrel{(3.14)}{=}\left|\int_{B}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}}\right)\right) d \boldsymbol{\mu}\right| \stackrel{(3.13)}{\geqslant} \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2}
\end{aligned}
$$

and the proof of Lemma 3.3 is completed.

4. Proof of theorem 1.3

We will describe a recursive algorithm that performs the following steps. Starting from the trivial partition of $\left[n_{1}\right] \times\left[n_{2}\right]$ and using Lemma 3.3 as a subroutine, the algorithm will produce an increasing family of partitions of $\left[n_{1}\right] \times\left[n_{2}\right]$. Simultaneously, using Proposition 2.2 as a subroutine, the algorithm will be checking if the partition that is produced at each step satisfies the requirements in OUT of Theorem 1.3. The fact that this algorithm will eventually terminate is based on Proposition 2.1.

Proof of Theorem 1.3. Let a_{0} be as in Proposition 2.2, and set

$$
\begin{equation*}
\vartheta=\frac{a_{0} \varepsilon}{16 C}, \quad \tau=\left\lceil\frac{4 C^{2}}{\left(p^{\dagger}-1\right) \varepsilon^{2} a_{0}^{2}}\right\rceil \text { and } \eta=\vartheta^{\sum_{i=1}^{\tau+1}\left(\frac{2}{p^{\dagger}}+1\right)^{i-1} q^{i}} . \tag{4.1}
\end{equation*}
$$

Also fix a (C, η, p)-regular matrix $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$. The algorithm performs the following steps.

InitialStep: We set $\mathcal{P}_{0}:=\left\{\left[n_{1}\right] \times\left[n_{2}\right]\right\}$ and we apply the algorithm in Proposition 2.2 for the matrix $f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{0}}\right)$. Thus, we obtain a set $A_{0} \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ with $A_{0} \in \mathcal{S}$ and such that $\left(n_{1} \cdot n_{2}\right)\left|\int_{A_{0}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{0}}\right)\right) d \boldsymbol{\mu}\right| \geqslant a_{0}\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{0}}\right)\right\|_{\square}$. If $\left|\int_{A_{0}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{0}}\right)\right) d \boldsymbol{\mu}\right| \leqslant a_{0} \varepsilon\|f\|_{L_{1}}$, then the algorithm outputs the partition
\mathcal{P}_{0} and Halts. Otherwise, the algorithm sets $m=1$ and enters into the following loop.

GeneralStep: The algorithm will have as an input a positive integer $m \in[\tau-1]$, a partition ${ }^{5} \mathcal{P}_{m-1} \subseteq \mathcal{S}$ and a set $A_{m-1} \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ with $A_{m-1} \in \mathcal{S}$, such that
(a) $\left|\mathcal{P}_{m-1}\right| \leqslant 4^{m}$,
(b) $\left(\vartheta \cdot \iota\left(\mathcal{P}_{m-1}\right)^{\frac{2}{p^{\dagger}}+1}\right)^{q} \geqslant \vartheta^{\sum_{i=1}^{m}\left(\frac{2}{p^{\dagger}}+1\right)^{i-1} q^{i}}$, and
(c) $\left|\int_{A_{m-1}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m-1}}\right)\right) d \boldsymbol{\mu}\right|>a_{0} \varepsilon\|f\|_{L_{1}}$.

By (b) and the choice of η in (4.1), we have $\eta \leqslant\left(\vartheta \cdot \iota\left(\mathcal{P}_{m-1}\right)^{\frac{2}{p^{\dagger}}+1}\right)^{q}$. This fact together with the choice of ϑ in (4.1) allows us to perform the algorithm in Lemma 3.3 for the matrix f, the partition \mathcal{P}_{m-1} and the set A_{m-1}. Thus, we obtain a refinement \mathcal{P}_{m} of \mathcal{P}_{m-1} with $\mathcal{P}_{m} \subseteq \mathcal{S},\left|\mathcal{P}_{m}\right| \leqslant 4\left|\mathcal{P}_{m-1}\right|, \iota\left(\mathcal{P}_{m}\right) \geqslant\left(\vartheta \cdot \iota\left(\mathcal{P}_{m-1}\right)^{\frac{2}{p^{\dagger}}+1}\right)^{q}$, such that

$$
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m-1}}\right)\right\|_{L_{p^{\dagger}}} \geqslant \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2}
$$

