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Abstract

The rotor-router model is a deterministic process analogous to a simple random walk on a graph. This
paper is concerned with a generalized model,functional-router model, which imitates a Markov chain
possibly containing irrational transition probabilities. We investigate the discrepancy of the number of
tokens at a single vertex between the functional-router model and its corresponding Markov chain, and
give an upper bound in terms of the mixing time of the Markov chain.
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1 Introduction

Therotor-router model, also known as thePropp machine, is a deterministic process analogous to a random
walk on a graph [39, 8, 27]. In the model1, tokens distributed over vertices are deterministically served
to neighboring vertices by rotor-routers equipped on vertices, instead of traveling on the graph at random.
Doerr et al. [6, 10] first called the rotor-router modeldeterministic random walk, meaning a “derandomized,
hencedeterministic, version of arandom walk.”

Single vertex discrepancy for multiple-walk. Cooper and Spencer [8] investigated the rotor-router model
(with multiple tokens, in precise;multiple-walk) onZn, and gave an analysis on the discrepancy on a single
vertex: they showed a bound that|χ(t)

v − µ
(t)
v | ≤ cn, whereχ(t)

v (resp.µ(t)v ) denotes the number (resp. the
expected number) of tokens on vertexv ∈ Zn in a rotor-router model (resp. in the corresponding random
walk) at timet on the condition thatµ(0)v = χ

(0)
v for anyv, andcn is a constant depending only onn but

independent of the total number of tokens in the system. Cooper et al. [6] showedc1 ≃ 2.29, and Doerr
and Friedrich [10] showed thatc2 is about 7.29 or 7.83 depending on the routing rules. On the other hand,
Cooper et al. [5] gave an example of|χ(t)

v −µ
(t)
v | = Ω(

√
kt) on infinitek-regular trees, the example implies

that the discrepancy can get infinitely large as increasing the total number of tokens.
Motivated by a derandomization of Markov chains, Kijima et al. [27] are concerned with multiple-

walks on general finite multidigraphs(V,A), and gave a bound|χ(t)
v − µ

(t)
v | = O(|V ||A|) in case that

corresponding Markov chain is ergodic, reversible and lazy. They also gave some examples of|χ(t)
v −µ(t)v | =

Ω(|A|). Kajino et al. [26] sophisticated the approach by [27], and gave a bound in terms of the second largest
eigenvalue and eigenvectors of the corresponding Markov chain, for an arbitrary irreducible finite Markov
chain, which may not be lazy, reversible nor aperiodic.

In the context of load balancing, Rabani et al. [41] are concerned with a deterministic algorithm similar
to the rotor-router model corresponding to Markov chains with symmetrictransition matrices, and gave a
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1See Section 3.1, for the detail of the rotor-router model.
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boundO(∆ log(|V |)/(1 − λ∗)), where∆ denotes the maximum degree of the transition diagram andλ∗
denotes the second largest eigenvalue of the transition matrix.

For some specific finite graphs, such as hypercubes and tori, some bounds on the discrepancy in terms of
logarithm of the size of transition diagram are known. Forn-dimensional hypercube, Kijima et al. [27] gave
a boundO(n3), and Kajino et al. [26] improved the bound toO(n2). Recently, Akbari and Berenbrink [1]
gave a boundO(n1.5), using results by Friedrich et al. [17]. Akbari and Berenbrink [1] also gave a bound
O(1) for constant dimensional tori. Those analyses highly depend on the structures of the specific graphs,
and it is difficult to extend the technique to other combinatorial graphs. Kijima et al. [27] gave rise to a
question if there is a deterministic random walk for #P-complete problems, such as0-1 knapsack solutions,
bipartite matchings, etc., such that|χ(t)

v − µ
(t)
v | is bounded by a polynomial in the input size.

Other topics on deterministic random walk. As a highly related topic, Holroyd and Propp [19] analyzed
“hitting time” of the rotor-router model with asingle token(single-walk) on finite simple graphs, and gave a
bound|ν(t)v − tπv| = O(|V ||A|) whereν(t)v denotes the frequency of visits of the token at vertexv in t steps,
andπ denotes the stationary distribution of the corresponding random walk. Friedrich and Sauerwald [18]
studied the cover time of a single-walk version of the rotor-router model for several basic finite graphs such
as tree, star, torus, hypercube and complete graph. Recently, Kosowski and Pajak [29] studied the cover
time of a multiple tokens version of the rotor-router model.

Holroyd and Propp [19] also proposed a generalized model called stack walk, which is the first model
of deterministic random walk forirrational transition probabilities, as far as we know. While Holroyd and
Propp [19] indicated the existence of routers approximating irrational transition probabilities well, Angel
et al. [2] gave a routing algorithm based on the “shortest remaining time (SRT)” rule. Shiraga et al. [43],
that is a preliminary work of this paper, independently proposed another model based on the van der Corput
sequence, motivated by irrational transition probabilities, too.

As another topic on the rotor-router model, the aggregationmodel has been investigated [32, 30, 33, 34].
For a random walk, tokens in the Internal Diffusion-LimitedAggregation (IDLA) model onZn asymptoti-
cally converge to the Euclidean ball [31], and Jerison, Levine and Sheffield [23] recently showed the fluctu-
ations from circularity areO(log t) after t steps. For the rotor-router model, Levine and Peres [32, 33,34]
showed that tokens in the rotor-router aggregation model also form the Euclidean ball, and showed several
bounds for the fluctuations. Kleber [30] gave some computational results.

Doerr et al. [12] showed that information spreading by the rotor-router model is faster than the one by a
random walk on some specific graphs, namely trees with the common depth and the common degree of inner
vertices, and random graphs with restricted connectivity.Doerr et al. [11] gave some computational results
for this phenomena. There is much other research on information spreading by the rotor-router model on
some graphs [3, 9, 13, 14, 15, 21].

Our Results. This paper is concerned with thefunctional-routermodel (of multiple-walk ver.), which
is a generalization of the rotor-router model. While the rotor-router model is an analogy with a sim-
ple random walk on a graph, the functional-router model imitates a Markov chain possibly containing
irrational transition probabilities. In the functional-router model, a configuration ofM tokens over a fi-
nite setV = {1, . . . , N} is deterministically updated by functional-routers defined on vertices2. Let

χ(t) = (χ
(t)
1 , . . . , χ

(t)
N ) ∈ ZN

≥0 denote the configuration at timet = 0, 1, 2, . . ., i.e.,
∑

v∈V χ
(t)
v = M .

For comparison, letµ(0) = χ(0), and letµ(t) = µ(0)P t for a transition matrixP corresponding to the
functional-router model, thenµ(t) ∈ RN

≥0 denotes the expected configuration ofM tokens independently

according toP for t steps. A main contribution of the paper is to show that|χ(t)
v −µ(t)v | ≤ 6(πmax/πmin)t

∗∆

2 See Section 3.2, for the detail of the functional-router model.
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holds for anyv ∈ V at any timet in case that the corresponding transition matrixP is ergodicandreversible,
whereπmax andπmin are respectively the maximum/minimum values of the stationary distributionπ of P ,
t∗ is themixing rateof P , and∆ is the maximum degree of the transition diagram.

An example of a random walk containing irrational transition probabilities is theβ-random walk devised
by Ikeda et al. [22], which achieves anO(N2) hitting time and anO(N2 logN) cover timefor any graphs.
Another example should be the Markov chain Monte Carlo (MCMC), such as Gibbs samplers for the Ising
model (cf. [45, 40]), reversible Markov chains for queueingnetworks (cf. [28]), etc.

Organization This paper is organized as follows. In Section 2, we briefly review MCMC, as a preliminary.
In Section 3, we describe the functional-router model and our main theorem. In Section 4, we prove the main
theorem. In Section 5, we present four particular functional-router models, and give detailed analyses on
them. In Section 6, we show some examples of the bounds for some Markov chains over the combinatorial
objects, which are known to be rapidly mixing.

2 Preliminaries: Markov Chain Monte Carlo

As a preliminary step of explaining the functional-router model, this section briefly reviews the Markov
chain Monte Carlo (MCMC). See e.g., [45, 35, 37] for details of MCMC.

