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Abstract

This article develops the numerical and theoretical study of a reconstruction algo-
rithm of a potential in a wave equation from boundary measurements, using a cost
functional built on weighted energy terms coming from a Carleman estimate. More
precisely, this inverse problem for the wave equation consists in the determination of
an unknown time-independent potential from a single measurement of the Neumann
derivative of the solution on a part of the boundary. While its uniqueness and stability
properties are already well known and studied, a constructive and globally convergent
algorithm based on Carleman estimates for the wave operator was recently proposed
in [BdBE13]. However, the numerical implementation of this strategy still presents
several challenges, that we propose to address here.
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1 Introduction and algorithms

1.1 Setting and previous results
Let Ω be a smooth bounded domain of Rd, d ≥ 1 and T > 0. This article focuses on
the reconstruction of the potential in a wave equation according to the following inverse
problem:

Given the source terms f and f∂ and the initial data (w0, w1), considering the
solution of  ∂2

tW −∆W +QW = f, in (0, T )× Ω,
W = f∂ , on (0, T )× ∂Ω,
W (0) = w0, ∂tW (0) = w1, in Ω,

(1.1)

can we determine the unknown potential Q = Q(x), assumed to depend only on
x ∈ Ω, from the additional knowledge of the flux of the solution through a part
Γ0 of the boundary ∂Ω, namely

M = ∂nW, on (0, T )× Γ0 ? (1.2)

Beyond the preliminary questions about the uniqueness and stability of this inverse prob-
lem, already very well documented as we will detail below, we are interested in the actual
reconstruction of the potential Q from the extra information given by the measurement of
the flux M of the solution on a part of the boundary. This issue was already addressed
theoretically in our previous work [BdBE13] based on Carleman estimates. However, the al-
gorithm proposed in [BdBE13], proved to be convergent, cannot be implemented in practice
as it involves minimization processes of functionals containing too large exponential terms.
Therefore, our goal is to address here the numerical challenges induced by that approach.

Before going further, let us recall that if Q ∈ L∞(Ω), f ∈ L1(0, T ;L2(Ω)), f∂ ∈
H1((0, T ) × ∂Ω), w0 ∈ H1(Ω) and w1 ∈ L2(Ω), and assuming the compatibility condition
f∂(0, x) = w0(x) for all x ∈ ∂Ω, the Cauchy problem (1.1) is well-posed in C0([0, T ];H1(Ω))∩
C1([0, T ];L2(Ω)), and the normal derivative ∂nW is well-defined as an element of L2((0, T )×
∂Ω), see e.g. [Lio88, LLT86].

Our results will require the following geometric conditions (sometimes called “multiplier
condition” or “Γ-condition”):

∃x0 6∈ Ω, such that
Γ0 ⊃ {x ∈ ∂Ω, (x− x0) · ~n(x) ≥ 0}, (1.3)
T > sup

x∈Ω
|x− x0|. (1.4)

Space and time conditions (1.3)–(1.4) are natural from the observability point of view,
and appear naturally in the context of the multiplier techniques developed in [Ho86, Lio88].
They are more restrictive than the well-known observability results [BLR92] by Bardos
Lebeau Rauch based on the behavior of the rays of geometric optics, but the geometric con-
ditions (1.3)–(1.4) yield much more robust results, and this will be of primary importance
in our approach.
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In fact, under the regularity assumption

W ∈ H1(0, T ;L∞(Ω)), (1.5)

the positivity condition
∃α > 0 such that |w0| ≥ α in Ω, (1.6)

the knowledge of an a priori bound m > 0 such that

‖Q‖L∞(Ω) ≤ m, i.e. Q ∈ L∞≤m(Ω) = {q ∈ L∞(Ω), ‖q‖L∞(Ω) ≤ m}, (1.7)

and the multiplier conditions (1.3)–(1.4), the results in [Baufr] (and in [Yam99] under more
regularity hypothesis) state the Lipschitz stability of the inverse problem consisting in the
determination of the potential Q in (1.1) from the measurement of the flux M in (1.2).

We will introduce our work by describing what was done in our former article [BdBE13],
in order to highlight stage by stage the main challenges when performing numerical imple-
mentations.

In [BdBE13], we proposed a prospective algorithm to recover the potential Q from the
measurement M on (0, T ) × Γ0, that we briefly recall below. We assume that conditions
(1.3)–(1.4) are satisfied for some x0 /∈ Ω, and we set β ∈ (0, 1) such that

βT > sup
x∈Ω
|x− x0|. (1.8)

We then define, for (t, x) ∈ (−T, T )× Ω, the Carleman weight functions

ϕ(t, x) = |x− x0|2 − βt2, and for λ > 0, ψ(t, x) = eλ(ϕ(t,x)+C0), (1.9)

where C0 > 0 is chosen such that ϕ + C0 ≥ 1 in (−T, T ) × Ω and λ > 0 is large enough.
The chore of the algorithm in [BdBE13] is the minimization of a functional Ks,q[µ] given for
s > 0, q ∈ L∞≤m(Ω) and µ ∈ L2((0, T )× Γ0) by

Ks,q[µ](z) =
1

2

∫ T

0

∫
Ω

e2sψ|∂2
t z −∆z + qz|2 dxdt+

s

2

∫ T

0

∫
Γ0

e2sψ|∂nz − µ|2 dσdt, (1.10)

set on the trajectories z ∈ L2(0, T ;H1
0 (Ω)) such that ∂2

t z − ∆z + qz ∈ L2((0, T ) × Ω),
∂nz ∈ L2((0, T )×Γ0) and z(0, ·) = 0 in Ω. Note in particular that [BdBE13] shows that there
exists a unique minimizer of the above functional under the aforementioned assumptions.
The algorithm then reads as follows:

Algorithm 1. (see [BdBE13])
Initialization: q0 = 0 (or any guess in L∞≤m(Ω)).
Iteration: From k to k + 1
• Step 1 - Given qk, we set µk = ∂t

(
∂nw[qk]− ∂nW [Q]

)
on (0, T )×Γ0, where w[qk] denotes

the solution of (1.1) with the potential qk and ∂nW [Q] is the measurement given in (1.2).
• Step 2 - Minimize Ks,qk [µk] (defined in (1.10)) on the trajectories z ∈ L2(0, T ;H1

0 (Ω))
such that ∂2

t z −∆z + qkz ∈ L2((0, T )× Ω), ∂nz ∈ L2((0, T )× Γ0) and z(0, ·) = 0 in Ω. Let
Zk be the unique minimizer of the functional Ks,qk [µk].
• Step 3 - Set

q̃k+1 = qk +
∂tZ

k(0)

w0
, in Ω,
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where w0 is the initial condition in (1.1) (recall assumption (1.6)).
• Step 4 - Finally, set

qk+1 = Tm(q̃k+1), with Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| > m,

where m is the a priori bound in (1.7).

Algorithm 1 comes along with the following convergence result:

Theorem 1.1 ([BdBE13, Theorem 1.5]). Under assumptions (1.3)-(1.4)-(1.5)-(1.6)-(1.7)-
(1.8), there exist constants C > 0, s0 > 0 and λ > 0 such that for all s ≥ s0, Algorithm 1 is
well-defined and the iterates qk constructed by Algorithm 1 satisfy, for all k ∈ N,∫

Ω

|qk+1 −Q|2e2sψ(0) dx ≤
C ‖W [Q]‖2H1(0,T ;L∞(Ω))

s1/2α2

∫
Ω

|qk −Q|2e2sψ(0) dx. (1.11)

In particular, for s large enough, the sequence qk strongly converges towards Q as k → ∞
in L2(Ω).

This algorithm presents the advantage of being convergent for any initial guess q0 ∈
L∞≤m(Ω) without any a priori guess except for the knowledge of m. This is why we call this
algorithm globally convergent. However, while this algorithm is theoretically satisfactory as
at each iteration, it simply consists in the minimization of the strictly convex and coercive
quadratic functional Ks,q, it nevertheless contains several flaws and drawbacks in its nu-
merical implementation. In particular, we underline that the functional Ks,q involves two
exponentials, namely

exp(sψ) = exp(s exp(λ(ϕ+ C0))),

with a choice of parameters s and λ large enough and whose sizes are difficult to estimate.
In particular, for s = λ = 3 - which are not so large of course - Ω = (0, 1), x0 ' 0−, T ' 1+

and β ' 1−, the ratio
max

(0,T )×Ω
{exp(2sψ)}

min
(0,T )×Ω

{exp(2sψ)}

is of the order of 10340 ! The numerical implementation of Algorithm 1 therefore seems
doomed.

The goal of this article is to improve the above algorithm so that it can fruitfully be imple-
mented. This will be achieved following several stages: working on the construction of the
cost functional (specifically on the Carleman weight function), considering the precondition-
ing of the cost functional, and adapting the new cost functional to the discrete setting used
for the numerics.

Before going further, let us mention that the inverse problem under consideration has been
well-studied in the literature, starting with the uniqueness result in the celebrated article
[BK81], see also [Kli92], which introduced the use of Carleman estimates for these studies.
Later on, stability issues were obtained for the wave equation, first based on the so-called
observability properties of the wave equation [PY96, PY97] and then refined with the use
of Carleman estimates, among which [IY01a, IY01b, IY03, KY06]. In fact, a great part of
the literature in this area, concerning uniqueness, stability and reconstruction of coefficient
inverse problems for evolution partial differential equations can be found in the survey ar-
ticle [Kli13] and we refer the interested reader to it. A slightly different approach can also
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be found in the recent article [SU13] based on more geometric insights.
Let us also emphasize that we are interested in the case in which one performs only one
measurement. The question of determining coefficients from the Dirichlet to Neumann map
is different and we refer for instance to the boundary control method proposed in [Bel97] or
to methods based on the complex geometric optics, see [Isa91].
Here, as we said, we will focus on the reconstruction of the potential in the wave equation
(1.1) from the flux M in (1.2). This question has been studied only recently, though the first
investigation [KI95] appears in 1995, and we shall in particular point out the most recent
works of Beilina and Klibanov [KB12], [BK15], who study the reconstruction of a coefficient
in a hyperbolic equation from the use of a Carleman weight function for the design of the
cost functional. However, these techniques differ from ours as they work on the functions
obtained after a Laplace transform of the equation.

In what follows, we propose to develop a numerical algorithm in the spirit of the one in
[BdBE13], study its convergence and his implementation. Before going further, let us also
mention the fact that one can find in [CFCM13] some numerical experiments based on the
minimization of a quadratic functional similar to the one in (1.10), but with s and λ rather
small, namely s = 1 and λ = 0.1, see [CFCM13, Section 4]. Our goal is to overcome this
restriction on the size of the Carleman parameters, as we request them to be large for the
convergence of the algorithm.

