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Abstract

The functional ANOVA expansion of a multivariate mapping plays a fundamental role in
statistics. The expansion is unique once a unique distribution is assigned to the covariates.
Recent investigations in the environmental and climate sciences show that analysts may not
be in a position to assign a unique distribution in realistic applications. We offer a systematic
investigation of existence, uniqueness, orthogonality, monotonicity and ultramodularity of the
functional ANOVA expansion of a multivariate mapping when a multiplicity of distributions
is assigned to the covariates. In particular, we show that a multivariate mapping can be
associated with a core of probability measures that guarantee uniqueness. We obtain new
results for variance decomposition and dimension distribution under mixtures. Implications
for the global sensitivity analysis of computer experiments are also discussed.

Keywords: Computer Experiments; Functional ANOVA; Mixtures; Global Sensitivity
Analysis.

1 Introduction

The functional ANOVA expansion [24] plays a central role in the design and analysis of com-
puter experiments [75]. It provides the mathematical background of modern approaches to
statistical inference in computer experiments [51]. One of the key premises to the current
use of functional ANOVA-based methods is the unique distribution assumption: We assume
to have information about the factors’ probability distribution, either joint or marginal, with
or without correlation, and that this knowledge comes from measurements, estimates, expert
opinion, physical bounds, output from simulations, analogy with factors for similar species, and
so forth [74, p. 704]. With this assumption, we obtain a unique functional ANOVA expansion
and, consequently, a unique set of the associated sensitivity measures.

However, lack of data, measurement errors, or expert disagreement may prevent analysts
from assigning a unique distribution to the model inputs. Millner et al. report that researchers
have assigned nineteen different distributions to climate sensitivity in alternative scientific in-
vestigations of the past ten years [48]. Gao et al. show high variability in computer experiments
performed under alternative scenarios [26]. Paleari and Confalonieri test robustness of sen-
sitivity results for uncertainty in distribution using the WARM model as a case study [57].
They show that uncertainty in distribution causes an overturn of the most important variables
in 22% of the cases. These are not the first works dealing with the robustness of a sensitiv-
ity analysis results to the choice of the model input distributions. Early on, Chick discusses
the use of two-stage distributions in simulation experiments [19], Hu et al. studies uncertainty
quantification on a well known climate model under uncertainty in distribution [34]. The work
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of Beckman and McKay is possibly the first work discussing the stability of sensitivity analysis
results for perturbations in the model input distributions [6]. As Saltelli et al. underline, the
use of multiple distributions may controversial [73]. Nonetheless, it has become a de-facto
part of several studies and is frequently adopted.

Our purpose is to offer a systematic investigation of the impact of removing the unique
distribution assumption on the classical functional ANOVA expansion of a multivariate map-
ping. We consider two paths that emerge from current and past practices. The starting

datum is that the analyst posits a set M =
{
µ1
X(x), µ2

X(x), . . . , µQ
X
(x)

}
of plausible model

input distributions. In the first path, the analyst evaluates the model for each distribution
in M separately and obtains sensitivity measures for each distribution — without-prior path,
henceforth. In the second path, the analyst assigns a prior over the the distributions in M
— with-prior path henceforth. For each path, we investigate six relevant notions: existence,
uniqueness, orthogonality, monotonicity, ultramodularity, variance decomposition and dimen-
sion distribution. We study the implications in light of three sensitivity analysis settings:
factor prioritization, trend identification and interaction quantification.

Let us report some of the findings. In both paths, existence is ensured if all the posited
measures are compatible with the functional ANOVA expansion of the input output map-
ping. Regarding uniqueness, in the without-prior path the analyst is dealing with as many
functional ANOVA expansions as many are the cores in M. A core is defined as a set of prob-
ability measures that lead to identical expansions. Thus, one has uniqueness if all the posited
measures belong to the same core. In the with-prior path, one regains uniqueness: a multivari-
ate mapping can be uniquely represented as the mixture of functional ANOVA expansions.
Regarding orthogonality, in the without-prior path it is preserved. In the with-prior path,
mixtures of classical functional ANOVA effects are not orthogonal with respect to the mixture
of the distributions in M. Regarding monotonicity and ultramodularity, in the without-prior
path these properties are preserved by the first order effects of the classical functional ANOVA
expansion under each measure in M, as shown in previous literature [5]. In the with-prior
path, we show that they are still preserved by the mixture of first order functional ANOVA
effects.

Regarding variance decomposition and dimension distribution, in the without-prior path,
the multiplicity of variance decompositions and of dimension distributions equals the cardinal-
ity of M. Conversely, variance decomposition and dimension distribution regain uniqueness
in the with-prior path. The variance can be decomposed as the sum of two terms, a structural
term equal to the mixture of variance decompositions and a second generated by the vari-
ability of the model output across the measures in M. We analyze the question of whether
there are conditions under which an analyst can proceed ignoring the presence of multiple
distributions. Our analysis shows that in a trend identification setting, monotonicity of the
input-output mapping is a sufficient condition for the indications about trend obtained under
one measure to remain the same under any other measure in M. The same does not apply
for factor prioritization and interaction quantification where the analyst needs to deal with a
multiplicity of sensitivity measures, unless she(he) posits a prior. Then, the question is how to
deal with such multiplicity. Formalizing the approach in [26], we propose a robust extension
of the sensitivity settings of [74] and illustrate their application through a case study.

The remainder of the paper is organized as follows. Section 2 presents a literature review.
Section 3 discusses the functional ANOVA expansion in the without-prior path and introduces
the notion of functional ANOVA core. Section 4 addresses the with-prior path, discussing
uniqueness, monotonicity, orthogonality and ultramodularity. Section 5 addresses variance
decomposition and dimension distribution in the without-prior and with-prior paths. Section 6
offers a twofold discussion, focusing first on decision-theoretical aspects and then on the link
between the mixture functional ANOVA decomposition and the generalized functional ANOVA
expansion [40, 63]. Section 7 discusses numerical aspects and presents an application. Section
8 concludes the work.
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2 Functional ANOVA and Related Concepts: A Re-

view

The functional ANOVA expansion of a multivariate mapping originates with the works of [25]
and [31], and is definitively established with the well known proofs of [24], [78] and [60] (see
[56] for a detailed historical account).
Applications of the functional ANOVA expansion are numerous. Without any exhaustiveness
claim, we recall its role in the study of quasi-Monte Carlo integration methods, where it is
applied to various notions of the effective dimension of an integrand [54, p. 1] and in dimension
reduction in high-dimensional problems in finance [84]. It is fundamental for smoothing spline
ANOVA models [82, 29, 42, 35], as well as for generalized regression models [36, 37, 39]. It
is also used in conjunction with metamodelling methods, such as Gaussian metamodelling
[51], polynomial chaos expansion [85, 16, 86, 80] and polynomial dimensional decomposition
[61]. The latter finds applications in multi-scale fracture mechanics [64], random eigenvalue
problems [65], and stochastic design optimization [68].

Regarding the mathematical framework, one writes the input-output mapping as

g : X → R, (1)

where X ⊆ R
n and n is the number of inputs. Under uncertainty, we denote the input

probability space by (X ,B(X ), µ), where µ : B(X ) → [0, 1] represents the input probability
distribution. Uncertainty in the input causes the model output to become a function of random
variables, G = g(X).

Consider now the set Z = {1, 2, . . . , n} of the n model input indices, and let 2Z denote the
associated power set. In the remainder, z ∈ 2Z denotes a generic subset of indices. Throughout
the work, we assume that g ∈ L2(X ,B(X ), µ) and that dµ(x) =

∏n

t=1 dµt(xt), unless noted
otherwise.

Proposition 1 [24] Under the above assumptions, g can be integrally expanded as the sum of
2n effects

g(x) =
∑

z∈2Z

gµz (xz), (2)

where

gµ∅ = gµ0 = Eµ[G] =
∫
X
g(x)dµ(x) , gµz (xz) =

∫
X∼z

g(x)dµ(x∼z)−
∑

v⊂z g
µ
v (xv), (3)

dµ(x∼z) =
∏

t 6∈z
dµt(xt) and X = Xz × X∼z, Xz ⊆ R

|z|, X∼z ⊆ R
n−|z|.

The function gµz (xz) is called effect function of order k, where k = |z| is the cardinality of
the index set z. It refers to the residual interaction of the inputs whose indices are in z. In
Proposition 1, µ is a product measure. The effect functions satisfy the following conditions
named strong annihilating conditions in [63]:

∫

R

gµz (xz)dµi(xi) = 0 for i ∈ z and z 6= ∅. (4)

These conditions imply that the effect functions have null expectation and are orthogonal, i.e.,

Eµ[g
µ
z (Xz)] = 0 for all z 6= 0, and Eµ[g

µ
z (Xz′)g

µ

z′′
(Xz′′)] = 0 for all z′′ 6= z′. (5)

In the remainder, also the conditional expectations are of interest, i.e., the non-orthogonalized
effect functions

wµ
z (xz) = Eµ [G|Xz = xz] =

∑

v⊆z

gµv (xv). (6)

One then obtains the decomposition of the variance of G in 2n − 1 terms following the
steps in [24, 77]. In particular, by subtracting gµ0 from both sides, squaring, and taking the
expectation we obtain

Eµ

[
(g(X)− gµ0 )

2] = Eµ

[
(

∑

z∈2Z ,z 6=∅

gµz (Xz))
2]. (7)
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The left-hand side of (7) is the variance of g(X), V
µ[G]. Then, as a consequence of the

conditions in (5), we have

V
µ[G] =

∑

z∈2Z ,z 6=∅

∫

Xz

[gµz (xz)]
2dµ(xz). (8)

In summary, we have the following result.

