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Abstract

The rotor-router model is a deterministic process analegma simple random walk on a graph. This
paper is concerned with a generalized moéfleictional-router modelwhich imitates a Markov chain
possibly containing irrational transition probabilitied/e investigate the discrepancy of the number of
tokens at a single vertex between the functional-routerghadd its corresponding Markov chain, and
give an upper bound in terms of the mixing time of the Markosioh
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1 Introduction

Therotor-router model also known as thEBropp machinegis a deterministic process analogous to a random
walk on a graph[[39,18, 27]. In the mo@eltokens distributed over vertices are deterministicaiyved

to neighboring vertices by rotor-routers equipped on gesj instead of traveling on the graph at random.
Doerr et al.[[6, 10] first called the rotor-router modelterministic random waJkneaning a “derandomized,
hencedeterministi¢ version of aalandom walk’

Single vertex discrepancy for multiple-walk. Cooper and Spencer [8] investigated the rotor-router model
(with multiple tokens, in precisanultiple-walk onZ™, and gave an analysis on the discrepancy on a single
vertex: they showed a bound that” — 4’| < c,, wherex!" (resp...!") denotes the number (resp. the
expected number) of tokens on vertex Z™ in a rotor-router model (resp. in the corresponding random
walk) at timet on the condition thapz(,o) = X1()0) for anyv, andc, is a constant depending only anbut
independent of the total number of tokens in the system. €oepal. [6] showed; ~ 2.29, and Doerr
and Friedrich[[10] showed tha} is about 7.29 or 7.83 depending on the routing rules. On therdtand,
Cooper et al[[6] gave an example|q§f) - ;Af>| = Q(+/kt) on infinite k-regular trees, the example implies
that the discrepancy can get infinitely large as increasiegdtal number of tokens.

Motivated by a derandomization of Markov chains, Kijima &t[27] are concerned with multiple-
walks on general finite multidigraph@’, A), and gave a bountk'” — 1{”| = O(|V||A]) in case that
corresponding Markov chain is ergodic, reversible and. [&gy also gave some examplesmff) — Mff) | =
Q(|.A]). Kajino et al. [26] sophisticated the approach/by [27], aadega bound in terms of the second largest
eigenvalue and eigenvectors of the corresponding Markainciior an arbitrary irreducible finite Markov
chain, which may not be lazy, reversible nor aperiodic.

In the context of load balancing, Rabani et a@l.|[41] are comes with a deterministic algorithm similar
to the rotor-router model corresponding to Markov chainthwymmetrictransition matrices, and gave a
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boundO(Alog(|V1])/(1 — As)), whereA denotes the maximum degree of the transition diagram)and
denotes the second largest eigenvalue of the transitiorixnat

For some specific finite graphs, such as hypercubes anddore bounds on the discrepancy in terms of
logarithm of the size of transition diagram are known. katimensional hypercube, Kijima et dl. [27] gave
a boundO(n?), and Kajino et al.[[26] improved the bound @(»?). Recently, Akbari and Berenbrink][1]
gave a bound(n'-%), using results by Friedrich et al. [17]. Akbari and Berenkif] also gave a bound
O(1) for constant dimensional tori. Those analyses highly dépenthe structures of the specific graphs,
and it is difficult to extend the technigue to other combinatographs. Kijima et al.[[27] gave rise to a
guestion if there is a deterministic random walk for #P-ctatgproblems, such @s1 knapsack solutions,
bipartite matchings, etc., such thgff) — ;M is bounded by a polynomial in the input size.

Other topics on deterministic random walk. As a highly related topic, Holroyd and Propp [19] analyzed
“hitting time” of the rotor-router model with aingle toker(single-walR on finite simple graphs, and gave a
bound\uff) —tmy,| = O(|V]|A]) wherev) denotes the frequency of visits of the token at vertéxt steps,
and~ denotes the stationary distribution of the correspondarglom walk. Friedrich and Sauerwald [18]
studied the cover time of a single-walk version of the ratmrter model for several basic finite graphs such
as tree, star, torus, hypercube and complete graph. RgckKndowski and Pajak [29] studied the cover
time of a multiple tokens version of the rotor-router model.

Holroyd and Propp [19] also proposed a generalized modidsiack walk which is the first model
of deterministic random walk fdrrational transition probabilities, as far as we know. While Holroydla
Propp [19] indicated the existence of routers approxingatirational transition probabilities well, Angel
et al. [2] gave a routing algorithm based on the “shortestaiaing time (SRT)” rule. Shiraga et al. [43],
that is a preliminary work of this paper, independently sgd another model based on the van der Corput
sequence, motivated by irrational transition probabititoo.

As another topic on the rotor-router model, the aggregatiodel has been investigated [32] 30,133, 34].
For a random walk, tokens in the Internal Diffusion-LimitAdgregation (IDLA) model orZ" asymptoti-
cally converge to the Euclidean ball [31], and Jerison, hexand Sheffield [23] recently showed the fluctu-
ations from circularity aré®(logt) aftert steps. For the rotor-router model, Levine and Peres [3234,
showed that tokens in the rotor-router aggregation model farm the Euclidean ball, and showed several
bounds for the fluctuations. Klebér |30] gave some computatiresults.

Doerr et al.[[12] showed that information spreading by therroouter model is faster than the one by a
random walk on some specific graphs, namely trees with thermomdepth and the common degree of inner
vertices, and random graphs with restricted connectiBiyerr et al.[[11] gave some computational results
for this phenomena. There is much other research on infwmapreading by the rotor-router model on
some graphs [3,9, 13,114,115,/ 21].

Our Results. This paper is concerned with thHenctional-routermodel (of multiple-walk ver.), which
is a generalization of the rotor-router model. While theorabuter model is an analogy with a sim-
ple random walk on a graph, the functional-router model ate# a Markov chain possibly containing
irrational transition probabilities. In the functionaluter model, a configuration a¥/ tokens over a fi-
nite setV = {1,...,N} is deterministically updated by functional-routers dediren verticéd. Let
X0 = (4P e Y, denote the configuration at time= 0,1,2,..., i.e, Y.y x\ = M.
For comparison, lep® = () and letp® = P! for a transition matrixP corresponding to the
functional-router model, thep(®) }RQVO denotes the expected configurationdftokens independently

according taP for ¢t steps. A main contribution of the paper is to show ltblé'i) —,Af)y < 6(Tmax/Tmin )" A
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holds for anyw € V at any timet in case that the corresponding transition mat#tiis ergodicandreversible
wherem .« andm,;, are respectively the maximum/minimum values of the statipwlistributions of P,
t* is themixing rateof P, andA is the maximum degree of the transition diagram.