Let V
def.
= {1, . . . , N} be a finite set, and suppose that we wish to sample fromV with a probability

proportional to a given positive vectorf = (f1, . . . , fN ) ∈ RN
≥0; for example, we are concerned withuni-

form sampling of0-1 knapsack solutions in Section 6.1, whereV denotes the set of0-1 knapsack solutions
andfv = 1 for eachv ∈ V . The idea of a Markov chain Monte Carlo (MCMC) is to sample from a limit
distribution of a Markov chain which is equal to the target distributionf/‖f‖1 where‖f‖1 =

∑
v∈V fv is

the normalizing constant.
LetP ∈ RN×N

≥0 be a transition matrix of a Markov chain with the state spaceV , wherePu,v denotes the
transition probability fromu to v (u, v ∈ V ). A transition matrixP is irreducible if P t

u,v > 0 for anyu and
v in V , and isaperiodic if GCD{t ∈ Z>0 | P t

x,x > 0} = 1 holds for anyx ∈ V , whereP t
u,v denotes the

(u, v) entry ofP t, thet-th power ofP . An irreducible and aperiodic transition matrix is calledergodic. It is
well-known for a ergodicP , there is a uniquestationary distributionπ ∈ RN

≥0, i.e.,πP = π, and the limit
distribution isπ, i.e.,ξP∞ = π for any probability distributionξ ∈ RN

≥0 onV .

An ergodic Markov chain defined by a transition matrixP ∈ RN×N
≥0 is reversibleif the detailed balance

equation

fuPu,v = fvPv,u (1)

holds for anyu, v ∈ V . WhenP satisfies the detailed balance equation, it is not difficult to see thatfP = f
holds, meaning thatf/‖f‖1 is the limit distribution (see e.g., [35]). Letξ andζ be a distribution onV , then
the total variation distanceDtv betweenξ andζ is defined by

Dtv(ξ, ζ)
def.
= max

A⊂V

∣∣∣∣∣
∑

v∈A

(ξv − ζv)

∣∣∣∣∣ =
1

2
‖ξ − ζ‖1 . (2)

Note thatDtv(ξ, ζ) ≤ 1, since‖ξ‖1 and‖ζ‖1 are equal to one, respectively. Themixing timeof a Markov
chain is defined by

τ(ε)
def.
= max

v∈V
min

{
t ∈ Z≥0 | Dtv(P

t
v,·, π) ≤ ε

}
(3)

3



for anyε > 0, whereP t
v,· denotes thev-th row vector ofP t; i.e.,P t

v,· denotes the distribution of a Markov
chain at timet stating from the initial statev ∈ V . In other words, the distributionP t

v,· of the Markov chain
after τ(ε) transition satisfiesDtv(P

t
v,·, π) ≤ ε, meaning that we obtain an approximate sample from the

target distribution.

For convenience, leth(t)
def.
= maxw∈V Dtv

(
P t
w,·, π

)
for t ≥ 0, then it is well-known thath satisfies

a kind of submultiplicativity. We will use the following proposition in our analysis in Section 4. See
Appendix A for the proof (cf. [35, 37]).

Proposition 2.1. For any integersℓ (ℓ ≥ 1) andk (0 ≤ k < τ(γ)),

h (ℓ· τ(γ) + k) ≤ 1

2
(2γ)ℓ

holds for anyγ (0 < γ < 1/2). �

Since the submultiplicativity,t∗
def.
= τ(1/4), calledmixing rate, is often used as a characterization ofP .

3 Model and Main Results

A functional-router modelis a deterministic process analogous to a multiple random walk. Roughly speak-
ing, a router defined on each vertexu deterministically serves tokens tov at a rate ofPu,v in a functional-
router model, while tokens on a vertexumoves to a neighboring vertexv with probabilityPu,v in a (multiple)
random walk.

To get the idea, let us start with explaining the rotor-router model (see e.g., [8, 27]), which corresponds
to a simple random walk on a graph.

3.1 Rotor-router model

Let G = (V, E) be a simple undirected graph3, whereV = {1, . . . , N}. LetN (v) denote the neighborhood
of v ∈ V . For convenience, letδ(v) = |N (v)|. Letχ(0) ∈ ZN

≥0 be an initial configuration of tokens, and let

χ(t) ∈ ZN
≥0 denote the configuration of tokens at timet ∈ Z≥0 in the rotor-router model. A configuration

χ(t) is updated byrotor-routerson vertices, as follows. Without loss of generality, we may assume that an
orderingu0, . . . , uδ(v)−1 is defined onN (v) for eachv ∈ V . Then, a rotor-routerσv : Z≥0 → N (v) on
v ∈ V is defined by

σv(j)
def.
= ui mod δ(v) (4)

for j ∈ Z≥0. Let

Z(t)
v,u

def.
=
∣∣∣
{
j ∈ {0, . . . , χ(t)

v − 1} | σv
(
j +

∑t−1
s=0 χ

(s)
v

)
= u

}∣∣∣

for v, u ∈ V , whereZ(t)
v,u denotes the number of tokens served fromv to u in the update. Then,χ(t+1) is

defined by

χ
(t+1)
u

def.
=
∑

v∈V Z
(t)
v,u

for eachu ∈ V .
3 In Section 5.4, we are concerned with a model on multidigraphs.
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It is not difficult to see that

|{j ∈ {0, . . . , z − 1} | σv(j) = u}|
z

z→∞−−−→ 1

δ(v)

holds, which implies that the “outflow ratio”
∑t

s=0 Z
(s)
v,u/

∑t
s=0 χ

(s)
v of tokens atv to u approaches asymp-

totically to1/δ(v) ast increasing. Thus, the rotor-router hopefully approximates a distribution of tokens by
a random walk.

3.2 Functional-router model

Let P ∈ RN×N
≥0 be a transition matrix of a Markov chain with a state spaceV

def.
= {1, . . . , N}, wherePu,v

denotes the transition probability fromu to v (u, v ∈ V ). Note thatPu,v may be irrational4. In this paper,

we assume thatP is ergodicandreversible(see Section 2). Letµ(0) = (µ
(0)
1 , . . . , µ

(0)
N ) ∈ ZN

≥0 denote an

initial configuration ofM tokens overV , and letµ(t) ∈ RN
≥0 denote theexpectedconfiguration of tokens

independently according toP at timet ∈ Z≥0, i.e.,‖µ(t)‖1 =M andµ(t) = µ(0)P t.
Let G = (V, E) be the transition digram ofP , meaning thatE = {(u, v) ∈ V 2 | Pu,v > 0}. Note thatE

may contain self-loop edges, and also note that|E| ≤ N2 holds. LetN (v) denote the (out-)neighborhood5

of v ∈ V , i.e.,N (v) = {u ∈ V | Pv,u > 0}, and letδ(v) = |N (v)|. Note thatv ∈ N (v) if Pv,v > 0.
Letχ(0) = µ(0), and letχ(t) ∈ ZN

≥0 denote the configuration of tokens at timet ∈ Z≥0 in the functional-

router model. A configurationχ(t) is updated byfunctional-routersσv : Z≥0 → N (v) defined on each
v ∈ V to imitatePv,u. To be precise, let

Iv,u[z, z′) def.
=
∣∣{j ∈ {z, . . . , z′ − 1} | σv(j) = u

}∣∣ (5)

for v, u ∈ V and for anyz, z′ ∈ Z≥0 satisfyingz < z′, for convenience. Then, the functional routerσv on
v ∈ V is designed to minimize

∣∣∣∣
Iv,u[0, z)

z
− Pv,u

∣∣∣∣

for z ∈ Z≥0. See Section 5 for some specific functional-routers. Let

Z
(t)
v,u = Iv,u

[∑t−1
s=0 χ

(s)
v ,
∑t

s=0 χ
(s)
v

)
(6)

for v, u ∈ V , whereZ(t)
v,u denotes the number of tokens served fromv to u in the update. Then,χ(t+1) is

defined by

χ
(t+1)
u

def.
=
∑

v∈V Z
(t)
v,u (7)

for eachu ∈ V .
We in Section 5 give some specific functional-routers, in which the “outflow ratio”

∑t
s=0 Z

(s)
v,u/

∑t
s=0 χ

(s)
v

from v to u approaches asymptotically toPv,u ast increases, meaning that the functional-router hopefully
approximate a distribution of tokens by a random walk.