1.2 New weight functions, new cost functionals, and a new algo-
rithm

In a first stage, we aim at removing one exponential from the cost functional Ks,q in (1.10).
Similarly to [BdBE13], looking again for a cost functional based on a Carleman estimate
for the wave equation, we will work with the Carleman weight function exp(sϕ) instead
of exp(s exp(λ(ϕ + C0))). This requires an adaptation of the proof of [BdBE13] with such
a weight function and the use of the Carleman estimates developed in [LRS86] (see also
[IY01b]), that we will briefly recall in Section 2.

In particular, instead of minimizing Ks,q[µ] introduced in (1.10) as in Step 2 of Algo-
rithm 1, we will perform a minimization process on a new functional Js,q[µ̃], to be defined
later in (1.13), based on the simplified weight function exp(sϕ). Before introducing that
functional, we shall define the following restricted set O:

O = {(t, x) ∈ (0, T )× Ω, βt > |x− x0|}
= {(t, x) ∈ (0, T )× Ω, |∂tϕ(t, x)| ≥ |∇ϕ(t, x)|}, (1.12)

which is depicted in Figure 1.
For s > 0, q ∈ L∞(Ω) and µ̃ ∈ L2((0, T )× Γ0), we then introduce the functional Js,q[µ̃]

defined by

Js,q[µ̃](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt

+
s

2

∫ T

0

∫
Γ0

e2sϕ|∂nz − µ̃|2 dσdt+
s3

2

∫∫
O
e2sϕ|z|2 dxdt, (1.13)

to be compared withKs,q[µ] in (1.10), on the trajectories z ∈ C0([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

such that ∂2
t z −∆z + qz ∈ L2((0, T )× Ω) and z(0, ·) = 0 in Ω.
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Figure 1: Illustration of domain O in the case Ω = (0, 1).

This functional Js,q[µ̃] is quadratic, and as we will show later in Section 2.3, under conditions
(1.3)–(1.4)–(1.8), it is strictly convex and coercive, therefore enjoying similar properties as
the functional Ks,q[µ]. Nevertheless, let us once more emphasize that the functional Js,q[µ̃]
is less stiff than the functional Ks,q[µ] as now the weights are of the form exp(2sϕ) instead
of exp(2sψ) = exp(2s exp(λ(ϕ+C0))) in (1.10). This already indicates the possible gain we
could have by working with the functional Js,q[µ̃] in (1.13) instead of Ks,q[µ] in (1.10).
It may appear surprising to note µ̃ instead of µ. These slightly different notations come
from the fact that the functional Ks,q[µ] tries to find an optimal solution Z of

∂2
tZ −∆Z + qZ ' 0 in (0, T )× Ω, and ∂nZ ' µ in (0, T )× Γ0,

while the functional Js,q[µ̃] tries to find an optimal solution Z̃ of

∂2
t Z̃ −∆Z̃ + qZ̃ ' 0 in (0, T )× Ω, ∂nZ̃ ' µ̃ in (0, T )× Γ0, and Z̃ ' 0 in O.

Therefore, as Z̃ is sought after such that it is small in O, it is natural to introduce a smooth
cut-off function η ∈ C2(R) such that 0 ≤ η ≤ 1 and

η(τ) = 0, if τ ≤ 0, and η(τ) = 1, if τ ≥ d2
0 := d(x0,Ω)2, (1.14)

(recall that d2
0 > 0 according to Assumption 1.3) see Figure 2. Next, the idea is that if

µ̃ = η(ϕ)µ, in (0, T )× Γ0.

and if Z denotes the minimizer of the functional Ks,q[µ] in (1.10), then the minimizer Z̃ of
Js,q[µ̃] in (1.13) should be close to η(ϕ)Z in (0, T )×Ω and in particular at t = 0 this should
yield, due to the choice of η in (1.14), ∂tZ̃(0) ' ∂tZ(0) in Ω.

We are then led to propose a revised version of our reconstruction algorithm, detailed in
Algorithm 2 given below.

Algorithm 2.
Initialization: q0 = 0 (or any guess q0 ∈ L∞≤m(Ω)).
Iteration: From k to k + 1

6
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Figure 2: Isovalues of the function ϕ (x0 = −0.2, β = 1). Definition and application of the
cut-off function η.

• Step 1 - Given qk, we set µ̃k = η(ϕ)∂t
(
∂nw[qk]− ∂nW [Q]

)
on (0, T ) × Γ0, where w[qk]

denotes the solution of ∂2
tw −∆w + qkw = f, in (0, T )× Ω,
w = f∂ , on (0, T )× ∂Ω,
w(0) = w0, ∂tw(0) = w1, in Ω,

(1.15)

corresponding to (1.1) with the potential qk and ∂nW [Q] is the measurement in (1.2).
• Step 2 - We minimize the functional Js,qk [µ̃k] defined in (1.13), for some s > 0 that will be
chosen independently of k, on the trajectories z ∈ C0([−T, T ];H1

0 (Ω)) ∩C1([−T, T ];L2(Ω))
such that ∂2

t z −∆z + qkz ∈ L2((0, T )× Ω), ∂nz ∈ L2((0, T )× Γ0) and z(0, ·) = 0 in Ω. Let
Z̃k be the unique minimizer of the functional Js,qk [µ̃k].
• Step 3 - Set

q̃k+1 = qk +
∂tZ̃

k(0)

w0
, in Ω, (1.16)

where w0 is the initial condition in (1.15) (or (1.1)).
• Step 4 - Finally, set

qk+1 = Tm(q̃k+1), with Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m,

where m is the a priori bound in (1.7).

Of course, if one compares Algorithm 2 with Algorithm 1, the major difference is in Step
2 in which one minimizes the functional Js,qk [µ̃] in (1.13) instead of the functional Ks,qk [µ]
in (1.10). And as we have said above, the two functionals should have minimizers that are
close at t = 0. In fact, similarly as Theorem 1.1, we will obtain the following result:

Theorem 1.2. Under assumptions (1.3)-(1.4)-(1.5)-(1.6)-(1.7)-(1.8), there exist positive
constants C and s0 such that for all s ≥ s0, Algorithm 2 is well-defined and the iterates qk
constructed by Algorithm 2 satisfy, for all k ∈ N,∫

Ω

|qk+1 −Q|2e2sϕ(0) dx ≤
C ‖W [Q]‖2H1(0,T ;L∞(Ω))

s1/2α2

∫
Ω

|qk −Q|2e2sϕ(0) dx. (1.17)

In particular, for s large enough, the sequence qk strongly converges towards Q as k → ∞
in L2(Ω).
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The proof of Theorem 1.2 is given in Section 2 and closely follows the one of Theorem 1.1
in [BdBE13]. The main difference is that the starting point of our analysis, instead of being
the Carleman estimate in [Im02], is the Carleman estimate in [LRS86].
The main improvement with respect to Algorithm 1 is the fact that the functional Js,q[µ̃] in
(1.13) contains weight functions with only one exponential, making the problem less difficult
to implement. However, it is still numerically challenging to use such functionals, especially
as the convergence of Algorithm 2 gets better for large parameter s. We propose below two
ideas to make it numerically tractable.

1.3 Preconditioning, processing and discretizing the cost functional
When considering the functional Js,q[µ̃] in (1.13), one easily sees that exponentials factors
can be removed if considering the unknown zesϕ instead of z. Such transformation corre-
sponds to a preconditioning of the functional Js,q[µ̃]. Indeed, that way, exponential factors
do not appear anymore when computing the gradient of the cost functional Js,q[µ̃]. Nev-
ertheless, there are still exponentials factors appearing in the measurements. We therefore
also develop a progressive algorithm in the resolution of the minimization process. The idea
is to consider intervals in which the weight function ϕ does not significantly change, allowing
to preserve numerical accuracy despite the possible large values of s. Details will be given
in Section 3.

When implementing the above strategy numerically, one has to discretize the wave equa-
tion under consideration, and to adapt the functional Js,q[µ̃] to the discrete setting. As
it is well-known [Tre82, Zua05], most of the numerical schemes exhibit some pathologies at
high-frequency, namely discrete rays propagating at velocity 0 or blow up of observability es-
timates. Therefore, we need to take some care to adapt the functional Js,q[µ̃] to the discrete
setting. In particular, following ideas well-developed in the context of the observability of
discrete waves (see [Zua05]), we will introduce a naive discrete version of Js,q[µ̃] and penalize
the high-frequencies.
To simplify the presentation of these penalized frequency functionals, we will introduce it in
full details on a space semi-discrete and time continuous 1d wave equations, where the space
semi-discretization is done using the finite-difference method on a uniform mesh. In this
case, our approach, even at the discrete level, can be made completely rigorous by adapting
the arguments in the continuous setting and the discrete Carleman estimates obtained in
[BE11] (recently extended to a multi-dimensional setting in [BEO15]). We refer to Section 4
for extensive details.

Section 5 then presents numerical results illustrating our method on several examples.
In particular, we will illustrate the good convergence of the algorithm when the parameter s
is large. We shall also discuss the cases in which the measurement is blurred by some noise
and the case in which the initial datum w0 is not positive everywhere.

Outline Section 2 is devoted to the proof of the convergence of Algorithm 2. In Section
3 we explain how the minimization process of the functional Js,q in (1.13) can be strongly
simplified. Section 4 then makes precise the new difficulties arising when discretizing the
functional Js,q, and Section 5 presents several numerical experiments.
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2 Study of Algorithm 2

2.1 Main ingredients
The goal of this section is to prove Theorem 1.2. As mentioned in the introduction, the
proof will closely follows the one of Theorem 1.1 in [BdBE13]. The main difference is that,
instead of using the Carleman estimate developed in [Im02, Baufr], we will base our proof
on the following one:

Theorem 2.1. Assume the multiplier conditions (1.3)-(1.4) and β ∈ (0, 1) as in (1.8).
Define the weight function ϕ as in (1.9). Then there exist s0 > 0 and a positive constant M
such that for all s ≥ s0:

s

∫ T

−T

∫
Ω

e2sϕ
(
|∂tz|2 + |∇z|2 + s2|z|2

)
dxdt ≤M

∫ T

−T

∫
Ω

e2sϕ|∂2
t z −∆z|2 dxdt

+Ms

∫ T

−T

∫
Γ0

e2sϕ |∂nz|2 dσdt+Ms3

∫∫
(|t|,x)∈O

e2sϕ|z|2 dxdt, (2.1)

for all z ∈ C0([−T, T ];H1
0 (Ω))∩C1([−T, T ];L2(Ω)) with ∂2

t z−∆z ∈ L2((−T, T )×Ω), where
the set O satisfies (1.12).
Furthermore, if z(0, ·) = 0 in Ω, one can add to the left hand-side of (2.1), the following
term:

s1/2

∫
Ω

e2sϕ(0)|∂tz(0)|2 dx. (2.2)

The Carleman estimate of Theorem 2.1 is quite classical and can be found in the literature
in several places, among which [LRS86, Isa06, Zha00, FYZ07, Bel08]. For the convenience of
the reader, we briefly sketch the proof in Section 2.2. However, the proof of the fact that the
term (2.2) can be added in the left hand side of (2.1) when z(0, ·) = 0 in Ω is not explicitly
written in the aforementioned references, although this is one of the important point of the
proof of the stability result in [IY01a, IY01b]. Nevertheless, the idea can be adapted easily
from [BdBE13], as we will detail below.

