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Abstract

Resonance frequencies are complex eigenvalues at which the homoge-
neous transmission problems have non-trivial solutions. These frequencies
are of interest because they affect the behavior of the solutions even when
the frequency is real. The resonance frequencies are related to problems
for infinite domains which can be solved efficiently with the Boundary
Integral Equation Method (BIEM). We thus consider a numerical method
of determining resonance frequencies with fast BIEM and the Sakurai-
Sugiura projection Method (SSM). However, BIEM may have fictitious
eigenvalues even when one uses Müller or PMCHWT formulations which
are known to be resonance free when the frequency is real valued.

In this paper, we propose new BIEs for transmission problems with
which one can distinguish true and fictitious eigenvalues easily. Specifi-
cally, we consider waveguide problems for the Helmholtz equation in 2D
and standard scattering problems for Maxwell’s equations in 3D. We verify
numerically that the proposed BIEs can separate the fictitious eigenval-
ues from the true ones in these problems. We show that the obtained
true complex eigenvalues are related to the behavior of the solution sig-
nificantly. We also show that the fictitious eigenvalues may affect the ac-
curacy of BIE solutions in standard boundary value problems even when
the frequency is real.

key words: resonance, transmission problems, boundary integral equations,
eigenvalue problems

1 Introduction

There is no doubt that eigenvalue problems are of great importance in science
and engineering. Determining eigenfrequencies of finite bodies, for example, is
one of fundamental issues in the study of vibrations of structures. In many cases
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one is interested in real valued eigenvalues because the physics of the problems
requires real valued quantities as in the case of eigenfrequencies. However, de-
termining complex eigenvalues is of interest in some applications even when the
quantity in question is real valued physically. In waveguides for example, there
exist anomalous frequencies near which the behavior of the solution changes
suddenly. Some of such anomalies are known to be related to the existence of
resonance frequencies, which are complex eigenfrequencies at which there exist
non-trivial solutions to the homogeneous boundary value problems for waveg-
uides. Interestingly, these resonance frequencies include real valued eigenvalues
called trapped modes which are typically excited near inclusions (See the review
paper by Linton and McIver [1] for efforts to determine these eigenvalues). It is
also known that open systems may have complex eigenvalues. These complex
eigenvalues are called leaky modes since they radiate energy to infinity. The
leaky modes are also of interest because they are known to affect the behav-
ior of the solutions considerably. Actually, numerical examples in this paper
will provide further evidence of the relevance of the leaky modes to physical
phenomena.

In the present paper, we call these problems of finding complex eigenval-
ues associated with Boundary Value Problems (BVPs) “resonance problems”.
Specifically, we consider complex eigenfrequencies (resonance frequencies) for
the free space or waveguides which contain finite sized inclusions. The complex
eigenvalues for our resonance problems may include real valued ones as in the
case of the trapped modes. Exact solutions of resonance problems are available
only in simple cases and we usually have to resort to numerical or approxi-
mate methods to solve them. Many efforts have been devoted to numerical
and approximate solvers for resonance problems, e.g., [2, 3, 4, 5, 6] to men-
tion just a few. The present authors have been interested in solving resonance
problems with Boundary Integral Equation Method (BIEM) formulated with
Green’s functions [7]. This method solves resonance problems by finding fre-
quencies at which the discretized homogeneous BIEs have non-trivial solutions.
BIEM is considered to be advantageous in our resonance problems because many
complex eigenvalue problems are associated with wave problems for infinite do-
mains where one has to deal with radiation conditions. With BIEM, one does
not need special tools such as PML [4] to deal with radiation conditions and
the discretization is required only on the boundary of the inclusions. However,
BIEM in eigenvalue problem has the following three difficulties:

1. The computational cost of BIEM is as large as O(N2) (N : Degrees Of
Freedom (DOF)).

2. One has to solve non-linear eigenvalue problems.

3. One may obtain non-physical eigenvalues.

The first difficulty is now solved with the development of the fast BIEMs such
as Fast Multipole Method (FMM [8]), fast direct solvers (e.g., [9, 10]), etc. The
second difficulty is also much alleviated with the development of good solvers for
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non-linear eigenvalue problems such as the Sakurai-Sugiura projection Method
(SSM, [11, 12, 13]). The SSM is a non-iterative algorithm which determines
eigenvalues within a given contour γ in the complex plane using contour integrals
defined on γ, as does another well-known eigensolver FEAST [14]. As a matter of
fact, the authors have developed an FMM for Neumann waveguide problems for
the Helmholtz equation in 2D, and solved resonance problems successfully in [7]
with the help of the SSM. The third difficulty is caused by the difference between
the eigenvalues of the BVP and those of the BIE which may include eigenvalues
irrelevant to the original BVP. These spurious eigenvalues of the BIE are called
“fictitious eigenvalues”. Many efforts have been devoted to the development
of BIEs which are free from real valued fictitious eigenvalues such as combined
integral equations [15], the Burton-Miller equation [16], the PMCHWT (Poggio-
Miller-Chang-Harrington-Wu-Tsai) [17] and Müller [18] formulations. However,
few studies have focused on fictitious eigenvalue issues in complex eigenvalue
problems.