Proposition 2 [24, 77] The variance of G under µ, Vµ[G], can be written as:

V
µ[G] =

∑

z∈2Z ,z 6=∅

V µ
z where V µ

z =

∫

Xz

[gµz (xz)]
2dµ(xz). (9)

The term V µ
z represents the portion of Vµ[G] caused by the interactions of the inputs with

indices in z. The variance decomposition in (9) is the basis for the definition of variance-based
sensitivity indices, which are obtained by normalizing V µ

z [32, 77]:

Sµ
z = V µ

z /Vµ[G]. (10)

The quantity Sµ
z is called the variance-based sensitivity index of group z for all z ∈ 2Z , z 6= ∅.

In the formal parts of this work, we shall use the non-normalized version of the indices
V µ
z , for notational simplicity. We shall use the normalized version Sµ

z in numerical experi-
ments/examples. The literature has placed particular emphasis on the first and total order
sensitivity indices, defined respectively as

V µ
i = V µ

{i} and V T µ
i =

∑

z:i∈z,z 6=∅

V µ
z . (11)

The quantities V µ
i and V T µ

i are the individual and the total contribution of Xi to the variance
of G.

The estimation of variance-based sensitivity measures has been subject of intensive studies
since the late 1990’s and is still an active field of research [55, 56]. Indeed, the highest
computational cost for estimation of all variance-based indices is CBF

all = (2n − 1)NintNout,
where Nint and Nout are the sample sizes required for the inner and outer loops of model
evaluation associated with a brute force estimation. However, the Extended FAST approach
of [76] allows us to obtain first and total order indices at a cost proportional to nNr, where
Nr is an appropriate number of replicates. The pick and freeze design developed in the
works of Sobol’ [78], Homma and Saltelli [32], and its amelioration in [69] and [70] allows the
estimation of all first and total order effects at a cost of N(n + 2) model runs, where N is
the basic sample size. The random balance design, a variant of the FAST method introduced
in [81], enables the estimation of first order sensitivity indices at a nominal cost of N model
runs. This is the same computational cost of a so-called given data estimation. A given data
estimation computes global sensitivity measures from the sample available after an uncertainty
quantification. That is, one generates a sample of size N for uncertainty quantification and
then the same sample is used to estimate global sensitivity measures. Due to space constraints,
we cannot give a detailed formulation of the given data approach and we refer the interested
reader to [79, 59, 10] for further details. The COSI method introduced in [58] is a variant
of the FAST method that permits the estimation of first order sensitivity indices from the
sample generated for an uncertainty quantification. These approaches encounter limitations
when the estimation of higher order indices is of interest. To this purpose, a strategy in which
the N model runs are used to fit a metamodel and then the metamodel is used to estimate
sensitivity indices may be more effective. Subroutines based on polynomial chaos expansion
[80, 22], polynomial dimensional decomposition [62], smoothing spline ANOVAmodels [66, 67],
sparse grid interpolation [14] are available and have found application in several disciplines.
Most of these subroutines allow the analyst to obtain estimates of higher order and total order
indices. Moreover, they allow the estimation and graphing of first and second order effects of
the functional ANOVA expansion.

We conclude this review with the process of making inference in sensitivity analysis. This
process is made systematic through the concept of sensitivity analysis setting — see [72]
and [11]. In a factor prioritization, we are asked to bet on the input that, if determined
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(i.e., fixed to its true value), would lead to the greatest reduction in the variance of the model
output [74, p. 705]. Appropriate sensitivity measures for this setting are variance-based first
order sensitivity measures [74, p. 705]. In a trend identification setting, we are interested
in determining whether an increase/decrease in the numerical value of the inputs leads to
an increase/decrease of the model output. Appropriate sensitivity measures for this setting
are the first order effect functions of the functional ANOVA expansion [5]. In an interaction
quantification setting, we are interested in determining whether and which interactions are
significant in determining the output response to variations in the inputs. Here, the notions of
dimension distribution and of mean effective dimension in the superimposition and truncation
sense are relevant [15, 54]. Following [54], we call:
a) Owen’s mass function, defined by Pr(Tµ = z) = V µ

z /Vµ[G] = Sµ
z ;

b) dimension distribution of g in the superimposition sense the distribution of the cardinality
of Tµ, |Tµ|, where Tµ is the random variable associated with Owen’s mass function, and
c) dimension distribution of g in the truncation sense, the distribution of max{j : j ∈ z}.

Owen [54] then defines the effective dimensions in the superimposition and truncation
sense, respectively, as the mean values of |T | and of max{j : j ∈ z}, i.e, as

Dµ
S =

∑
|z|>0

|z|Pr(Tµ = z) =
∑n

i=1
V T µ

i , (12)

Dµ
T =

∑
|z|>0

max{j : j ∈ z}Pr(Tµ = z), (13)

respectively. To illustrate, a mean effective dimension in the superimposition sense equal to
unity indicates the absence of interactions. Note also that the mean effective dimension is equal
to the sum of total effects, as in this sum a kth order effect is counted k times. Regarding
interaction quantification, the higher the value of Dµ

S or Dµ
T , the higher the relevance of

interactions.

3 Existence, Multiplicity and Robustness

The discussion in Section 2 shows that all the notions and quantities related to a functional
ANOVA expansion are conditional on the distribution µ. In this section, we analyze the
consequences of removing the unique distribution assumption. To fix ideas, suppose that the
analyst is uncertain among Q possible model input distributions. The need to consider these Q
distributions may come from lack of data or simply by the fact that the analyst is considering
a set of measures that represent a perturbation of a reference distribution that she(he) has
assigned to the inputs. In either case, the analyst is positing a set M of probability measures.
The set M does not appear in traditional sensitivity studies of computer experiments. M
might be a countable (possibly infinite) or uncountable set. The first case occurs if the decision-
maker assigns a discrete number (say Q) of second order probability models. The second case
occurs, for instance, in applications where the decision-maker assigns a first order distribution
depending on some parameters and then a continuous second order distribution over the
parameters. Each measure µm in M is associated with a potentially different functional
ANOVA expansion. To illustrate, consider the next example.

Example 1 A traditional test case in sensitivity analysis is the Ishigami test function [38]:

g = sin(x1)
(
1 + bx4

3

)
+ a sin2(x2). (14)

The base case distribution is µ1 : X1, X2, X3 ∼ U [−π, π], i.i.d.. Then, the non-vanishing effect
functions are [80]:

gµ
1

0 =
a

2
; gµ

1

1 = sin(x1)

(
1 + b

π4

5

)
; gµ

1

2 = a sin2(x2)−
a

2
; gµ

1

1,3 = b sin(x1)

(
x4
3 −

π4

5

)
. (15)

Due to lack of knowledge or just to test the conclusions under alternative distributions, the an-
alyst then evaluates two alternative assignments. The second assignment is µ2 : X1, X2, X3 ∼
N(0, 1), i.i.d.. Then, the non-vanishing effects of the ANOVA decomposition are:

gµ
2

0 =
a

2

(
1− e−2

)
; gµ

2

1 =sin(x1) (1 + 3b) ; gµ
2

2 = a sin2(x2)−
a

2

(
1− e−2

)
;

gµ
2

1,3 = b sin(x1)
(
x4
3 − 3

)
.

(16)

5



As a third assignment, she(he) sets µ3 : X1, X2, X3 ∼ U [0, π], i.i.d., obtaining the following
effect functions:

gµ
3

0 =
a

2
+

2

π

(
1 + b

π4

5

)
; gµ

3

1 =

(
sin(x1)−

2

π

)(
1 + b

π4

5

)
; gµ

3

2 = a sin2(x2)−
a

2
;

gµ
3

3 =
2b

π

(
x4
3 −

π4

5

)
; gµ

3

1,3 = b

(
sin(x1)−

2

π

) (
x4
3 −

π4

5

)
.

(17)

Note that the effect function gµ
3

3 (x3) is now non-null and that gµ
3

2 = gµ
1

2 .

In general, the set of probability measures that an analyst can posit is the uncountable
set of all distributions on measurable space (X ,B(X )). However, such assignment might be
either too vast (some distributions would not reflect the analyst’s state of knowledge), or, even,
incompatible with the functional ANOVA expansion of g. In particular, an analyst’s degree
of belief about the model inputs is consistent with the functional ANOVA expansion of the
output only if g is measurable with respect to all the assigned distributions. We then let

Ψ[g] =
{
µ : g ∈ L2(X ,B(X ), µ) ∧ dµ =

∏n

i=1
dµi

}
(18)

denote the set of all probability measures on (X ,B(X )) compatible with the functional ANOVA
expansion of g. For non-triviality, in the remainder, we assume that the posited set M is a
subset of Ψ[g].

Then, let us investigate how many distinct functional ANOVA expansions are possible for
a multivariate mapping. In the next definition, consider z = {i1, i2, . . . , ik} and let Xz =
Xi1×X i2× . . .Xik .

Definition 1 The set C ⊆ Ψ[g] is called a core of measures for the functional ANOVA ex-
pansion of g on (X ,B(X )) if

gµ
′

z (xz) = gµ
′′

z (xz) (19)

for all µ′, µ′′ ∈ C, for all z ∈ 2Z and for all xz ∈ Xz such that dµ′(xz) 6= 0, dµ′′(xz) 6= 0.