Before giving the details of the proof of Theorem 1.2, let us first briefly explain the main
idea of the design of Algorithm 2, which turns out to be very similar to the one of Algorithm
1. Indeed, both Algorithms 1 and 2 are constructed from the fact that ifW [Q] is the solution
of equation (1.1) and w[qk] solves (1.15), then

zk = ∂t
(
w[qk]−W [Q]

)
(2.3)

satisfies  ∂2
t z
k −∆zk + qkzk = gk, in (0, T )× Ω,

zk = 0, on (0, T )× ∂Ω,
zk(0) = 0, ∂tz

k(0) = zk1 , in Ω,
(2.4)

where gk = (Q− qk)∂tW [Q], zk1 = (Q− qk)w0, and we have µk = ∂nz
k on (0, T )× Γ0.

In system (2.4), the source gk and the initial data zk1 are both unknown, and we are
actually interested in finding a good approximation of zk1 , which encodes the information on
Q− qk. In order to do so, we will try to fit “at best” the flux ∂nz with µk on the boundary,
approximating the unknown source term gk by 0.

This strategy works as we can prove that the source term gk brings less information than
µk does, and this is where the choice of the Carleman parameter s will play a crucial role.
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This is actually the milestone of the construction of Algorithm 1 and its convergence result
[BdBE13]. Here, when considering the functional Js,q[η(ϕ)µ] defined in (1.13), we rather
try to approximate z̃k = η(ϕ)zk, which enjoys the following properties:

• ∂tz̃
k(0, ·) = η(ϕ(0))∂tz

k(0, ·) = (Q− qk)w0 encodes the information on Q− qk;

• z̃k = η(ϕ)zk vanishes in domain O defined by (1.12) and on the boundary in time
t = T ;

• ∂nz̃
k = µ̃k in (0, T )× Γ0.

These ideas are actually behind the proofs of the inverse problem stability by compactness
uniqueness arguments as in [PY96, PY97, Yam99] or by Carleman estimates given in [IY01a,
IY01b, IY03, Baufr].

2.2 Sketch of the proof of the Carleman estimate
Since a lot of different references, several of them mentioned right above, present detailed
proof of Carleman estimates for the wave equation, we only give here the main calculations
yielding the result presented in Theorem 2.1.

Proof. Set y(t, x) = z(t, x)esϕ(t,x) for all (t, x) ∈ (−T, T ) × Ω, and introduce the conjugate
operator Ls defined by Lsy = esϕ(∂2

t −∆)(e−sϕy). Easy computations give

Lsy = ∂2
t y −∆y + s2(|∂tϕ|2 − |∇ϕ|2)y︸ ︷︷ ︸

=P1y

− 2s∂ty∂tϕ+ 2s∇y · ∇ϕ+ αsy︸ ︷︷ ︸
=P2y

− s(∂2
t ϕ−∆ϕ)y − αsy︸ ︷︷ ︸

=Ry

(2.5)

where we have set α = 2d− 2, d being the space dimension. Based on the estimate

2

∫ T

−T

∫
Ω

P1yP2y dxdt ≤
∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt+ 2

∫ T

−T

∫
Ω

P1yP2y dxdt

≤ 2

∫ T

−T

∫
Ω

|Lsy|2 dxdt+ 2

∫ T

−T

∫
Ω

|Ry|2 dxdt, (2.6)

the main part of the proof consists in the computation and bound from below of the cross-
term

I =

∫ T

−T

∫
Ω

P1y P2y dxdt.
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Tedious computations and integrations by parts yield

I = s

∫ T

−T

∫
Ω

|∂ty|2(∂2
t ϕ+ ∆ϕ− α) dxdt+ s

∫ T

−T

∫
Ω

|∇y|2 (∂2
t ϕ−∆ϕ+ α+ 4) dxdt

+ s3

∫ T

−T

∫
Ω

|y|2
[
∂t
(
∂tϕ(|∂tϕ|2 − |∇ϕ|2)

)
+ α(|∂tϕ|2 − |∇ϕ|2)

−∇ ·
(
∇ϕ(|∂tϕ|2 − |∇ϕ|2)

)]
dxdt

− s

[∫
Ω

(
|∂ty|2 + |∇y|2

)
∂tϕdx

]T
−T

+ 2s

[∫
Ω

∂ty (∇y · ∇ϕ) dx

]T
−T

− s3

[∫
Ω

y2(|∂tϕ|2 − |∇ϕ|2)∂tϕ dx

]T
−T

+ αs

[∫
Ω

∂ty y dx

]T
−T

− s

∫ T

−T

∫
∂Ω

|∂ny|2∂nϕdσdt.

Let us now briefly explain how each term can be estimated.

• We focus on the terms in s|∂ty|2 and s|∇y|2 in order to insure that they are strictly
positive. Taking α = 2d− 2, this means

∂2
t ϕ+ ∆ϕ− α = −2β + 2d− α = 2(1− β) and

∂2
t ϕ−∆ϕ+ α+ 4 = −2β − 2d+ α+ 4 = 2(1− β),

that are positive thanks to the assumption β ∈ (0, 1).

• The terms in s3|y|2 can be rewritten as follows (since ∇2ϕ = 2Id):

∂t
(
∂tϕ(|∂tϕ|2 − |∇ϕ|2)

)
+ α(|∂tϕ|2 − |∇ϕ|2)−∇ ·

(
∇ϕ(|∂tϕ|2 − |∇ϕ|2)

)
= (∂2

t ϕ−∆ϕ+ α)(|∂tϕ|2 − |∇ϕ|2) + 2|∂tϕ|2∂2
t ϕ+ 2∇2ϕ · ∇ϕ · ∇ϕ

= (−6β − 2d+ α)(|∂tϕ|2 − |∇ϕ|2) + 4(1− β)|∇ϕ|2

= −(2 + 6β)(|∂tϕ|2 − |∇ϕ|2) + 4(1− β)|∇ϕ|2.

This quantity is bounded from below by a strictly positive constant in the region of (−T, T )×
Ω in which

|∂tϕ(t, x)|2 − |∇ϕ(t, x)|2 ≤ 0⇐⇒ βt ≤ |x− x0|,

i.e. the complementary of the set
{

(t, x) ∈ (−T, T )× Ω with (|t|, x) ∈ O
}
where O satisfies

(1.12).

• We now estimate the boundary terms in time1 appearing at time t = T and t = −T .
We focus on the terms at time T , as the ones at time −T can be handled similarly. Let us
first collect them:

IT := 2sβT

∫
Ω

(
|∂ty(T )|2 + |∇y(T )|2

)
dx+ 8s3βT

∫
Ω

|y(T )|2(β2T 2 − |x− x0|2) dx

+ 4s

∫
Ω

∂ty(T )
(
∇y(T ) · (x− x0) +

α

4
y(T )

)
dx.

1The authors acknowledge Xiaoyu Fu for having pointed out to us the fact that these boundary terms
have positive signs.
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The first and second terms are obviously positive (under Condition (1.8) for the second one),
so we only need to check that they are sufficiently positive to absorb the last term, whose
sign is unknown. We remark that∫

Ω

∣∣∣∇y(T ) · (x− x0) +
α

4
y(T )

∣∣∣2 dx
=

∫
Ω

| ∇y(T ) · (x− x0)|2 dx+
α

4

∫
Ω

(x− x0) · ∇
(
|y(T )|2

)
dx+

α2

16

∫
Ω

|y(T )|2 dx

=

∫
Ω

| ∇y(T ) · (x− x0)|2 dx+

(
α2

16
− αd

4

)∫
Ω

|y(T )|2 dx

≤ sup
Ω

{
|x− x0|2

}∫
Ω

| ∇y(T )|2 dx,

since α = 2d− 2 gives α2 − 4αd = −4(d− 1)(d+ 1) ≤ 0. This inequality allows to deduce,
by Cauchy-Schwarz inequality, that

4s

∫
Ω

∂ty(T )
(
∇y(T ) · (x− x0) +

α

4
y(T )

)
dx

≤ 2s sup
Ω
{ |x− x0|}

(∫
Ω

(
|∂ty(T )|2 + |∇y(T )|2

)
dx

)
.

Using again Condition (1.8), we easily obtain IT ≥ 0.

Gathering these informations, and using the geometric condition (1.3) on Γ0, it yields
that there exists a constant M > 0 independent of s such that∫ T

−T

∫
Ω

P1yP2y dxdt ≥Ms

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt

−Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt−Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt.

From (2.6), we easily derive

s

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt

≤M
∫ T

−T

∫
Ω

|Lsy|2 dxdt+Ms2

∫ T

−T

∫
Ω

|y|2 dxdt

+ Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt+Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt.

We take now s0 large enough in order to make sure that the term in s2|y|2 of the right hand
side is absorbed by the dominant term in s3|y|2 of the left hand side as soon as s ≥ s0 and
we obtain

s

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt

≤M
∫ T

−T

∫
Ω

|Lsy|2 dxdt+Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt+Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt (2.7)
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We then deduce (2.1) by substituting y = zesϕ.