This paper discusses a way of dealing with the third difficulty in transmission
problems. We show that a small modification of the BIE enables us to clearly
distinguish between the true eigenvalues and the fictitious ones. Although we
have already commented on this modification briefly in our previous paper [7]
and in conference proceedings [19], the full details of this approach appear for the
first time in this paper. We consider transmission problems for both waveguides
for the Helmholtz equation in 2D and standard Maxwell’s equations in 3D. As
a matter of fact, related problems in the exterior Neumann problems for the
Helmholtz equation in 3D have been discussed in [20] which uses the combined
integral equations, etc. To the best of our knowledge, however, remedies for the
transmission problems have not been developed yet.

This paper is organized as follows: In section 2, we formulate the transmis-
sion resonance problems and the corresponding coupled BIEs for the waveguide
problems for the Helmholtz equation in 2D and the standard scattering prob-
lems for the Maxwell equations in 3D. We consider both Müller’s and PMCHWT
formulations for these 2 cases. We then identify fictitious eigenvalues for the
integral equations considered and propose BIEs which can distinguish true and
fictitious eigenvalues clearly. We show, in particular, that eigenvalues of the
Müller and PMCHWT formulations for Maxwell’s equations are identical in-
cluding fictitious ones. In Section 3, we present some numerical examples which
prove the effectiveness of the proposed method. We also show that true complex
eigenvalues affect the behavior of the solution and that fictitious complex eigen-
values may deteriorate the accuracy of the solutions for the ordinary boundary
value problems with real frequencies. This paper ends with a few concluding
remarks and future plans.

2 Formulation

In this section, we formulate transmission resonance problems and derive BIEs
discussed in this study. We consider one single scatterer for simplicity, although
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the results in the following discussions hold for multiple scatterer cases as well.

2.1 Transmission resonance problems for waveguides for
the Helmholtz equation

We first consider elastic waves governed by the Helmholtz equation in 2D. Let
P be an infinite strip given by P = [−1/2, 1/2] × R. Also, let Ω = Ω2 ⊂ P
be a finite sized scatterer, ∂Ω = ∂Ω2 be its boundary and Ω1 = P \ Ω2. We
consider the following homogeneous transmission problem: find u which satisfies
the Helmholtz equation

∆u+ k2νu = 0 in Ων (ν = 1, 2),

boundary conditions

u+ = u− (= u), S1
∂u+

∂n
= S2

∂u−

∂n
(= q) on ∂Ω, (1)

and the homogeneous Neumann boundary condition on the sides of the strip:

∂u

∂x1
= 0 on x1 = ±1

2
.

We impose the radiation condition which requires that u is written as follows
(e.g. [21]):

u(x) ≈
∑

l≥0

C±
l cos lπ

(

x1 +
1

2

)

e−
√

(lπ)2−k2

1
|x2| as x2 → ±∞, (2)

where ρν , Sν and kν = ω
√

ρν/Sν are the density, shear modulus (real numbers)
and the wavenumber in Ων (ν = 1, 2), respectively. The frequency ω is allowed
to take a complex value. Also, the superscript + (−) in (1) stands for the
trace to ∂Ω from Ω1 (Ω2), ∂/∂n for the normal derivative and n for the unit
normal vector on ∂Ω directed towards Ω1, respectively. We make the square root
√

(lπ)2 − k21 in (2) single valued as a function of k1 by taking the branch which
is analytic in the complex plane cut along (−lπ,−lπ − i∞) and (lπ, lπ − i∞)
and approaches −ik1 in the upper plane as |k1| → ∞. This definition of the
square root ensures that the summands in (2) decay as l → ∞ and allows the
analytic continuation of the radiation condition to a complex ω. We also note
that the behavior of the solution in the far field can be described by a finite sum
with l ≤ ℜk1/π in (2) since terms with l > ℜk1/π go to zero as x2 → ±∞.

In the following, we call the above homogeneous problem the “waveguide
problem” or the “original BVP”. The transmission resonance problem deter-
mines frequencies at which the waveguide problem has non-trivial solutions.
We call such frequencies “true eigenvalues”. We note that the true eigenvalues
of the waveguide problem have non-positive imaginary parts.
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2.2 BIEs for the Helmholtz equation

We now formulate BIEs for the transmission resonance problem. We define Uν

as follows:

Uν(x) = (−1)ν
(

1

Sν

∫

∂Ω

Gν(x, y)q(y)dsy −
∫

∂Ω

∂Gν(x, y)

∂ny

u(y)dsy

)

, ν = 1, 2

(3)

where G1 stands for Green’s function for the waveguide with the wavenumber
k1 and G2 for the fundamental solution with the wavenumber k2, respectively:

G1(x, y) =

∞
∑

l=0

fl
e−

√
(lπ)2−k2

1
|x2−y2|

√

(lπ)2 − k21
cos lπ

(

x1 +
1

2

)

cos lπ

(

y1 +
1

2

)

(4)

G2(x, y) =
i

4
H

(1)
0 (k2|x− y|). (5)

In (4), fl is 1 for l 6= 0 and 1/2 for l = 0 and H
(ι)
n stands for the Hankel function

of the ι-th kind and n-th order, respectively. Also, bold letters x, y, etc. stand
for the position vectors of the points x, y, etc.

