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Abstract

The numerical solution of stochastic partial differential equations (SPDE) presents challenges not en-

countered in the simulation of PDEs or SDEs. Indeed, the roughness of the noise in conjunction with non-

linearities in the drift typically make these equations particularly stiff. In practice, this means that it is tricky

to construct, operate, and validate numerical methods for SPDEs. This is especially true if one is interested

in path-dependent expected values, long-time simulations, or in the simulation of SPDEs whose solutions

have constraints on their domains. To address these numerical issues, this paper introduces a Markov jump

process approximation for SPDEs, which we refer to as the spectral random walk method (SPECTRWM).

The accuracy and ergodicity of SPECTRWM are verified in the context of a heat and overdamped Langevin

SPDE, respectively. We also apply the method to Burgers and KPZ SPDEs.
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I. INTRODUCTION

Stochastic partial differential equations (SPDEs) describe the evolution of continuum systems

with random fluctuations [1–3]. They are used as models for turbulence [4–9], phase-field dynam-

ics [10–12], surface growth [13–16], neuronal activity [1, 17, 18], population dynamics/genetics

[19–21] and interest rate fluctuations [22, 23]. They also directly arise as space-time diffusion

approximations of a large class of discrete models [13–15, 24]. In addition to their use as mathe-

matical models, their dynamic and ergodic properties are also leveraged to accelerate convergence

of MCMC methods for sampling conditioned diffusions [25–30]. The importance of these equa-

tions lies in the basic fact that space-time Gaussian white noise is perhaps the simplest model of

space-time random fluctuations. In this sense, the study of SPDEs is a quest to answer fundamental

questions about continuum descriptions of high-dimensional discrete systems.

With few exceptions [31, 32], current numerical methods for SPDEs are rooted in ideas from

numerical PDE and SDE theory: replace the SPDE with a system of approximating SDEs by

means of a finite difference or variational method, and then discretize these approximating SDEs in

time using, e.g., a θ-method like Euler-Maruyama or Crank Nicolson; see, e.g., [33–40]. However,

there are particular problems associated with approximating SPDEs that motivate treating them

differently. Here is a partial list.

• Stiffness. Due to the lack of regularity of the SPDE solution, the optimal time discretization

error associated with spatio-temporal approximations is of strong order 1/4 and weak order

1/2 [35, 36]. (To obtain these rates, one must assume that the spatial step size relates to

the time step size via a CFL-type condition.) These rates contrast with the faster order of 2

typically attainable for spatio-temporal approximations of the underlying PDE, and of strong

order 1/2 and weak order of 1 typically attainable for SDEs using the Euler-Maruyama

method [41–43].

• Spurious Drift Terms. Hairer et al. showed that seemingly reasonable spatial discretizations

of Burgers-like SPDEs do not converge to the right solution – even in a weak sense [44–46].

Instead these discretizations converge to a (non-ergodic) SPDE with a spurious drift term

that is a spatial analog of the Itô-Stratonovich correction. This numerical artifact is due to

the spatial roughness of the SPDE solution. We refer the reader to [44] for numerical results

and an explanation of this numerical artifact, and to [45, 46] for detailed proofs.
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• Long-Time Simulation. Another problem is related to long-time simulation of ergodic

SPDEs [47–49]. The aim of this type of simulation is to sample from the stationary distribu-

tion of the SPDE, and also to compute long-time dynamics. As far as we can tell, methods

for ergodic SPDEs are currently limited to schemes that efficiently sample from the station-

ary distribution of Langevin SPDEs without too much concern about accurately representing

their dynamics [30]. The idea for this scheme comes from MCMC and numerical SDE the-

ory [50–58], and basically involves combining a θ-method for the approximating SDE with

a Metropolis accept-reject step, which corrects the bias introduced by time discretization

error. However, the results in Ref. [30] demonstrate that unless one chooses θ = 1/2 (a

Crank-Nicholson discretization), the acceptance rate of the Metropolized θ-scheme deterio-

rates in the space-time diffusion limit.

• Reflecting Solutions. Reflected SPDEs are an infinite-dimensional analog of SDEs with

reflection [59–61]. They arise in the study of continuum models with constraints on the

domain of their solutions, e.g., the Allen-Cahn SPDE with reflection at ±1 or positivity

constraints in population or interest rate models [60, 62–64]. In this context spatio-temporal

methods may produce approximations that are outside the domain of definition of the SPDE.