Equation (19) suggests that two probability measures in Ψ[g] belong to the same core
if they lead to the same functional ANOVA expansion of g. The condition dµ′(xz) 6= 0,
dµ′′(xz) 6= 0 is technical and takes into account the situation in which the distributions differ
in their support X . This situation might emerge if µ′ is absolutely continuous with respect
to µ′′. In that case, comparing gµ

′

z (xz) and gµ
′′

z (xz) is meaningful only if xz belongs to the
support of both µ′ and µ′′.

A functional ANOVA core can either contain a unique measure or a multiplicity of mea-
sures. However, the same measure µ cannot belong simultaneously to two cores. Then, Ψ[g]
is partitioned by its cores (please refer to Appendix A for all proofs).

Proposition 3 Let Ψ[g] be the set of all probability measures compatible with the functional
ANOVA expansion of g. Let Cs denote a generic core. Then Ψ[g] = ∪Cs, where Cs is a
functional ANOVA core of Ψ[g] and Cs ∩ Cj = ∅. Moreover, given M ⊆ Ψ[g], let CM

s =
M∩ Cs. Then, M = ∪CM

s and CM
s ∩ CM

j = ∅.

Proposition 3 allows us to characterize the multiplicity of functional ANOVA expansions
that an analyst is dealing with once M is posited: g possesses as many functional ANOVA
representations as there are cores in which M is partitioned.

The determination of cores is not straightforward. Also, one would expect an infinity of
cores if M is uncountable. However, the next example illustrates a class of functions for which
cores can be readily identified.

Example 2 Suppose that the input-output mapping can be written as a composite linear func-
tion

g(x) =
∑

u∈2Z

∏

i∈u

ti(xi). (20)

Then, given M = {µ, µ′} (inducing random vectors X and X ′) with propagated output ran-
dom variables G = g(X) and G′ = g(X ′) the ANOVA expansions of G and G′ coincide if
Eµ[ti(Xi)] = Eµ′ [ti(X

′
i)]. Hence, if C is any family of distributions such that Eµ[ti(Xi)] =

Eµ′ [ti(X
′
i)] for all µ, µ′ ∈ C then C is a core.

6



The Ishigami function in Example 1 is of the form in (20) and can be rewritten as g =
t1(x1)t3(x3) + t2(x2), with t1(x1) = sin(x1), t2(x2) = a sin2(x2) and t3(x3) =

(
1 + bx4

3

)
.

Consider then the following three model input distributions: µ1 as in Example 1; µ4 : X1, X3 ∼
U [−π, π], X2 ∼ U [−π

2
, π
2
], and µ5 : X1, X2 ∼ U [−π

2
, π
2
], X3 ∼ U [−π, π]. Then, Eµ1 [Gi] =

Eµ4 [Gi] = Eµ5 [Gi] for i = 1, 2, 3 and x1, x2, x3 ∈ [−π
2
, π
2
]. Thus, µ1, µ4 and µ5 belong to the

same core. In the special case in which ti(Xi) = Xi for all i = 1, 2, ..., n, two distributions
assigning the same expectations to the model inputs are in the same core. The question is
whether there are indeed models for which a multilinear approximation holds. In that respect,
uncertainty in distribution is a relevant topic in reliability analysis and risk assessment of
complex technological systems [3]. As it is well known, the mapping in probabilistic risk
assessment models is multilinear as a function of basic event probabilities. Then, for this
class of problems functional ANOVA cores are families of distributions that lead to the same
expected values of the model inputs. However, this is not the case in general. To illustrate,
the strain model g(x) = x1x

x2
3 in solid mechanics does not satisfy the composite multilinearity

assumption. We therefore do not rely further on such assumption in the remainder of the
present investigation.

4 Multiple Distributions and a Prior

We now discuss the with-prior path. Under uncertainty in distribution, best practices rec-
ommend the use of a two-stage sampling procedure [19]. In order to apply the procedure,
the analyst needs to assign a prior Pµ over the component measures µm in M. In this sec-
tion, we deal with the technical aspects that emerge after such assignment. We start with
the probability spaces. Let F(M) denote the σ-algebra generated by all maps µ 7→ µ(A)
for each A ∈ B(X ) and for each µ ∈ M, giving rise to the measurable space (M,F(M)).
The corresponding probability space is (M,F(M), Pµ), and Pµ : F(M) → [0, 1]. Note
that, because the algebra generated by M is included in the algebra generated by Ψ[g],
the following are equivalent: – a) assigning the prior directly on (Ψ[g],F(Ψ[g])) or b) us-
ing (M,F(M)) and assigning Pµ equal to zero on Ψ[g]\M. Hence, for notation simplicity,
in the remainder, the symbol M can be used without loss of generality. In the case M is
uncountable, we have to assume a density dPµ(µ), so that the expectations are written as
EPµ [g] =

∫
M

EPµ [g]dPµ(µ) =
∫
M

[
∫
X
g(x)dµ(x)]dPµ(µ). In the finite or countable case, M is

of the type M = {µ1, µ2, . . . , µQ}, and Pµ is a sequence of non-null numbers pm, such that∑Q

i=1 pm = 1 and EPµ [g] =
∑Q

m=1 pmEµm [g] =
∑Q

m=1 pm[
∫
X
g(x)dµm(x)]. For simplicity, we

will use this discrete notation in the remainder.
We start analyzing independence and uniqueness. First, one needs to observe that assigning

a prior Pµ implies that the analyst’s uncertainty about the model inputs is represented by the
mixture

µX(x) =

Q∑

m=1

pmµm(x), (21)

where the weights are determined by Pµ = {p1, p2, . . . , pQ}, Q ∈ N, with pm > 0 and∑Q

m=1 pm = 1. Regarding independence, even if under each individual µm in (21) the model
inputs are independent, under the mixture µX they are not. In particular, we find:

Cov(Xi, Xj) =

Q∑

m=1

pmEµm [Xi]Eµm [Xj ]− E[Xi]E[Xj ], (22)

where E[Xi] =
∫
X
xidµX(x) and Eµm [Xi] =

∫
X
xidµ

m(x), i = 1, 2, . . . , n. By (22) Cov(Xi, Xj)
is in general not null. However, it becomes null if Eµm [Xi] = Eµt [Xi] for all m, t = 1, 2, . . . , Q.
That is, if there is agreement about the expected value of the model inputs, then the model
inputs remain uncorrelated, albeit, in principle, not independent. More generally, we observe
that the mixture in (21) implies that independence holds conditionally on µ = µm. This sit-
uation resembles de Finetti’s exchangeability [23] in so far as exchangeable random variables
are independent conditionally on the value of a parameter.

We now prove that, within a two-stage sampling procedure, the functional ANOVA ex-
pansion regains uniqueness. We consider here two alternative routes for exploring sensitivity
within a two-stage sampling procedure. A third approach is discussed in Section 6. The first
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route consists of obtaining the functional ANOVA expansions for each component measure in
M separately and then taking their Pµ−expectation.

Proposition 4 Given a prior (M,F(M), Pµ) and a measurable function g : X → R, g ∈⋂
µm∈M L2(X ,B(X ), µm), then

g(x) =
∑

z∈2Z

g
Pµ
z (xz), (23)

where

g
Pµ

∅ =

Q∑

m=1

pmgµ
m

∅ and g
Pµ
z (xz) = EPµ [g

µ
z (xz)] =

Q∑

m=1

pmgµ
m

z (xz). (24)

We call:

1) the expansion
∑

z∈2Z gµX
z (xz) at the right hand side of (23) mixture functional ANOVA

expansion of g;

2) the summands gµX
z (xz) mixture effect functions.

The next example illustrates Proposition 4.

Example 3 Example 1 continued. The assigned distributions imply different supports for

the model inputs. Introducing the following indicator function I[a,b] =

{
1 if a ≤ x ≤ b

0 otherwise
, we

can write the three distributions in Example 1 as µ1
X =

I[−π,π](x1)

2π

I[−π,π](x2)

2π

I[−π,π](x3)

2π
, µ2

X =

φ(x1)φ(x2)φ(x3), where φ(·) is the standard Gaussian density, and µ3
X =

I[0,π](x1)

π

I[0,π](x2)

π

I[0,π](x3)

π
.

Then, assigning Pµ = ( 1
3
, 1
3
, 1
3
), at a generic point x ∈ R

3, we have:

gµ0 =
a

2
+

1

3

(
2

π

(
1 + b

π4

5

))
−

a

6
e−2;

gµ1 (x1) =
I[−π,π](x1)

3
sin(x1)

(
1 + b

π4

5

)
+

sin(x1) (1 + 3b)

3

+
I[0,π](x1)

3

(
sin(x1)−

2

π

)(
1 + b

π4

5

)
;

gµ2 (x2) =
I[−π,π](x2)

3
(a sin2(x2)−

a

2
) +

(a sin2(x2)− a/2
(
1− e−2

)
)

3

+
I[0,π](x2)

3
(a sin2(x2)−

a

2
);

gµ3 (x3) =
I[0,π](x3)

3

2

3π

(
x4
3 −

π4

5

)
;

gµ1,3(x1, x3) =
I[−π,π](x1)I[−π,π](x3)

3
b sin(x1)

(
x4
3 −

π4

5

)
+

b sin(x1)
(
x4
3 − 3

)

3

+
I[0,π](x1)I[0,π](x3)

3
b

(
sin(x1)−

2

π

)(
x4
3 −

π4

5

)
.