Furthermore, under the additional condition z(0, ·) = 0 in Ω, we get y(0, ·) = 0 in Ω.
We then choose ρ : t 7→ ρ(t) a smooth function such that ρ(0) = 1 and ρ vanishes close to
t = −T . We multiply P1y by ρ∂ty and integrate over (−T, 0)× Ω, to get∫ 0

−T

∫
Ω

P1y ρ∂ty dxdt =

∫ 0

−T

∫
Ω

(
∂2
t y −∆y + s2((∂tϕ)2 − |∇ϕ|2)y

)
ρ∂ty dxdt

=
1

2

∫ 0

−T

∫
Ω

ρ∂t
(
|∂ty|2 + |∇y|2

)
dxdt+

s2

2

∫ 0

−T

∫
Ω

ρ(|∂tϕ|2 − |∇ϕ|2)∂t(y
2) dxdt

=
1

2

∫
Ω

|∂ty(0)|2 dx− 1

2

∫ 0

−T

∫
Ω

∂tρ
(
|∂ty|2 + |∇y|2

)
+ s2∂t

(
ρ(|∂tϕ|2 − |∇ϕ|2)

)
y2dxdt

≥ 1

2

∫
Ω

|∂ty(0)|2 dx−M
∫ 0

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt.

By Cauchy-Schwarz inequality, this implies

s1/2

∫
Ω

|∂ty(0)|2 dx ≤
∫ T

−T

∫
Ω

|P1y|2 dxdt+Ms

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt.

Using (2.7) and y = zesϕ, we easily deduce the estimate of term (2.2) and conclude the
proof of Theorem 2.1.

From this proof of Theorem 2.1, we can directly exhibit (see (2.7)) the following “conju-
gate” Carleman estimate, of practical interest later on:

Corollary 2.2. Assume the multiplier condition (1.3)-(1.4) and β ∈ (0, 1) as in (1.8).
Define the weight function ϕ as in (1.9). Then there exist constants M > 0 and s0 > 0 such
that for all s ≥ s0,

s

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt

≤M
∫ T

−T

∫
Ω

|Lsy|2 dxdt+Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt+Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt (2.8)

for all y ∈ C0([−T, T ];H1
0 (Ω)) ∩ C1([−T, T ];L2(Ω)), with Lsy ∈ L2((−T, T ) × Ω), where

Ls, P1 and P2 are defined in (2.5).

Furthermore, if y(0, ·) = 0 in Ω, one can add the term s1/2

∫
Ω

|∂ty(0)|2 dx to the left

hand-side of (2.8).

2.3 Proof of the convergence theorem
Proof of Theorem 1.2. Let us first begin by showing that Algorithm 2 is well-defined. We
introduce

Tq =
{
z ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),

with ∂2
t z −∆z + qz ∈ L2((0, T )× Ω) and z(0, ·) = 0 in Ω

}
,
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endowed with the norm

‖z‖2obs,s,q =

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt+ s

∫ T

0

∫
Γ0

e2sϕ|∂nz|2 dσdt

+ s3

∫∫
O
e2sϕ|z|2 dxdt.

The proof that this quantity is a norm on Tq stems from the Carleman estimate of Theo-
rem 2.1 applied to ze(t, x) = z(t, x) for t ∈ [0, T ] and ze(t, x) = −z(−t, x) for t ∈ [−T, 0],
x ∈ Ω. Indeed, (2.1) applied to ze yields for all s ≥ s0,

s3

∫ T

0

∫
Ω

e2sϕ|z|2 dxdt ≤ 2M

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt

+ 2M ‖q‖2L∞(Ω)

∫ T

0

∫
Ω

e2sϕ|z|2 dxdt

+ Ms

∫ T

0

∫
Γ0

e2sϕ |∂nz|2 dσdt+Ms3

∫∫
O
e2sϕ|z|2 dxdt,

so that ‖ · ‖obs,s,q is a norm on Tq provided s is large enough, and then for all s > 0 as the
weight functions are bounded on [0, T ] × Ω. This immediately implies that Js,q[µ̃] defined
in (1.13) is coercive and strictly convex on the set Tq, so that it admits a unique minimizer
and as a consequence, Algorithm 2 is well-defined.

Moreover, this shows that the class Tq, which was a priori dependent of q, is in fact
independent of q (for q ∈ L∞(Ω)) and is simply given by

T =
{
z ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),

with ∂2
t z −∆z ∈ L2((0, T )× Ω) and z(0, ·) = 0 in Ω

}
.

In order to show estimate (1.17), instead of considering only functionals of the form
Js,q[µ̃], we introduce slightly more general functionals Js,q[µ̃, g] given for s > 0, q ∈ L∞(Ω),
µ̃ ∈ L2((0, T )× Γ0), g ∈ L2((0, T )× Ω) and for all z ∈ T , by:

Js,q[µ̃, g](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz − g|2 dxdt

+
s

2

∫ T

0

∫
Γ0

e2sϕ|∂nz − µ̃|2 dσdt+
s3

2

∫∫
O
e2sϕ|z|2 dxdt. (2.9)

With the same argument as above, the functional Js,q[µ̃, g] is coercive in the norm ‖·‖obs,s,q
and strictly convex, so that it admits a unique minimizer for each µ̃ ∈ L2((0, T )× Γ0) and
g ∈ L2((0, T )× Ω).

We then observe that z̃k := η(ϕ)zk, where zk satisfies (2.3) (recall the definitions of η in
(1.14) and ϕ in (1.9), pictured in Figure 2), is the minimizer of Js,qk [µ̃k, g̃k] with

g̃k = η(ϕ)(Q− qk)∂tW [Q] + [∂2
t −∆, η(ϕ)]zk, (2.10)

since it solves:  ∂2
t z̃
k −∆z̃k + qkz̃k = g̃k, in (0, T )× Ω,

z̃k = 0, on (0, T )× ∂Ω,
z̃k(0) = 0, ∂tz̃

k(0) = η(ϕ(0, ·))zk1 , in Ω,
(2.11)
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and ∂nz̃k = µ̃k = η(ϕ)∂t
(
∂nw[qk]− ∂nW [Q]

)
on (0, T )× Γ0.

We shall then compare Z̃k and z̃k, the minimizers of the functionals Js,qk [µ̃k, 0] and
Js,qk [µ̃k, g̃k] respectively, especially at the time t = 0 corresponding to the set in which the
information on (Q− qk) is encoded. The result is stated as follows:

Proposition 2.3. Assume the geometric and time conditions (1.3)-(1.4) on Γ0 and T , that
β is chosen as in (1.8), and let µ ∈ L2((0, T ) × Γ0) and ga, gb ∈ L2((0, T ) × Ω). Assume
also that q belongs to L∞≤m(Ω) for m > 0.
Let Zj be the unique minimizer of the functional Js,q[µ, gj ] on T for j ∈ {a, b}. Then there
exist positive constants s0(m) and M = M(m) such that for s ≥ s0(m) we have:

s1/2

∫
Ω

e2sϕ(0)|∂tZa(0)− ∂tZb(0)|2 dx ≤M
∫ T

0

∫
Ω

e2sϕ|ga − gb|2 dxdt. (2.12)

where ϕ and s0(m) are chosen so that Theorem 2.1 holds.

We postpone the proof of Proposition 2.3 to the end of the section and first show how it
can be used for the proof of Theorem 1.2.

Recall now that ∂tz̃k(0, ·) = (Q − qk)w0. Setting q̃k+1 as in (1.16), we get from Propo-
sition 2.3 applied to Za = Z̃k and Zb = z̃k that

s1/2

∫
Ω

e2sϕ(0)|q̃k+1 −Q|2 |w0|2dx ≤M
∫ T

0

∫
Ω

e2sϕ|g̃k|2 dxdt. (2.13)

The next step is to get an estimates of g̃k defined by (2.10). Using the fact that
[
η(ϕ), ∂2

t −∆
]
zk

has support in a region where ϕ ≤ d2
0 := d(x0,Ω)2, we obtain∫ T

0

∫
Ω

e2sϕ|g̃k|2 dxdt ≤ M

∫ T

0

∫
Ω

e2sϕ|η(ϕ)(Q− qk)∂tW [Q]|2 dxdt

+ M

∫ T

0

∫
Ω

e2sϕ|
[
η(ϕ), ∂2

t −∆
]
zk|2 dxdt

≤ M ‖W [Q]‖2H1(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)|qk −Q|2 dx

+ Me2sd20

∫ T

0

∫
Ω

(
|∇zk|2 + |∂tzk|2 + |zk|2

)
dxdt.

Usual a priori energy estimates for zk solution of equation (2.4) also yields

‖zk‖L∞(0,T ;H1
0 (Ω)) + ‖∂tzk‖L∞(0,T ;L2(Ω)) ≤M

(
‖zk1‖L2(Ω) + ‖gk‖L1(0,T ;L2(Ω))

)
≤M‖Q− qk‖L2(Ω)

(
‖w0‖L∞(Ω) + ‖∂tW [Q]‖L1(0,T ;L∞(Ω))

)
≤M ‖W [Q]‖H1(0,T ;L∞(Ω)) ‖Q− q

k‖L2(Ω),
(2.14)

so that combining the above estimates, we get

s1/2

∫
Ω

e2sϕ(0)|q̃k+1 −Q|2 |w0|2dx ≤M ‖W [Q]‖2H1(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)|qk −Q|2 dx

+M ‖W [Q]‖2H1(0,T ;L∞(Ω)) e
2sd20‖Q− qk‖2L2(Ω).
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Using ϕ(0, x) ≥ d2
0 for all x in Ω and Assumption (1.6), we deduce

s1/2α2

∫
Ω

e2sϕ(0)|q̃k+1 −Q|2dx ≤M ‖W [Q]‖2H1(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)|qk −Q|2 dx. (2.15)

Now, using the a priori assumption (1.7), i.e. Q ∈ L∞≤m(Ω), we easily check that this
estimate cannot deteriorate in step 4 of Algorithm 2, which is there only to ensure that the
sequence qk stays in L∞≤m(Ω) for all k ∈ N. This completes the proof of Theorem 1.2.

It only remains to prove the former proposition.

Proof of Proposition 2.3. Let us write the Euler Lagrange equations satisfied by Zj , for
j ∈ {a, b}. For all z ∈ T , we have

∫ T

0

∫
Ω

e2sϕ(∂2
tZ

j −∆Zj + qZj − gj)(∂2
t z −∆z + qz) dxdt

+ s

∫ T

0

∫
Γ0

e2sϕ(∂nZ
j − µ)∂nz dσdt+ s3

∫∫
O
e2sϕZjz dxdt = 0. (2.16)

Applying (2.16) for j = a and j = b to z = Z = Za −Zb and subtracting the two identities,
we obtain:∫ T

0

∫
Ω

e2sϕ|∂2
tZ −∆Z + qZ|2 dxdt+ s

∫ T

0

∫
Γ0

e2sϕ|∂nZ|2 dσdt+ s3

∫∫
O
e2sϕ|Z|2 dxdt

=

∫ T

0

∫
Ω

e2sϕ(ga − gb)(∂2
tZ −∆Z + qZ) dxdt.