Next, we apply the algorithm in Proposition 2.2 for the matrix $f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)$, and we obtain a set $A_{m} \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ with $A_{m} \in \mathcal{S}$ and such that

$$
\left(n_{1} \cdot n_{2}\right)\left|\int_{A_{m}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right) d \boldsymbol{\mu}\right| \geqslant a_{0}\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right\|_{\square}
$$

If $\left|\int_{A_{m}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right) d \boldsymbol{\mu}\right| \leqslant a_{0} \varepsilon\|f\|_{L_{1}}$, then the algorithm outputs the partition \mathcal{P}_{m} and Halts. Otherwise, if $m<\tau-1$, then the algorithm reruns the loop we described above for the positive integer $m+1$, the partition \mathcal{P}_{m} and the set A_{m}, while if $m=\tau-1$, then the algorithm proceeds to the following step.

FinalStep: The algorithm will have as an input a partition $\mathcal{P}_{\tau-1} \subseteq \mathcal{S}$ and a set $A_{\tau-1} \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ with $A_{\tau-1} \in \mathcal{S}$, such that
(d) $\left|\mathcal{P}_{\tau-1}\right| \leqslant 4^{\tau-1}$,

(f) $\left|\int_{A_{\tau-1}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau-1}}\right)\right) d \boldsymbol{\mu}\right|>a_{0} \varepsilon\|f\|_{L_{1}}$.

Again observe that, by (e) and the choice of η in (4.1), we have $\eta \leqslant\left(\vartheta \cdot \iota\left(\mathcal{P}_{\tau-1}\right)^{\frac{2}{p^{\dagger}}+1}\right)^{q}$. Using this fact and the choice of ϑ in (4.1), we may apply the algorithm in Lemma 3.3 for the matrix f, the partition $\mathcal{P}_{\tau-1}$ and the set $A_{\tau-1}$. Therefore, we obtain a refinement \mathcal{P}_{τ} of $\mathcal{P}_{\tau-1}$ with $\mathcal{P}_{\tau} \subseteq \mathcal{S},\left|\mathcal{P}_{\tau}\right| \leqslant 4\left|\mathcal{P}_{\tau-1}\right|, \iota\left(\mathcal{P}_{\tau}\right) \geqslant\left(\vartheta \cdot \iota\left(\mathcal{P}_{\tau-1}\right)^{\frac{2}{p^{\dagger}+1}}\right)^{q}$, and such that

$$
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau-1}}\right)\right\|_{L_{p^{\dagger}}} \geqslant \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2}
$$

The algorithm outputs the partition \mathcal{P}_{τ} and Halts.
Notice that there exists a polynomial Π_{0} such that the previous algorithm has running time $\left(\tau 4^{\tau}\right) \cdot \Pi_{0}\left(n_{1} \cdot n_{2}\right)$. Indeed, by Proposition 2.2 , there exists a polynomial Π_{0}^{\prime} such that the InitialStep runs in time $\Pi_{0}^{\prime}\left(n_{1} \cdot n_{2}\right)$. Moreover, by the running

[^4]times of the algorithms in Lemma 3.3 and Proposition 2.2, there exists a polynomial $\Pi_{0}^{\prime \prime}$ such that each of the GeneralStep runs in time $4^{\tau} \cdot \Pi_{0}^{\prime \prime}\left(n_{1} \cdot n_{2}\right)$. Finally, invoking again Lemma 3.3, we see that there exists a polynomial $\Pi_{0}^{\prime \prime \prime}$ such that the FinalStep runs in time $\Pi_{0}^{\prime \prime \prime}\left(n_{1} \cdot n_{2}\right)$. Therefore, the algorithm we described above runs in time
$$
\Pi_{0}^{\prime}\left(n_{1} \cdot n_{2}\right)+(\tau-1) 4^{\tau} \Pi_{0}^{\prime \prime}\left(n_{1} \cdot n_{2}\right)+\Pi_{0}^{\prime \prime \prime}\left(n_{1} \cdot n_{2}\right)
$$
which in turn yields that there exists a polynomial Π_{0} such that the algorithm has running time $\left(\tau 4^{\tau}\right) \cdot \Pi_{0}\left(n_{1} \cdot n_{2}\right)$.