(25)

Thus, at the intersection of the supports, i.e., for x ∈ [0, π]3, we have

gµ0 =
a

2
+

1

3

(
2

π

(
1 + b

π4

5

))
−

a

6
e−2;

gµ1 (x1) =

(
1 + b

π4

5

)(
2

3
sin(x1)−

2

3π

)
+ sin(x1)

(
1

3
− b

)
;

gµ2 (x2) =a sin2(x2)−
a

2

(
1−

1

3
e−2

)
; gµ3 (x3) =

2

3π

(
x4
3 −

π4

5

)
;

gµ1,3(x1, x3) =b

((
(x4

3 −
π4

5

)(
2

3
sin(x1)−

2

3π

)
+

1

3
sin(x1)

(
x4
3 − 3

))
.

(26)

Note that the sum of the mixture effect functions equals the original mapping at any point
x ∈ R

3.
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The second route is as follows. The analyst wishes to perform the functional ANOVA
expansion using µX as probability measure and computes the mixture effect functions from:

gµX

0 = EµX
[G] =

∫

X

g(x)dµX, gµX

z (xz) =

∫

X∼z

g(xz,x∼z)dµX∼z (x∼z)−
∑

v⊂z

gµv (xv), (27)

where

µX∼z (x∼z) =

∫

Xz

µX(x)dxz (28)

is the marginal distribution of X∼z. Then, the following proposition shows that both routes
lead to the same result.

Proposition 5 For a measurable function g it holds that EµX
[G] = EPµ [G] =

∑Q

m=1 pmgµ
m

0

and gµX
z (xz) = g

Pµ
z (xz) so that g(x) =

∑
v⊆z

gµX
v (xv) =

∑
v⊆z

g
Pµ
v (xv).

Propositions 4 and 5 suggest that we obtain the same functional ANOVA expansions by
either of the following two routes:

1. We get the functional ANOVA decomposition of g under each of the measures in M and
then mix the decompositions using weights determined by Pµ;

2. We decompose g using (27) and (28).

If we leave the sensitivity framework for a more general perspective, Propositions 4 and
5 suggest a representation theorem for a multivariate mapping. Given a set of measures
M ∈ Ψ[g] and a prior Pµ, a measurable multivariate mapping can be uniquely projected onto
2n − 1 mixture effect functions.

The next example illustrates the second route by means of our running example.

Example 4 For notation simplicity, let us denote the Ishigami model as a generic three-
variate mapping g(x) = g(x1, x2, x3), g : R3 → R. Also, let us denote the three joint model
input distributions in Example 1 as µm

X(x) = µm
1 (x1)µ

m
2 (x1)µ

m
3 (x1), m = 1, 2, 3. To illustrate

calculations, we focus on the first order mixture effect function of x1. By (27) we write

g
Pµ

1 (x1) =

∫∫
g(x)f2,3(x2,x3)dx2dx3, (29)

where, f2,3(x2,x3) is the joint marginal density of X2 and X3, f2,3(x2,x3) =
∫
fX(x)dx1.

Then, we have

g
Pµ

1 (x1) =

∫∫
g(x)f2,3(x2,x3)dx2dx3 = p1

∫∫
g(x)f1

2 f
1
3 dx2dx3

=p1g
f1
1 (x1) + p2g

f2
1 (x1) + p3g

f3
1 (x1) =

3∑

m=1

pmgfm1 (x1).

(30)

Let us now analyze the properties of the mixture effect functions, starting with orthogo-
nality.

4.1 Orthogonality

Orthogonality is not preserved by the mixture of functional ANOVA terms with respect to
µX(x) as reference distribution.

Example 5 (Example 3 continued) Consider the mixture integral over the first order mix-
ture ANOVA effect function gµ3 (x3) from Example 3. Here,

µX(x3) =

∫∫
µX(x)dx2dx1 =

1

3

1

2π
I[−π,π](x3) +

1

3
φ(x3) +

1

3

1

π
I[0,π](x3). (31)

Then, ∫
gµ3 (x3)dµX(x3) =

∫
2
3π

(
x4
3 −

π4

5

)
· 1
3

(
dµ1(x3) + dµ2(x3) + dµ3(x3)

)

=
∫

2
9π

(
x4
3 −

π4

5

)
dµ2(x3) =

2
3π

(
1− π4

15

)
6= 0.

(32)

We observe that to obtain orthogonal components of the functional ANOVA expansion,
one would need to resort to the generalized functional ANOVA expansion under correlations.
This aspect is discussed in detail Section 6.2.
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4.2 Monotonicity

In computer experiments, analysts are often interested in studying the trend of the output as
the model inputs vary. Then, determining whether the output is monotonic with respect to
the inputs becomes of interest. Let us recall the definition of monotonicity for a multivariate
mapping — see e.g. [43].

Definition 2 Given g : X → R, we say that g is non-decreasing on X if g is such that

g(x1) ≤ g(x2), (33)

for all x1,x2 ∈ X with x1 ≤ x2.

In the above definition, the inequality x1 ≤ x2 is understood component-wise. If the strict
inequality holds in (33), then one says that g is increasing. Under the unique distribution
assumption, a set of results concerning monotonicity of the effects functions are proven in [5].
We synthesize the main findings in the following lemma.

Lemma 1 If g is non-decreasing then:
1) all non-orthogonalized effect functions wµ

z (xz) are non-decreasing;
2) all orthogonalized first order effect functions are non-decreasing;
3) Given ∆x ≥ 0, introduce for [x,x+∆x] ⊂ X the functions

∆wµ
z = wµ

z (xz +∆xz)− wµ
z (xz),

∆gµz = gµz (xz +∆xz)− gµz (xz).
(34)

If the following condition holds:

∆wµ
z ≥

∑

v⊂z

∆gµv (35)

then all effect functions in (2) are non-decreasing.

Thus, the graphs of the first order effect functions provide visual indications about the
monotonicity of g. However, note that items 1 and 2 are not sufficient conditions. Thus, we
infer from the behavior of gi(xi) that if any of the first order effect functions is not monotonic
then g is not monotonic. To illustrate, in Example 1 the fact that gµ1

1 is not monotonic suffices
to state that the Ishigami function is not monotonic. Items 1 and 2 become if and only if
conditions when the model is separable, i.e., additive or multiplicative — see [5] for further
details. Item 3 states a sufficient condition for all higher order effect functions to retain the
original monotonicity of g. However, this condition is rather stringent and, in general, higher
order effects do not retain the original monotonicity of g.

Consider now the case in which the analyst has posited M, but without a prior. The results
in Lemma 1 hold for any component measure µm. Thus, if g is monotonic, the conditional
expectations of g with respect to any group of model inputs as well as the first order effect
functions are monotonic. That is, the results in Lemma 1 are robust to the choice of the
probability measure.

The next result holds in the case in which the analyst assigns a prior and shows that the
mixed effect functions retain the monotonicity properties that hold under a unique distribution.

Proposition 6 Given (M,F(M), Pµ), if g is non-decreasing then:

1) the non-orthogonalized mixture effects w
Pµ
z (xz) of all orders are non-decreasing;

2) the orthogonalized mixture first order effects [g
Pµ

i (xi)] are non-decreasing;
3) Given ∆x > 0,if for all µ ∈ M

∆wµ
z ≥

∑

v⊂z

∆gµv (36)

then all effects in (23) are non-decreasing.

4.3 Ultramodularity

Ultramodularity is a generalization of scalar convexity and is a relevant property in multi-
variate utility theory, game theory, and economics [43, 44, 47]. We show in Appendix B that
results similar to the ones found for monotonicity hold for ultramodularity. Then, if a function
is ultramodular, it is enough to study the behavior of the effect functions under a given µm

and the qualitative insights hold for any other component measure in M.
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Table 1: Variance decomposition and effective dimension results for the Ishigami test function
under the distributions of Example 1.

Contribution to Output Variance Total Variance
Distribution

z 1 2 3 1,3 Effective Dimension

V µ1

z 4.35 6.13 0 3.37 V
µ1

[G] = 13.84
µ1

Sµ1

z 0.31 0.44 0 0.24 D
µ1

S = 1.24

V µ2

z 0.73 5.90 0 0.41 V
µ2

[G] = 7.05
µ2

Sµ2

z 0.10 0.84 0 0.06 D
µ2

S = 1.06

V µ3

z 0.82 6.12 2.73 0.64 V
µ3

[G] = 10.32
µ3

Sµ3

z 0.08 0.59 0.26 0.062 D
µ3

S = 1.05

Bµ
z 1.97 6.05 0.91 1.48

V
µ[G] = 11.44

VPµ
[Eµm [G]] = 1.03

µ
P (Tµ = z) 0.16 0.49 0.07 0.27 D

µ
S = 1.12

5 Variance Decomposition

Regarding existence, it suffices to assume that M ⊆ Ψ[g]. Then, variance-based sensitivity
indices are defined for each component measure in M. With regard to uniqueness, the number
of variance decompositions coincides with the cardinality of M.

Example 6 (Example 1 continued) Rows three to seven in Table 1 show the variance de-
compositions of the Ishigami function with parameters a = 7.0 and b = 0.1 under µ1, µ2 and
µ3, respectively. The model output variance is highest under µ1. Also, under this measure the

interaction term V µ1

1,3 is higher than under µ1 and µ2.