4 e.g.,Pu,v =
√
5/10, exp(−10), sin(π/3), etc. are allowed.

5 SinceP is reversible,u ∈ N (v) if and only if v ∈ N (u), and then we abuseN (v) for in-neighborhood ofv ∈ V .
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Figure 1: An example of a functional router model

Figure 1 shows an example of the time evolution of a functional router model. In the example,V =
{1, 2} and the initial configuration of tokens isχ(0) = (7, 0). According to the functional routerσ1 defined
in the figure,

I1,1[0, 7) = |{j ∈ {0, . . . , 6} | σ1(j) = 1}| = 4 and

I1,2[0, 7) = |{j ∈ {0, . . . , 6} | σ1(j) = 2}| = 3,

and then the configuration of tokens isχ(1) = (4, 3) at time 1. In a similar way,

I1,1[7, 11) = |{j ∈ {7, . . . , 10} | σ1(j) = 1}| = 3,

I1,2[7, 11) = |{j ∈ {7, . . . , 10} | σ1(j) = 2}| = 1,

I2,1[0, 3) = |{j ∈ {0, 1, 2} | σ1(j) = 1}| = 2, and

I2,2[7, 3) = |{j ∈ {0, 1, 2} | σ1(j) = 2}| = 1,

providesχ(2) = (5, 2).

3.3 Main results

Our goal is to estimate the discrepancy|χ(T )
w − µ

(T )
w | for w ∈ V andT ≥ 0 for the functional router model

described in Section 3.2. For convenience, let

Ψσ = max
v∈V, u∈N (v), t≥0

∣∣∣Z(t)
v,u − χ(t)

v Pv,u

∣∣∣ (8)

depending on a functional-router modelσ, then the following is our main theorem.

Theorem 3.1. LetP ∈ RN×N
≥0 be a transition matrix of areversibleand ergodic Markov chain with a state

spaceV , whereπ denotes the stationary distribution ofP and τ(γ) denotes the mixing time ofP for any
γ (0 < γ < 1/2). Then, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ Ψσ
2(1 − γ)

1− 2γ
τ(γ)

πw
πmin

∆

for anyw ∈ V , T ≥ 0 and γ (0 < γ < 1/2), where∆ denotes the maximum degree of the transition
diagram ofP , i.e. ∆ = maxv∈V δ(v).

We remark that

Ψσ ≤ max
v∈V, u∈N (v),

z,z′∈Z≥0 s. t. z′>z

∣∣Iv,u[z, z′)− (z′ − z)Pv,u

∣∣ (9)

6



holds, since

Z
(t)
v,u − χ

(t)
v Pv,u = Iv,u

[∑t−1
s=0 χ

(s)
v ,
∑t

s=0 χ
(s)
v

)
−
(∑t

s=0 χ
(s)
v −∑t−1

s=0 χ
(s)
v

)
Pv,u

holds by the definition. For instance, theSRT router, which we will introduce in Section 5.1, satisfies
Ψσ ≤ 2, and we obtain the following, from Theorem 3.1.

Theorem 3.2. LetP ∈ RN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a state

spaceV , whereπ denotes the stationary distribution ofP and t∗ denotes the mixing rate ofP . For a SRT
router model, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 6πw
πmin

t∗∆

for anyw ∈ V and T ≥ 0, where∆ denotes the maximum degree of the transition diagram ofP , i.e.
∆ = maxv∈V δ(v).

See Section 5 for detailed arguments on the bounds ofΨσ for some specific functional routers.

4 Analysis of the Point-wise Distance

This section proves Theorem 3.1. Our proof technique is similar to previous works [8, 27, 41], in some part.
To begin with, we establish the following key lemma.

Lemma 4.1. LetP ∈ RN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a state

spaceV , and letπ be the stationary distribution ofP . Then,

χ(T )
w − µ(T )

w =

T−1∑

t=0

∑

u∈V

∑

v∈N (u)

(
Z(t)
v,u − χ(t)

v Pv,u

) (
P T−t−1
u,w − πw

)

holds for anyw ∈ V and for anyT ≥ 0.

Proof. Remark that

χ(T )
w − µ(T )

w =
(
χ(T ) − µ(0)P T

)
w

=
(
χ(T )P 0 − χ(0)P T

)
w

(10)

holds where the last equality follows the assumptionχ(0) = µ(0). It is not difficult to see that

χ(T )P 0 − χ(0)P T =
(
χ(T )P 0 − χ(T−1)P 1

)
+
(
χ(T−1)P 1 − χ(T−2)P 2

)
+

· · ·+
(
χ(2)P T−2 − χ(1)P T−1

)
+
(
χ(1)P T−1 − χ(0)P T

)

=
T−1∑

t=0

(
χ(t+1)P T−t−1 − χ(t)P T−t

)

holds, thus we have

(10) =
T−1∑

t=0

((
χ(t+1)P T−t−1

)

w
−
(
χ(t)P T−t

)

w

)

=

T−1∑

t=0

(
∑

u∈V

χ(t+1)
u P T−t−1

u,w −
∑

u∈V

(χ(t)P )uP
T−t−1
u,w

)

=

T−1∑

t=0

∑

u∈V

(
χ(t+1)
u − (χ(t)P )u

)
P T−t−1
u,w . (11)

7



While
∑

u∈V

(
χ
(t+1)
u − (χ(t)P )u

)
P T−t−1
u,w in (11) may not be0 in general, remark that

∑

u∈V

(
χ(t+1)
u − (χ(t)P )u

)
=

∑

u∈V

χ(t+1)
u −

∑

u∈V

∑

v∈V

χ(t)
v Pv,u

=
∑

u∈V

χ(t+1)
u −

∑

v∈V

χ(t)
v

∑

u∈V

Pv,u

= M −M = 0

holds for anyt ≥ 0. Hence

(11) =

T−1∑

t=0

∑

u∈V

(
χ(t+1)
u − (χ(t)P )u

)
P T−t−1
u,w −

T−1∑

t=0

∑

u∈V

(
χ(t+1)
u − (χ(t)P )u

)
πw

=

T−1∑

t=0

∑

u∈V

(
χ(t+1)
u − (χ(t)P )u

) (
P T−t−1
u,w − πw

)
(12)

holds. SinceP is reversible,Z(t)
v,u = 0 for anyv /∈ N (u) andχ(t+1)

u =
∑

v∈V Z
(t)
v,u =

∑
v∈N (u) Z

(t)
v,u holds

by definition (7). Thus,

(12) =
T−1∑

t=0

∑

u∈V



∑

v∈N (u)

Z(t)
v,u −

∑

v∈N (u)

χ(t)
v Pv,u


(P T−t−1

u,w − πw
)

=

T−1∑

t=0

∑

u∈V

∑

v∈V

(
Z(t)
v,u − χ(t)

v Pv,u

) (
P T−t−1
u,w − πw

)

holds, and we obtain the claim.

Now, we are concerned withreversibleMarkov chains, and show Theorem 3.1.

Proof of Theorem 3.1.By Lemma 4.1 and (8), we obtain that

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤
T−1∑

t=0

∑

u∈V

∑

v∈N (u)

∣∣∣Z(t)
v,u − χ(t)

v Pv,u

∣∣∣
∣∣P T−t−1

u,w − πw
∣∣ (13)

≤ Ψσ

T−1∑

t=0

∑

u∈V

∑

v∈N (u)

∣∣P T−t−1
u,w − πw

∣∣

= Ψσ

T−1∑

t=0

∑

u∈V

δ(u)
∣∣P t

u,w − πw
∣∣ (14)

holds. SinceP is reversible,P t
u,w = πw

πu
P t
w,u holds for anyw andu in V (see Proposition A.5 in Ap-

pendix A). Thus

(14) = Ψσ

T−1∑

t=0

∑

u∈V

δ(u)

∣∣∣∣
πw
πu

(
P t
w,u − πu

)∣∣∣∣

≤ Ψσ∆
πw
πmin

T−1∑

t=0

∑

u∈V

∣∣P t
w,u − πu

∣∣

= 2Ψσ∆
πw
πmin

T−1∑

t=0

Dtv

(
P t
w,·, π

)
(15)
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where the last equality follows the fact that
∑

u∈V |P t
w,u−πu| = 2Dtv

(
P t
w,·, π

)
, by the definition (2) of the

total variation distance. By Proposition 2.1, we obtain thefollowing.