It remains to verify that the previous algorithm will produce a partition that satisfies the requirements in OUT of Theorem 1.3. As we have noted, the argument is based on Proposition 2.1 and can be seen as the L_{p} version of the, so called, energy increment method (see, e.g., [16, Lemmas 10.40 and 11.31]). For more information and further applications of this method we refer to $[5,6,8]$.

We proceed to the details. First assume that the algorithm has stopped before the FinalStep. Then the output of the algorithm is one of the partitions we described in InitialStep and in GeneralStep, say \mathcal{P}_{m} for some $m \in\{0, \ldots, \tau-1\}$. Observe that \mathcal{P}_{m} satisfies $\mathcal{P}_{m} \subseteq \mathcal{S},\left|\mathcal{P}_{m}\right| \leqslant 4^{m}$, and $\iota\left(\mathcal{P}_{m}\right) \geqslant \eta$; in other words, \mathcal{P}_{m} satisfies the first three requirements in OUT of Theorem 1.3. Moreover, recall that there exists a set $A_{m} \subseteq\left[n_{1}\right] \times\left[n_{2}\right]$ with $A_{m} \in \mathcal{S}$, and such that

$$
\left(n_{1} \cdot n_{2}\right)\left|\int_{A_{m}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right) d \boldsymbol{\mu}\right| \geqslant a_{0}\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right\|_{\square}
$$

On the other hand, since the output of the algorithm is the partition \mathcal{P}_{m}, we have $\left|\int_{A_{m}}\left(f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right) d \boldsymbol{\mu}\right| \leqslant a_{0} \varepsilon\|f\|_{L_{1}}$. Combining these estimates, we conclude that $\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{m}}\right)\right\|_{\square} \leqslant \varepsilon\|f\|_{\square}$.

Next, assume that the algorithm reaches the FinalStep. Recall that $\mathcal{P}_{\tau} \subseteq \mathcal{S}$ and observe that, by (d) above and the fact that $\left|\mathcal{P}_{\tau}\right| \leqslant 4\left|\mathcal{P}_{\tau-1}\right|$, we have $\left|\mathcal{P}_{\tau}\right| \leqslant 4^{\tau}$. Moreover, by (e) and the choice of η in (4.1),

$$
\begin{equation*}
\iota\left(\mathcal{P}_{\tau}\right) \geqslant\left(\vartheta \cdot \iota\left(\mathcal{P}_{\tau-1}\right)^{\frac{2}{p^{\dagger}}+1}\right)^{q} \geqslant \vartheta^{\sum_{i=1}^{\tau}\left(\frac{2}{p^{\dagger}}+1\right)^{i-1} q^{i}} \geqslant \eta . \tag{4.2}
\end{equation*}
$$

Thus, we only need to show that $\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau}}\right)\right\|_{\square} \leqslant \varepsilon\|f\|_{\square}$. To this end assume, towards a contradiction, that $\left\|f-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau}}\right)\right\|_{\square}>\varepsilon\|f\|_{\square}$. Notice that, by the choice of η in (4.1) and (4.2), we have $\left(\vartheta \cdot \iota\left(\mathcal{P}_{\tau}\right)^{\frac{2}{p^{\dagger}+1}}\right)^{q} \geqslant \eta$. Using the previous two estimates, Proposition 2.2, Lemma 3.3 and arguing precisely as in the GeneralStep, we may select a refinement $\mathcal{P}_{\tau+1}$ of \mathcal{P}_{τ} with $\mathcal{P}_{\tau+1} \subseteq \mathcal{S}$ and $\iota\left(\mathcal{P}_{\tau+1}\right) \geqslant \eta$, and such that $\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau+1}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau}}\right)\right\|_{L_{p^{\dagger}}} \geqslant\left(a_{0} \varepsilon\|f\|_{L_{1}}\right) / 2$. It follows that there exists an increasing finite sequence $\left(\mathcal{P}_{i}\right)_{i=0}^{\tau+1}$ of partitions with $\mathcal{P}_{0}=\left\{\left[n_{1}\right] \times\left[n_{2}\right]\right\}$ and such that for every $i \in[\tau+1]$ we have $\mathcal{P}_{i} \subseteq \mathcal{S}, \iota\left(\mathcal{P}_{i}\right) \geqslant \eta$, and

$$
\begin{equation*}
\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{i}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{i-1}}\right)\right\|_{L_{p^{\dagger}}} \geqslant \frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2} \tag{4.3}
\end{equation*}
$$