We consider now the case in which the analyst posits a prior Pµ over the component
measures in M. The following holds.

Proposition 7 Given (M,F(M), Pµ), g ∈
⋃

µm∈M L2(X ,B(X ), µm), let V[G] be the overall
variance of G due to uncertainty in X and Pµ. We have

V[G] =
∑

z∈2Z ,z 6=∅

Bz + VPµ [Eµm [G]], (37)

where

Bz = EPµ [V
µm

z ] =
m∑

m=1

pmV µm

z (38)

is the weighted average of variance-based sensitivity indices of order z.

Proposition 7 shows that, under a mixture of distributions, the variance of G is decomposed
into two summands. The first term is the weighted average of the variance decompositions of
G under the component measures in M — structural term, henceforth. The second summand,
VPµ [Eµm [G]], is the residual portion of the model output variance associated with the varia-
tion of the expected value of G across the component measures variability-of-the-mean term,
henceforth. Thus, the mixture of ANOVA decompositions would explain the model output
variance completely only if there is no variability in the expected value of the model output
across the measures in M.

Example 7 (Example 1 continued) For the Ishigami function with the distributions as-
signed in Example 1, we register V

µ[G] = 11.44, VPµ [Eµm [G]] = 1.03, and
∑

z∈2Z ,z 6=∅Bz =
10.41. Thus, the structural term explains about 90% of the model output variance. The
variability-of-the-mean term accounts for the residual 10% variation.

5.1 Dimension distribution

The results of the previous section show that, posited M, Owen’s dimension distribution

becomes conditional on µm. We can write
V µm

z

V µq [G]
= Pr(Tµm = z), m ∈ M. Then, the
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number of dimension distributions equals the cardinality of M. In the without-prior path,
the analyst might then inspect the variability of the mean effective dimension as the measures
vary in M to obtain an indication about how interactions vary depending on the assigned
distribution.

In the presence of a prior, the dimension distribution regains uniqueness. In fact, by the
total probability theorem, we have:

Pr(Tµ = z) =

Q∑

m=1

pm Pr(Tµm = z) =

Q∑

m=1

pm
V µm
z

V µm [G]
(39)

Pr(Tµ = z) is now the mixture of the dimension distributions obtained under each measure
µm. We then have the following result.

Proposition 8 Under the assumptions of Proposition 7, the mean effective dimensions in the
superimposition and truncation sense are unique and equal to

DS = EPµ [D
µ
S ], and DT = EPµ [D

µ
T ]. (40)

Equation (40) suggests that the mean effective dimensions in the superimposition and
truncation senses are now the mixtures of the conditional dimensions obtained under each
measure µ.

Example 8 (Example 3 continued) Referring again to Table 1, rows nine and ten display
the unconditional dimension distribution P (Tµ = z), for the Ishigami function, and the cor-
responding unconditional mean effective dimension, which equals Dµ

S = 1.12. Rows four, six

and eight report the dimension distributions under each measure: They equal Dµ1

= 1.24,

Dµ2

= 1.06 and Dµ3

= 1.05 under µ1, µ2 and µ3, respectively. These results indicate that
there is variability in the intensity of interaction effects, which are largest under the first mea-
sure, and are minimal under the third measure. Therefore, an analyst must place attention
as to what is the measure under which the sensitivity analysis is performed when inferring
insights about the strength of interaction effects.

5.2 Implications for Inference: Robust Sensitivity Analysis Set-

tings

As recommended by best practice, inference using global sensitivity analysis needs to be framed
within the so-called sensitivity analysis settings [72]. These settings have been formulated
under the unique distribution assumption. We then consider the impact in the formulation
of sensitivity settings consequent to the relaxation of such assumption. To fix ideas, consider
the factor prioritization setting as defined in [74, p. 705] We are asked to bet on the factor
that, if determined (i.e., fixed to its true value), would lead to the greatest reduction in the
variance of G. Following [74], the appropriate sensitivity measures for factor prioritization are
the first order sensitivity indices. Here, if the analyst posits M without specifying a prior, we
have a multiplicity of sensitivity indices. If robust insights are sought, then we are making
inference in the following extended setting: We are asked to bet on the model input that, if
fixed to its true value, would lead to the greatest expected reduction in the variance of G under
all measures µm in M. The operationalization is straightforward. Let us write

Si = supµm∈M Sµm

i and Si = infµm∈M Sµm

i . (41)

The indices Si and Si are the extrema of the first order variance-based sensitivity indices
across the distributions in M. Then, we need to look for the model inputs that satisfy:

Si > Sj , for all j 6= i, j = 1, 2, . . . , n. (42)

That is, in the robust factor prioritization setting, a model input is the most important, if
the inferior of the values of its first order variance-based sensitivity indices is greater than the
superior of the first order sensitivity indices of any other model input. If one or more model
inputs satisfy the search, then they are robustly the most important model inputs based on
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variance reduction. The search can be repeated for the second most important model input,
etc. If the search is satisfied for all ranks, we say that the entire ranking is robust.

If the analyst assigns a prior, she(he) might be considering to use the average of the
sensitivity indices over the measures in M. Such average equals Bi, i.e., the mixture of the
first order sensitivity indices. These indices, because they are an average, have the advantage
of synthesizing the variance-based indices V µm

i . However, they relate only to the contribution
of a model input to the structural term in (37). If the mean variability term is preponderant,
inference based on the sole structural term might not be exhaustive.

Example 9 For the Ishigami function with the distributions assigned in Example 1, X2 and
X3 are, respectively, the most important and least important model inputs in a robust sense.
In fact, the values in Table 1 show that the conditions in (42) is satisfied. Consequently, X2

and X3 are also the most and least important model inputs if the average sensitivity indices are
taken as sensitivity measures. This coincidence could be expected in this case, as the structural
variability term accounts for 90% of the model output variability.

Concerning trend identification, Proposition 6 suggests the following. If the model is
monotonic, then we obtain a monotonic trend under any measure µm ∈ M for the first order
effects. Then, consider that µm is the measure in use. If we register a non-monotonic trend, the
model is not monotonic and the indication holds for any other measure µm′

∈ M. Conversely,
if under µm we register a monotonic trend of the first order effects, we cannot conclude that
the model is monotonic.

Concerning interaction quantification, we can define the inferior and superior mean effective
dimensions in the superimposition and truncation senses, respectively as

DS = infµ

∑
|z|>0 V

µ
z · |z|

∑
|z|>0 V

µ
z

and DS = supµ

∑
|z|>0 V

µ
z · |z|

∑
|z|>0 V

µ
z

(43)

and

DT = infµ

∑
|z|>0 V

µ
z max{j : j ∈ z}

∑
|z|>0 V

µ
z

and DT = supµ

∑
|z|>0 V

µ
z max{j : j ∈ z}

∑
|z|>0 V

µ
z

.

(44)
If a prior is set, we can consider the unconditional dimension distribution and the unconditional
mean effective dimensions in eq. (40) to obtain indications on the relevance of interactions.

6 Discussion

6.1 Interpretation and Methodological Aspects concerning Ag-

gregation

In this section, we discuss methodological aspects concerning the use of multiple distributions,
the theoretical rationale that supports our two paths, and the aggregation of experts opinion.
Concerning the circumstances that motivate the use of multiple distributions, a first case
is the situation in which available data do not uniquely identify a best fit from a family of
distributions — see [19] among others. Closely related is the case in which a best fitting family
is identified, but uncertainty remains about the values of the parameters. A first example is
the application of Hu, Cao and Hong [34] (that we use as starting point in our case study),
who assign a multivariate normal distribution with uncertain variance to the model inputs. A
second example is the situation in which the analyst has elicited model input distributions from
more than one expert, and the experts have provided discordant opinions. A third example
is illustrated in [48], and is the case in which alternative scientific studies assign different
distributions to a given model input. A fourth case is discussed in the works of [6], [4] and
most recently [57], where a robustness question is asked directly by the analyst, who wishes
to explore the stability of sensitivity analysis results for perturbations in the model input
distributions.

Assigning a prior is necessary for two-stage Monte Carlo sampling [19]. The assignment
of a prior is a delicate task and has been thoroughly investigated in the literature — see the
monograph [9] for a comprehensive review. [19] provides an accurate methodological summary
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and discusses advantages and disadvantages of four methods namely, the use of a uniform prior,
the use of a non-informative prior [7], of a data-driven prior [8] and of the moment-matching
method [8].