Lemma 4.2. For anyv ∈ V and for anyT > 0,

T−1∑

t=0

Dtv

(
P t
v,·, π

)
≤ 1− γ

1− 2γ
τ(γ)

holds for anyγ (0 < γ < 1/2).

Proof. Let h(t) = maxw∈V Dtv

(
P t
w,·, π

)
, for convenience. Then,h(t) is at most1 for any t ≥ 0, by the

definition (2) of the total variation distance. By Proposition 2.1,

T−1∑

t=0

Dtv

(
P t
w,·, π

)
=

T−1∑

t=0

h(t) ≤
∞∑

t=0

h(t) =

∞∑

ℓ=0

τ(γ)−1∑

k=0

h(ℓ· τ(γ) + k)

=

τ(γ)−1∑

k=0

h(k) +

∞∑

ℓ=1

τ(γ)−1∑

k=0

h(ℓ· τ(γ) + k) ≤
τ(γ)−1∑

k=0

1 +

∞∑

ℓ=1

τ(γ)−1∑

k=0

1

2
(2γ)ℓ

= τ(γ) +
∞∑

ℓ=1

τ(γ)
1

2
(2γ)ℓ = τ(γ) +

γ

1− 2γ
τ(γ) =

1− γ

1− 2γ
τ(γ)

holds, and we obtain the claim.

Now we obtain Theorem 3.1 from (15) and Lemma 4.2

5 Specific Functional-routers

This section shows some functional-router models, namelySRT routerin Section 5.1,billiard router in
Section 5.2,quasi-random routerin Section 5.3, and rotor-router on multigraph in Section 5.4. Using
Theorem 3.1, we give upper bounds of|χ(T )

w − µ
(T )
w | for them.

5.1 SRT router

This section introducesSRT router, which is originally given by Holroyd and Propp [19] and Angel et al. [2]
by the name of stack-walk. The SRT routerσv(i) (i ∈ Z≥0) on v ∈ V is defined, as follows. Let

Ti(v) = {u ∈ N (v) | Iv,u[0, i) − (i+ 1)Pv,u < 0}. (16)

Then, letσv(i) beu∗ ∈ Ti(v) minimizing the value

Iv,u[0, i) + 1

Pv,u
(17)

in all u ∈ Ti(v). If there are two or more suchu ∈ Tv(i), then letu∗ be arbitrary one of them.
Sinceσv(i) ∈ Ti(v), we can see thatIv,u[0, i + 1) − (i + 1)Pv,u < 1 holds for anyu, v andi, by an

induction oni ∈ Z≥0. The following theorem is due to Angel et al. [2] and Tijdeman[46].

Theorem 5.1. [46, 2] For any transition matrixP ,

|Iv,u[0, z) − z·Pv,u| < 1

holds for anyv, u ∈ V and anyz ∈ Z>0.

9



Theorem 5.1 was firstly given by Tijdeman [46], where he gave aslightly better bound|Iv,u[0, z) − z·Pv,u| ≤
1− (2(δ(v) − 1))−1, in fact. Angel et al. [2] rediscovered Theorem 5.1 in the context of deterministic ran-
dom walk (see also [19]), where they also showed a similar statement holds even when the corresponding
probability is time-inhomogeneous.

Theorem 5.1 and (9) imply that

Ψσ ≤ max
v∈V, u∈N (v),

z,z′∈Z≥0 s. t. z′>z

∣∣Iv,u[z, z′)− (z′ − z)Pv,u

∣∣ < 2 (18)

holds for the SRT router model.

Proof of Theorem 3.2.By Theorem 3.1 and (18),

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ Ψσ
2(1 − γ)

1− 2γ
τ(γ)

πw
πmin

∆ < 2 · 2 · (1− 1/4)

1− 2 · (1/4)τ(1/4)
πw
πmin

∆ =
6πw
πmin

t∗∆

holds, and we obtain the claim.

5.2 Billiard router

Billiard sequenceis known to be a balanced sequence (cf. [42]). This section presents a functional router
based on the billiard sequence.

The billiard sequence is given in a similar to the SRT router,but simpler. Letσv(i) be u∗ ∈ N (v)
minimizing the value

Iv,u[0, i) + 1

Pv,u

in all u ∈ N (v), and if there are two or more suchu ∈ N (v), then letu∗ be arbitrary one of them. Then,
the following theorem for the billiard sequence is known.

Lemma 5.2. [42] For any transition matrixP ,

∣∣Iv,u[z, z′)− (z′ − z)Pv,u

∣∣ ≤ 1 + (δ(v) − 2)Pv,u

holds for anyv, u ∈ V , and for anyz, z′ ∈ Z≥0 satisfyingz′ > z.

Using Lemma 5.2, we obtain an upper bound ofΨσ for the billiard sequence.

Lemma 5.3. Ψσ ≤ ∆− 1 holds for the billiard sequence.

Thus, we obtain Theorem 5.4 by Theorem 3.1 and Lemma 5.3.

Theorem 5.4. LetP ∈ RN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a state

spaceV , whereπ denotes the stationary distribution ofP andt∗ denotes the mixing rate ofP . For a billiard
router model, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 3πw
πmin

t∗∆(∆− 1)

for anyw ∈ V and T ≥ 0, where∆ denotes the maximum degree of the transition diagram ofP , i.e.
∆ = maxv∈V δ(v).

10



In fact, we obtain a better bound for the billiard router model as follows, by analyzing carefully. See
Appendix B.1 for the proof.

Theorem 5.5. LetP ∈ RN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a state

spaceV , whereπ denotes the stationary distribution ofP andt∗ denotes the mixing rate ofP . For a billiard
router model, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 6πw
πmin

t∗(∆− 1)

for anyw ∈ V and T ≥ 0, where∆ denotes the maximum degree of the transition diagram ofP , i.e.
∆ = maxv∈V δ(v).

5.3 Quasi-random router

This section gives a routerσ based on thevan der Corput sequence[48, 38], which is a well-known low-
discrepancy sequence.

The van der Corput sequenceψ : Z≥0 → [0, 1) is defined as follows. Supposei ∈ Z>0 is represented in

binary asi =
∑⌊lg i⌋

j=0 βj(i)· 2j usingβj(i) ∈ {0, 1} (j ∈ {0, 1, . . . , ⌊lg i⌋}). Then, we define

ψ(i)
def.
=

⌊lg i⌋∑

j=0

βj(i)· 2−(j+1) (19)

andψ(0)
def.
= 0. For example,ψ(1) = 1 × 1/2 = 1/2, ψ(2) = 0 × 1/2 + 1 × 1/4 = 1/4, ψ(3) =

1×1/2+1×1/4 = 3/4,ψ(4) = 0×1/2+0×1/4+1×1/8 = 1/8,ψ(5) = 1×1/2+0×1/4+1×1/8 = 5/8,
ψ(6) = 0×1/2+1×1/4+1×1/8 = 3/8, and so on. Clearly,ψ(i) ∈ [0, 1) holds for any (finite)i ∈ Z≥0.

Now, giveni ∈ Z>0, we defineσv(i) as follows. Without loss of generality, we may assume that an
orderingu1, . . . , uδ(v) is defined onN (v) for v ∈ V . Then, we define the functional-routerσv : Z≥0 →
N (v) onv ∈ V such thatσv(i) = uk ∈ N (v) satisfies that

∑k−1
j=1 Pv,uj

≤ ψ(i) <
∑k

j=0 Pv,uj

for k ∈ {1, . . . , δ(v)}, where
∑0

j=1 Pv,uj
= 0, for convenience.

The following theorem is due to van der Corput [48].

Theorem 5.6. [48] For any transition matrixP ,

|Iv,u[0, z) − z·Pv,u| ≤ lg(z + 1)

holds for anyv, u ∈ V and anyz ∈ Z>0.

More sophisticated bounds are found in [38]. Carefully examining Theorem 5.6, we obtain the following
lemma. See Appendix B.2 for the proof.