Now set $d_{0}=\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{0}}\right)$ and $d_{i}=\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{i}}\right)-\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{i-1}}\right)$ for every $i \in[\tau+1]$, and observe that the sequence $\left(d_{i}\right)_{i=0}^{\tau+1}$ is a martingale difference sequence. Therefore,
by Proposition 2.1 and the fact that the matrix f is (C, η, p)-regular, we have

$$
\begin{aligned}
\frac{a_{0} \varepsilon\|f\|_{L_{1}}}{2} \cdot \sqrt{\tau+1} & \stackrel{(4.3)}{\leqslant}\left(\sum_{i=1}^{\tau+1}\left\|d_{i}\right\|_{L_{p^{\dagger}}}^{2}\right)^{1 / 2} \leqslant\left(\sum_{i=0}^{\tau+1}\left\|d_{i}\right\|_{L_{p^{\dagger}}}^{2}\right)^{1 / 2} \\
& \stackrel{(2.1)}{\leqslant} \frac{1}{\sqrt{p^{\dagger}-1}}\left\|\sum_{i=0}^{\tau+1} d_{i}\right\|_{L_{p^{\dagger}}}=\frac{1}{\sqrt{p^{\dagger}-1}}\left\|\mathbb{E}\left(f \mid \mathcal{A}_{\mathcal{P}_{\tau+1}}\right)\right\|_{L_{p^{\dagger}}} \\
& \leqslant \frac{C}{\sqrt{p^{\dagger}-1}}\|f\|_{L_{1}}
\end{aligned}
$$

which clearly contradicts the choice of τ in (4.1). The proof of Theorem 1.3 is thus completed.

5. Applications

5.1. Tensor approximation algorithms. Throughout this subsection let $k \geqslant 2$ be an integer. Also let n_{1}, \ldots, n_{k} be positive integers, and let $\boldsymbol{\mu}_{k}$ denote the uniform probability measure on $\left[n_{1}\right] \times \cdots \times\left[n_{k}\right]$.

Recall that a k-dimensional tensor is a function $F:\left[n_{1}\right] \times \cdots \times\left[n_{k}\right] \rightarrow \mathbb{R}$. (Notice, in particular, that a 2-dimensional tensor is just a matrix.) Also recall, that a tensor $G:\left[n_{1}\right] \times \cdots \times\left[n_{k}\right] \rightarrow \mathbb{R}$ is called a cut tensor if there exist a real number c and for every $i \in[k]$ a subset S_{i} of $\left[n_{i}\right]$ such that $G=c \cdot \mathbf{1}_{S_{1} \times \cdots \times S_{k}}$. Finally, recall that for every tensor $F:\left[n_{1}\right] \times \cdots \times\left[n_{k}\right] \rightarrow \mathbb{R}$ its cut norm is defined as

$$
\|F\|_{\square}=\left(\prod_{i=1}^{k} n_{i}\right) \cdot \max \left\{\left|\int_{S_{1} \times \cdots \times S_{k}} F d \boldsymbol{\mu}_{k}\right|: S_{i} \subseteq\left[n_{i}\right] \text { for every } i \in[k]\right\}
$$

Next, set

$$
\begin{equation*}
k_{1}:=\lfloor k / 2\rfloor, \quad A_{k}:=\left[n_{1}\right] \times \cdots \times\left[n_{k_{1}}\right] \quad \text { and } \quad B_{k}:=\left[n_{k_{1}+1}\right] \times \cdots \times\left[n_{k}\right], \tag{5.1}
\end{equation*}
$$

and for every tensor $F:\left[n_{1}\right] \times \cdots \times\left[n_{k}\right] \rightarrow\{0,1\}$ let the respective matrix f_{F} of F be the matrix $f_{F}: A_{k} \times B_{k} \rightarrow\{0,1\}$ defined by the rule

$$
\begin{equation*}
f_{F}\left(\left(i_{1}, \ldots, i_{k_{1}}\right),\left(i_{k_{1}+1}, \ldots, i_{k}\right)\right)=F\left(i_{1}, \ldots, i_{k}\right) \tag{5.2}
\end{equation*}
$$

for every $\left(\left(i_{1}, \ldots, i_{k_{1}}\right),\left(i_{k_{1}+1}, \ldots, i_{k}\right)\right) \in A_{k} \times B_{k}=\left[n_{1}\right] \times \cdots \times\left[n_{k}\right]$.
As in [4], we extend the notion of L_{p} regularity from matrices to tensors as follows.