An example of a random walk containing irrational transitfipobabilities is thef-random walk devised
by Ikeda et al.[[2R], which achieves &nN?) hitting time and arO(N? log V) cover timefor any graphs
Another example should be the Markov chain Monte Carlo (MQMOch as Gibbs samplers for the Ising
model (cf. [45] 40]), reversible Markov chains for queuemaworks (cf.[28]), etc.

Organization This paper is organized as follows. In Secfidn 2, we brieflyene MCMC, as a preliminary.

In Sectiori 8, we describe the functional-router model andwain theorem. In Sectidi 4, we prove the main
theorem. In Sectiohl5, we present four particular functiooater models, and give detailed analyses on
them. In Sectionl6, we show some examples of the bounds foe 8¢ankov chains over the combinatorial
objects, which are known to be rapidly mixing.

2 Preliminaries: Markov Chain Monte Carlo

As a preliminary step of explaining the functional-routeodel, this section briefly reviews the Markov

chain Monte Carlo (MCMC). See e.d., |45, 35] 37] for detaflsA\€MC.

Let v % {1,..., N} be afinite set, and suppose that we wish to sample fromith a probability

proportional to a given positive vectgr= (f1,..., fn) € R%; for example, we are concerned withi-
form sampling of0-1 knapsack solutions in Sectibn B.1, whéfelenotes the set @k1 knapsack solutions
and f, = 1 for eachv € V. The idea of a Markov chain Monte Carlo (MCMC) is to samplerira limit
distribution of a Markov chain which is equal to the targetdbution f /|| f||, where||f|1 = >, cy fo IS
the normalizing constant.

Let P € RY*Y be a transition matrix of a Markov chain with the state spéce/hereP, ,, denotes the
transition probability fromu to v (u,v € V). A transition matrixP is irreducible if P;v > ( for any« and
v in V, and isaperiodicif GCD{t € Z-¢ | P, , > 0} = 1 holds for anyz € V, whereP} , denotes the
(u,v) entry of P!, thet-th power of P. An irreducible and aperiodic transition matrix is callegodic It is
well-known for a ergodicP, there is a unigustationary distributionr € R%, i.e., 7P = m, and the limit
distribution is, i.e.,£ P> = = for any probability distributiort IR]>VO onV.

An ergodic Markov chain defined by a transition matkxc R%XN is reversibleif the detailed balance
equation

fuPu,v = fvPv,u (l)

holds for anyu, v € V. WhenP satisfies the detailed balance equation, it is not diffieutde thaff P = f
holds, meaning that/|| |1 is the limit distribution (see e.g.| [35]). Létand( be a distribution oV, then
thetotal variation distanceD;, betweert and( is defined by

D (6 =G

vEA

Die(6:€) 2 ma =2 lle =l @

ACV

Note thatDy, (£, () < 1, since||¢||; and||(]|; are equal to one, respectively. Thexing timeof a Markov
chain is defined by

7(e) < ma&(min {t € Zxo | ,Dtv(Pgdﬂ-) = 6} @
IS a 7



for anye > 0, whereP] . denotes the-th row vector ofP'; i.e., P} . denotes the distribution of a Markov
chain at timet stating from the initial state € V. In other words, the distributioﬂjv, of the Markov chain
after 7(¢) transition satisfie;, (P, ,7) < ¢, meaning that we obtain an approximate sample from the
target distribution.

For convenience, lef(t) def. maxyey Dy (PL ) for t > 0, then it is well-known that satisfies
a kind of submultiplicativity We will use the following proposition in our analysis in $en[4. See
Appendix[A for the proof (cf.[[35, 37]).

Proposition 2.1. For any integerd (¢ > 1) andk (0 < k < 7(7)),

h(C-7(7) +k) < 5(27)°

N =

holds for anyy (0 < v < 1/2). [ |

Since the submultiplicativity;* det 7(1/4), calledmixing rate is often used as a characterization/of

3 Model and Main Results

A functional-router modeis a deterministic process analogous to a multiple randotk. iRoughly speak-
ing, a router defined on each vertexdeterministically serves tokens toat a rate ofP, ,, in a functional-
router model, while tokens on a vertexnoves to a neighboring vertexwith probability 7, ,, in a (multiple)
random walk.

To get the idea, let us start with explaining the rotor-roant@del (see e.g., [8, 27]), which corresponds
to a simple random walk on a graph.

3.1 Rotor-router model

LetG = (V, &) be a simple undirected grﬂ)h/vherev ={1,...,N}. Let N (v) denote the neighborhood
of v € V. For convenience, l&i(v) = [N (v)]. Letx(©) ¢ ZJZVO be an initial configuration of tokens, and let

x) e ZJZVO denote the configuration of tokens at time Z>( in the rotor-router model. A configuration

x) is updated byotor-routerson vertices, as follows. Without loss of generality, we maguame that an
orderinguo, . . ., us()—1 is defined onV (v) for eachv € V. Then, a rotor-routes, : Z>o — N (v) on
v € V is defined by

.\ def.
Uv(]) = Ui mod §(v) (4)

for j € Z>o. Let
20 {7 € t0.e ) = 1) o (5 25) = o

for v,u € V, whererfq)L denotes the number of tokens served fromo « in the update. Theny(*Y is
defined by

def.
it E ey U0

for eachu € V.

% In Sectiod 5.4, we are concerned with a model on multidigsaph



It is not difficult to see that

|{j€{07--->z_1}|0v(j):u}| 2—00 1
z d(v)

holds, which implies that the “outflow ratiof™! _, Z55/ 3¢ _, x\ of tokens at to u approaches asymp-
totically to1/6(v) ast increasing. Thus, the rotor-router hopefully approxiratelistribution of tokens by
a random walk.