Lemma 5.7. For any transition matrixP ,
∣∣Iv,u[z, z′)− (z′ − z)Pv,u

∣∣ ≤ 2 lg(z′ − z + 1)

holds for anyv, u ∈ V , and for anyz, z′ ∈ Z≥0 satisfyingz′ > z.

Lemma 5.7 suggests the following lemma.
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Lemma 5.8. Ψσ ≤ 2 lg(M + 1) holds for the van der Corput sequence.

By Theorem 3.1 and Lemma 5.8, we obtain the following.

Theorem 5.9. Let P ∈ RN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a

state spaceV , whereπ denotes the stationary distribution ofP and t∗ denotes the mixing rate ofP . For a
quasi-random router model, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 6πw
πmin

lg(M + 1)· t∗∆

for anyw ∈ V and T ≥ 0, where∆ denotes the maximum degree of the transition diagram ofP , i.e.
∆ = maxv∈V δ(v) andM denotes the total number of tokens onV .

Though the bound depends onlogM , |χ(t)
v /M − µ

(t)
v /M | = O(log(M)/M) holds in terms ofM ,

meaning that the discrepancy approaches asymptotically tozero as increasing the number of tokensM .

5.4 Rotor-router on multidigraph

The rotor-router model described in Section 3.2 can be generally considered on digraphs with parallel edges
(i.e., multidigraphs). Kijima et al. [27] and Kajino et al. [26] are concerned with the rotor-router model on
finite multidigraphs. Suppose thatP is a transition matrix withrational entries. For eachv ∈ V , let δ̄(v) ∈
Z≥0 be a common denominator (or the least common denominator) ofPv,u for all u ∈ N (v), meaning that
δ̄(v)·Pv,u is integer for eachu ∈ N (v). We define a rotor-routerσv(0), σv(1), . . . , σv(δ̄(v)− 1) arbitrarily
satisfying that

∣∣{j ∈ [0, . . . , δ̄(v)) | σv(j) = u}
∣∣ = δ̄(v)·Pv,u

for anyv ∈ V andu ∈ N (v). Then,σv(i) is defined by

σv(i) = σv(i mod δ̄(v))

(
≡ σv

(
i− δ̄(v)·

⌊
i

δ̄(v)

⌋))
. (20)

For the rotor router on a multidigraph, we have
⌊
z′−z
δ̄(v)

⌋
· δ̄(v)Pv,u ≤ Iv,u[z, z′) ≤

(⌊
z′−z
δ̄(v)

⌋
+ 1
)
· δ̄(v)Pv,u,

hence it is not difficult to observe the following.

Observation 5.10.For any transition matrixP ,
∣∣Iv,u[z, z′)− (z′ − z)Pv,u

∣∣ ≤ δ̄(v)Pv,u

holds for anyv, u ∈ V , and for anyz, z′ ∈ Z≥0 satisfyingz′ > z.

Using Observation 5.10, we obtain the following lemma.

Lemma 5.11.Ψσ = ∆̄ holds for the rotor-router model on a multidigraph, where∆̄ = maxv δ̄(v).

By Theorem 3.1, and the above lemma, we obtain the following theorem.

Theorem 5.12. Let P ∈ QN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a

state spaceV , whereπ denotes the stationary distribution ofP and t∗ denotes the mixing rate ofP . For a
rotor router model, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 3πw
πmin

t∗∆∆̄

for anyw ∈ V and T ≥ 0, where∆ denotes the maximum degree of the transition diagram ofP , i.e.
∆ = maxv∈V δ(v), and∆̄ = maxv δ̄(v).
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Analyzing carefully, we obtain the following upper bound for the weighted rotor router model. See
appendix B.3 for the proof.

Theorem 5.13. Let P ∈ QN×N
≥0 be a transition matrix of a reversible and ergodic Markov chain with a

state spaceV , whereπ denotes the stationary distribution ofP and t∗ denotes the mixing rate ofP . For a
rotor router model, the discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 3πw
πmin

t∗∆̄

or anyw ∈ V andT ≥ 0, where∆̄ = maxv δ̄(v).

6 Bounds For Rapidly Mixing Chains

This section shows some examples of bounds suggested by Theorems 3.2 and 5.5 for some celebrated
Markov chains known to be rapidly mixing, namely ones for0-1 knapsack solutions (Section 6.1), linear
extensions (Section 6.2), and matchings (Section 6.3).

6.1 0-1 knapsack solutions

Givena ∈ Zn
>0 andb ∈ Z>0, the set of0-1 knapsack solutions is defined byΩKna = {x ∈ {0, 1}n |∑n

i=1 aixi ≤ b}. We define a transition matrixPKna ∈ R|ΩKna|×|ΩKna| by

PKna(x,y) =





1/2n (if y ∈ NKna(x))
1− |NKna(x)|/2n (if y = x)
0 (otherwise)

(21)

for x,y ∈ ΩKna, whereNKna(x) = {y ∈ ΩKna | ‖x − y‖1 = 1}. Note that the stationary distribution
of PKna is uniform distribution sincePKna is symmetric. The following theorem is due to Morris and
Sinclair [36].

Theorem 6.1. [36] The mixing timeτ(γ) of PKna isO(n
9
2
+α log γ−1) for anyα > 0 and for anyγ > 0.

Thus, Theorem 3.2 (resp. Theorem 5.5) suggests the following.

Theorem 6.2. For the SRT-router model (as well as the billiard-router model) corresponding toPKna, the
discrepancy betweenχ(T ) andµ(T ) satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ = O(n
11
2
+α)

for anyw ∈ V andT ≥ 0, whereα > 0 is an arbitrary constant.

Let µ̃(t) = µ(t)/M , for simplicity, then clearlỹµ(∞) = π holds, sinceP is ergodic (see Section 2).
By the definition of the mixing time,Dtv(µ̃

(τ(ε)), π) ≤ ε holds whereτ(ε) denotes the mixing time ofP ,
meaning that̃µ approximates the target distributionπ well. Thus, we hope for a deterministic random walk

that the “distribution”χ̃(T ) def.
= χ(T )/M approximates the target distributionπ well. For convenience, a

point-wise distanceDpw(ξ, ζ) betweenξ ∈ RN
≥0 andζ ∈ RN

≥0 satisfying‖ξ‖1 = ‖ζ‖1 = 1 is defined by

Dpw(ξ, ζ)
def.
= max

v∈V
|ξv − ζv| = ‖ξ − ζ‖∞. (22)
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Corollary 6.3. For an arbitraryε (0 < ε < 1), let the total number of tokensM := c1 n
11
2
+αε−1 with some

appropriate constantsc1 andα. Then, the pointwise distance betweenχ̃(T ) def.
= χ(T )/M andπ satisfies

Dpw

(
χ̃(T ), π

)
≤ ε (23)

for anyT ≥ c2 n
9
2
+α log ε−1 with an appropriate constantc2, whereπ is the uniform distribution overΩKna.

6.2 Linear extensions of a poset

Let S = {1, 2, . . . , n}, andQ = (S,�) be a partial order. A linear extension ofQ is a total orderX =
(S,⊑) which respectsQ, i.e., for all i, j ∈ S, i � j implies i ⊑ j. Let ΩLin denote the set of all linear
extensions ofQ. We define a relationshipX ∼p X

′ (p ∈ {1, . . . , n}) for a pair of linear extensionsX and
X ′ ∈ ΩLin satisfying thatxp = x′p+1, xp+1 = x′p, andxi = x′i for all i 6= p, p+ 1, i.e.,

X = (x1, x2, . . . , xp−1, xp, xp+1, xp+2, . . . , xn)

X ′ = (x1, x2, . . . , xp−1, xp+1, xp, xp+2, . . . , xn)

holds. Then, we define a transition matrixPLin ∈ R|ΩLin|×|ΩLin| by

PLin(X,X
′) =





F (p)/2 (if X ′ ∼p X)
1−∑I∈NLin(X) PLin(X, I) (if X ′ = X)

0 (otherwise)
(24)

for X,X ′ ∈ ΩLin, whereNLin(X) = {Y ∈ ΩLin | X ∼p Y (p ∈ {1, . . . , n − 1})} andF (p) = p(n−p)
1
6
(n3−n)

.