It is well-known that Uν (ν = 1, 2) give potential representations of the
solution u of the transmission problem in 2.1 in Ων with the boundary traces of
the solution as the layer-potential densities, iff U1 (U2) vanishes in Ω2 (R2\Ω2).
This condition gives

U1− = U2+ =
∂U1−

∂n
=

∂U2+

∂n
= 0 on ∂Ω. (6)

The Müller formulation of BIE for the Helmholtz equation in 2D given by

S1 + S2

2
u−

∫

∂Ω

(

S1
∂G1

∂ny

− S2
∂G2

∂ny

)

u dsy +

∫

∂Ω

(

G1 −G2
)

q dsy = 0

S1 + S2

2S1S2
q −

∫

∂Ω

(

∂2G1

∂nx∂ny

− ∂2G2

∂nx∂ny

)

u dsy +

∫

∂Ω

(

1

S1

∂G1

∂nx

− 1

S2

∂G2

∂nx

)

q dsy = 0

(7)

is derived from (6) with the help of the conditions

−S1U
1− = S2U

2+, −∂U1−

∂n
=

∂U2+

∂n
on ∂Ω. (8)

We also consider the following PMCHWT formulation:

∫

∂Ω

(

∂G1

∂ny

+
∂G2

∂ny

)

u dsy −
∫

∂Ω

(

1

S1
G1 +

1

S2
G2

)

q dsy = 0

=

∫

∂Ω

(

S1
∂2G1

∂nx∂ny

+ S2
∂2G2

∂nx∂ny

)

u dsy −
∫

∂Ω

(

∂G1

∂nx

+
∂G2

∂nx

)

q dsy = 0

(9)
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obtained similarly from the conditions

U1− = U2+, S1
∂U1−

∂n
= S2

∂U2+

∂n
on ∂Ω, (10)

where =
∫

stands for the finite part of a divergent integral.
One may want to solve the transmission resonance problems by finding com-

plex ω’s such that these integral equations have non-trivial solutions, i.e., the
non-linear eigenvalues for BIEs in (7) or (9). This issue is further discussed in
the next section.

2.3 Fictitious eigenvalues

We have reduced the transmission resonance
problem to a non-linear eigenvalue problem for BIEs in (7) or (9). However, as
we shall see, these equations may pick up fictitious eigenvalues which we now
characterize.

We discuss in detail the Müller formulation because the PMCHWT case can
be treated in a similar manner. We note that the following statement holds
(a similar statement is given in [22]): A frequency ω at which the BIEs in (7)
have non-trivial solutions corresponds either to the eigenvalue of the original
waveguide problem or that of the following transmission resonance problem
for v in the free space R2 in which the governing equations in Ω1 and Ω2 are
interchanged; we refer to [4] for the (3-D) explicit form of the radiation condition
for a complex wavenumber:

∆v + k22v = 0 in R
2 \ Ω2, ∆v + k21v = 0 in Ω2, (11)

v− = v+, S2
∂v−

∂n
= S1

∂v+

∂n
on ∂Ω (12)

outgoing radiation condition with k2 in R
2 \ Ω2. (13)

To see this, we define a function v using a set of non-trivial solutions (u, q) of
the BIEs in (7) as:

v(x) =

{ − 1
S1

U2(x) x ∈ R2 \ Ω2
1
S2

U1(x) x ∈ Ω2
. (14)

If v ≡ 0 in R
2 \ ∂Ω, the function w defined by:

w(x) =

{

U1(x) x ∈ Ω1

U2(x) x ∈ Ω2
. (15)

gives a non-trivial solution of the waveguide problem, as we have noted. We thus
see that the ω is an eigenvalue of the waveguide problem. If v 6≡ 0 identically in
R2 \ ∂Ω, v is a non-trivial solution of the BVP in (11)-(13) as we can see from
(8). We call this BVP the “fictitious BVP”.
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A similar discussion shows that the PMCHWT formulation given in (9) may
have, in addition to true eigenvalues, fictitious eigenvalues which correspond to
eigenvalues of the following free space transmission problem:

∆v + k22v = 0 in R
2 \ Ω2, ∆v + k21v = 0 in Ω2, (16)

v− = v+, S1
∂v−

∂n
= S2

∂v+

∂n
on ∂Ω (17)

outgoing radiation condition with k2 in R
2 \ Ω2. (18)

One may say that fictitious eigenvalues exist because the BIEs in (7) and (9)
cannot distinguish the original BVP and the fictitious BVP since these BIEs
lose the information of the domains while we take their limits to the boundary.