3.2 Functional-router model

LetP € R%XN be a transition matrix of a Markov chain with a state spb[cdee:f {1,..., N}, whereP, ,

denotes the transition probability fromto v (u,v € V). Note thatPuv may be wraﬂon&l In this paper,
we assume thaP is ergodicandreversible(see Sectiofil2). Let(?) (Mg‘”, e ,MS\,)) € ZQ’O denote an
initial configuration of M tokens overl/, and letu(!) € RY, denote theexpectectonfiguration of tokens
independently according t8 at timet € Zs, i.e.,||[u® |, = M andu® = u© Pt

LetG = (V. &) be the transition digram dP, meaning that = {(u,v) € V2 | P,» > 0}. Note thatf
may contain self-loop edges, and also note tBat< N2 holds. Let\ (v) denote the (out- )nelghborhtﬂd

ofveV,ie,Nw)={ue V\PM > 0}, and letd(v) = |N(v)|. Note thatv € N'(v) if P,, > 0.
Let (@ = u(©), and lety®) € Z, denote the configuration of tokens at time Z in the functional-

router model. A conflguratlorx() is updated byfunctional-routerso, : Z>, — N (v) defined on each
v € V to imitate P, ,,. To be precise, let

Tpulz,?") H]G{Z L2 =1} | ou(j) = u} (5)

for v,u € V and for anyz, 2’ € Z>( satisfyingz < 2/, for convenience. Then, the functional routgron
v € V is designed to minimize

7,0, 2) _p

)

z

for z € Z>o. See Sectionl5 for some specific functional-routers. Let
280 = Tou [0 o) (6)

forv,u € V, Wherer,Z denotes the number of tokens served froo « in the update. Them(t“) is
defined by
e 2 (7
for eachu € V.
We in Sectioi b give some specific functional-routers, inoltthe “outflow ratio”y "’ _, Zész /3, )
from v to u approaches asymptotically 19, ,, ast increases, meaning that the functional-router hopefully
approximate a distribution of tokens by a random walk.

4e.9.,Pu,» = v/5/10, exp(—10), sin(r/3), etc. are allowed.
® SinceP is reversibley € A (v) if and only if v € A (u), and then we abust/(v) for in-neighborhood of € V.



t=0 t=1 t=2

o, (0) = (42\,1,1,2,2,1,1, :: o, (0) = (/%,1,1,2,2,1,1, :' 0, (D) = (2,1,1,'%,2,1,1,...
* o
o
- H

o, (i) = ('%\,1,2,1,2,1,2,1,1,1,2,2, o, (D) = (1,1,2,1,2,1,2,}\,1,1,2,2, o, (i) = (1,1,2,1,2,1,2,1,1,1,2,'%,

Figure 1: An example of a functional router model

Figure[1 shows an example of the time evolution of a functiooater model. In the examplé] =
{1,2} and the initial configuration of tokens i§?) = (7,0). According to the functional router; defined
in the figure,

Z110,7) = [{j€{0,...,6} | o1(j) =1}[=4 and
11,2[077) = ’{]6{0776}‘01(]):2}‘:37

and then the configuration of tokensy§) = (4, 3) at time 1. In a similar way,

Tia[1,11) = Kief7...,10} | o1(4) = 1} = 3,

Tio[1,11) = Kief7...,10} |o1(4) = 2} =1,
13100,3) = Kj€{0,1,2} |o1(j) =1}/ =2, and
Trol7,3) = Kief0,1,2} o) =2} =1

providesy® = (5,2).

3.3 Mainresults

Our goal is to estimate the discrepan@;‘r) — ug)| for w € V andT > 0 for the functional router model
described in Sectidn 3.2. For convenience, let

U, = max §f>PM (8)

7® _
veV,ueN (v),t>01 o X

depending on a functional-router modelthen the following is our main theorem.

Theorem 3.1. Let P € RY* be a transition matrix of aeversibleand ergodic Markov chain with a state
spaceV, wherer denotes the stationary distribution &f and 7(vy) denotes the mixing time @ for any
v (0 < v < 1/2). Then, the discrepancy betweef) and u(7) satisfies

‘ngT) _ :“’1(1;T)‘ < \1,02(1 _ ’Y)T( Tw A
1—2y Tmin

foranyw € V, T > 0and~v (0 < v < 1/2), whereA denotes the maximum degree of the transition
diagram ofP, i.e. A = max,cy 0(v).

We remark that

U, < ma Toulz, 7)) — (7 — 2)P, 9
R P el Gl ©)
2,2 €250S. 1. 2/>z2



holds, since

280 =X Posw = Toad [Zihd”, Ty ) = (Shooxd” = 2ih ) P

holds by the definition. For instance, tRT router which we will introduce in Sectiof 5.1, satisfies
¥, < 2, and we obtain the following, from Theordm 8.1.

Theorem 3.2.LetP € RNXN be a transition matrix of a reversible and ergodic Markov ichaith a state
spaceV, wherer denotes the stationary distribution éfand¢* denotes the mixing rate d?. For a SRT
router model, the discrepancy betwegf) and (1) satisfies

hgﬁ_#gw<‘hth

Tmin

foranyw € V andT > 0, where A denotes the maximum degree of the transition diagran®,ofe.
A = maxy,ey 6(v).

See Sectiohl5 for detailed arguments on the bounds,dbr some specific functional routers.

4 Analysis of the Point-wise Distance
This section proves Theordm B.1. Our proof technique isairto previous works [8, 27, 41], in some part.
To begin with, we establish the following key lemma.

Lemma 4.1. Let P € RY*N be a transition matrix of a reversible and ergodic Markov ichaith a state
spaceV, and letr be the stationary distribution aP. Then,

DD =SS S (20 A0R) (PR - m)

t=0 u€V veN (u)
holds for anyw € V and for anyT > 0.
Proof. Remark that

ﬁp—ug)=<%”—u@Pﬂ
holds where the last equality follows the assumptiéh = 1(?). It is not difficult to see that
T po_ O pT _ <X(T)PO _ X(T—l)P1> i (X(T—l)Pl _ X(T—2)P2> n

n (X@) pT=2 _ (1) pT—l) 4 (Xu) pr-1_ 0 PT)

_ (Xm PO — O pT) (10)

w w

~
L

_ (X(t—i-l)PT—t—l _ X(t)PT—t>

holds, thus we have

@ = <X(t+1)PT—t—1> _<X(t)PT—t>)

- Tf( XVRLT =) (P, Pfat*)

ueV ueV



While o/ ( (t+1) (X(t)P)u> PI7=1in (@) may not be in general, remark that

> (A = (OP)) = 3N =SS AP

ueV ueV ueV vev
= Z X(H_l Z X1()t) Z Pv,u
ueV veV ueV
= M-M =0
holds for anyt > 0. Hence
T—1
am = Z Z (X(ut+1) — (P >PT t—1 Z Z ( (t+1) )u> T
t=0 ueV t=0 ueV
T—1
= 33 (I - (P (RIS ) (12)
t=0 ueV

holds. SinceP is reversible Z{\), = 0 for anyv ¢ N'(u) andxi ™ = ¥ ,cy Zi% = ,en) 2ot holds
by definition [7). Thus,