Note thatPLin is ergodic and reversible, and its stationary distributionis uniform onΩLin [4]. The following
theorem is due to Bubley and Dyer [4].

Theorem 6.4. [4] For PLin,

τ(γ) ≤
⌈
1

6
(n3 − n) ln

n2

4γ

⌉

holds for anyγ > 0.

It is not difficult to see that the maximum degree∆ = n (including a self-loop) of the transition diagram
PLIN. Thus, Theorem 5.5 suggests the following6.

Theorem 6.5. For the billiard-router model corresponding toPLIN, the discrepancy betweenχ(T ) andµ(T )

satisfies

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ (n− 1)

⌈
1

3
(n3 − n) lnn

⌉
= O(n4 log n)

for anyw ∈ V andT ≥ 0.

6 Theorem 3.2 also suggests that|χ(T )
w − µ

(T )
w | ≤ n

⌈

1
3
(n3 − n) lnn

⌉

= O(n4 log n) for the SRT-router model.

14



6.3 Matchings in a graph

Counting all matchings in a graph, related to theHosoya index[20], is known to be #P-complete [47].
Jerrum and Sinclair [24] gave a rapidly mixing chain. This section is concerned with a Markov chain for
sampling from all matchings in a graph7.

Let H = (U,F ) be an undirected graph, where|U | = n and |F | = m. A matching inH is a subset
M ⊆ F such that no edges inM share an endpoint. LetΩMat denote the set of all possible matchings of
H. LetNC(M) = {e = {u, v} | e /∈ M,both u and v are matched in M} and letNMat(M) = {e | e /∈
NC(M)}. Then, fore = {u, v} ∈ NMat(M), we defineM(e) by

M(e) =





M− e (if e ∈ M)
M+ e (if u and v are unmatched inM)
M+ e− e′ (if exactly one ofu andv is matched inM , ande′ is the matching edge).

The we define the transition matrixPMat ∈ R|ΩMat|×|ΩMat| by

PMat(M,M′) =





1/2m (if M′ = M(e))
1− |NMat(M)|/2m (if M′ = M)
0 (otherwise)

for anyM,M′ ∈ ΩMat. Note thatPMat is ergodic and reversible, and its stationary distributionis uniform
onΩMat [24]. The following theorem is due to Jerrum and Sinclar [24].

Theorem 6.6. [24] For PMat,

τ(γ) ≤ 4mn(n lnn+ ln γ−1)

holds for anyγ > 0.

It is not difficult to see that the maximum degree∆ = m + 1 (including a self-loop) of the transition
diagramPLIN. Thus, Theorem 5.5 suggests the following8.

Theorem 6.7. For the billiard-router model corresponding toPLIN, the discrepancy betweenχ(T ) andµ(T )

satisfies
∣∣∣χ(T )

w − µ(T )
w

∣∣∣ ≤ 4m2n(n lnn+ ln 4) = O(m2n2 log n)

for anyw ∈ V andT ≥ 0.

7 Concluding Remarks

This paper has been concerned with the functional-router model, that is a generalization of the rotor-router
model, and gave an upper bound of|χ(t)

v − µ
(t)
v | when its corresponding Markov chain is reversible. We

can also show a similar bound for a version of functional-router model with oblivious routers (see [43]).
A bound of the point-wise distance independent ofπmax/πmin and/or independent of∆ is a future work.
Development of deterministic approximation algorithms based on deterministic random walks for #P-hard
problems is a challenge.

7 Remark that counting allperfectmatchings in a bipartite graph, related to thepermanent, is also well-known #P-complete
problem, and Jerrum et al. [25] gave a celebrated FPRAS basedon an MCMC method using annealing. To apply our bound to a
Markov chain for sampling perfect matchings, we need some assumptions on the input graph (see e.g., [45, 24, 25]).

8 Theorem 3.2 also suggests that|χ(T )
w − µ

(T )
w | ≤ 4(m+ 1)mn(n lnn+ ln 4) = O(m2n2 log n) for the SRT-router model.
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A Fundamental Properties of Markov Chain and Mixing Time

A.1 Proof of Proposition 2.1

In this section, we show Proposition 2.1 (see e.g., [35, 37]).
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Proposition 2.1 For any integersℓ (ℓ ≥ 1) andk (0 ≤ k < τ(γ)),

h (ℓ· τ(γ) + k) ≤ 1

2
(2γ)ℓ

holds for anyγ (0 < γ < 1/2).
To begin with, we define

h̄(t)
def.
= max

v,w∈V
Dtv(P

t
v,·, P

t
w,·). (25)

Then, we show the following.

Lemma A.1. Let ξ, ζ ∈ R|V | be arbitrary probability distributions. Then,

Dtv(ξP
t, ζP t) ≤ h̄(t)

holds for anyt ≥ 0.

Proof. By (2),

Dtv(ξP
t − ζP t) =

1

2

∥∥∥∥∥
∑

v∈V

ξvP
t
v,· −

∑

w∈V

ζwP
t
w,·

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥
∑

v∈V

ξvP
t
v,·

∑

w∈V

ζw −
∑

w∈V

ζwP
t
w,·

∑

v∈V

ξv

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥
∑

v∈V

∑

w∈V

ξvζw
(
P t
v,· − P t

w,·

)
∥∥∥∥∥
1

(26)

holds. Notice that
∑

u∈V ξu =
∑

u∈V ζu = 1, sinceξ andζ are probability distributions. Thus,

(26) ≤ 1

2

∑

v∈V

∑

w∈V

ξvζw
∥∥P t

v,· − P t
w,·

∥∥
1

≤ 1

2
max
v,w∈V

∥∥P t
v,· − P t

w,·

∥∥
1

∑

v∈V

∑

w∈V

ξvζw

=
1

2
max
v,w∈V

∥∥P t
v,· − P t

w,·

∥∥
1
= h̄(t)

holds, where the second last equality follows
∑

v∈V

∑
w∈V ξvζw =

∑
v∈V ξv

∑
w∈V ζw =

∑
v∈V ξv = 1,

and we obtain the claim.

Lemma A.2.

h(t) ≤ h̄(t) ≤ 2h(t)

holds for anyt ≥ 0.

Proof. Let ev ∈ R|V | denote thev-th unit vector. By Lemma A.1,

Dtv(P
t
v,·, π) = Dtv(evP

t, πP t) ≤ h̄(t)

holds for anyv ∈ V , and we obtainh(t) ≤ h̄(t).
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By the definition of the total variation distance,

Dtv(P
t
v,·, P

t
w,·) =

1

2

∑

u∈V

∣∣P t
v,u − πu + πu − P t

w,u

∣∣

≤ 1

2

∑

u∈V

∣∣P t
v,u − πu

∣∣+ 1

2

∑

u∈V

∣∣πu − P t
w,u

∣∣ ≤ 2h(t)

holds for anyv,w ∈ V . We obtain̄h(t) ≤ 2h(t).

Lemma A.3. Suppose a vectorξ ∈ R|V | satisfies
∑

i∈V ξi = 0, then

∥∥ξP t
∥∥
1
≤ ‖ξ‖1 h̄(t)

holds for anyt ≥ 0.

Proof. For convenience, letξ+, ξ− ∈ R|V | be defined byξ+i = max{ξi, 0} andξ−i = max{−ξi, 0}. Then,

ξ+i − ξ−i = max{ξi, 0} −max{−ξi, 0} = ξi (27)

holds, meaning that

ξ = ξ+ − ξ−. (28)

Since
∑

i∈V ξi = 0,

∑

i∈V

ξ+i =
∑

i∈V

ξ−i (29)

holds by (27). By the definition ofξ+ andξ−,

ξ+i + ξ−i = max{ξi, 0} +max{−ξi, 0} = |ξi|

holds. Hence
∑

i∈V

ξ+i +
∑

i∈V

ξ−i =
∑

i∈V

|ξi| (30)

holds. Thus, by (29) and (30),

∑

i∈V

ξ+i =
∑

i∈V

ξ−i =
1

2

∑

i∈V

|ξi| =
1

2
‖ξ‖1 (31)

holds, hence ξ+

1
2
‖ξ‖1

and ξ−

1
2
‖ξ‖1

are probabilistic distribution, respectively. Finally, by Lemma A.1 and (28),

∥∥ξP t
∥∥
1

=
∥∥ξ+P t − ξ−P t

∥∥
1
=

1

2
‖ξ‖1·

∥∥∥∥∥
ξ+

1
2‖ξ‖1

P t − ξ−

1
2‖ξ‖1

P t

∥∥∥∥∥
1

≤ ‖ξ‖1 h̄(t)

holds, and we obtain the claim.
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Lemma A.4.

h(s + t) ≤ h(s)h̄(t), and

h̄(s+ t) ≤ h̄(s)h̄(t)

hold for anys, t ≥ 0.