This implies

1

2

∫ T

0

∫
Ω

e2sϕ|∂2
tZ −∆Z + qZ|2 dxdt+ s

∫ T

0

∫
Γ0

e2sϕ|∂nZ|2 dσdt

+ s3

∫∫
O
e2sϕ|Z|2 dxdt ≤ 1

2

∫ T

0

∫
Ω

e2sϕ|ga − gb|2 dxdt. (2.17)

Since the left hand side of (2.17) is precisely the right hand side of the Carleman estimate
(2.1), applying Theorem 2.1 to Z, we immediately deduce (2.12).

3 Technical issues on the minimization of the cost func-
tional

The goal of this section is to give several details about the actual construction of an efficient
numerical algorithm based on Algorithm 2. The main step in Algorithm 2 is to minimize
the functional Js,q[µ̃], that we recall here for convenience,

Js,q[µ̃](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt+

s

2

∫ T

0

∫
Γ0

e2sϕ|∂nz − µ̃|2 dσdt

+
s3

2

∫∫
O
e2sϕ|z|2 dxdt,
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and which is minimized on the set

T =
{
z ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),

with ∂2
t z −∆z ∈ L2((0, T )× Ω) and z(0) = 0 in Ω

}
. (3.1)

Due to the presence of large exponential factors in the functional, the minimization of Js,q[µ̃]
is not a straightforward task from the numerical point of view, even if, as we emphasized
earlier, the minimization of Js,q[µ̃] is much less stiffer than the one of Ks,q[µ] defined in
(1.10) [BdBE13]. We therefore propose the two following ideas:

• Work on the conjugate variable y = zesϕ. This change of unknown acts as a precon-
ditioner. Details are given in Section 3.1.

• A progressive algorithm to minimize the functional Js,q[µ̃] in subdomains in which the
variations of the exponential factors are small, see Section 3.2.

3.1 Conjugate variable
For z in T , we set y = zesϕ, so that y satisfies the following equation:

∂2
t y −∆y + qy − 2s∂tϕ∂ty + 2s∇ϕ · ∇y
−s(∂2

t ϕ−∆ϕ)y + s2(|∂tϕ|2 − |∇ϕ|2)y = esϕ(∂2
t −∆ + q)z, in (0, T )× Ω,

y = 0, on (0, T )× ∂Ω,
y(0) = 0, ∂ty(0) = z1e

sϕ(0), in Ω,

where ∂tϕ = −2βt, ∇ϕ = 2(x − x0), ∂2
t ϕ = −2β and ∆ϕ = 2d. We set Ls,q defined by

Ls,q = esϕ(∂2
t −∆ + q)e−sϕ:

Ls,qy = ∂2
t y −∆y + qy − 2s∂tϕ∂ty + 2s∇ϕ · ∇y − s(∂2

t ϕ−∆ϕ)y

+s2(|∂tϕ|2 − |∇ϕ|2)y

= ∂2
t y −∆y + qy + 4sβt∂ty + 4s(x− x0) · ∇y + 2s(β + d)y

+4s2(β2t2 − |x− x0|2)y. (3.2)

Thus, minimizing Js,q[µ̃] in (1.13) on the set T is equivalent to minimize the functional
J̃s,q[µ̃] defined by

J̃s,q[µ̃](y) =
1

2

∫ T

0

∫
Ω

|Ls,qy|2 dxdt+
s

2

∫ T

0

∫
Γ0

|∂ny − µ̃esϕ|2 dσdt+
s3

2

∫∫
O
y2 dxdt

on the same set T . The minimization process for J̃s,q[µ̃] is then equivalent to the resolution
of the following variational formulation:
Find Y ∈ T such that for all y ∈ T ,∫ T

0

∫
Ω

Ls,qYLs,qy dxdt+ s

∫ T

0

∫
Γ0

∂nY ∂ny dσdt+ s3

∫∫
O
Y y dxdt

= s

∫ T

0

∫
Γ0

esϕµ̃∂ny dσdt. (3.3)

From the Carleman estimate (2.8) applied to y extended for negative times t by y(t) =
−y(−t), the left-hand side of (3.3) defines a coercive quadratic form, while the exponentials
now appear only in the right hand side of (3.3). Therefore, no exponential factor appears
anymore in the computation of the gradient of the functional J̃s,q[µ̃]. Our next goal is to
deal with the exponential factor still in front of µ̃.
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3.2 Progressive process
The idea to tackle the exponential factor in the right hand side of (3.3) is to develop a
progressive process to compute the minimizer of J̃s,q[µ̃] as the aggregation of several problems
localized in subdomains in which the exponential factors are all of the same order.

In this objective, from the smooth cut-off function η equal to 1 for τ ≥ d2
0 defined in

(1.14), we introduce N cut-off functions {ηj}1≤j≤N (these ones are not necessarily smooth)
such that

∀τ ∈ R,
N∑
j=1

ηj(τ) = η(τ), (3.4)

as illustrated in Figure 3.

0 τd2
0

1
η3 η2 η1

η

Figure 3: Example of cut-off functions ηj for 1 ≤ j ≤ 3.

Therefore, the target flux µ̃ = η(ϕ)µ can be decomposed as follows:

µ̃ = η(ϕ)µ =

N∑
j=1

µ̃j , (3.5)

where µ̃j(t, x) = ηj(ϕ(t, x))µ(t, x),∀(t, x) ∈ (0, T )× Γ0,∀j ∈ {1, · · · , N}.

As the variational formulation in (3.3) is linear in µ̃, one immediately gets that, if for each
j ∈ {1, · · · , N}, we denote by Yj the minimizer of J̃s,q[µ̃j ] on T , then the minimizer Y of
J̃s,q[µ̃] is simply given by

Y =

N∑
j=1

Yj .

The interest of this approach is that the target flux µ̃j involves exponential terms in ϕ on
the support of ηj(ϕ(t, x)). This becomes particularly interesting if we impose that for each
j ∈ {1, · · · , N},

Supp ηj ⊂ [aj , bj ] with bj − aj ≤ C, (3.6)

for some constant C > 0. Indeed, in that case, we get

sup
Supp ηj(ϕ)

esϕ

inf
Supp ηj(ϕ)

esϕ
≤ esC ,
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so that if C ' 1/s, all the exponentials are of the same order when computing µ̃j . Conse-
quently, under the conditions (3.4)–(3.5)–(3.6), for all j ∈ {1, · · · , N}, the minimization of
J̃s,q[µ̃j ] over T is easier numerically than the direct minimization of J̃s,q[µ̃] over T . Besides,
this approach can be used, at least theoretically, to parallelize the minimization of J̃s,q[µ̃]
over the set T .

Let us present one possible way to construct the functions ηj in practice, precisely the
ones we used in our numerical experiments (where we chose to use C∞ functions, even if it
is not necessary). We set

d2
0 = inf

Ω
|x− x0|2 and L2

0 = sup
Ω
|x− x0|2.

Let us then choose an integer N ∈ N∗ and set ε0 = d2
0/N . Next, define the cut-off function

η as follows:

f(t) = exp

(
−1

t(ε0 − t)

)
, and η(τ) =


0, if τ ≤ 0,

1−
∫ ε0
τ
f(t)dt∫ ε0

0
f(t)dt

, if 0 < τ < ε0,

1, if τ ≥ ε0.

Thus we introduce the cut-off functions ηj defined by the formula

η0(τ) = η(τ − L2
0), and for j ∈ {1, · · · , N},

ηj(τ) = η

(
τ − L2

0

N − j
N

)
− η

(
τ − L2

0

N − (j − 1)

N

)
.

We then easily verify (3.4), Supp η0 ⊂
]
L2

0,+∞
[
, and that

∀j ∈ {1, · · · , N}, Supp ηj ⊂
]
L2

0

(
1− j

N

)
, L2

0

(
1− j − 1

N

)
+
d2

0

N

[
.

In particular, we have η0(ϕ(t, x)) = 0 for all (t, x) ∈ (−T, T ) × Ω as ϕ(t, x) ≤ L2
0 for all

(t, x) ∈ (−T, T )× Ω, so that we can omit η0(ϕ) in our approach.
By construction, the support of each ηj for j ∈ {1, · · · , N} is included in an interval of size
(L2

0 + d2
0)/N . We can then try to optimize the number N of intervals in the progressive

algorithm so that on each interval the weight function exp(sϕ) varies of less than 5 order of
magnitude, for instance by taking N as a function of s as follows:

N =
⌊s(L2

0 + d2
0)

10

⌋
+ 1,

where b·c denotes the integer part.

4 Discrete setting for the algorithm
In this section, we present the technical solutions we have developed to implement numer-
ically the algorithm. In order to simplify the presentation, from now on we focus on the
one-dimensional case Ω = (0, L) and Γ0 = {x = L}. We consider a semi-discrete in space
and time-continuous approximation of our system, with a space discretization based on a
finite-difference approximation method on a uniform mesh. In this restrictive setting, all
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our assertions can be fully proved rigorously by adapting the arguments in [BE11, BEO15].
Though this might seem very restrictive, we believe that our approach can be generalized
to fully discrete models and in higher dimensions for quasi-uniform meshes.

To begin with, we introduce some notations for this 1-d space semi-discrete framework.
The appropriate discrete Carleman estimate will follow. We will finally briefly present how
we approximate the functional Js,q[µ̃] in (1.13).

4.1 Notations
In our framework, the space variable x ∈ [0, L] is taking values on a discrete mesh [0, L]h
indexed by the number of points N ∈ N. To be more precise, for N ∈ N, we set h =
L/(N + 1), xj = jh for j ∈ {0, · · · , N + 1}, and [0, L]h = {xj , j ∈ {0, · · · , N + 1}}.
For convenience, we will also note (0, L)h, respectively [0, L)h, the set of of discrete points
{xj , j ∈ {1, · · · , N}}, respectively {xj , j ∈ {0, · · · , N}}.
Below, we will use the subscript h for discrete functions fh defined on a mesh of the form
[0, L]h for some N , i.e. fh = (fj)j∈{0,··· ,N+1}. Analogously with the continuous case, we
write: ∫

(0,L)h

fh = h

N∑
j=1

fj ,

∫
[0,L)h

fh = h

N∑
j=0

fj . (4.1)

We also make use of the following notation for the discrete operators:

(∂hvh)j =
vj+1 − vj−1

2h
; (∂+

h vh)j = (∂−h vh)j+1 =
vj+1 − vj

h
;

(∆hvh)j =
vj+1 − 2vj + vj−1

h2
.