Definition 5.1 (L_{p} regular tensors). Let $0<\eta \leqslant 1, C \geqslant 1$ and $1 \leqslant p \leqslant \infty$. A tensor $F:\left[n_{1}\right] \times \cdots \times\left[n_{k}\right]$ is called (C, η, p)-regular if its respective matrix f_{F} is (C, η, p)-regular, that is, if for every partition \mathcal{P} of $A_{k} \times B_{k}$ with $\mathcal{P} \subseteq \mathcal{S}_{A_{k} \times B_{k}}$ and $\iota(\mathcal{P}) \geqslant \eta$ we have $\left\|\mathbb{E}\left(f_{F} \mid \mathcal{A}_{\mathcal{P}}\right)\right\|_{L_{p}} \leqslant C$.

To state our main result about L_{p} regular tensors we need to introduce some numerical invariants. Specifically, let $\varepsilon>0$ and $C \geqslant 1$. Also let $1<p \leqslant \infty$, set
$p^{\dagger}=\min \{2, p\}$ and let q denote the conjugate exponent of p^{\dagger}. Finally, let a_{1}, a_{2} be as in Theorem 1.3, and define

$$
\begin{equation*}
\tau(\varepsilon, C, p)=\left\lceil\frac{a_{1} C^{2}}{\left(p^{\dagger}-1\right) \varepsilon^{2}}\right\rceil \text { and } \eta(\varepsilon, C, p)=\left(\frac{a_{2} \varepsilon}{C}\right)^{\sum_{i=1}^{\tau(\varepsilon, C, p)+1}\left(\frac{2}{\left.p^{\dagger}+1\right)^{i-1} q^{i}} . . . ~ . ~\right.} \tag{5.3}
\end{equation*}
$$

We have the following theorem.
Theorem 5.2. There exist a constant b, an algorithm and a polynomial Π_{3} such that the following holds. Let $0<\varepsilon<1 / 2$ and $C \geqslant 1$. Also let $1<p \leqslant \infty$, and let $\tau=\tau(\varepsilon / 2, C, p)$ and $\eta=\eta(\varepsilon / 2, C, p)$ be as in (5.3). If we input

INP: $a(C, \eta, p)$-regular tensor $F:\left[n_{1}\right] \times \cdots \times\left[n_{k}\right] \rightarrow\{0,1\}$,
then the algorithm outputs
OUT: cut tensors G_{1}, \ldots, G_{s} with $s \leqslant\left(\frac{2 b C}{\varepsilon \eta^{2}}\right)^{2(k-1)}$ and such that

$$
\begin{equation*}
\left\|F-\sum_{i=1}^{s} G_{i}\right\|_{\square} \leqslant \varepsilon\|F\|_{\square} \quad \text { and } \sum_{i=1}^{s}\left\|G_{i}\right\|_{L_{\infty}}^{2} \leqslant\left(\frac{C\|F\|_{L_{1}}}{\eta^{2}}\right)^{2} b^{2 k} \tag{5.4}
\end{equation*}
$$

This algorithm has running time $\left(\tau 4^{\tau}+\left(\frac{2 C}{\varepsilon \eta^{2}}\right)^{3 k}\right) \cdot \Pi_{3}\left(\prod_{i=1}^{k} n_{i}\right)$.
Theorem 5.2 can be proved arguing precisely as in the proof of [4, Theorem 2] and using Theorem 1.3 instead of [4, Corollary 1]. We leave the details to the interested reader.
5.2. MAX-CSP instances approximation. In what follows let n, k denote two positive integers with $k \leqslant n$.