T-1
@ - Z( > ozh- Y EPPU,U) (Pia' ™ = )

t=0 ueV \veN(u) vEN (u)
T-1
= Y3 (Z PP (PR = )
t=0 ueVveV
holds, and we obtain the claim. O

Now, we are concerned witleversibleMarkov chains, and show Theorém13.1.
Proof of Theorerh 311By Lemmd 4.1 and]8) we obtain that

W < T Y

t=0 ueV veN (u)

\I,ZZZPTtl |

t=0 ueV veN (u

= v, Z > 6(w) [P, — 7wl (14)

t=0 ueV

t
O —xPP,

P — (13)

IN

holds. SinceP is reversible,P; , = 7= Py, holds for anyw andw in V' (see PropositiofAl5 in Ap-
pendix A). Thus

@ - %Y YW

t= OuEV

WA ZZ\

T'min =0 ucV
. T—1
N "Dy (P, 7) (15)

Tmin —0

— )

IN

= 2U,A

8



where the last equality follows the fact the},, ., | P, ,, — mu| = 2Dy (P

! ), by the definition[(2) of the
total variation distance. By Propositibn 2.1, we obtamftlﬂhawmg

Lemma 4.2. For anyv € V and for anyl" > 0,

1—
ZDtV 1) , T S 7 T(fY)

holds for anyy (0 < v < 1/2).

Proof. Let h(t) = maxy,ey Diy (PQ.,?T), for convenience. Therk(t) is at mostl for anyt > 0, by the

definition [2) of the total variation distance. By Propamiti2.],

oo T(7)—

T-1 T-1 00
D (P m) = > h(t) < ) h(t) =) Z h(€-7(
t=0 t=0 t=0 (=0 k=0
T(y)—1 oo 7(7)-1 T(v)— oo T(7)— 1
= h(k)+> > h(t-r(y) +k) < 1+ > 5 (2
k=0 (=1 k=0 k=0 (=1 k=0
= )+ YR (29 = )+ e ) = 2y
— 2 1—2y 1-— 2’y
holds, and we obtain the claim.
Now we obtain Theorein 3.1 frorh_(115) and Lemimd 4.2 O

5 Specific Functional-routers

This section shows some functional-router models, nar8&y routerin Section[5.1L billiard router in
Section[5.2,quasi-random routeiin Section[5.B, and rotor-router on multigraph in Secfiofi. 5Using

Theoreni31L, we give upper bounds|gf’ — 1| for them.

5.1 SRT router

This section introduceSRT routeywhich is originally given by Holroyd and Propp [19] and Ahgeal. [2]
by the name of stack-walk. The SRT routei(i) (i € Z>o) onv € V is defined, as follows. Let

T;(v) = {u e N(v) | Z,,[0,i) — (i + 1)P,,, < 0}. (16)
Then, leto, (i) beu* € T;(v) minimizing the value

Zyul0,1) +1

17
Pr 17

inall u € T;(v). If there are two or more suahe T,(i), then letu* be arbitrary one of them.
Sinceo, (i) € T;(v), we can see that, [0, + 1) — (i + 1)P,,, < 1 holds for anyu, v ands, by an
induction on: € Z>(. The following theorem is due to Angel et dll [2] and Tijdenjdé].

Theorem 5.1. [46/, 2] For any transition matrixP,
|Zpu[0,2) — 2 Py < 1

holds for anyv,u € V and anyz € Z.



Theoreni 511 was firstly given by Tijdeman [46], where he gasigghtly better bound(Z, ,, [0, z) — z- P, | <
1 — (2(6(v) — 1))71, in fact. Angel et al.[[2] rediscovered Theoréml5.1 in theteghof deterministic ran-
dom walk (see also [19]), where they also showed a similderstant holds even when the corresponding
probability is time-inhomogeneous.

Theoren 5.1l and{9) imply that

U, < Tyulz?) = (2 = 2)Pyu| <2 18
7= vGV,Hing)fi/(v), ‘ U’UI:Z ‘ ) (Z Z) U’“‘ ( )
2,2 €250 S. 1. 2>z

holds for the SRT router model.

Proof of Theorerh 312By Theoreni 3.1 and (18),

2(1 —+) Tw 2-(1-1/4) Tw 67y

() _ (D) < g A<?2- 1/4 A= *A

‘Xw s ‘ SV g, T ~A <2 gy T WA -A =

holds, and we obtain the claim. O

5.2 Billiard router

Billiard sequencds known to be a balanced sequence (cf.l [42]). This sectieagmts a functional router
based on the billiard sequence.

The billiard sequence is given in a similar to the SRT roubert, simpler. Leto, (i) be u* € N (v)
minimizing the value

Zyul0,4) +1
Pv,u

in all w € N'(v), and if there are two or more suehe N (v), then letu* be arbitrary one of them. Then,
the following theorem for the billiard sequence is known.

Lemma 5.2. [42] For any transition matrixP,
| Zoulz,2") = (2" = 2)Pou| <1+ (6(v) — 2)Pou
holds for anyv, u € V, and for anyz, 2’ € Z> satisfyingz’ > z.
Using Lemma5.2, we obtain an upper boundlgffor the billiard sequence.
Lemma 5.3. ¥, < A — 1 holds for the billiard sequence.
Thus, we obtain Theorem 5.4 by Theorem 3.1 and Leimnja 5.3.

Theorem 5.4. LetP ¢ ]RQOXN be a transition matrix of a reversible and ergodic Markov ichaith a state
spacel/, wherer denotes the stationary distribution 8fandt* denotes the mixing rate éf. For a billiard
router model, the discrepancy betwegt) and 1(7) satisfies

P — D] < 2o n(a - 1)

Tmin

foranyw € V andT > 0, whereA denotes the maximum degree of the transition diagran®,ofe.
A = maxy,ey 0(v).

10



In fact, we obtain a better bound for the billiard router miagkefollows, by analyzing carefully. See
Appendix(B.1 for the proof.

Theorem 5.5. Let P € RY Y be a transition matrix of a reversible and ergodic Markov ichaith a state
spaceV/, wherer denotes the stationary distribution 8fand¢* denotes the mixing rate &f. For a billiard
router model, the discrepancy betwegt) and 1(7) satisfies

() ‘

67y
D = ] < (a1

T'min

foranyw € V andT > 0, where A denotes the maximum degree of the transition diagran?,ofe.
A = maxyey 6(v).