We thus see that an eigenvalue obtained with the BIEM with (7) may be an
eigenvalue of the free space transmission problem in (11)-(13), which has nothing
to do with the original BVP and, hence, is fictitious. These fictitious eigenvalues
have negative imaginary parts because the homogeneous transmission problem
has only the trivial solution when ℑω ≥ 0 [23]. Hence, the BIE in (7) is free from
fictitious eigenvalues as long as one considers real frequencies. When one deals
with leaky modes, however, it is hard to tell whether an eigenvalue obtained with
the BIEMs in (7) is a true eigenvalue or not, because both true and fictitious
eigenvalues appear in the lower complex plane. Similar conclusions apply to (9)
as well.

2.4 New BIEs

One can resolve the above problem simply by using the incoming fundamental
solution given by:

− i

4
H

(2)
0 (k2|x− y|) (19)

for G2 in (7), instead of the outgoing one in (5). This remedy keeps the true
eigenvalues unchanged, while the corresponding fictitious transmission problem
(11)-(13) is now replaced by the one with (11), (12) and the incoming radiation
condition with k2 in R2 \ Ω2. The corresponding (fictitious) eigenvalues have
positive imaginary parts because of the incoming radiation condition. In fact,
we see that (v, ω̄) is an eigenpair of the problem defined by (11), (12) and the
incoming radiation condition if (v, ω) is an eigenpair of (11)-(13). Therefore,
we can distinguish the fictitious eigenvalues from the true eigenvalues with this
change of the formulation. The same method can be applied to (9) as well.

2.5 Transmission resonance problems for the Maxwell equa-
tions

We next consider transmission problems for Maxwell’s equations in 3D free
space. Let Ω2 be a finite scatterer, S = ∂Ω2 be its boundary and Ω1 = R3 \Ω2.
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The transmission resonance problem for the Maxwell equations is stated as
follows: find E which satisfies the Maxwell equations:

∇× (∇×E)− k2νE = 0 in Ων (ν = 1, 2)

boundary conditions

E+ × n = E− × n (= m),

n× 1

iω

(

1

µ1
∇×E+

)

= n× 1

iω

(

1

µ2
∇×E−

)

(= j) on S
(20)

and the outgoing radiation condition with k1 in Ω1 given by:

E =
∞
∑

n=1

n
∑

m=−n

αm
n Φ

m
n (x) + βm

n ∇×Φ
m
n (x), Φ

m
n (x) = ∇×

{

xh(1)
n (k1r)Y

m
n (θ, φ)

}

for |x| > R

(21)

where superscript + (−) stands for the trace to S from Ω1 (Ω2), ǫν , µν are
the permitivity and permeability (real numbers) and kν = ω

√
ǫνµν in Ων , re-

spectively. Also, αm
n and βm

n are numbers, (r, θ, φ) is the spherical coordinate

of x, h
(1)
n is the spherical Hankel function of the 1st kind, Y m

n is the spherical
harmonics and R > 0 is a constant such that |x| < R holds for ∀x ∈ Ω2. The
above expression in (21) allows the analytic continuation of the Silver–Müller
radiation condition to a complex k1.

2.6 BIEs for the Maxwell equations

We next consider the BIEs for the Maxwell equations. We introduce the follow-
ing potential representation of E via the surface magnetic current m and the
electronic current j (see (20)):

Ẽν
i (x)

= (−1)ν
∫

S

{

eijk
∂Γν(x, y)

∂xj

mk(y)− iωµν

(

δip +
1

k2ν

∂

∂yi

∂

∂yp

)

Γν(x, y)jp(y)

}

dSy

(22)

where Γν(x, y) stands for the fundamental solution of the Helmholtz equation
in 3D:

Γν(x, y) =
eikν |x−y|

4π|x− y| . (23)

These representations give the solution of the original BVP with the boundary
traces of the solution as the densities m and j iff the following equations hold:

Ẽ1 = 0 in Ω2, Ẽ2 = 0 in Ω1. (24)
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The integral equations for the Müller formulation can be written as follows
[18]:

ǫ1 + ǫ2
2

m− n×
∫

S

(

ǫ1∇xΓ
1 − ǫ2∇xΓ

2
)

×m dSy

+
i

ω
n×

∫

S

(

k21Γ
1 − k22Γ

2
)

j dSy +
i

ω
n×

∫

S

(

∇x∇xΓ
1 −∇x∇xΓ

2
)

· j dSy = 0,

µ1 + µ2

2
j − n×

∫

S

(

µ1∇xΓ
1 − µ2∇xΓ

2
)

× j dSy

− i

ω
n×

∫

S

(

k21Γ
1 − k22Γ

2
)

m dSy −
i

ω
n×

∫

S

(

∇x∇xΓ
1 −∇x∇xΓ

2
)

·m dSy = 0.