By analogy with the definition of Ls,q in (3.2), we finally introduce, for s > 0 and qh a
discrete potential, the conjugate operator Ls,qh,h defined by

Ls,qh,hyh = esϕ(∂2
t −∆h + qh)(e−sϕyh), (4.2)

for yh functions of t ∈ (−T, T ) and x ∈ {xj , j ∈ {1, · · · , N}}.
Before going further, let us emphasize that the discrete operator Ls,qh,h is different from
the operator L̃s,qh,h obtained by a naive discretization of Ls,q in (3.2) as follows:

L̃s,qh,hyh = ∂2
t yh −∆hyh + qhyh + 4sβt∂tyh + 4s(x− x0)∂hyh

+2s(β + 1)yh + 4s2(β2t2 − |x− x0|2)yh, (4.3)

for any function yh defined on (−T, T )× {xj , j ∈ {1, · · · , N}}.

4.2 A discrete Carleman estimate for the discrete wave operator
In this section, we provide the counterpart of Corollary 2.2 at the discrete level.

Theorem 4.1. Assume the multiplier condition (1.3)-(1.4) and β ∈ (0, 1) as in (1.8). Let
L > 0, take x0 < 0, and define the weight function ϕ as in (1.9). Then there exist s0 > 0,
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N0 > 0, ε0 > 0 and a positive constant M such that for all s ∈ [s0, ε0/h] and for all N ≥ N0,

s

∫ T

−T

∫
[0,L)h

(
|∂tyh|2 + |∂+

h yh|
2 + s2|y|2

)
dt

≤M
∫ T

−T

∫
(0,L)h

|Ls,0,hyh|2 dt+Ms

∫ T

−T

∣∣∂−h yN+1(t)
∣∣2 dt

+Ms3

∫ T

−T

∫
(0,Lh)

1(|t|,xj)∈O|yh|
2 dt+Msh2

∫ T

−T

∫
[0,L)h

|∂t∂+
h yh|

2 dt, (4.4)

for all yh such that yj ∈ H2(−T, T ) for all j ∈ {1, · · · , N}, where O is defined in (1.12).

Furthermore, if yh(0) = 0 in (0, L)h, the term s1/2

∫
(0,L)h

|∂tyh(0)|2 can be added to the left

hand-side of (4.4).

The proof of Theorem 4.1 is left to the reader as it follows step by step the proof of The-
orem 2.1 using discrete rules of integration by parts, which can be found in [BE11, Lemma
2.6]. It is actually particularly simple as the coefficients of Ls,0,h depend only on time or
only on space variables.

Let us now briefly comment Theorem 4.1. First, compared with Corollary 2.2, we see
that the right-hand side of (4.4) contains one more term than (2.8), namely

Msh2

∫ T

−T

∫
[0,L)h

|∂t∂+
h yh|

2 dt. (4.5)

This is a high-frequency term. Indeed, as h∂+
h is of the order of h|ξ| for frequencies ξ, this

term can be absorbed for large s by the left hand-side of (4.4) for frequencies ξ = o(1/h).
However, for frequencies of the order of the mesh-size h, this term cannot be absorbed
anymore by the left hand-side of (4.4). This is not surprising in view of the lack of uniform
observability for discrete waves, see [Zua05], and the various comments done in [BE11] on
the discrete Carleman estimates for the wave equation with weight functions exp(sψ) =
exp(s exp(λ(ϕ+ C0))).
Let us also point out that as in [BE11], the parameter s in Theorem 4.1 cannot be made
arbitrarily large as in Theorem 2.1, but is limited to some ε0/h. Roughly speaking, this
condition comes from the following fact:

‖exp(sϕ)∂h(exp(−sϕ)) + s∂xφ‖L∞((0,T )×Ω)) ≤ Csh, (4.6)

so that the coefficients of Ls,0,h in (4.2) and L̃s,0,h in (4.3) are close only for sh small
enough.
We end up this section with a warning. If we were considering the operator L̃s,0,h in (4.3)
instead of Ls,0,h in (4.2), the restriction on the size of the parameter s could be removed
as the errors done in the conjugation process, for instance in (4.6), are inexistent. However,
when conjugating back the discrete operator L̃s,0,h, one would not obtain the discretization
of the wave operator ∂tt−∆h, and this would yield inaccuracies in our numerical experiments.

4.3 Semi-discretization scheme and algorithm
We now explain the discretization in space of the variational problem (3.3).
First, we have to discretize the set T in (3.1). We thus introduce the set Th defined as
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follows:

Th = {zh ∈ H2(0, T ;RN+2) with z0,h(t) = zN+1,h(t) = 0 for all t ∈ (0, T )

and zj,h(0) = 0 for all j ∈ {1, · · · , N}}. (4.7)

Following Theorem 4.1, it is natural to discretize the variational problem (3.3) as follows:
Find Yh ∈ Th such that for all yh ∈ Th,∫ T

0

∫
(0,L)h

(Ls,qh,hYh)(Ls,qh,hyh) dt+ s

∫ T

0

YNh,h
h

yNh,h
h

dt

+ s3

∫ T

−T

∫
(0,Lh)

1(|t|,xj)∈OYhyh dt

+ sh2

∫ T

0

∫
[0,L)h

(∂t∂
+
h Yh)(∂t∂

+
h yh) dt = s

∫ T

0

esϕµ̃

(
−yNh,h
h

)
dt. (4.8)

Actually we will use this variational formulation (4.8) in the numerical experiments.
Compared with (3.3), we have added here the term

sh2

∫ T

0

∫
[0,L)h

(∂t∂
+
h Yh)(∂t∂

+
h yh),

which is of course the counterpart of the term (4.5) and aims at penalizing the spurious
high-frequency waves which may appear in the discretization process. This term is indeed
really helpful when considering noisy data, as we will illustrate in the numerical experiments
in Section 5. But this term also guarantees that the variational problem in (4.8) is coercive
uniformly with respect to the discretization parameter h > 0, as it can be deduced immedi-
ately from Theorem 4.1. In particular, it allows us to prove the convergence of the algorithm
given afterwards.

In order to state it precisely, by analogy with (2.9), for h > 0, a discrete potential qh, a
parameter s > 0, and µ̃ ∈ L2(0, T ), g̃h ∈ L2(0, T ;RN ), ν̃h ∈ L2(0, T ;RN ), we introduce the
discrete functional

Js,qh,h[µ̃, g̃h, ν̃h](zh) =

1

2

∫ T

0

∫
(0,L)h

e2sϕ|∂2
t zh −∆hzh + qhzh − g̃h|2 dt+

s

2

∫ T

0

e2sϕ

∣∣∣∣−zN,hh
− µ̃(t)

∣∣∣∣2 dt
+
s3

2

∫ T

−T

∫
(0,L)h

1(|t|,xj)∈Oe
2sϕ|zh|2 dt+

sh2

2

∫ T

0

∫
[0,L)h

e2sϕ|∂t∂+
h zh − ν̃h|

2 dt. (4.9)

defined on the set Th. Of course, one easily checks that the solution Yh ∈ Th of the varia-
tional formulation in (4.8) corresponds to the minimizer Zh of Js,qh,h[µ̃, 0, 0] over Th through
the formula Yh = esϕZh.

For any mesh-size h > 0, we define the discrete functions w0,h, w1,h approximating the
initial data w0, w1, and the discrete functions fh and f∂,h approximating the source terms
f and f∂ . We construct Algorithm 3 as follows.

Algorithm 3.
Initialization: q0

h = 0.
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Iteration: From k to k + 1
• Step 1 - Given qkh, we set

µ̃kh(t) = η(ϕ(t, L))∂t

(
wkN+1,h(t)− wkN,h(t)

h
− ∂nW [Q](t, L)

)
, on (0, T ),

where wkh denotes the solution of ∂2
twh −∆hwh + qkhwh = fh, in (0, T )× (0, L)h,
w0,h(t) = f∂(t, 0), wN+1,h(t) = f∂(t, L), on (0, T ),
wh(0) = w0,h, ∂twh(0) = w1,h, in (0, L)h,

(4.10)

corresponding to (1.15) with the potential qk and ∂nW [Q] is the measurement in (1.2).
And then set

ν̃kh = ∂t∂
+
h

(
η(ϕ)∂twh[qkh]

)
in (0, T )× (0, L)h. (4.11)

• Step 2 - We minimize the functional Js,qkh,h[µ̃kh, 0, ν̃
k
h ] defined in (4.9), for some s > 0

that will be chosen independently of k, on the trajectories zh ∈ Th. Let Z̃kh be the unique
minimizer of the functional Js,qkh,h[µ̃kh, 0, ν̃

k
h ].

• Step 3 - Set

q̃k+1
h = qkh +

∂tZ̃
k
h(0)

w0,h
, in (0, L)h.

• Step 4 - Finally, set

qk+1
h = Tm(q̃k+1

h ), with Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m.,

where m is the a priori bound in (1.7).

One can then state a convergence result provided several assumptions are satisfied, basi-
cally corresponding to (1.5)–(1.6)–(1.7) and the consistency of our approximation schemes.
Namely we assume:

(i) Assumptions (1.5)–(1.6)–(1.7) and (1.8) are satisfied.

(ii) There exists α > 0 independent of h such that for all h > 0,

inf
(0,L)h

|w0,h| ≥ α. (4.12)

(iii) There exists a sequence of discrete potential (Qh)h>0, each Qh being defined
on (0, Lh) such that:

1. For each h > 0, Qh is bounded uniformly on (0, L)h by m:

sup
(0,L)h

|Qh| ≤ m. (4.13)

2. The piecewise constant extensions of Qh strongly converge in L2(0, L) to Q when
h→ 0.
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3. For each h > 0, introducing Wh[Qh] the solution of ∂2
tWh −∆hWh +QhWh = fh, in (0, T )× (0, L)h,
W0,h(t) = f∂,h(t, 0), WN+1,h(t) = f∂,h(t, L), on (0, T ),
Wh(0) = w0,h, ∂tWh(0) = w1,h, in (0, L)h,

(4.14)

we get

sup
h>0

∫ T

0

∣∣∣∣∣ sup
(0,L)h

|∂tWh[Qh]|

∣∣∣∣∣
2

dt <∞, (4.15)

and the following consistency assumptions:

lim
h→0

(∫ T

0

η(ϕ(t, L))2

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt
)

= 0,

lim
h→0

(∫ T

0

∫
[0,L)h

|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2 dt

)
= 0.