5.3 Quasi-random router

This section gives a router based on the@an der Corput sequendd8, [38], which is a well-known low-
discrepancy sequence.
The van der Corput sequenge Z>q — [0, 1) is defined as follows. Supposes Z- is represented in

binary asi = ZJLl:géJ B;(i)-27 usingB;(i) € {0,1} (j € {0,1,...,[lgi|}). Then, we define

lg 1]

w(i) Y (i) 27U (19)
7=0
and(0) & 0. For exampleg(1) = 1 x 1/2 = 1/2,%(2) = 0 x 1/2 + 1 x 1/4 = 1/4, (3) =
1x1/241x1/4 = 3/4,1(4) = 0x1/24+0x1/44+1x1/8 = 1/8,1(5) = 1x1/24+0x1/4+1x1/8 = 5/8,
P(6) =0x1/24+1x1/44+1x1/8 =3/8, and so on. Clearly)(i) € [0,1) holds for any (finite} € Zx.
Now, giveni € Z-, we defines, (i) as follows. Without loss of generality, we may assume that an

orderingus, ..., us(,) is defined onV (v) for v € V. Then, we define the functional-routey,: Z>o —
N (v) onv € V such that, (i) = u; € N (v) satisfies that

k—1 . k
Zj:l Pv,uj S ¢(Z) < Zj:O PU,UJ‘

fork e {1,...,0(v)}, Wherezgz1 Py.; = 0, for convenience.
The following theorem is due to van der Corgutl[48].

Theorem 5.6. [48] For any transition matrixpP,
|Zpu0,2) — 2 Py <lg(z+1)
holds for anyv, u € V and anyz € Z.

More sophisticated bounds are found in/[38]. Carefully examg Theoreni 5.6, we obtain the following
lemma. See Appendix B.2 for the proof.

Lemma 5.7. For any transition matrixP,
‘Iv,u[z, 2 — (2 — z)PU,u‘ <2lg(z —2+1)
holds for anyv, u € V, and for anyz, 2’ € Z> satisfyingz’ > z.

Lemmd5.7 suggests the following lemma.
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Lemma5.8. ¥, < 21g(M + 1) holds for the van der Corput sequence.
By Theoreni 3.1 and Lemma 5.8, we obtain the following.

Theorem 5.9. Let P € RY" be a transition matrix of a reversible and ergodic Markov ichaith a
state spacéd’/, wherer denotes the stationary distribution 6fand¢* denotes the mixing rate @f. For a
quasi-random router model, the discrepancy betwe€n and (7 satisfies

67y .
D = D] < T 1g(M +1)-47A

Tmin
foranyw € V andT > 0, whereA denotes the maximum degree of the transition diagran®,ofe.
A = max,ey 6(v) and M denotes the total number of tokension

Though the bound depends twg M, X /M — 1 /M| = O(log(M)/M) holds in terms ofM,
meaning that the discrepancy approaches asymptoticatigrtnas increasing the number of tokédis

5.4 Rotor-router on multidigraph

The rotor-router model described in Secfion 3.2 can be gép@onsidered on digraphs with parallel edges
(i.e., multidigraphs). Kijima et al[ [27] and Kajino et gBd] are concerned with the rotor-router model on
finite multidigraphs. Suppose th&tis a transition matrix withriational entries. For each € V, leté(v) €
Z>( be a common denominator (or the least common denominatdr) pfor all u € A/ (v), meaning that
5(v)- Py, is integer for each € N (v). We define a rotor-router, (0), o, (1), ..., 0,(5(v) — 1) arbitrarily
satisfying that

{7 €l0,...,0(0) [ ou(j) = u}| = 6(v) P
for anyv € V andu € NV (v). Then,o,(7) is defined by

o0 (i) = (i mod 5(1)) <z oy (z — S()- {%J >> . 20)

For the rotor router on a multidigraph, we hz{\f%—ﬂ (V) Py < Tyulz,7) < (L%(;)ZJ + 1> 0(v) Py,
hence it is not difficult to observe the following.

Observation 5.10. For any transition matrixP,
‘L,,u[z, 2 — (2 - z)Pv,u| < S(U)Pmu
holds for anyv, w € V, and for anyz, 2’ € Z> satisfyingz’ > z.
Using Observatioh 5.10, we obtain the following lemma.
Lemma5.11. ¥, = A holds for the rotor-router model on a multidigraph, whele= max, 4 (v).
By Theoreni 3.1, and the above lemma, we obtain the followiegiem.

Theorem 5.12. Let P € Q" be a transition matrix of a reversible and ergodic Markov ichwith a
state spacé’, wherer denotes the stationary distribution & andt* denotes the mixing rate @f. For a
rotor router model, the discrepancy betwegr) and ;(T) satisfies

(XEUT) - M&T)‘ < 3w AR

Tmin
foranyw € V andT" > 0, where A denotes the maximum degree of the transition diagran?,ofe.
A = maxyey 0(v), andA = max, §(v).

12



Analyzing carefully, we obtain the following upper bound the weighted rotor router model. See
appendiXx B.B for the proof.

Theorem 5.13.Let P € QNXN be a transition matrix of a reversible and ergodic Markov ichaith a
state spacé’, wherer denotes the stationary distribution & andt* denotes the mixing rate @f. For a
rotor router model, the discrepancy betwegr) and ;(T) satisfies

(X&T) — uly

Tmin

oranyw € V andT > 0, whereA = max, §(v).

6 Bounds For Rapidly Mixing Chains

This section shows some examples of bounds suggested byehrh&@.2 and 5|5 for some celebrated
Markov chains known to be rapidly mixing, namely ones @er knapsack solutions (Sectién b.1), linear
extensions (Sectidn 6.2), and matchings (Se¢tionh 6.3).

6.1 0-1 knapsack solutions

Givena € Z%, andb € Z-q, the set of0-1 knapsack solutions is defined B¥,, = {x € {0,1}" |
S azx; < b}. We define a transition matriRy,, € RI®nalx[@al py

1/2n (if y € Nkna(x))
Pina(@,y) = { 1 — [Nia(@)|/2n (if y = ) (21)
0 (otherwisg

for x,y € Qkna, WhereNgna(z) = {y € Qkna | || — y||1 = 1}. Note that the stationary distribution
of Pxna IS uniform distribution sincePy,, is symmetric. The following theorem is due to Morris and
Sinclair [36].

Theorem 6.1. [36] The mixing timer(v) of Pkya IS O(n%+“ logy~!) for anya > 0 and for anyy > 0.
Thus, Theorern 312 (resp. Theorem]5.5) suggests the folipwin

Theorem 6.2. For the SRT-router model (as well as the billiard-router mmbdtorresponding tdPx.., the
discrepancy betweep™) and (T satisfies

(X&T) - M&T)‘ =0(n=*)

foranyw € V andT > 0, wherea > 0 is an arbitrary constant.