(25)

The above Müller formulation for the the Maxwell equations is derived from
(24) via the potential in (22) as follows:

−ǫ1Ẽ
1− × n = ǫ2Ẽ

2+ × n

− 1
iω
n×

(

∇× Ẽ1−
)

= 1
iω
n×

(

∇× Ẽ2+
) on S. (26)

The PMCHWT formulation for the Maxwell equations can be written as
follows [17]:

− n×
∫

S

(

∇xΓ
1 +∇xΓ

2
)

×m dSy + iωn×
∫

S

(

µ1Γ
1 + µ2Γ

2
)

j dSy

+
i

ω
n×=

∫

S

(

1

ǫ1
∇x∇xΓ

1 +
1

ǫ2
∇x∇xΓ

2

)

· j dSy = 0,

− n×
∫

S

(

∇xΓ
1 +∇xΓ

2
)

× j dSy − iωn×
∫

S

(

ǫ1Γ
1 + ǫ2Γ

2
)

m dSy

− i

ω
n×=

∫

S

(

1

µ1
∇x∇xΓ

1 +
1

µ2
∇x∇xΓ

2

)

·m dSy = 0,

(27)

which we obtain from (22) and (24) using

Ẽ1− × n = Ẽ2+ × n

1
iω
n×

(

1
µ1

∇× Ẽ1−
)

= 1
iω
n×

(

1
µ2

∇× Ẽ2+
) on S. (28)

The above homogeneous BIEs in (25) and (27) have both true eigenvalues and
fictitious ones as in the Helmholtz case. The fictitious eigenvalues for the Müller
formulation are the eigenvalues ω of the following BVP for H :

∇× (∇×H)− k2νH = 0 in Ων′ (ν 6= ν′, ν = 1, 2) (29)

H− × n = H+ × n, n×
(

1

ǫ1
∇×H−

)

= n×
(

1

ǫ2
∇×H+

)

on S (30)

outgoing radiation condition for H with k2 in Ω1 (31)
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where H is related to Ẽ in (26) via

H =

{

−ǫ1Ẽ
1 in Ω2

ǫ2Ẽ
2 in Ω1

. (32)

The fictitious boundary value problem for the PMCHWT formulation is given
by

∇× (∇×E)− k2νE = 0 in Ων′ (ν 6= ν′, ν = 1, 2) (33)

E− × n = E+ × n, n×
(

1

µ1
∇×E−

)

= n×
(

1

µ2
∇×E+

)

on S (34)

outgoing radiation condition for E with k2 in Ω1. (35)

where E = Ẽν in Ων′ . As a matter of fact, the fictitious eigenvalues for the
Müller and PMCHWT formulations are the same. Indeed, the fictitious BVPs
for the Müller and PMCHWT formulations transform to each other by the
following “changes of variables”:

H =
∇×E

iωµν

in Ων′ (36)

E = −∇×H

iωǫν
in Ων′ (37)

Namely, one obtains (34) by rewriting (30) with (37). Also, one obtains (30) by
using (36) in (34). These changes of variables also keep the Maxwell equations
and the radiation conditions unchanged. Hence the eigenvalues of the Müller
and PMCHWT formulations are identical including fictitious ones. Incidentally,
this conclusion is quite obvious from a physical point of view since the problems
defined by (29)-(31) and (33)-(35) are the same transmission problem formulated
in terms of either the magnetic or electric field.

Also in Maxwell’s equations with (25) or (27), we can distinguish true and
fictitious eigenvalues by replacing Γ2 with the incoming fundamental solution
given by:

e−ik2|x−y|

4π|x− y| .

A fictitious eigenpair (H , ω) of (29)-(31) are changed to (H̄, ω̄) with this new
formulation.

3 Numerical examples

In this section, we present some numerical examples to test the performances of
the proposed method. We used Appro GreenBlade 8000 (with Intel Xeon cores)
at the Academic Center for Computing and Media Studies of Kyoto University,
and FX10 Supercomputer System (with SPARC64TMIXfx cores) at the Infor-
mation Technology Center of the University of Tokyo for the computation. The
codes are parallelized with OpenMP and MPI.
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3.1 Discretization of BIEs

We use both Müller and PMCHWT formulations (in (7) and (9), respectively)
for solving the waveguide problems for the Helmholtz equation. The BIEs in
(7) and (9) are discretized with piecewise constant boundary elements and the
collocation method (the singular parts of the integrals are evaluated analyti-
cally, and the remainders are computed with the Gaussian quadrature). The
discretized BIE for (7) converges fast in GMRES (Generalized Minimal RESid-
ual method, [24]) since the operator is a compact perturbation of a constant.
The PMCHWT formulation in (9) discretized with collocation is also known to
converge fast in GMRES if the unknowns are ordered in a proper manner ([25],
[26]). The matrix-vector product operation is accelerated with the FMM for
waveguide problems proposed in [7].

For the Maxwell equations, we use only the Müller formulation in (25) be-
cause eigenvalues of the Müller and PMCHWT formulations are identical as
we have noted in 2.6. The BIE in (25) is discretized with triangular boundary
elements and Nyström’s method discussed in [27] using the three point Gaus-
sian quadrature rule on a triangle. For the local correction, the contributions
of the static parts of the fundamental solution are calculated analytically after
interpolating the densities linearly, and those of the remainder are integrated
numerically with the Gaussian quadrature. The discretized BIE converges fast
with GMRES [27]. The matrix-vector product operation is accelerated with the
low frequency FMM following [27].