In light of these practical problems, it is quite natural to approximate SPDEs using an algorithm

that is more precisely tailored to the structure of their solutions. In this note we propose a simple

way to do this. The idea is to approximate SPDEs by a Markov jump process that we refer to

as the spectral random walk method (SPECTRWM). The departure point for constructing this

approximation is a stable and accurate system of approximating SDEs, which may be obtained by,

e.g., finite difference or spectral Galerkin methods [33, 34, 36]. To be clear, we do not propose

to solve the above problem regarding spurious drift terms, though we do confirm that incorrect

discretizations lead to non-ergodic approximations to the Burgers and KPZ SPDEs. Given these

approximating SDEs, we then proceed as follows: instead of discretizing these approximating

SDEs in time – as is normally done – we discretize their infinitesimal generator in space [65]. As

we detail in §II below, an important ingredient in this construction is a basis given by the leading

n eigenfunctions associated to the linear part of the drift of the SPDE.

A realization of this Markov jump process approximation may be produced by iteratively com-

puting its jumps and holding times: the jumps are taken in the direction of these eigenfunctions,

while the holding time in any given state is an exponentially distributed random variable whose
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mean is a deterministic function of the SPDE coefficients evaluated at this state. In addition to

being simple, the method allows several benefits:

• the jump size of the approximation is a parameter of the method;

• the time step size automatically adapts according to the stiffness of the SPDE coefficients;

• path-dependent expected values over slices of the SPDE solution in time can be approxi-

mated without incurring any time discretization error;

• every jump induces a global move in state space;

• they are multi-scale, in the sense that its jump size can be adapted to the different spatial

scales of the SPDE problem; and,

• it can handle boundary conditions in reflected SPDEs in a natural way.

The SPECTRWM method and its properties are described in §II. Afterwards we test SPECTRWM

on heat, overdamped Langevin, Burgers, and KPZ SPDEs, all with periodic boundary conditions.

Let us finish this introduction by remarking that SPECTRWM is a generalization of the Markov

Chain Approximation Method (MCAM) to SPDEs. By now, MCAM is a well-established tech-

nique for the numerical solution of SDEs [61, 65]. The method was invented by Harold Kushner

in the 1970s to approximate optimally controlled diffusion processes [61, 66–76]. However, be-

cause of their interest in stochastic control problems, these works focus on numerical solutions

with gridded state spaces that admit a global matrix representation. In the statistical physics lit-

erature, this matrix representation was avoided and a Monte-Carlo method was used to simulate

the numerical solution [77–81], and to be specific, this idea seems to go back to at least [77].

Among these papers, the most general and geometrically flexible MCAM were the finite volume

methods developed for over-damped Langevin equations presented in [81]. More recently, the

MCAM framework has been generalized to lessen the requirements on the underlying diffusion

process [65]. In particular, this generalization no longer requires that the domain of the diffusion

process is bounded, that the infinitesimal generator of the diffusion process is symmetric or that

the infinitesimal covariance of the diffusion process is diagonally dominant. This generalization is

made possible by letting the state space of the numerical solution be gridless and by using Monte-

Carlo methods to simulate the numerical solution, but at the same time, keeping the restriction that
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the jump size of the approximation is uniformly bounded. As we will see below, this property is

essential to the stability and accuracy of SPECTRWM.

II. ALGORITHM

We present two versions of SPECTRWM. The point of the first version is to illustrate basic con-

cepts, and as such, it uses a spatial finite difference approximation of an SPDE on an evenly spaced

grid in 1D. (This ‘academic’ version was used by the author in his mini-course entitled “Spectral

Random Walk Method for the Numerical Solution of Stochastic Partial Differential Equations” at

the 2016 Gene Golub SIAM Summer School.) The second version is based on a spectral Galerkin

approximation, which, as we will see, is more general and more efficient than the academic one.

Unless otherwise stated, we will mainly provide numerical verification of the academic version of

SPECTRWM.