Let 7™ = n®) /M, for simplicity, then clearlyi(>) = 7 holds, sinceP is ergodic (see Sectidd 2).
By the definition of the mixing timeD;, (i), 7) < ¢ holds wherer(¢) denotes the mixing time aP,
meaning thaf: approximates the target distributianwell. Thus, we hope for a deterministic random walk
that the “distribution” (™) dif‘ /M approximates the target distributionwell. For convenience, a
point-wise dlstancé)pw(g () betweerf € R pand¢ e R o satisfying||£||1 = ||¢||1 = 1is defined by

def.

Ppw(€,€) = max |& — Gul = [I€ = Clloe- (22)
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Corollary 6.3. For an arbitrarye (0 < € < 1), let the total number of token¥ := ¢; n’z tez=1 with some

appropriate constants; anda. Then, the pointwise distance betwegh) ®€ (™) /M andr satisfies

Dy (¥, 7) < (23)
foranyT > ¢ nate log e~ ! with an appropriate constant,, wherer is the uniform distribution oveR .

6.2 Linear extensions of a poset

LetS = {1,2,...,n}, and@ = (S, <) be a partial order. A linear extension @fis a total orderX =
(S,C) which respects), i.e., for alli,j € S, ¢ < jimpliesi C j. LetQq;, denote the set of all linear
extensions of). We define a relationshiy’ ~, X’ (p € {1,...,n}) for a pair of linear extensionX and
X' € Quiy satisfying that,, = x{DH, Tpi1 = xp, andx; = xj foralli # p,p+1,i.e.,

X = (x1,fl'2,...,I'p_l,l'p,fl'p+1,l'p+2,...,I’n)

/
X = (x1,fl'2,...,I'p_l,l'p+1,l'p,l'p+2,...,I’n)

holds. Then, we define a transition matf;, € R/Lin/*[2Linl py

F(p)/2 (if X7~y X)
Prin(X, X') = ¢ 1= Xrenpneo Pun(X, 1) (if X7 = X) (24)
0 (otherwisg

for X, X’ € Qpim, WhereNiin(X) = {Y € Qun | X ~, Y(p € {1,...,n — 1})} and F(p) = £=2)

Note thatP;;,, is ergodic and reversible, and its stationary distributsonniform on€;;, [4]. The fgllowing
theorem is due to Bubley and Dyeér [4].

Theorem 6.4.[4] For P,

holds for anyy > 0.

Itis not difficult to see that the maximum degrae= n (including a self-loop) of the transition diagram
Prin. Thus, Theorem 515 suggests the foIIovEng

Theorem 6.5. For the billiard-router model corresponding tB; 1, the discrepancy betwegi?) and (7
satisfies

‘X(T) - MSUT)‘ <(n—-1) [%(n?’ —n) lnn-‘ = O(n*logn)

w

foranyw € V andT > 0.

® Theoreni 3R also suggests thel’ — 1| < n [1(n® —n)Inn] = O(n"logn) for the SRT-router model.
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6.3 Matchings in a graph

Counting all matchings in a graph, related to tHesoya indeX20], is known to be #P-completée [47].
Jerrum and Sinclair [24] gave a rapidly mixing chain. Thist&m is concerned with a Markov chain for
sampling from all matchings in a gre@)h

Let H = (U, F) be an undirected graph, wheli€¢| = n and|F| = m. A matching inH is a subset
M C F such that no edges iM share an endpoint. L&?y;,., denote the set of all possible matchings of
H.LetNg(M) = {e = {u,v} | e ¢ M,both u and v are matched in M} and letNyt (M) = {e | e ¢
Nc(M)}. Then, fore = {u,v} € Myat(M), we defineM (e) by

M—e (if e e M)

M(e) =< M+e (if u and v are unmatched in M)
M +e—¢ (if exactly one ofu andv is matched inV/, ande’ is the matching edge

The we define the transition matri ., € RIMaclx[uacl py

1/2m (if M"= M(e))
PMat(M,M/) == 1— ’NMat(M)’/2m (lf M/ == M)
0 (otherwise)

for any M, M’ € Q¢ Note thatPy,; is ergodic and reversible, and its stationary distributsnniform
on Qg [24]. The following theorem is due to Jerrum and Sindlar [24]

Theorem 6.6. [24] For Pyrat,
7(y) < 4mn(nlnn +Iny~h)
holds for anyy > 0.

It is not difficult to see that the maximum degrée= m + 1 (including a self-loop) of the transition
diagramPpn. Thus, Theorern 515 suggests the foIIovﬁng

Theorem 6.7. For the billiard-router model corresponding ;1 the discrepancy betwegi?) and (7
satisfies

‘X&T) - ,u(T)‘ < 4m*n(ninn +1n4) = O(m*n?logn)

w

foranyw € V.andT > 0.

7 Concluding Remarks

This paper has been concerned with the functional-routeteinthat is a generalization of the rotor-router
model, and gave an upper boundmﬁt) — #Sf>| when its corresponding Markov chain is reversible. We
can also show a similar bound for a version of functionakeoumodel with oblivious routers (see [43]).
A bound of the point-wise distance independentrgf./mmin and/or independent ah is a future work.
Development of deterministic approximation algorithmsedzhon deterministic random walks for #P-hard
problems is a challenge.

" Remark that counting afperfectmatchings in a bipartite graph, related to frermanentis also well-known #P-complete
problem, and Jerrum et al. [25] gave a celebrated FPRAS lmsed MCMC method using annealing. To apply our bound to a
Markov chain for sampling perfect matchings, we need sorsemaptions on the input graph (see elg.! [45] 24, 25]).

8 Theoreni 3. also suggests thet’’ — 1&’| < 4(m + 1)mn(nInn + In4) = O(m>n? log n) for the SRT-router model.
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A Fundamental Properties of Markov Chain and Mixing Time

A.1 Proof of Proposition[2.1
In this section, we show Propositibn .1 (see elq.] [[35,.37])
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Proposition[2.1 For any integerg (¢ > 1) andk (0 < k < 7(7)),

1
h(E7(y) +k) < 529
holds for anyy (0 < v < 1/2).
To begin with, we define
7 ¢ def. t t
h(t) = max Dy (P, Pl ). (25)

v,wEV
Then, we show the following.
Lemma A.1. Let&, ¢ € RV be arbitrary probability distributions. Then,
Dy (EP',(P') < h(1)

holds for anyt > 0.