3.2 Sakurai-Sugiura projection method (SSM)

We briefly describe the SSM [11, 12, 13] for solving non-linear eigenvalue prob-
lems for BIEs. We write the discretized version of the homogeneous BIEs as

A(ω)x = 0 (38)

where A represents the N ×N matrix of the discretized BIEs which depends on
complex ω in a non-linear manner. Our eigenvalue problem finds ω’s at which
(38) has non-trivial solutions. The SSM determines eigenvalues within a given
contour γ in the complex plane.

The SSM reduces the non-linear eigenvalue problem for A(ω) to a generalized
eigenvalue problem given by H<

mLx = zHmLx for two Hankel matrices defined
as HmL = [Mi+j−2]

m

i,j=1 ∈ C
mL×mL and H<

mL = [Mi+j−1]
m

i,j=1 ∈ C
mL×mL,

where Mk is a matrix defined as follows:

Mk = PH 1

2πi

∫

γ

zkA−1(z)Qdz, k = 0, · · · , 2m− 1, (39)

and P and Q are random N × L matrices (namely, L random vectors of di-
mension N), respectively. The non-linear eigenvalues of A are then obtained
as the solutions of the above generalized eigenvalue problem [13]. The integer
parameters m and L are set so that mL is larger than the number of eigenvalues
within γ (our typical choice of m is 12 or 24 in the examples to follow).
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When we solve the waveguide problem with Green’s function in (4), however,
we need to take the path of integration γ so that it does not touch the branch
cuts of Green’s function [7] given by

k1 = pπ − iκ, p ∈ N, κ ≥ 0. (40)

We set the contour γ of the SSM to be a rectangle in the following numerical
examples. We compute the contour integral in (39) numerically with the stan-
dard Gaussian quadrature applied to 4 integrals on each side of the rectangle.
The inverse of the matrix in (39) is computed approximately with the FMM
and GMRES. We set the tolerance (relative error) for GMRES to be 10−8 in
the examples to follow.

3.3 Resonances in 2D Helmholtz waveguides

We first discuss waveguide problems for the Helmholtz equation in 2D defined
in 2.1. We consider 4 circular scatterers with the radii of r0 = 0.4 whose centers
are (0, 0), (0,−1), (0,−2) and (0,−3), respectively. In this case, we can check
if the proposed approach is able to separate fictitious eigenvalues from the true
ones since the fictitious eigenvalues can be determined semi-analytically. In fact,
the fictitious eigenvalues ω for Müller’s integral equation in (7), are zeros of the
following expression

−S2H
(ι)
n (k2r0)

d

dr
Jn(k1r0) + S1

d

dr
H(ι)

n (k2r0)Jn(k1r0) (41)

where ι = 1 for the ordinary method (outgoing) and ι = 2 for the proposed
method (incoming), respectively. The fictitious eigenvalues for the PMCHWT
case are calculated similarly.

The following material constants are used in waveguide problems: ρ1 = 1,
S1 = 1, ρ2 = 0.37 and S2 = 0.2. They are supposed to model flint glass inclu-
sions within an iron plate with an appropriate normalization. We discretized
each circular boundary with 4000 elements (DOF is 32000), used 32 (64) inte-
gration points on each side of γ to approximate the integrals in (39) for ℜω < π
(ℜω > π) and set L = 10 (L: number of random vectors used in SSM. See
3.2.). The number of integration points on γ is chosen so that we can calculate
eigenvalues close to the branch cuts accurately. We tested 4 methods shown in
Table 1. The methods 1 and 3 are the proposed methods while methods 2 and
4 are standard ones.

Fig. 1 shows all eigenvalues obtained with the 4 methods, where open (solid)
symbols stand for the true (fictitious) eigenvalues. The paths of integration γ
in (39) are also shown in Fig. 1. This figure shows that the true eigenvalues
obtained with the proposed integral equations (methods 1 and 3) agree well
with those obtained with the standard approaches (methods 2 and 4) whose
accuracy has been examined extensively in our previous paper [7]. This figure
further shows that one can clearly distinguish true and fictitious eigenvalues
with the proposed methods, in which fictitious ones have positive imaginary
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Table 1: BIEs

Method No. kernel function G2 in (3) formulation

1 (−i/4)H
(2)
0 (k2|x− y|) Müller

2 (i/4)H
(1)
0 (k2|x− y|) Müller

3 (−i/4)H
(2)
0 (k2|x− y|) PMCHWT

4 (i/4)H
(1)
0 (k2|x− y|) PMCHWT

parts, while this is not the case with the standard methods (see, for example,
the fictitious eigenvalues whose real parts are close to 6). We note that one of
true eigenvalues is very close to the branch point π, whose real part, actually, is
slightly smaller than π. We have checked that this eigenvalue has a sufficiently
large reliability index proposed in [12]. For validation, we also plot the exact
fictitious eigenvalues obtained as the zeros of (41) in Fig. 1, which agree with
numerical fictitious eigenvalues. In the upper graph of Fig. 2, we plot only those
true eigenvalues from Fig. 1 obtained with method 1 which have symmetric
(with respect to x1) eigenmodes. The lower graph of Fig. 2 shows the energy
transmittance produced by the symmetric incident wave given by eik1x2 for real
ω. Fig. 3 is a blow-up of Fig. 2 for ω ∈ (5, 6.3). We see that the true eigenvalues
with small non-positive imaginary parts are close to the peaks or dips of the
energy transmittance for real frequencies. We observe similar behaviors with
eigenvalues having antisymmetric eigenmodes, but we omit the details here.