Let $V=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of Boolean variables, and recall that an assignment σ on V is a map $\sigma: V \rightarrow\{0,1\}$. Notice that if σ is an assignment on V and $W \subseteq V$, then $\left.\sigma\right|_{W}: W \rightarrow\{0,1\}$ is an assignment on W. Also recall that a k-constraint is a pair $\left(\phi, V_{\phi}\right)$ where $V_{\phi} \subseteq V$ with $\left|V_{\phi}\right|=k$ and $\phi:\{0,1\}^{V_{\phi}} \rightarrow\{0,1\}$ is a not identically zero map. Finally, recall that a k-CSP instance over V is a family \mathcal{F} of k-constraints over V.

For every k-CSP instance \mathcal{F} we define

$$
\begin{equation*}
\operatorname{OPT}(\mathcal{F})=\max _{\sigma \in\{0,1\}^{V}} \sum_{\left(\phi, V_{\phi}\right) \in \mathcal{F}} \phi\left(\left.\sigma\right|_{V_{\phi}}\right) . \tag{5.5}
\end{equation*}
$$

Moreover, let Ψ_{k} be the set of all non-zero maps from $\{0,1\}^{k}$ into $\{0,1\}$. We have the following definition.

Definition 5.3. Let $\psi \in \Psi_{k}$. Also let $\left(\phi, V_{\phi}\right)$ be a k-constraint over V where $V_{\phi}=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ for some $1 \leqslant i_{1}<\cdots<i_{k} \leqslant n$. We say that $\left(\phi, V_{\phi}\right)$ is of type ψ if for every assignment $\sigma: V \rightarrow\{0,1\}$ we have

$$
\psi\left(\sigma\left(x_{i_{1}}\right), \ldots, \sigma\left(x_{i_{k}}\right)\right)=\phi\left(\left.\sigma\right|_{V_{\phi}}\right)
$$

Observe that every k-CSP instance \mathcal{F} can be represented by a family $\left(F_{\mathcal{F}}^{\psi}\right)_{\psi \in \Psi_{k}}$ of $2^{2^{k}}-1$ tensors where for every $\psi \in \Psi_{k}$ the tensor $F_{\mathcal{F}}^{\psi}:[n]^{k} \rightarrow\{0,1\}$ is defined by the rule

$$
F_{\mathcal{F}}^{\psi}\left(i_{1}, \ldots, i_{k}\right)= \begin{cases}1 \quad & \text { if there is }\left(\phi, V_{\phi}\right) \in \mathcal{F} \text { of type } \psi \tag{5.6}\\ \quad & \text { with } V_{\phi}=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Having this representation in mind, we say that a k-constraint \mathcal{F} is (C, η, p)-regular for some $0<\eta \leqslant 1, C \geqslant 1$ and $1 \leqslant p \leqslant \infty$, provided that for every $\psi \in \Psi_{k}$ the tensor $F_{\mathcal{F}}^{\psi}$ defined above is (C, η, p)-regular.

We have the following theorem which extends [4, Theorem 3]. It follows from Theorem 5.2 using the arguments in the proof of [4, Theorem 3]; as such, its proof is left to the reader.

Theorem 5.4. There exist an algorithm, a constant $\gamma>0$ and a polynomial Π_{4} such that the following holds. Let k be a positive integer, and let $0<\varepsilon<1 / 2, C \geqslant 1$ and $1<p \leqslant \infty$. Set $a=\varepsilon 2^{-\left(2^{k}+2 k+2\right)}$, and let $\tau=\tau(a, C, p)$ and $\eta=\eta(a, C, p)$ be as in (5.3). If we input

INP: $a(C, \eta, p)$-regular k-CSP instance \mathcal{F} over a set $V=\left\{x_{1}, \ldots, x_{n}\right\}$ of Boolean variables,
then the algorithm outputs
OUT: an assignment $\sigma: V \rightarrow\{0,1\}$ such that

$$
\sum_{\left(\phi, V_{\phi}\right) \in \mathcal{F}} \phi\left(\left.\sigma\right|_{V_{\phi}}\right) \geqslant(1-\varepsilon) \cdot \operatorname{OPT}(\mathcal{F})
$$