Proof. By Lemma A.3,

1

2

∥∥evP s+t − π
∥∥
1
=

1

2

∥∥(evP s − π)P t
∥∥
1

≤ 1

2
‖evP s − π‖1 h̄(t)

holds for anyv ∈ V , and we geth(s+ t) ≤ h(s)h̄(t). Similarly,

1

2

∥∥evP s+t − ewP
s+t
∥∥
1
=

1

2

∥∥(evP s − ewP
s)P t

∥∥
1

≤ 1

2
‖evP s − ewP

s‖1 h̄(t)

holds for anyv,w ∈ V , and we get̄h(s+ t) ≤ h̄(s)h̄(t).

Proof of Proposition 2.1.Using Lemma A.4,

h (ℓ· τ(γ) + k) ≤ h (ℓ· τ(γ)) h̄(k) ≤ h (ℓ· τ(γ))
≤ h (τ(γ)) · h̄ ((ℓ− 1)· τ(γ)) ≤ h (τ(γ)) ·

(
h̄ (τ(γ))

)ℓ−1
(32)

holds. By Lemma A.2,

(32) ≤ h (τ(γ)) · (2h (τ(γ)))ℓ−1 ≤ γ· (2γ)ℓ−1 ≤ 1

2
(2γ)ℓ

holds, and we obtain the claim.

A.2 Supplemental proof of Theorem 3.1

We show the following proposition, appearing in the proof ofTheorem 3.1.

Proposition A.5. If P is reversible, then

πuP
t
u,v = πvP

t
v,u

holds for anyu, v ∈ V and for anyt ≥ 1.

Proof. We show the claim by an induction oft. For t = 1, the claim is clear by the definition of reversible.
Assuming thatπu′P t

u′,v′ = πv′ holds for anyu′, v′ ∈ V , we show thatπuP t+1
u,v = πvP

t+1
v,u holds for any

u, v ∈ V as follows;

πuP
t+1
u,v = πu

∑

w∈V

P t
u,wPw,v =

∑

w∈V

πuP
t
u,wPw,v

=
∑

w∈V

πwP
t
w,uPw,v =

∑

w∈V

P t
w,uπwPw,v

=
∑

w∈V

P t
w,uπvPv,w = πv

∑

w∈V

Pv,wP
t
w,u

= πvP
t+1
v,u .

We obtain the claim.
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B Supplemental proofs in Section 5

B.1 Proof of Theorem 5.5

Remark that

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ≤ πw
πmin

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
w,u − πu

∣∣ (33)

holds using Proposition A.5 (cf. recall that the arguments on (15) in Section 4). We also remark that

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
w,u − πu

∣∣ =
T−1∑

t=0

2Dtv(P
t
w,·, π) ≤

2(1− γ)

1− 2γ
τ(γ) = 3t∗ (34)

holds by Lemma 4.2.

Proof of Theorem 5.5.By (13) and Lemma 5.2, we obtain

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤
T−1∑

t=0

∑

u∈V

∑

v∈N (u)

∣∣∣Z(t)
v,u − χ(t)

v Pv,u

∣∣∣
∣∣P T−t−1

u,w − πw
∣∣

≤
T−1∑

t=0

∑

u∈V

∑

v∈N (u)

(1 + Pv,u(δ
+(v)− 2))

∣∣P T−t−1
u,w − πw

∣∣

=

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ∑

v∈N (u)

1 +

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ∑

v∈N (u)

Pv,u(δ(v) − 2). (35)

By combining (33) and (34), we obtain

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ∑

v∈N (u)

1 ≤ ∆πw
πmin

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
w,u − πu

∣∣ ≤ 3πw
πmin

t∗∆. (36)

SinceP is reversible, we obtain

∑

v∈N (u)

Pv,u(δ(v) − 2) ≤ (∆− 2)
∑

v∈N (u)

Pv,u = (∆ − 2)
∑

v∈N (u)

πuPu,v

πv
≤ (∆− 2)

πu
πmin

, (37)

and hence

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ∑

v∈N (u)

Pv,u(δ(v) − 2) ≤ ∆− 2

πmin

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣πu

=
∆− 2

πmin

T−1∑

t=0

∑

u∈V

∣∣πuP T−t−1
u,w − πuπw

∣∣ = ∆− 2

πmin

T−1∑

t=0

∑

u∈V

∣∣πwP T−t−1
w,u − πuπw

∣∣

=
(∆− 2)πw

πmin

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
w,u − πu

∣∣ ≤ 3πw
πmin

t∗(∆ − 2). (38)

Thus, we obtain the claim by (35), (36) and (38).
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B.2 Supplemental Proofs in Section 5.3

This section presents a proof of Theorem 5.6 and Lemma 5.7. Tobegin with, we remark two lemmas
concerning the functionψ defined by (19).

Lemma B.1. For anyi ∈ Z≥0 and anyk ∈ Z≥0,

ψ(i) = ψ
(
i mod 2k

)
+ ψ

(⌊
i

2k

⌋)
· 1

2k

holds.

Proof. In case ofi < 2k, the claim is easy sinceψ(i mod 2k) = ψ(i) andψ(⌊i/2k⌋) = ψ(0) = 0 holds.

Suppose thati ≥ 2k, and thati is represented in binary asi =
∑⌊lg i⌋

j=0 βj(i)· 2j usingβj(i) ∈ {0, 1}
(j ∈ {0, 1, . . . , ⌊lg i⌋}). Then,

i mod 2k =




⌊lg i⌋∑

j=0

βj(i)· 2j

 mod 2k =

k−1∑

j=0

βj(i)· 2j , and

⌊
i

2k

⌋
=

⌊∑⌊lg i⌋
j=0 βj(i)· 2j

2k

⌋
=

⌊lg i⌋∑

j=k

βj(i)· 2j−k

hold, respectively. Letl = j − k and letbl = βl+k(i) (l = 0, 1, . . . , ⌊lg i⌋ − k), for convenience, then

ψ
(
i mod 2k

)
+ ψ

(⌊
i

2k

⌋)
· 1

2k
= ψ




k−1∑

j=0

βj(i)2
j


+ ψ




N∑

j=k

βj(i)· 2j−k


 · 1

2k

=

k−1∑

j=0

βj(i)2
−(j+1) + ψ




⌊lg i⌋−k∑

l=0

bl· 2l

 · 1

2k
=

k−1∑

j=0

βj(i)2
−(j+1) +

1

2k

⌊lg i⌋−k∑

l=0

bl· 2−(ℓ+1)

=

k−1∑

j=0

βj(i)2
−(j+1) +

1

2k

⌊lg i⌋∑

j=k

βj(i)· 2−(j−k+1) =

k−1∑

j=0

βj(i)2
−(j+1) +

⌊lg i⌋∑

j=k

βj(i)· 2−(j+1)

=

⌊lg i⌋∑

j=0

βj(i)· 2−(j+1) = ψ(i)

and, we obtain the claim.

Lemma B.2. For anyk ∈ Z≥0 andα ∈ {0, 1, . . . , 2k − 1},

ψ(2k + α) =
1

2k+1
+ ψ(α)

holds.

Proof. By LemmaB.1,

ψ(2k + α) = ψ
(
(2k + α) mod 2k

)
+ ψ

(⌊
2k + α

2k

⌋)
· 1

2k

= ψ(α) +
ψ(1)

2k

=
1

2k+1
+ ψ(α)

holds, where the last equality followsψ(1) = 1/2 by the definition.
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Now, we define

Φ[z, z′)
def.
= {ψ(i) | i ∈ {z, z + 1, . . . , z′ − 1}} (39)

for z, z′ ∈ Z≥0 satisfyingz < z′. For convenience, we defineΦ[z, z) = ∅. It is not difficult to see that

Φ[0, 2k) =

{
i

2k
| i ∈ {0, 1, . . . , 2k − 1}

}
(40)

holds for anyk ∈ Z≥0. In general, we can show the following lemma, using Lemmas B.1 and B.2.