Proof. By (2),
DuleP' P = 5| arl -3 W,
veV weV 1
= % ngptf,- Z Cw — Z (wpi;,-zgv
veV weV weV veV 1
o DDA (26)
veV weV 1

holds. Notice thad _, i §u = D ,c Cu = 1, Sinced and( are probability distributions. Thus,

([E) < %Z Z EoCuw HP£7 _Pifu'Hl

veV weV
1
< gmax [P =Py [, > D
’ veV weV
1 i
= gmax[|B — P [|, = A()

holds, where the second last equality folloWs .y > ,cv {oCw = D ver §o 2 wey Cw = D2 pey &0 = 1,
and we obtain the claim. O

Lemma A.2.
h(t) < h(t) < 2h(t)
holds for anyt > 0.
Proof. Lete, € RVl denote the-th unit vector. By LemmB&Al1,
D (P, ., ) = Dy (e P', wP") < h(t)

holds for anyv € V, and we obtairh(t) < h(t).
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By the definition of the total variation distance,

1
DtV(Pv 7P1f} ) = 5 Z ‘Pg,u_ﬂu—i_ﬂu_Pi),u‘
ueV
1 1
ueV ueV
holds for anyv, w € V. We obtainh(t) < 2h(t). O

Lemma A.3. Suppose a vectdr € R satisfiesy", - & = 0, then
[€P|, < Il R(t)
holds for anyt > 0.
Proof. For convenience, lgt™, ¢~ € RIVI be defined by;” = max{¢;,0} and¢; = max{—¢;,0}. Then,
& — & =max{§, 0} —max{~¢§,0} =& (27)
holds, meaning that
E=¢6 ¢, (28)

Since) ., & =0,

dgr=>"¢ (29)

eV eV

holds by [27). By the definition of ~ and¢—,

& +& = max{&;, 0} + max{—&,0} = [&|
holds. Hence
DG+ g = Ll (30)
eV eV eV
holds. Thus, by[(29) and (B0),

S =Yg =5 lel = glelh (31)

1% eV eV

holds, hence— and -
HE 2||£H

are probabilistic distribution, respectively. Finally, bemmaA.1 and[(28),

t 5_ Pt

pt pt_
I¢ 2usu el

= ||¢tP —¢ P = Hé’lll

€11, (t)

holds, and we obtain the claim. O

h

1

IN

20



Lemma A.4.

|
VANVAN

hold for anys, ¢ > 0.

Proof. By LemmdA.3,

1 s+t 1 s t 1 S T

s leeP ™ =7, = 5[[(e.P* —m) P, < 5 llenP” =l ht)
holds for anyv € V, and we geh(s + t) < h(s)h(t). Similarly,

1 s s 1 S s 1 S S 7

§Hevp +t_ewP +tH1 :§H(evP — ey P )PtHl < §HeUP —eyP ”lh(t)
holds for anyv, w € V, and we geh(s +t) < h(s)h(t). O
Proof of Propositiori 2J1.Using Lemm#& A4,
(£-7(7) h(k) < h(£-7(7)

h(l-7(~) + k) h
h(r() R (€ =1)-7(7)) < h(7(7)- (A (r(1))) " (32)

~—

<
<

holds. By Lemma AR,

B < h(r(7) - (2 (r())' <- () < 5(29)"

holds, and we obtain the claim. O

A.2 Supplemental proof of Theorenl 3.1L
We show the following proposition, appearing in the prooTbktoreni 3.11.
Proposition A.5. If P is reversible, then
TPl = mPl,
holds for anyu, v € V and for anyt > 1.

Proof. We show the claim by an induction of Fort = 1, the claim is clear by the definition of reversible.
Assuming thatr,/ P!, , = m, holds for anyu’,v" € V, we show thatr, P! = m,P.f! holds for any
u,v € V as follows;

t+1 t _ t
ﬂ'uPum = 7TUE Pu’waﬂ, = E ﬂquwaﬂ,

weV weV
t t
= Z Terw,uPU),U = Z Pw,uﬂ-wpwﬂ)
weV weV
t t
= Z Pw,uﬂ-UPUﬂU = T Z PU,wa,u
weV weV
t+1
= WUPU:Z
We obtain the claim. O
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B Supplemental proofs in Section b

B.1 Proof of Theorem5.5
Remark that

S YA T S | - n (33)

T
t=0 ueV min t=0 ueV

holds using Propositidn A5 (cf. recall that the argumemt§Id) in Section4). We also remark that

S 2(1 - )
SN PIT -] = Z?Dw )< ST =3 (34)

t=0 ueV

holds by Lemma4]2.
Proof of Theorerh 515By (13) and Lemm&aX’]2, we obtain

= \<ZZ 2

t=0 ueV veN (u)

Z0 — P,

P

T-1
< > YD A+ Pt () —2) | PL - my|
=0 ueV veN (u)
—1 T-1
= Z\PT;t—l—ww\ S+ M P —m] YD Puu(8() —2). (35)
t=0 ueV veEN (u) t=0 uevV veEN (u)

By combining [38) and (34), we obtain

T-1
SNSRI =] > 1<A7T“’ZZ|P7” YN (36)

t=0 ucV ve/\/’ Tmin 375 ey Tmin
SinceP is reversible, we obtain
7TuPu v Ty
_ — _ Y <« _
> Pouls 2) > Pu= 2) > _— (A 2)Wmin, (37)
veEN (u) veEN (u) veEN (u)
and hence
T-1 T—1
A—2
SN IR =] D Poul(d(v) —2) < = |PIY — |
=0 ueV’ veN (w) Tmin 320 Lev
T—1 T—1
_ —2 T t—1 A-2 T t—1
i~ !71' P, — 7Tu7Tw| o Z Z ‘ﬂ'wa “ 7Tu7Tw‘
t=0 ueV t=0 ucV
—1
A w w
O D DIl B P L) (38)
T'min =0 ueV T'min
Thus, we obtain the claim b (B5), (36) andl(38). O
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B.2 Supplemental Proofs in Sectiof 5]3

This section presents a proof of Theoreml 5.6 and Lemmla 5.7be@m with, we remark two lemmas
concerning the functiony defined by[(1D).

Lemma B.1. For any: € Z>( and anyk € Z>,
. . i 1
P(i) = <z m0d2k) + ({@J) "ok
holds.