Fig. 4 shows the number of iterations needed in GMRES at the integration
points on the lower (magenta) paths of integration in Fig. 1 (Note that the
upper paths are used just for obtaining the fictitious eigenvalues of the proposed
method, which are not needed in practice). Figs. 4(a) and (b) show the Müller
and PMCHWT cases, while Figs. 4(c) and (d) give the side views (ℑω v.s.
number of iterations) of Figs. 4(a) and (b), respectively. We observe that the
numbers of iterations needed in the proposed methods (methods 1 and 3) are
smaller than those of the standard ones when |ℑω| is large.
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3.4 Complex resonances for Maxwell’s equations in 3D
free space

We next consider the transmission resonance problem in 3 dimensional free
space for the Maxwell equations. Note that all eigenvalues for the free space
transmission problems are leaky and no real eigenvalues exist. However, these
problems may have eigenvalues with small imaginary parts, which cause anoma-
lous phenomena as we shall see.

In the first example, we consider a single spherical shell

Ω2 =

{

(x1, x2, x3) ∈ R
3 | 0.8 <

√

x2
1 + x2

2 + x2
3 < 1

}

which encloses Ω3 =
{

(x1, x2, x3) ∈ R3 |
√

x2
1 + x2

2 + x2
3 < 0.8

}

and is surroun-

ded by Ω1 = R3 \ Ω2 ∪Ω3. We set ǫ1 = 1, ǫ2 = 5, ǫ3 = 1 in Ω1, Ω2, Ω3,
respectively, and µ = 1 everywhere. Many true and fictitious eigenvalues ap-
pear in this problem, as we shall see.

We now consider the transmission problem for this system. Fictitious eigen-
values for this problem are the eigenvalues for:

• a single spherical scatterer Ω3 having the permitivity ǫ = 5 with radius =
0.8 in the free space having the permitivity ǫ = 1

• a single spherical scatterer Ω2 ∪ Ω3 having the permitivity ǫ = 1 with
radius = 1.0 in the free space having permitivity ǫ = 5.

Of course, these fictitious BVPs are with appropriate radiation conditions.
The upper figure of Fig. 5 shows all eigenvalues obtained with the proposed

and standard methods. Here, we used the paths γ shown in Fig. 5 and discretized
the shell surface with 7300 triangular elements (3920 (3380) elements for ∂Ω1

(∂Ω3) and the total DOF is 87600). We set the number of integration points
on each side of γ to be 16, and the number of random vectors L for SSM to
be 20 except for the most left rectangle in the upper figure where L = 10,
respectively. We set larger L and smaller γ’s for calculating higher eigenvalues
which have larger multiplicities due to geometric symmetry of the problem. One
may set a smaller L for geometrically less symmetric scatterers. Note that some
eigenvalues outside γ are obtained, which happens occasionally in SSM [12]

To validate our results, we note that both true and fictitious eigenvalues for
this problem can be determined easily by means of the Mie-series [28]. These ex-
act eigenvalues, both true ones and fictitious ones for the proposed and standard
methods, are plotted with triangular symbols in the upper figure of Fig. 5. We
see that numerical eigenvalues are obtained correctly and the proposed method
has no fictitious ones in the lower complex plane.

The connection between physical phenomena and true eigenvalues is exam-
ined next. We consider the transmission problem for the same scatterer as above
with the incident electric field of Einc = (eik1x3 , 0, 0) with real ω and plot the
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Figure 6: Number of iterations needed at integration points on the contour.
(spherical shell)

scattered energy defined by

Esca =

∫

∂Ω1

ℜ
(

Esca × n ·Hsca
)

dS =

∫

∂Ω1

ℜ
(

msca · jsca × n
)

dS (42)

in the lower figure of Fig. 5 where the superscript “sca” stands for the scattered
field (i.e., Esca = E−Einc). We see that true eigenvalues with imaginary parts
smaller than about 0.2 correspond to peaks of the energy.

Fig. 6(a) shows the number of iterations needed in GMRES at the integration
points on the paths of integration and Fig. 6(b) gives the side view of Fig. 6(a).
As with the Helmholtz case, we see that the number of iterations needed in the
proposed (incoming) method are smaller than those of the standard (outgoing)
method when |ℑω| is large. However, this is not necessarily the case when |ℑω|
is small.
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The second example is related to eigenvalues for multiple scatterers. We
consider two spherical scatterers Ω2 and Ω3 (Ω2 ∩ Ω3 = φ) in the free space
Ω1 = R3 \ Ω2 ∪ Ω3, whose radii are 0.8, 0.4 and centers are (0, 0, 0), (1.4, 0, 0),
respectively. We set ǫ1 = 4, ǫ2 = 1 and ǫ3 = 20 in Ω1, Ω2 and Ω3, respectively.
The fictitious eigenvalues for this problem can be obtained easily by means of
the Mie-series although the true ones are not very easy to determine.