Concerning the theoretical interpretation of using or not a prior, we note a recent decision
theory result in [?]. The starting point is Wald’s observation that the analyst knows only
that the probability distribution of X, that is, the probability measure function µ is in the
space M [83, p. 279]. Wald’s approach leads to the minimax functional as decision criterion.
The minimax philosophy corresponds to the robust settings in Section 5.2. However, [17,
p. 975] shows that, by enriching Savage’s axioms with Wald’s datum, i.e. positing M, one
obtains as a decision criterion a two-stage utility functional whose form is identical to the
subjective expected utility criterion of a Bayesian decision maker who assigns a prior Pµ over
the possible distributions. Thus, an expected utility decision maker who has posited M is,
indeed, a Bayesian decision maker who averages uncertainty in distribution using the prior
Pµ. This leads directly to the mixture we have discussed.
However, some words of caution are needed about the meaning of a mixture distribution,
when the distributions come from experts. In fact, aggregating experts’ opinion is a delicate
task. Several aggregation methods are available, and their applicability depends also on the
assumptions at the basis of the elicitation procedure. Because of the limited space in this
work, we refer to the monographs [20, 52], to the review articles [53, 27], and to the works
[2, 49, 21] that offer analyses of critical aspects.
From an expert aggregation perspective, the mixture in (21) can be seen as a linear opinion
pool. A popular alternative is the logarithmic opinion pool [27]. In this case the distribution is

found by aggregating opinions through µlogpool
X

(x) = k
Q∏

m=1

µm
X(x)wm where ki is a normalizing

constant and the weights wm are positive and sum to unity. Now, as mentioned, in this work we

consider a set M of product measures. We can then write µlogpool
X

(x) = k
n∏

i=1

Q∏
m=1

µm
i (xi)

wm .

Then, if we let µlogpool
i (xi) = ki

Q∏
m=1

µm
i (xi)

wm , we obtain

µlogpool
X

(x) =
k∏n

i
ki

n∏

i=1

µlogpool
i (xi). (45)

Thus, if an analyst aggregates the distributions in M using a logarithmic pool, the multiple
distribution case is absorbed back into a unique distribution case. The unique distribution
is now a product of suitably defined marginals and the properties of the classical ANOVA
expansion remain unaltered in this case. That is, uncertainty in distribution impacts the
model inputs marginal distributions, but not the classical functional ANOVA expansion. With
a similar procedure one can analyze the joint distribution resulting from other aggregation
methods and can assess the impact on the functional ANOVA expansion.

6.2 Relationships with the Generalized Functional ANOVA Ex-

pansion

We take a step back and consider the unique distribution assumption for a moment. The
distribution is µ as in Section 2. As we have seen, independence plays an important role in
the classical functional ANOVA expansion in (2). The works [33, 18, 40, 63] show that we can
still recover an expansion of the form of (2) without imposing any assumption on µX(x). In
particular, Rahman considers the following weak annihilating conditions [63]

∫
Xz

gz(xz)fz(xz)dxi = 0 for i ∈ z 6= ∅, (46)

where fz(xz) is the density of xz, and shows that they lead to the generalized functional
ANOVA expansion

g(x) =
∑

z∈2Z

gµz;R(xz). (47)

Here the subscript R denotes the fact that we are dealing with a generalized component
function. Also, [63] shows that the generalized component functions remain hierarchically or-
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thogonal.1 The determination of the generalized component functions is now obtained through
a system of coupled equations. To illustrate, for a three-variate function g(x) = g(x1, x2, x3),
the equation of the main effect function g1;R(x1) is [63, p. 678]

g1;R(x1) =

∫

X2,3

g(x)dµX2,X3(x2, x3)− g0;R −

∫

X2

g1,2;R(x1, x2)dµ(x2)+

−

∫

X3

g1,3;R(x1, x3)dµ(x3)−

∫

X2,3

g1,2,3;R(x1, x2, x3)dµX2,X3(x2, x3).

(48)

The expression in (48) involves all the effect functions in the decomposition that contain model
input X1. Thus, as opposed to the independence case, the functional ANOVA terms cannot
be determined recursively. However, a series of recent works [40, 41, 63] present methodologies
for obtaining the generalized ANOVA terms bypassing the coupling problem. In particular,
the terms of the generalized functional ANOVA expansion can be obtained following the
procedure in [63] by selecting a basis made of orthonormal polynomials with respect to the
mixture measure µX(x).
These works also extend variance-based sensitivity indices for dependent inputs. In particular,
[63] shows that it is possible to decompose the variance of G as

V[G] =
∑

u∈2Z\∅

Eµ[gu;R(Xu)
2] +

∑

u,z∈2Z\∅
u 6⊆z 6⊆u

Eµ[gu;R(Xu)gz;R(Xz)], (49)

and correspondingly define pairs of variance-based sensitivity indices

SV
u = V[G]−1

Eµ[gu;R(Xu)
2] (50)

and
SC
u = V[G]−1

∑

u,v∈2Z\∅
u 6⊆v 6⊆u

Eµ[gu;R(Xu)gv;R(Xv)], (51)

where the first index SV
u refers to a variance contribution, the second to a covariance contri-

bution SC
u generated by the presence of correlations. These results can be related to our work.

In the with-prior path, in fact, the analyst posits a set of measures M and assigns a prior Pµ

obtaining a joint model input distribution µX(x), which, as we have seen, is not a product
measure. We then have the following identities:

∑

z∈2Z

g
Pµ
z (xz) =

∑

z∈2Z

gu;R(xu), (52)

and
∑

u∈2Z\∅

Bu + VPµ [Eµm [G]] =
∑

u∈2Z\∅

Eµ[gu;R(Xu)
2] +

∑

u,z∈2Z\∅
u 6⊆z 6⊆u

Eµ[gu;R(Xu)gz;R(Xz)] (53)

Equation (52) relates the mixture functional ANOVA expansion in (4) (left hand side) and
the generalized decomposition with respect to the mixture distribution µX(x). Equation (53)
relates the decomposition of the model output variance across the measures in M (left hand
side) to the decomposition over the joint mixture distribution µ

X
(x) (right hand side).

Regarding the simultaneous relaxation of the independence and uniqueness assumptions,
we hint here at some possible results, which, however, need to be formally addressed in fu-
ture research. First, if we relax the independence assumption, the decision maker posits a
set M consisting of joint distributions, in which µm

X is not necessarily a product measure.
The generalized functional ANOVA expansion in (47) becomes the relevant expansion. In
the without-prior path, the analyst is then dealing with a multiplicity of generalized func-
tional ANOVA decompositions. We argue that the definition of functional ANOVA core and
Proposition 3 would still hold, under the condition that two joint measures lead to the same
generalized functional ANOVA expansion, and not to the same classical ANOVA expansion.

1Hierarchical orthogonality is the condition E[gµ
u;R(Xu)g

µ
v;R(Xv)] = 0 whenever u ⊂ v, u 6= v.
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Concerning properties such as monotonicity and ultramodularity, we would need to study
these properties how the generalized component functions behave with respect to these prop-
erties. For variance decomposition in the without-prior path, we would have as many pairs of
indices SV

u and SC
u as many are the measures in M. In the with-prior path, we would regain

uniqueness of the expansion and of the variance decomposition. However, the disclaimer holds
that the investigation of this subject requires more space that can be devoted here and is, we
hope, an interesting question of future research.

7 Numerical Implications and An Application

7.1 Estimation: Investigation of the Computational Cost

Uncertainty quantification in the presence of a prior Pµ is, conceptually, carried out following
a two-stage sampling strategy [19]. First, a distribution µm is drawn from M according to Pµ

and, subsequently, a sample of values of X is drawn from µm. Then, conditional on assuming
µm as a probability measure for the model inputs, the cost of estimating a global sensitivity
measure is the same as under any unique measure. We recall that the brute force estimation of
all the terms of the functional ANOVA expansion requires a double loop of model evaluations
multiplied by the number of terms, leading to a cost Cµm

= N2(2n−1), where N is the sample
size and 2n − 1 is the number of terms to be estimated. Then, the overall computational cost
(CBF ) becomes, in principle CBF = NPµCµm

= NPµN2(2n − 1), where NPµ is the number
of sampled distributions. This cost is clearly prohibitive for most computer experiments.

We examine a few strategies to reduce computational burden in the remainder of this
section. First, we can lower Cµm

profiting of methods developed in previous literature. To
illustrate, the design of [71] lowers Cµm

to N(n+1) to obtain all first and total indices [79, 59].
This cost can be further reduced using a given data design. As mentioned in Section 2, this
estimates variance-based sensitivity measures directly on the sample of size N generated for
uncertainty quantification by a single-loop Monte Carlo or quasi-Monte Carlo scheme, making
the estimation cost independent of the number of model inputs.

A second strategy consists of lowering NPµ . For instance the re-weighting approach of [6]
permits to use a single sample of N model runs. The principle of the approach is similar to
importance sampling, and we refer to [6] and [4] for additional details. Thus, combining a
re-weighting approach with a given data approach has the potential of reducing the overall
cost of the analysis to N model evaluations even in the presence of multiple distributions.

Example 10 To illustrate, we consider estimating the first order sensitivity measures for the

Ishigami function. Given a sample of (X,G) generated under µ1 we associate a weight w = f2

f1

with each realization, where f1 and f2 are the densities corresponding to µ1 and µ2. Mean,
conditional means and variance under µ2 can then be computed as weighted local averages
or weighted sum of squares from the original sample. These weighted versions can be used
to estimate first-order variance contributions under µ2 when a sample under µ1 is available.

The estimated first order sensitivity indices at N = 10, 000 are Ŝµ1

1 = 0.33, Ŝµ1

2 = 0.45,

Ŝµ1

3 = 0.00. Re-weighting this sample leads to the following estimates for the variance-based

sensitivity indices under µ2: Ŝµ2

1 = 0.11, Ŝµ2

2 = 0.83, Ŝµ2

3 = 0.01. The numerical values are
close to those of Table 1.