(4.16)

These are natural assumptions regarding the inverse problem at hand. They have been
widely discussed in [BE11, Section 4] and [BEO15, Section 4]. These two works give sufficient
conditions for the existence of a sequence of discrete potential Qh satisfying (4.13)–(4.15)–
(4.16). They also proved that, under some further suitable assumptions on the convergence
of fh, f∂,h, w0,h, w1,h, a sequence Qh satisfying (4.13) and (4.16)(1,2) necessarily converges
to the potential Q in L2(0, L) (after having been extended as piecewise constant functions
in a natural way).

We get the following result:

Theorem 4.2. Under assumptions (i)-(ii)-(iii) above, Algorithm 3 is well-posed for all h > 0
small enough. Specifically, the discrete sequence qkh satisfies for some constants C0, C1 > 0
independent of s > 0 and h > 0,∫

(0,Lh)

e2sϕ |qk+1
h −Qh|2 ≤

C0√
s

∫
(0,Lh)

e2sϕ |qkh −Qh|2

+ C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt

+ C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt. (4.17)

In particular, for s ≥ 4C2
0 , we get, for all k ∈ N,∫

(0,Lh)

e2sϕ |qkh −Qh|2 ≤
1

2k

∫
(0,Lh)

e2sϕ |Qh|2

+ 2C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt

+ 2C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt, (4.18)

so that as k →∞, qkh enters a neighborhood of Qh, whose size depends on h and s and goes
to zero as h→ 0 according to (4.16).
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Proof. We focus on the proof of (4.17). As in the continuous case, it mainly consists in
showing that Z̃kh is close to z̃kh = η(ϕ)zkh, where

zkh = ∂t
(
wh[qkh]−Wh[Qh]

)
.

The main idea is to remark that zkh satisfies
∂2
t z
k
h −∆hz

k
h + qkhz

k
h = gkh, in (0, T )× (0, L)h,

zk0,h = zkN+1,h = 0, on (0, T ),

zkh(0) = 0, ∂tz
k
h(0) = zk1,h, in (0, L)h,

with
gkh = (Qh − qkh)∂tWh[Qh], zk1,h = (Qh − qkh)w0,h.

In particular, z̃kh satisfies:
∂2
t z̃
k
h −∆hz̃

k
h + qkhz̃

k
h = g̃kh, in (0, T )× (0, L)h,

z̃k0,h = z̃kN+1,h = 0, on (0, T ),

z̃kh(0) = 0, ∂tz̃
k
h(0) = zk1,h, in (0, L)h,

(4.19)

with
g̃kh = η(ϕ)(Qh − qkh)∂tWh[Qh] + [∂2

t −∆h, η(ϕ)]zkh.

Moreover, one has the following boundary data

−z̃kN,h(t)

h
= µ̃kh(t)− δh(t) on (0, T ), (4.20)

where

δh(t) = η(ϕ(t, L))∂t

(
WN+1,h[Qh](t)−WN,h[Qh](t)

h
− ∂nW [Q](t, L)

)
.

Therefore, z̃kh is the minimizer of the functional Js,qkh,h[µ̃kh−δh, g̃kh, ν̃kh− ν̂h] where ν̂h is given
by

ν̂h = ∂+
h ∂t (η(ϕ)∂tWh[Qh]) , in (0, T )× (0, L)h. (4.21)

But by construction, Z̃kh is the minimizer of Js,qkh,h[µ̃kh, 0, ν̃
k
h ]. We thus only need to compare

minimizers corresponding to the other coefficients (δh, g̃kh and ν̂h). As in the proof of
Proposition 2.3, using Euler-Lagrange formulation and using the Carleman estimate (4.4),
one easily gets:

s1/2

∫
(0,L)h

e2sϕ(0)|∂tZkh(0)− ∂tz̃kh(0)|2 ≤ Cs
∫ T

0

e2sϕ(t,L)|δh|2 dt

+ C

∫ T

0

∫
(0,L)h

e2sϕ|g̃kh|2 dt+ Csh2

∫ T

0

∫
(0,L)h

e2sϕ|ν̂h|2 dt. (4.22)

Following now the proof of Theorem 1.2 we can show that∫ T

0

∫
(0,L)h

e2sϕ|g̃kh|2 dt ≤ C
∫

(0,L)h

e2sϕ|qkh −Qh|2 dt,
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while, by construction,

s1/2

∫
(0,L)h

e2sϕ(0)|∂tZkh(0)− ∂tz̃kh(0)|2 ≥ s1/2α2

∫
(0,L)h

e2sϕ(0)|q̃k+1
h −Qh|2

≥ s1/2α2

∫
(0,L)h

e2sϕ(0)|qk+1
h −Qh|2.

We then put together the two last estimates in (4.22). Recalling that δh and νh are respec-
tively given by (4.20) and (4.21), we immediately obtain (4.17).

The proof of estimate (4.18) easily follows from (4.17). Indeed, by recurrence, one can
easily show that, if s ≥ 4C2

0 , for all k ∈ N,∫
(0,Lh)

e2sϕ |qkh −Qh|2 ≤
1

2k

∫
(0,Lh)

e2sϕ |Qh|2

+

k−1∑
j=0

1

2j

C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt

+

k−1∑
j=0

1

2j

C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt,
which is slightly stronger than (4.18) and concludes the proof of Theorem 4.2.

Note that we presented the above theoretical results by restricting ourselves to the 1d
case for the time continuous and space semi-discrete approximation of the inverse problem.
Though, this analysis can very likely be carried on in much more general settings, for instance
higher dimensions or fully discrete approximations. Of course, the key missing point is
then the counterpart of the Carleman estimate in Theorem 2.1. Despite important recent
efforts for developing this powerful tool in the discrete setting, see in particular [KS91,
BHLR10a, BHLR10b, BHLR11, EdG11, BLR14] for discrete elliptic and parabolic equations,
and [BE11, BEO15] for discrete wave equations, the validity of discrete Carleman estimates
in the discrete settings remains mainly limited to smooth deformations of cartesian grids for
the finite-difference method.
We would like also to emphasize that Theorem 4.2 is not a proper convergence theorem, as
it only says that the sequence of discrete potentials qkh will enter a neighborhood of Qh as
k →∞. The size of this neighborhood, given by

2C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt

+ 2C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt,
see (4.18), is in fact very much related to the consistency error. It is nonetheless interesting
to point out that choosing s large to improve the speed of convergence of the algorithm also
increases the size of this neighborhood. One should keep in mind that remark, which also
applies in the presence of noise.

Remark 4.3. The choice made in (4.11) does not seem natural because it is not based on
the difference between wh[qkh] and Wh[Qh], the latter being unknown. It is also important
to mention that for some reasons that we still do not fully understand the numerical results
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given by Algorithm 3 with this choice show numerical instabilities. Instead, we propose to
replace Algorithm 3 by

Algorithm 4.
Everything as in Algorithm 3 except:
Iteration:
• Step 2: We minimize the functional Js,qkh,h[µ̃kh, 0, 0] defined in (49), for some s ≥ 0 that will
be chosen independently of k, on the trajectories zh ∈ Th. Let Zkh be the unique minimizer
of the functional Js,qkh,h[µ̃kh, 0, 0].

With this choice, we do not know how to prove a convergence result of the algorithm
similar to Theorem 4.2.
However, this choice coincides more with the insights we have on the algorithm as z̃kh in
(4.19) is the minimizer of Js,qkh,h[µ̃kh − δh, 0, ν̃kh − ν̂h], and if convergence occurs, ν̃kh − ν̂h
should be small and converge to zero.
The numerical results presented in Section 5 will all be performed using Algorithm 4. As we
will see, this will lead to good numerical results, in agreement with the above insights.

4.4 Full discretization
When implementing Algorithm 3 numerically, one should of course consider fully discrete
wave equations. We will not give all the details of this discretization process, but simply
state how we implement the minimization process of the functional Js,qh,h.
First, we shall of course consider a fully discrete version Js,qkh,h,τ of the functional Js,qh,h
in (4.9), in which we have implemented a time-discretization of Js,qh,h of time-step τ . This
implies in particular that:

• The minimization space Th has to be replaced by the set of time discrete functions
zh,τ ∈ RNt × RN+2, with Nt = dT/τe and the corresponding boundary conditions.

• The time continuous integral in (4.9) shall be replaced by discrete sums τ
∑
t∈[0,T ]∩τZ.

• The wave operator should be replaced by a time-discrete version of the space semi-
discrete wave operator ∂tt−∆h+qh. We simply choose to approximate ∂tt by the usual
3-points difference operator ∆τ (similar to ∆h but applied in time now). Similarly,
the operator ∂t in the last term of (4.9) will be replaced by the operator ∂+

τ which is
the approximation of ∂t computed with the subsequent time-step.

• The solution wh of (4.10) has to be computed on a fully discrete version of (4.10). We
choose to discretize using an explicit Euler method.

• There is no need to add a new penalization term for high-frequency spurious terms as
we will impose a Courant-Friedrichs-Lax (CFL) type condition τ ≤ h, so that the last
term in (4.9) already penalizes the spurious high-frequency solutions.

Of course, the strategies that have been presented in Section 3 to make the numerical
implementation of the minimization of Js,q more efficient can be successfully applied to the
functional Js,qkh,h,τ as well. Namely, in the implementation of Algorithm 4, we will always
work on the conjugated functional, i.e. the one given in the conjugated variable y = esϕz,
and we will always decompose the domain using the progressive argument presented in
Section 3.2.

We also point out that the minimization of the quadratic functional Js,qh,h,τ obtained
that way can be recast using a variational formulation similar to (3.3), which presents the
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advantage to underline the fact that we are actually solving a sparse linear system. We
therefore use a Compressed Sparse Row (CSR) tool as sparse matrix storage format and
solve the linear system thanks to an LU factorization.

The iterative process on the potential is supposed to reach convergence when the following
stop criterion is satisfied∫

(0,L)h

|qk+1
h − qkh|2∫

(0,L)h

|q1
h − q0

h|2
≤ ε0 or

1∫
[0,T )τ

|∂nW [Q](t, L)|2

∫
[0,T )τ

∣∣(∂−h wkh)N+1(t)− ∂nW [Q](t, L)
∣∣2 ≤ ε1. (4.23)

for given choices of the parameters ε0 > 0 and ε1 > 0, in which the integrals have to be
interpreted in the discrete sense.