This algorithm has running time

$$
\Pi_{4}\left(n^{k} \cdot \exp \left(k 2^{k} 2^{2^{k}}\left(\frac{2 C}{\varepsilon \eta^{2}}\right)^{2 k} \ln \left(\frac{2 C}{\varepsilon \eta^{2}}\right)\right)\right)
$$

References

[1] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck's inequality, Proc. 36th STOC, 2004, 72-80.
[2] B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures and Algorithms 31 (2007), 3-122.
[3] C. Borgs, J. T. Chayes, H. Cohn and Y. Zhao, An L^{p} theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, preprint (2014), available at arXiv:1401. 2906.
[4] A. Coja-Oghlan, C. Cooper and A. Frieze, An efficient sparse regularity concept, SIAM J. Discrete Math. 23 (2010), 2000-2034.
[5] P. Dodos, V. Kanellopoulos and Th. Karageorgos, Szemerédi's regularity lemma via martingales, Electron. J. Comb. 23 (2016), Research Paper P3.11, 1-24.
[6] P. Dodos, V. Kanellopoulos and Th. Karageorgos, L_{p} regular sparse hypergraphs, Fund. Math. (to appear), available at arxiv:1510.07139.
[7] P. Dodos, V. Kanellopoulos and Th. Karageorgos, L_{p} regular sparse hypergraphs: box norms, preprint (2015), available at arxiv:1510.07140.
[8] P. Dodos, V. Kanellopoulos and K. Tyros, A concentration inequality for product spaces, J. Funct. Anal. 270 (2016), 609-620.
[9] A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), 175-220.
[10] J. Hastad, Some optimal inapproximability results, Journal of the ACM 48 (2001), 798-859.
[11] S. Khot, G. Kindler, E. Mossel and R. O' Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSP's, Proc. 45th FOCS, 2004, 146-154.
[12] Y. Kohayakawa, Szemerédi's regularity lemma for sparse graphs, in "Foundations of Computational Mathematics", Springer, 1997, 216-230.
[13] Y. Kohayakawa and V. Rödl, Szemerédi's regularity lemma and quasi-randomness, in "Recent Advances in Algorithms and Combinatorics", CMS Books in Mathematics, Vol. 11, Springer, 2003, 289-351.
[14] G. Pisier, Grothendieck's theorem, past and present, Bull. Amer. Math. Soc. 49 (2012), 237323.
[15] E. Ricard and Q. Xu, A noncommutative martingale convexity inequality, Ann. Probab. 44 (2016), 867-882.
[16] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Vol. 105, Cambridge University Press, 2006.
[17] L. Trevisan, G. Sorkin, M. Sudan and D. Williamson, Gadgets, approximation, and linear programming, SIAM J. Comput. 29 (2000), 2074-2097.

Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece

E-mail address: silouanb@math.uoa.gr
Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece

E-mail address: tkarageo@math.uoa.gr

[^0]: 2010 Mathematics Subject Classification: 05C35, 46B25, 60G42, 68R05.
 Key words: sparse graphs, sparse matrices, regularity lemma, algorithmic regularity lemma.

[^1]: ${ }^{1}$ This model encompasses the classical Erdős-Rényi model-see, e.g., [2].
 ${ }^{2}$ Here, and in the rest of this paper, by the term polynomial we mean a real polynomial Π with non-negative coefficients, that is, $\Pi(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$ where $d \in \mathbb{N}$ and $a_{0}, \ldots, a_{d} \in \mathbb{R}^{+}$. Moreover, unless otherwise stated, we will assume that the degree d and the coefficients a_{0}, \ldots, a_{d} are absolute and independent of the rest of the parameters.

[^2]: ${ }^{3}$ Actually, the argument in [4] works for the more general case $p \geqslant 2$. We also remark that the cut matrices obtained by [4, Theorem 1] do not necessarily have disjoint supports, but this can be easily arranged-see [4, Corollary 1] for more details.

[^3]: ${ }^{4}$ Notice that for every $A \subseteq X_{1}$ we have $\mu_{X_{1}}(A)=\mu_{1}(A) / \mu_{1}\left(X_{1}\right)$, and similarly for X_{2}.

[^4]: ${ }^{5}$ Notice that $\mathcal{P}_{0} \subseteq \mathcal{S}$ and $\iota\left(\mathcal{P}_{0}\right)=1$.