The above example refers to the Ishigami model, in which the running time is not an issue.
In the case the running time is problematic, then an efficient way to reduce computational
burden is represented by fitting the original model through a metamodel. The metamodel can
then be used to carry out an analysis under alternative distributions. Here, some provisions
need to be taken. For instance, the support assigned by the analyst may change with the mea-
sures in M — see Example 1. Then, we may wish to train the metamodel on the distribution
with the largest support. To illustrate, suppose in Example 1 we use a sample coming from
the third assignment where support is [0, 1]3 to fit the metamodel. If we use this metamodel
to replace the original model and sample from the second distribution, in some instances we
might be evaluating the emulator on values of the inputs falling outside the original training,
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Table 2: Distributional Assumptions in Nordhaus (2008) original Uncertainty Quantification; Table
7-1, p. 127, [50].

Xi Model Input Name Mean Std. Deviation
X1 Growth in total factor productivity 0.0092 0.004
X2 Initial sigma growth 0.007 0.002
X3 Climate sensitivity 3 1.11
X4 Damage function exponential factor 0.0028 0.0013
X5 Cost of backstop in 2005 1170 468
X6 POPASYM 8600 1892
X7 b12 in carbon cycle transition matrix 0.189 0.017
X8 Cumulative fossil fuel extraction 6000 1200

with little control of the accuracy of the metamodel on these points if deviations from linear-
ities are present. However, this is just a first aspect that appears in the presence of multiple
distributions and a full investigation is outside the reach of the present work.

7.2 Application: Sensitivity of the DICE Model with Multiple

Distributions

A topical field characterized by scientific ambiguity is climate change [48]. Analysts, in fact,
are frequently unable to assign a unique distribution to the inputs of integrated assessment
models. Then, the question is whether we can still obtain robust insights from sensitivity
analysis of integrated assessment models under uncertainty in distribution. Our application
is motivated by the results of the very recent and influential investigation of [28], where
the developers of six of the most widely recognized integrated assessment models perform a
thorough and systematic uncertainty analysis of the response of integrated assessment models
(IAMs) in climate change. IAMs are sophisticated computer codes that simulate complex
phenomena related to climate change evolution. One of the key findings is that parametric
uncertainty is more important than uncertainty in model structure [28, p. 1]. These findings
show, once again, the need of performing a rigorous sensitivity analysis, especially if the goal
is the identification of the key-drivers of uncertainty.

Because our purpose is illustrative, and also for granting reproducibility of our results,
we focus on William Nordhaus’ [50] Dynamic Integrated Climate-Economy (DICE) model
and specifically on the baseline (no controls) case in that model.2 DICE is one of the best
known IAMs and has been applied and used as a benchmark in several studies concerning
uncertainty quantification in climate change modelling. Aside from the original uncertainty
analysis in [50], a variance-based sensitivity analyses of DICE is performed by [13] and [12].
More recently, [1] extend the analysis by estimating also the δ-importance measure. DICE has
also been used as a test case in robust optimization contexts, in studies such as [48, 45, 34]. As
Hu et al. underline [34], the starting point for an uncertainty analysis of the DICE model is
the investigation performed by Nordhaus himself in Chapter 7 of [50]. We report the reference
distributions in Table 2.

Nordhaus [50] (p. 126) remarks: It should be emphasized that these distributions are indeed
judgmental and have been estimated by the author. Other researchers would make, and other
studies have made, different assessments of the values of these parameters. Indeed, alternative
distributions are used in subsequent studies. For instance, in [46] and [30] only four uncertain
model inputs are considered and the assigned distributions differ from the ones in the original
study of [50], and in [34] a second order distribution over the mean and variances of Table 2. In
[34, Section 4.3] the standard deviations of the model inputs are allowed a fifty percent decrease
and increase a twenty percent increase. To illustrate a sensitivity analysis in this context, we
discretize the variations in the standard deviations and let M = {µ1

X(x), µ2
X(x), . . . , µ19

X (x),
where: 1) µ1

X(x) is Nordhaus’s original distribution; 2) µ2
X(x), . . . , µ9

X(x) (µ10
X (x), . . . , µ17

X (x))
are joint distributions with one of the model input variances shifted to its lower (upper) value,

2The code is the 2007 version of the model available at www.econ.yale.edu/~nordhaus/homepage/DICE_delta_v8_YUP_book_short_noexclude.GMS.
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with the remaining fixed at the reference values of Table 2; and 3) µ18
X (x) and µ19

X (x) are
distributions with all model input variances at their lowest and highest values, respectively. For
the with-prior path, we assign P (µ1

X) = P (µ18
X ) = P (µ19

X ) = 1
5
, and the remaining probabilities

equal to P (µm
X) = 1

40
for m = 2, 3, . . . , 17.

To produce results while taking computation burden under control we proceed as follows.
We consider the original distributions of [50] and generate a sample of size N = 10, 000. The
calculations are performed in the General Algebraic Modeling System (GAMS), a platform
for mathematical programming and optimization, in which the DICE model is implemented
and evaluated. The 10, 000 evaluations take about 12 hours on a PC with 8GB RAM, dual
core. Then, for the analysis of the remaining 18 distributions, we train an emulator through
Kriging to substitute the original model. The emulator fit registers an R2 coefficient of 0.97.
As a model output of interest we consider the change in atmospheric temperature in year 2100.
Figure 1 displays the values of the first order sensitivity measures across the 19 scenarios. b
Because we are in the without-prior path, we adopt the robust sensitivity setting of Section 5.2.

1 2 3 4 5 6 7 8

X
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
i

1 2 3 4 5 6 7 8

X
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
T

i

Figure 1: Boxplots of the normalized first and total order variance based sensitivity measures
across the 19 assigned distributions.

The sensitivity measures in a robust factor prioritization setting are the first order sensitivity
indices. We consider then the left graph in Figure 1. We observe that X3, climate sensitivity,
is robustly the most important, because (42) is satisfied for this model input. As for the runner
up, model input X5 is ranked second in 16 out of the 19 distribution assignments, and ranks
3rd in two and 4th in one. Model input X6 ranks second in 3 out of 19 measures in M and
ranks 3rd otherwise. To recover robust rankings, we need to go to the least important model
inputs, X1, X7 and X8, which rank 7th, 6th and 8th under all measures in M.

Concerning interaction quantification, at Nordhaus’ original distribution assignment, the
sum of first order indices is estimated at 0.93, signalling a low impact of interactions. Over the
additional eighteen measures, the estimate of the sum of the first order sensitivity measures
ranges from a minimum of 0.92 (last measure) to a maximum of 0.96 (second last measure).
Note that these two measures are the ones where the model input variances are at their maxima
and their minima, respectively. Using a subroutine based on regression with harmonic cosine
functions, we calculated the second order sensitivity indices. We register a sum of the first
and second order indices close to unity, indicating that higher order interaction effects are
negligible. We can then approximately compute the dimension distributions over the nineteen
scenarios and the corresponding mean effective dimension in the sumperimposition sense. In
the original Nordhaus assignment, the mean effective dimension is estimated at 1.09. Over the
additional 18 scenarios, we register DS = 1.03 and DS = 1.13. Again, these values confirm
the low impact of interactions.

Regarding trend identification, the plots of the first order terms (Figure 2) show that the
model is not monotonic. In particular, the expected behavior of G is decreasing in X4 and X7,
while increasing in the remaining model inputs. The graphs also confirm the high sensitivity
of the model output on changes in X3, and the low sensitivity on X1, X7 and X8. We observe
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Figure 2: Plots of the first order terms of the functional ANOVA expansion of the DICE model
over the 19 distributions. The plots have been obtained using the SSANOVA.m code of [66].

that temperature change in 2100 is increasing with respect to the climate sensitivity, the most
important parameter. This result is in accordance with intuition, because the higher climate
sensitivity the higher the expected increase in temperature.

In the with-prior path, one registers V[G]−1
VPµ [Eµm [G]] ≈ 3.5 · 10−4, signaling that the

fraction of V[G] explained by the variation in the mean is about 1.8%. Because this ratio is
small, we can consider the averages of the first order sensitivity indices, which is displayed in
Figure 2. They also indicate climate sensitivity as the most important parameter, followed
by the cost of backstop in 2005. Regarding interaction quantification, the unconditional di-
mension distribution in (39) is estimated at about 1.08. This result signals a low impact of
interactions, in agreement with the without-prior case. Regarding trend identification, the
first order mixture effects are displayed in Figure 2 as dotted lines. The behavior of these
effects is in agreement with the indications obtained in the without-prior case.

8 Conclusions

This work has provided a first systematic study of the classical functional ANOVA expansion
when the unique distribution assumption is relaxed. Such relaxation impacts properties of
the expansion such as existence, uniqueness, orthogonality, ultramodularity and monotonicity.
We have addressed these properties considering two main paths, depending on whether the
analyst is willing to assign a prior. We have seen that, in the without-prior path, the analyst
is dealing with a multiplicity of functional ANOVA expansion and, consequently, of variance-
based sensitivity measures. In this context, we have introduced robust sensitivity settings.
In the with-prior path, the analyst regains uniqueness and the mixture of functional ANOVA
expansions equals the original mapping.
We have searched for conditions that allow the analyst to proceed as if the distribution was
unique. We have discussed how insights concerning monotonicity are impacted by the assign-
ment of a setM of plausible distributions. Moreover, if the analyst aggregates the distributions
in M using a logarithmic opinion pool, then she(he) obtains a unique product distribution
that allows her(him) to proceed as if the distribution was unique. Our case study applies
the findings to a well known climate model, DICE, under uncertainty in distribution, drawing
from previous studies performed on the same model. Results show that when the temperature
change in 2100 is the variable of interest, climate sensitivity is consistently the most important
model input over the alternative distributions. Because this model input has been indicated
by [48] among the traditional uncertainties in climate modelling, this result confirms the im-
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portance of using a robust approach when making inferences on temperature changes using
the DICE model.
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9 Appendix A: Proofs

Proof 1 (Proof of Proposition 3) Consider the relation µ′ C
∼ µ′′ defined by whether µ′

and µ′′ belong to the same core. This is an equivalence relation. Passing over to the associated
equivalence classes yields a partition of Ψ[g].