Lemma B.3. For anyz ∈ Z≥0 and for anyk ∈ Z≥0

∣∣∣∣Φ[z, z + 2k) ∩
[
i

2k
,
i+ 1

2k

)∣∣∣∣ = 1

holds for anyi ∈ {0, 1, . . . , 2k − 1}.

Proof. By Lemma B.1,

Φ[z, z + 2k) =
{
ψ(z + i) | i ∈ {0, 1, . . . , 2k − 1}

}

=

{
ψ
(
(z + i) mod 2k

)
+
ψ
(⌊

z+i
2k

⌋)

2k
| i ∈ {0, 1, . . . , 2k − 1}

}

holds. Since0 ≤ ψ(z′) < 1 holds for anyz′ ∈ Z≥0,

ψ
(
(z + i) mod 2k

)
+
ψ
(⌊

z+i
2k

⌋)

2k

∈
[
ψ
(
(z + i) mod 2k

)
, ψ
(
(z + i) mod 2k

)
+

1

2k

)
(41)

holds for eachi ∈ {0, 1, . . . , 2k − 1}. The observation (40) implies that
{
ψ
(
(z + i) mod 2k

)
| i ∈ {0, 1, . . . , 2k − 1}

}

=

{
j

2k
| j ∈ {0, 1, . . . , 2k − 1}

}
(42)

holds. Notice that (42) impliesψ
(
(z + i) mod 2k

)
6= ψ

(
(z + i′) mod 2k

)
for any distincti, i′ ∈ {0, 1, . . . , 2k−

1}. Now, the claim is clear by (41) and (42).

Note that Lemma B.3 implies that

Φ[z, z + 2k) =

{
i

2k
+
θ(i)

2k
| i ∈ {0, 1, . . . , 2k − 1}

}
(43)

using appropriateθ(i) ∈ [0, 1) for i = 0, 1, . . . , 2k − 1.

Lemma B.4. Letz0, k ∈ Z≥0, and letx, y ∈ [0, 1) satisfyx < y. Then,
∣∣∣|Φ[z0, z0 + 2k) ∩ [x, y)| − 2k· (y − x)

∣∣∣ < 2

holds.
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Proof. Lemma B.3 and Equation (43) implies that there existss, t ∈ {0, 1, . . . , 2k − 1} such thats ≤ t and

s

2k
+
θ(s)

2k
≤ x <

s+ 1

2k
+
θ(s+ 1)

2k
(44)

t

2k
+
θ(t)

2k
≤ y <

t+ 1

2k
+
θ(t+ 1)

2k
(45)

where we assume

−1

2k
+
θ(−1)

2k
= 0 and

2k

2k
+
θ(2k)

2k
= 1

for convenience. Then, it is clear that

Φ[z0, z0 + 2k) ∩ [x, y) =

{
i

2k
+
θ(i)

2k
| i ∈ {s, s+ 1, . . . , t− 1}

}

wheres = t means thatΦ[z0, z0 + 2k) ∩ [x, y) = ∅. By (44) and (45), we obtain

2k·x− θ(s+ 1)− 1 < s ≤ 2k·x− θ(s),

2k· y − θ(t+ 1)− 1 < t ≤ 2k· y − θ(t)

respectively, and hence we obtain that

2k· (y − x)− θ(t+ 1)− 1 + θ(s) < t− s < 2k· (y − x)− θ(t) + θ(s+ 1) + 1.

Since|Φ[z0, z0 + 2k) ∩ [x, y)| = t− s and0 ≤ θ(i) < 1 (i ∈ {0, 1, . . . , 2k − 1}),

2k· (y − x)− 2 <
∣∣∣Φ[z0, z0 + 2k) ∩ [x, y)

∣∣∣ < 2k· (y − x) + 2

holds, and we obtain the claim.

Using Lemma B.4, we obtain the following.

Lemma B.5. Letz0 ∈ Z≥0, z ∈ Z>0, and letx, y ∈ [0, 1) satisfyx < y. Then,
∣∣∣∣
|Φ[z0, z0 + z) ∩ [x, y)|

z
− (y − x)

∣∣∣∣ <
2⌊lg z⌋+ 2

z

holds.

Proof. For simplicity, let

Φ∗[z0, z0 + ℓ)
def.
= Φ[z0, z0 + ℓ) ∩ [x, y)

for anyℓ ∈ Z>0. Then, notice that

|Φ∗[z0, z0 + z)| =
∣∣Φ∗[z0, z0 + z′)

∣∣+
∣∣Φ∗[z0 + z′, z0 + z)

∣∣ (46)
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holds for anyz′ ∈ Z>0 satisfyingz′ < z. Now, supposez is represented asz =
∑⌊lg y⌋

j=0 βj(z)· 2j in binary,
whereβj(z) ∈ {0, 1}. Using Lemma B.4, we obtain that

|Φ∗[z0, z0 + z)| =

∣∣∣∣∣∣
Φ∗


z0, z0 +

⌊lg z⌋∑

j=0

βj(z)· 2j



∣∣∣∣∣∣

=
∣∣Φ∗

[
z0, z0 + β0(z)· 20

)∣∣+
⌊lg z⌋−1∑

k=0

∣∣∣∣∣∣
Φ∗


z0 +

k∑

j=0

βj(z)· 2j , z0 +
k+1∑

j=0

βj(z)· 2j



∣∣∣∣∣∣

< β0(z)· 20· (y − x) + 2 +

⌊lg z⌋−1∑

k=0

(
βk+1(z)· 2k+1· (y − x) + 2

)

=

⌊lg z⌋∑

k=0

(
βk(z)· 2k · (y − x) + 2

)

= 2(⌊lg z⌋+ 1) + (y − x)

⌊lg z⌋∑

k=0

βk(z)· 2k

= 2(⌊lg z⌋+ 1) + z· (y − x).

In a similar way, we also have

|Φ∗[z0, z0 + z)| > 2(⌊lg z⌋ − 1) + z· (y − x),

and we obtain the claim.

By Lemma B.5, it is not difficult to see Theorem 5.6 and Lemma 5.7 holds.

B.3 Proof of Theorem 5.13

By (13) and Observation 5.10, we obtain

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤
T−1∑

t=0

∑

u∈V

∑

v∈N (u)

∣∣∣Z(t)
v,u − χ(t)

v Pv,u

∣∣∣
∣∣P T−t−1

u,w − πw
∣∣

≤
T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ∑

v∈N (u)

δ̄(v)Pv,u

≤
T−1∑

t=0

∑

u∈V

∣∣P T−t−1
u,w − πw

∣∣ ∑

v∈N (u)

δ̄(v)
πuPu,v

πv

≤ maxv∈V δ̄(v)

πmin

T−1∑

t=0

∑

u∈V

∣∣πuP T−t−1
u,w − πuπw

∣∣ ∑

v∈N (u)

Pu,v

=
maxv∈V δ̄(v)πw

πmin

T−1∑

t=0

∑

u∈V

∣∣P T−t−1
w,u − πu

∣∣ . (47)

Thus, we obtain the claim by combining (34) and (47).

26


	1 Introduction
	2 Preliminaries: Markov Chain Monte Carlo
	3 Model and Main Results
	3.1 Rotor-router model
	3.2 Functional-router model
	3.3 Main results

	4 Analysis of the Point-wise Distance
	5 Specific Functional-routers
	5.1 SRT router
	5.2 Billiard router
	5.3 Quasi-random router
	5.4 Rotor-router on multidigraph

	6 Bounds For Rapidly Mixing Chains
	6.1 0-1 knapsack solutions
	6.2 Linear extensions of a poset
	6.3 Matchings in a graph

	7 Concluding Remarks
	A Fundamental Properties of Markov Chain and Mixing Time
	A.1 Proof of Proposition ??
	A.2 Supplemental proof of Theorem ??

	B Supplemental proofs in Section ??
	B.1 Proof of Theorem ??
	B.2 Supplemental Proofs in Section ??
	B.3 Proof of Theorem ??