5 Numerical results
This section is devoted to the presentation of some numerical examples to illustrate the
properties of the reconstruction algorithm and its efficiency. All simulations are executed
with the software Scilab. The source codes are available on request.

5.1 Synthetic noisy data
In this article, we work with synthetic data. To discretize the wave equations with potential
(1.1), we use a finite differences scheme in space and a θ-scheme in time. The space and
time steps are denoted by h and τ respectively. We set L = (Nx+ 1)h and T = Ntτ , and we
define, for 0 ≤ j ≤ Nx + 1 and 0 ≤ n ≤ Nt, Wn

j a numerical approximation of the solution
W (tn, xj) with tn = nτ and xj = jh. It is solution of the following system:

Wn+1
j − 2Wn

j +Wn−1
j

τ2
− θ

2
(∆hWh)n+1

j − (1− θ)(∆hWh)nj

− θ

2
(∆hWh)n−1

j +Q(xj)W
n
j = f(tn, xj),

W 1
j = w0(xj) + τw1(xj) +

τ2

2
((∆hw0)(xj)− q(xj)w0(xj) + f(0, xj)) ,

W 0
j = w0(xj) 1 ≤ j ≤ Nx,

Wn
0 = f∂(tn, 0) and Wn

Nx+1 = f∂(tn, L), 1 ≤ n ≤ Nt.

(5.1)

Then, we compute Mτ the counterpart of the continuous measurement M given in (1.2) as
follows:

Mτ (tn) =
Wn
Nx+1 −Wn

Nx

h
, 0 ≤ n ≤ Nt.

On the computed data, we may add a Gaussian noise:

Mτ (tn)←− (1 + αN (0, 0.5))Mτ (tn), 0 ≤ n ≤ Nt (5.2)

where N (0, 0.5) satisfies a centered normal law with deviation 0.5 and α is the level of noise.
Note that the model of noise, that we chose, is a multiplicative noise. It allows to model the
experimental error in the measurements.
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One of the main drawbacks of the method presented in Algorithm 4 is that we have to
derive in time the observation flux. On Figure 4, we plot the flux M with respect to time
(on the left hand side) and of its time derivative (on the right hand side). For each of the
graphs, the red line is the exact value and the black line the generated noisy data. It shows
that even a small perturbation on the observations gives rise to a large perturbation on its
derivative. In order to partially remedy to this problem, we regularize the data thanks to a
convolution process with a Gaussian:

M (t)←− 1√
2π

∫ ∞
0

M (t− r) exp

(
−r

2

4

)
dr. (5.3)

The number of iterations in this regularization process must be chosen in accordance to the
a priori knowledge of the noise level. On Figure 4, the new regularized data that we use as
an entry for the algorithm is plotted in blue.

(a) Flux M (t) (b) Time derivative of the flux ∂tM (t)

Figure 4: The measurement M in the presence of 2% noise.

In order to avoid the inverse crime, we use neither the same schemes nor the same meshes
for the direct and the inverse problems. Hence, we solve (1.1) thanks to an implicit scheme
(θ = 1) with τ = 0.00033 and h = 0.00025 and we use an explicit scheme (θ = 0) for equation
(1.15) in Algorithm 4, with τ = 0.01 and h =

τ

CFL
. Table 1 gathers the numerical values

used for all the following examples, unless specified otherwise where appropriate. In all the
figures, the exact potential that we want to recover is plotted by a red line, the numerical
potential recovered by the algorithm is represented by black crosses.

L f f∂ w0 w1 x0 β T s m CFL
1 0 2 2 + sin(πx) 0 −0.3 0.99 1.3 100 3 0.9 or 1

Table 1: Numerical values for the variables.

5.2 Simulations from data without noise
In this subsection, we present the results obtained for CFL = 1. For that very special choice,
the explicit scheme used to discretized (1.1) is of order 2. We observe that in this case, the
additional regularization term (4.5) in the functional does not seem to be necessary and s
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can be chosen as large as wanted independently of the value of h to achieve convergence.
The successive results at each iteration of Algorithm 4 in the case of the reconstruction of
the potential Q(x) = sin(2πx) are presented in Figure 5. One can observe that in less than
3 iterations, the convergence criteria (4.23) for ε0 = 10−5 is met.

(a) q0 (b) q1 (c) q2 (d) q3

Figure 5: Illustration of the convergence of the algorithm for CFL = 1 and s = 100.

Using the same target potential, Figure 6 illustrate the progressive process on the first
iteration of Algorithm 4. From an initial data q0

0 = 0, we represent successively

q0
j = q0

j−1 +
∂tY

0
j (0)

esϕ(0)w0
, 1 ≤ j ≤ 5,

where Y 0
j is the minimizer of J̃s,q0 [µ̃0

j ].

(a) q00 = q0 (b) q01 (c) q02

(d) q03 (e) q04 (f) q05 = q1

Figure 6: Illustration of the progressive process for Q(x) = sin(2πx) for s = 100.

In Figure 7, several results of reconstruction of potentials obtained using Algorithm 4 in
the absence of noise are given.

We recall that in our approach, it is mandatory to know the a priori bound m such that
Q ∈ L∞≤m(R). On Figure 8, we illustrate the behavior of the algorithm in the case where an
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(a) Q = −x (b) Q heaviside (c) Q = sin( x
1−x

)

Figure 7: Different examples of reconstruction for CFL = 1 and s = 100.

error is made on that bound. One can observe that the recovery of the potential is correct
only in the zones where the potential Q is effectively bounded by m. In this situation, the
convergence of the process doesn’t occur. In practice, if the retrieved potential meets the
value of m in several points, it is recommended to repeat the reconstruction process after
choosing a greater value of m.

(a) (b)

Figure 8: Reconstruction of exact potentials with the wrong choice of the a priori bound
m = 0.5, for CFL = 1 and s = 100.

5.3 Simulations with several levels of noise
If we slightly modify the stability condition and take a CFL condition strictly smaller that
1, the explicit numerical scheme used to solve (1.15) leads to a non negligible approximation
error, acting as a noise. The presence of the additional regularization term (4.5) in the
functional is therefore necessary. In that case, if the mesh size h (through τ) is given, it
is not possible to take s as large as desired. Nevertheless, even for smaller values of s,
Algorithm 4 gives good results, that can be improved by refining the mesh. In Figure 9,
several results of reconstruction of potentials obtained for α = 0, CFL = 0.9 and s = 10 are
presented. Figure 10 shows the results for Q(x) = sin(πx) with different level of noise in the
measurements (α = 1%, 5% and 10%). Here, we used the appropriate discretized functional
constructed to deal with the discretization process.

Eventually, Figure 11 shows on the left hand side, an example of result obtained when
the functional is discretized without taking into account the additional terms (4.5) requisite
for its uniform coercivity with respect to the mesh size. Since the first iteration, severe
oscillations occur and they amplify with the iterative process. On the right hand side, we
illustrate the necessity of choosing a discretization space step small enough with respect to
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(a) Q = sin(2πx) (b) Q heaviside (c) Q = sin( x
1−x

)

Figure 9: Different examples of reconstruction for CFL = 0.9 and s = 10.

(a) α = 1% (b) α = 5% (c) α = 10%

Figure 10: Recovery of the potential Q(x) = sin(πx) in presence of noise in the data. The
level of noise is denoted by α. Here, CFL = 0.9 and s = 10.

the value of the parameter s. Indeed, if the mesh size is too coarse, numerical instabilities
appear.

(a) Result for CFL = 0.9, s = 4
and no regularization term.

(b) Result for h = 0.011 and s =
17, that is sh = 0.187.

Figure 11: Illustration of the need of the additional regularization term (4.5) in the functional
(left). Illustration of the needed condition (4.6) between s and the space step h (right).

5.4 Simulations for initial datum not satisfying (1.6)
So far, we presented numerical simulations in which the positivity assumption (1.6) on w0

was satisfied. In this section, we would like to briefly present what can be done in the case
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in which it is not satisfied. In that case, Step 3 of Algorithm 4 can be replaced by :

q̃k+1
h (xj) =

 qkh(xj) +
∂tZ̃

k
h(0, xj)

w0(xj)
, for j ∈ {1, · · · , N} such that |w0(xj)| ≥ α,

0, elsewhere,
(5.4)

where α > 0 is the constant appearing in (1.6). As an example, let us consider

w0(x) = −a+ x, a ∈ (0, L),

which cancels at x = a in a single isolated point. If we take α = 10−2, we obtain the results
given in Figure 12. Actually, the reconstruction is satisfactory outside a small neighborhood
around x = a.

(a) Q = sin(2πx) and a = 0.5. (b) Q = sin(2πx) and a = 0.2. (c) Q heaviside and a = 0.5.

Figure 12: Reconstructions for w0(x) = −a+x not satisfying (1.6), CFL = 1 and s = 100.

Note that here, we made the choice to set 0 for the potential in the set {x ∈ (0, L), |w0(x)| ≤
α}. Of course, other choices are possible. Among them, one could for instance simply do a
linear interpolation between the values at the boundary of the set {x ∈ (0, L), |w0(x)| > α}.
Though, as illustrated in Figure 12, it seems that Algorithm 4 converges anyway in the
set {x ∈ (0, L), |w0(x)| > α}. One can therefore perform any kind of interpolation pro-
cess to complete the values of the potentials in the set {x ∈ (0, L), |w0(x)| > α} after the
convergence has been achieved.

5.5 Simulations in two dimensions
We also performed some reconstructions in two dimensions where Ω = [0, 1]2, x0 = (−0.3,−0.3),
Γ0 = {x = 1}∪{y = 1}, w0(x1, x2) = 2+sin(πx1) sin(πx2), w1 = 0, f = 0, f∂ = 2, β = 0.99,
m = 2 and CFL = 0.5 ≤

√
2

2 . Figure 13 presents the results obtained for three different
potentials. We took s = 3 and could not take it larger. Indeed, decreasing the space step h
to ensure that sh remains small (condition (4.6)) leads to large systems (3.3) that exhaust
the computational memory of Scilab pretty fast. The preliminary results of Figure 13 are
obtained in an ideal framework where both direct and inverse problems are solved with the
same numerical scheme on the same mesh and there is no noise. All theses simplifications
will be removed in a forthcoming work where we wish to develop a convergent algorithm to
reconstruct a non homogeneous wave speed from the information given by the fluxM.
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(a) Exact potentials. (b) Potentials recovered numerically.

Figure 13: Different examples of reconstruction in the 2d case.
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