The upper figure of Fig. 7 shows eigenvalues obtained with the proposed
(incoming) method. Here, we discretized the surfaces of Ω2 and Ω3 with 2880
and 4500 triangular elements, respectively (note that the wavenumber in Ω3 is
higher than that of Ω2) and the total DOF is 88560. We used 16 (32) integration
points on each side of γ for the left (right) paths in Fig. 7 and set L = 20. The
solid rectangles indicate the (exact) fictitious eigenvalues for this problem which
one would obtain with the standard (outgoing) method. This figure clearly
shows the usefulness of our method without which it would be very cumbersome,
if not impossible, to separate true eigenvalues from so many fictitious ones. Also
plotted in the upper figure of Fig. 7 are the exact true eigenvalues for the single
scatterer problem for Ω3 (i.e., the case with ǫ1 = ǫ2 = 4, ǫ3 = 20). (True
eigenvalues for the single scatterer Ω2 (the case with ǫ1 = ǫ3 = 4, ǫ2 = 1)
do not exist in the frequency range considered in this figure). We see that
true eigenvalues near the real axis for the two spherical scatterer problem are
very close to certain eigenvalues for the single scatterer problem, thus indicating
that these two scatterer eigenvalues can be interpreted as perturbations of single
scatterer eigenvalues.

The lower figure of Fig. 7 shows the scattered energy in (42) for the incident
electric field given by Einc = (eik1x3 , 0, 0) with real ω. Also in this case, we see
that the scattered energy and the eigenvalues with small imaginary parts are
related, the latter being close to the peaks of the scattered energy.

Finally, we show a result which implies that the fictitious eigenvalues may
affect the accuracy of BIE solutions in ordinary problems even when the fre-
quency is real. We consider a single spherical scatterer Ω2 whose radius is 1.0
and set Ω1 = R3 \ Ω2. The permitivities in Ω1 and Ω2 are ǫ1 = 6 and ǫ2 = 1,
respectively. We computed the eigenvalues for this single scatterer problem with
the proposed (incoming) and standard (outgoing) methods using 5120 triangu-
lar elements (61440 DOF) to approximate the surface of the spherical scatterer.
Also, the paths of integration γ for SSM are taken so that they include fictitious
eigenvalues with positive imaginary parts just for the purpose of checking. We
set the parameter L (see sec. 3.2) large (L = 32) because all eigenvalues for this
problem have large multiplicities. For example, the right rectangle in the upper
figure of Fig. 8 contains as many as 50 eigenvalues. The number of integration
points on each side of γ is 16.

The upper figure of Fig. 8 shows all the computed eigenvalues, of which the
one at ω = 2.785− 0.574i (surrounded by a circle) is a true one and others are
fictitious. This figure also includes exact eigenvalues obtained with the Mie-
series thus showing that we can determine both true and fictitious eigenvalues
accurately. Note that there exist a few fictitious eigenvalues with very small
imaginary parts. We next solved a transmission problem for the same scatterer
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with the incident electric field given by Einc = (eik1x3 , 0, 0) with real ω and
plotted the error relative to the exact solution in the lower figure of Fig. 8,
where we defined the error as:

error =
1

2

(‖m−mMie‖
‖mMie‖ +

‖j − jMie‖
‖jMie‖

)

. (43)

In (43), mMie and jMie represent the Mie-series solutions, and the norm is the
L2 norm on the boundary. We see that the error is large near fictitious eigen-
values with small imaginary parts regardless of whether we use the proposed
integral equation or the standard one. This result implies that even the Müller
formulation, which is free of real fictitious eigenvalues, may possibly be inac-
curate near complex fictitious eigenvalues with small imaginary parts. Similar
observation has been reported by the present authors in [29]. The same con-
clusion is quite likely to be true with the PMCHWT formulation which has the
same eigenvalues as the Müller formulation.

4 Concluding remarks

The results presented in this paper can be summarized as follows:
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• We have proposed new boundary integral equations for determining com-
plex eigenvalues of the transmission problems with which one can distin-
guish true and fictitious eigenvalues easily. We verified that the proposed
method could separate the true eigenvalues from the fictitious ones in two
dimensional waveguide problems for the Helmholtz equation and three
dimensional transmission problems for Maxwell’s equations.

• The number of iterations needed in the proposed method for solving BIEs
is smaller than that for the standard method when |ℑω| is large. However,
the situation may be reversed if |ℑω| is small.

• Even the proposed formulation cannot resolve the inaccuracy caused by
the fictitious eigenvalues in the ordinary BVPs because it cannot avoid
the presence of fictitious eigenvalues close to the real axis.

It is an interesting subject of future work to see if one can find highly accurate
BIEs having fictitious eigenvalues with larger imaginary parts than the currently
available ones. The use of fast direct solvers [9, 10] in conjunction with the
proposed BIE and SSM is also worth studying because one may sometimes have
to take L large, thus having to invert the same matrix repeatedly with many
different RHSs. The fast direct solvers may also resolve the problem of increased
iteration numbers for small |ℑω|mentioned above. Other future subjects include
extension of the proposed method to other problems such as elasticity, etc.
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