Proof 2 (Calculations for Example 2) Under model input independence, gµ0 =
∑

u∈2Z

∏
i∈u

E[ti(Xi)]

and gµ
′

0 =
∑

u∈2Z

∏
i∈u

E[ti(X
′
i)] which coincide when all E[ti(Xi)] are equal to E[ti(X

′
i)]. We con-

sider an induction over |z|. Assuming gµν = gµ
′

ν for all ν ⊂ z, ν 6= z, E[ti(Xi)] = E[ti(X
′
i)] for

all i implies gµz = gµ
′

z , because

∫

X∼z

g(x)dµ(x∼z) =
∑

z

∫

X∼z

n∏

i=1

ti(xi)dµ(x∼z) =
∑

z

∏

i∈z

ti(xi) ·
∏

i6∈z

E[ti(Xi)]

is equal to
∫
X∼z

g(x)dµ′(x∼z).

Proof 3 (Proof of Proposition 4) By Proposition 1, for any measure µ ∈ Ψ[g], one can
write the function g as g(x) =

∑
z∈2Z gµz (xz). Then, given (M,F(M), Pµ), let us take the

expectation of both sides:

EPµ [g(x)] = EPµ




∑

z∈2Z

gµz (xz)



 =

Q∑

m=1

pm
∑

z∈2Z

gµ
m

z (xz). (54)

Because g(x) is independent of µ, we obtain EPµ [g(x)] = g(x). Note that this equality holds
under any measure Pµ. For the right hand side, by the linearity of the expectation operator,
we have:

EPµ




∑

z∈2Z

gµ
m

z (xz)



 =
∑

z∈2Z

EPµ [g
µm

z (xz)] (55)

Then, by definition EPµ [g
µm

z (xz)] = g
Pµ
z (xz).

Proof 4 (Proof of Proposition 5) We start with the expected value of G. We have

EµX
[G] =

∫
gdµ

X
=

∫
g

Q∑

m=1

pmdµm =

Q∑

m=1

pm

∫
gdµm =

Q∑

m=1

pmgµ
m

∅ (56)

The equality follows by the first equality in (24). Concerning the generic effect function, it
suffices to prove the identify for conditional expectations. We have

w
µ
X

z (xz) =

∫

X

(g(xz,x∼z))dµX(x∼z) =

∫
g(xz,x∼z)

Q∑

m=1

pmdµm(x∼z) =

Q∑

m=1

pm

∫
g(xz,x∼z)dµ

m(x∼z) =

Q∑

m=1

pmwµm

z (xz) = EPµ [w
µm

z (xz)] = w
Pµ
z (xz)
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Proof 5 (Proof of Proposition 6) Item 1. By Lemma 1, if g is non-decreasing, then
wµ

z (xz) is non-decreasing for any measure µ. Equation (6) shows that a generalized non-
orthogonalized effect function is the linear combination of wµ

z (xz) with positive weights. There-

fore
∫
wµ

z (xz)dP (µ) or
∑Q

m=1 pmwµm

z (xz) is, then, non-decreasing in xz. w
Pµ
z (xz) is, then,

non-decreasing. Item 2 follows from the same reasoning as for Item 1.
Item 3 is proven as follows. By assumption, because pm ≥ 0, (or dP (µ) ≥ 0) for a generic µm

it is pm∆wµm

z ≥ pm
∑
v⊂z

∆gµ
m

v , where v ⊂ z denotes true subsets, the case v = z is excluded.

Then, the following is true:

Q∑

m=1

pm∆wµm

z ≥

Q∑

m=1

∑

v⊂z

pm∆gµ
m

v =
∑

v⊂z

Q∑

m=1

pm∆gµ
m

v =
∑

v⊂z

∆g
Pµ
v (57)

Noting that the left-hand side is ∆w
Pµ
z , we have ∆w

Pµ
z ≥

∑
v⊂z

∆g
Pµ
v .

Proof 6 (Proof of Proposition 7) The following holds by the law of total variance:

V[G] = EPµ [V{G|µm}] + VPµ{E[G|µm]} (58)

Under the generic input distribution µm (9) applies, so that Vµm [G] =
∑

z∈2Z ,z 6=∅

V µm

z , from

which we obtain

V[G] = EPµ [
∑

z∈2Z ,z 6=∅

V µm

z ] + VPµ{E[G|µm]} =
∑

z∈2Z ,z 6=∅

Bz + VPµ{E[G|µm]} (59)

which holds by the linearity of the summation and expectation operators.

Proof 7 (Proof of Corollary 8) We start with the first equality in (40). By definition we
have

DS =
∑

|z|>0
|z|Pr(Tµ = z) =

∑
|z|>0

|z|EPµ [Pr(Tµ = z|µ = µ∗)] =

EPµ

[∑
|z|>0

|z|Pr(Tµ = z|µ = µ∗)

]
= EPµ [D

µ
S ].

For the second equality in (40), we proceed in a similar way, obtaining:

DT =
∑

|z|>0 max{j : j ∈ z}Pr(Tµ = z) =
∑

|z|>0 max{j : j ∈ z}EPµ [Pr(Tµ = z|µ = µ∗)] =

EPµ

[∑
|z|>0 max{j : j ∈ z}Pr(Tµ = z|µ = µ∗)] = EPµ [D

µ
T

]
.

10 Appendix B: Mixture Functional ANOVA and

Ultramodularity

As anticipated in the main text, we discuss here the relationship between the mixture of
functional ANOVA expansion and ultramodularity.

Definition 3 [43] g : X → R is ultramodular, if

g(x1 +∆x)− g(x1) ≤ g(x2 +∆x)− g(x2) (60)

for all x1,x2 ∈ X , ∆x ≥ 0 with x1 ≤ x2 and x1 + ∆x1,x2 + ∆x ∈ X . If the inequality in
(60) is reversed, we say that g(·) is neg-ultramodular.

Relevant properties of ultramodular functions are discussed in [43] and [44]. In [5], the
question of whether ultramodularity is preserved within a functional ANOVA expansion is
addressed. We summarize the main results in the following lemma.

Lemma 2 If g is ultramodular, then
1) all non-orthogonalized effects wµ

z (xz) in its functional ANOVA expansion are ultramodular
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2) all (orthogonalized) first order effects in its ANOVA expansion are ultramodular
3) Given ∆x ≥ 0, if

∆wµ
z (y)−∆wµ

z (x) ≥
∑

v⊂z

∆gµv (y)−
∑

v⊂z

∆gµv (x) (61)

where

∆wµ
z (y) = wµ

z (yz +∆xz)− wµ
z (yz) and ∆wµ

z (x) = wµ
z (xz +∆xz)− wµ

z (xz)
∆gµz (y) = gµz (yz +∆xz)− gµz (yz) and ∆gµz (x) = gµz (xz +∆xz)− gµz (xz)

(62)

then all effects in the functional ANOVA expansion of g under measure µ are ultramodular.

The next result states that the mixed functional ANOVA expansion of g preserves results
obtained with a unique input distribution when ultramodularity is concerned.

Proposition 9 Given a prior (M,F(M), Pµ) and g ∈
⋂

µm∈M L1(X ,B(X ), µm). If g is
ultramodular on X then the following holds for its mixture functional ANOVA expansion:
1) the non-orthogonalized effects of any order, w

Pµ
z (xz), are ultramodular;

2) all orthogonalized first order effects are ultramodular;
3) given ∆x > 0, if, for all µ ∈ M eqs. (61) and (62) hold, then all effect functions in (23)
are ultramodular.

Proof 8 (Proof of Proposition 9) Item 1. By item 1 of Lemma 2, the ultramodularity of

g ensures that wµ
z (xz) is ultramodular for any given probability measure µ. Then, w

Pµ
z (xz) is

the convex combination of ultramodular functions, which is ultramodular by Proposition 4.1 in
[43], p. 317.
Item 2. By item 2 of Lemma 2, if g is ultramodular, then any gµi (xi) is ultramodular given µ.

Hence, because g
Pµ

i (xi) is a convex combination of ultramodular functions, it is ultramodular
as well by Proposition 4.1 in [43], p. 317.
Item 3 is proven as follows. By the assumptions of item 3, for a generic µ it is:

∆wµ
z (y)−∆wµ

z (x) ≥
∑

v⊂z

∆gµv (y)−
∑

v⊂z

∆gµv (x) (63)

Taking the expectation of both sides, by the linearity of the involved operators,

EPµ [∆wµ
z (y)−∆wµ

z (x)] ≥ EPµ

[∑

v⊂z

∆gµv (y)−
∑

v⊂z

∆gµv (x)
]

(64)

we obtain
∆w

Pµ
z (y)−∆w

Pµ
z (x) ≥

∑

v⊂z

∆g
Pµ
z (y)−

∑

v⊂z

∆g
Pµ
z (x) (65)
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