Proof. In case ofi < 2%, the claim is easy sinceé(i mod 2¥) = (i) andw(|i/2¥]) = ¢(0) = 0 holds.
Suppose that > 2*, and thati is represented in binary as= ) :* lgi) o B(i)-27 using B;(i) € {0,1}
(j €{0,1,...,|lgi]}). Then,

llg) k—1
i mod 2% = (Z @»(i)-%’) mod 2* = Zﬁj(i)ai, and
. nglJ DY g ]
HE F_UJ > 02

hold, respectively. Let= j — k and leth; = 5.« (i) (I = 0, 1, ..., |lgi| — k), for convenience, then

zp(z‘modz’f)Jrz/z(MJ)-;w(iﬂj(' +¢<Zﬁ )27~ k)‘;k

lgi]—k k—1 llgi]—k
= > Bi(i)27 0t 4y Z by 2! B;(i)2~ G+ Z b 27+

N
—

o

5=0
|_lg 1] k— llgi]

— /8]( —(5+1) ZBJ .9~ (j—k+1) Z 2 (G+1) + ZB .9~ (G+1)

<.

o
—_

=0 j=0
g ] '
= 280270 = ()
§=0
and, we obtain the claim. O

Lemma B.2. For anyk € Zso anda € {0,1,...,2F — 1},

1
holds.
Proof. By LemmaB.1,

P(2F +a) = w((Zk—i—a) mod2k> +¢<{2k+O‘J> L

2k 2k
P(1
= v+ B2
1
= 2k+1 +¢( )
holds, where the last equality follows1) = 1/2 by the definition. O
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Now, we define

C L) i€ fza+1,... 2 — 1} (39)

for z, 2’ € Z>( satisfyingz < z’. For convenience, we defirlgz, z) = (. It is not difficult to see that

Pz, 2)

<1>[0,2k):{2%|ie{0,1,...,2’f—1}} (40)

holds for anyk € Z>(. In general, we can show the following lemma, using Lemmd&kaBd B.2.

Lemma B.3. For anyz € Z>( and for anyk € Z>g

1 1+1
'<I>[z,z—|—2k)ﬁ [2—k,2—k>‘ =1

holds for anyi € {0,1,...,2% —1}.
Proof. By LemmdB.1,
Oz, 2 +28) = {¢(z+z’) lie{0,1,...,2F - 1}}

= {T,Z)((z—i—i)monk)Jr%|i6{0,1,...,2k—1}}

holds. Since) < ¢(z') < 1 holds for anyz’ € Z>,

o (e moa 2t + £ (L)

2k
c [w ((z +4) mod 2k> 1) ((z +4) mod 2k> + 2%) (41)
holds for each < {0,1,...,2* — 1}. The observatiori {340) implies that
{w <(z+z') monk) lie{0,1,...,2F — 1}}
= {2%|je{0,1,...,2’f—1}} (42)

holds. Notice thaf{42) implies ((z + i) mod 2¥) # ¢ ((z + i') mod 2*¥) for any distinct, i’ € {0,1,...,2"—
1}. Now, the claim is clear by (41) and (42). O

Note that LemmaB]3 implies that
7 0(z) .

using appropriaté(i) € [0,1) fori =0,1,...,2% — 1.
Lemma B.4. Letzy, k € Z>o, and letz, y € [0,1) satisfyz < y. Then,
19120, 20 +2°) 1 [z,9)| = 2 (y — @) < 2

holds.
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Proof. LemmaB.B and Equatiof (#3) implies that there existsc {0,1,...,2* — 1} such that < ¢ and

0(s) s+1 0O(s+1)
+ - r < oF oF

IN

oF (44)

o(t) tH1 0+ 1)
o = Y S Tor T

R R

+

IN

(49)

where we assume

-1 0(-1) 2k g(2F)
2—k+—2k =0 and 2_k+—2k =1

for convenience. Then, it is clear that

Y
®[z0,20 + 2°) N [w,y) = {227—1'% |i€{8,8+1,...,t—1}}

wheres = t means tha|z, 2o + 2¥) N [z, ) = 0. By (4) and[(45), we obtain

Fw—Os+1)—1< s <2%z—0(s),
Moy —0t+1)—1< t <2%y—0(t)

respectively, and hence we obtain that
k(y—a) =0t +1)—1+0(s) <t—s < 28 (y—a)—0(t)+0(s+1) +1.
Since|®[z0, 20 + 2¥) N[z, y)| =t —sand0 < 0(i) < 1 (i € {0,1,...,2%F —1}),
. (y—x) =2 < |®[20,20 + 2°) N [2,9)| <28 (y —2) +2
holds, and we obtain the claim. O
Using LemmaB.}, we obtain the following.
Lemma B.5. Letzy € Z>¢, z € Z~o, and letz, y € [0, 1) satisfyz < y. Then,

|(I)[Z(], z0 + Z) N [l‘,y)|
z

21 9
- ngzJJr

—(y— x)‘
holds.
Proof. For simplicity, let

O*[20, 20 + £) °F @[20,20 + £) N [, p)
for any/ € Z~o. Then, notice that

|*[20, 20 + 2)| = |®*[20, 20 + 2)| + |®*[20 + 2, 20 + 2)| (46)
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holds for anyz’ € Z- satisfyingz’ < 2. Now, suppose is represented as= ZJUEO?’J B;(z)- 27 in binary,
wheref;(z) € {0,1}. Using LemmaBJ, we obtain that

|lg 2]
®* | 20,20 + j{: Bj(z

llgz]—1

0 o )+ 3
k=0

llgz]—1

< Bo(x) 2 (y—a)+2+ Y (5k+1(z)-2k+1-(y—w)+2)

k=0

|®*[20,20 + 2)| =

k ‘ k41 '
o* |:z0 + Zﬁj(z)ﬂj,zo + Zﬁj(z)- 2’)
j=0 Jj=0

llg 2]

= Y (B2 o) +2)

k=0
= 2llgz]+ 1)+ (y—2) ) Bil2)-2"
= 2(|lgz|+1)+ 2 (y — ).
In a similar way, we also have
| [20, 20 + 2)| > 2([lg 2] — 1) + 2 (y — 2),
and we obtain the claim. O

By LemmdB.b, it is not difficult to see Theorém 5.6 and Lenin¥aHalds.

B.3 Proof of Theorem[5.13
By (13) and Observatidn 5.110, we obtain

W < Y Y

t=0 ueV veN (u)

T—1
ZZ\PZ;t‘l—m\ Y Sw)P

—~

AR

v,

D Py

<

<

=0 ueV vEN (u)

—1
< Z\PT,Et Pemel D o

t=0 ueV vEN (u)
< Maxwev 0(v) §(v Z Z ‘Wu]ﬂj;t_l — T Z Py
T'min =0 ueV veN (u)
_ maxey §(v)my Z S PIE - (47)
Tmin t=0 ueV

Thus, we obtain the claim by combinirig {34) ahd|(47).
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