A. Academic Version

We present this version of SPECTRWM in the specific context of a one-dimensional SPDE

with additive, space-time Gaussian white noise and a scalar noise coefficient. We assume that

we are given a stable and accurate semi-discrete system that consists of a 1D grid with n grid

points, an initial condition on this grid, a spatial step size parameter ∆x > 0, and a system of

approximating SDEs on Rn of the form:

dun = [Lnu
n + Fn(un)] dt+ σ

√
1

∆x
dWn (1)

where Ln is an n × n discretization matrix associated to the linear part of the drift, Fn is a dis-

cretization of the nonlinear part of the drift, σ > 0 is a scalar constant, andWn is an n-dimensional

Brownian motion. We assume that Ln has an orthonormal set of n eigenvectors {ei}with eigenval-

ues {µi}. Implicit in this setup are the boundary conditions of the SPDE, which are typically built

into (1). A typical example of Ln is the discrete Laplacian for the standard finite difference method

with periodic, Dirichlet, Neumann or mixed boundary conditions. In what follows, uh(t) ∈ Rn

denotes the Markov jump process approximation produced by SPECTRWM.

Algorithm II.1 (SPECTRWM: Academic Version). Given the current time t ≥ 0, the current state

of the process uh(t) = v ∈ Rn, a spatial step size ∆x > 0, and a jump size h > 0, the algorithm
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outputs an updated state uh(t+ δt) at time t+ δt in three sub-steps.

(Step 1): compute forward/backward jump rates:

J±
i (v) =

σ2

2h2∆x
exp

(
±
(
µiv

T ei + Fn(v)T ei
) h∆x

σ2

)
(2)

for 1 ≤ i ≤ n.

(Step 2): update time via

t1 = t0 + δt

where δt is an exponentially distributed random variable with parameter

J(v) =
n∑
i=1

(J+
i (v) + J−

i (v)) . (3)

(Step 3): update the state of the system by assuming that the process jumps forward/backward

along the eigenvector ei to state v ± hei with probability:

Pr(uh(t+ δt) = v ± hei | uh(t) = v) =
J±
i (v)

J(v)

for 1 ≤ i ≤ n.

We stress that this method is very simple and straightforward to implement. Note from (Step

3) that the algorithm moves by jumps in the semi-discrete space Rn in the directions of the eigen-

vectors of L. Moreover, the jump size is h, and these jumps alter every component, i.e., each

jump induces a global system update. The time elapsed in each state δt is an exponentially dis-

tributed random variable with parameter J(v) given in (8), which is defined as the sum of the

forward/backward jump rates from (Step 1). Also, the update rules in (Step 1) and (Step 2) only

depend on the current state. Thus, the resulting process is a Markov jump process [82–85].

This process has an infinitesimal generator that is given by:

Qf(v) =
∑

1≤i≤n

J+
i (v) (f(v + hei)− f(v)) + J−

i (v) (f(v − hei)− f(v)) . (4)

Using a Taylor expansion of Qf(v) about h = 0, in Appendix A we show that:

Qf(v) = vTLn∇f(v) + Fn(v)T∇f(v) +
σ2

2∆x
trace(D2f(v)) +O(h2∆x+ h2) . (5)
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We recognize the leading order term in this expansion as the infinitesimal generator of the approx-

imating SDE in (1). Thus, by choosing h sufficiently small we can get arbitrarily close (in law) to

the solution of the approximating SDE.

However, a very practical question remains: what is the computational cost of SPECTRWM?

To address this question, we consider the scaling of SPECTRWM as the jump size decreases

h → 0; and, as the spatial step size decreases ∆x → 0 (or equivalently n → ∞). In order to

produce a single trajectory over [0, t], the computational cost of SPECTRWM is proportional to

the (random) number of steps N(t) it takes for the approximation to reach t. In §4.3 of [65], it is

shown that the mean of N(t) is inversely proportional to the mean holding time. Thus, the mean

holding time dictates the average cost of the algorithm, which from (Step 2) of Algorithm II.2

scales like O(h2/n2). This scaling of the mean holding time reflects the roughness of the noise

and the fact that SPECTRWM is able to jump in the direction of any of the n eigenmodes of L.

However, it turns out we can do much better than this, by using a spectral Galerkin approximation,

as we describe next.

B. Fast Version

Consider an SPDE with solution u defined on a Hilbert space H with inner product 〈·, ·〉.

Assume that the noise in the SPDE is additive space-time Gaussian white noise with scalar noise

coefficient σ > 0. Turning to the drift of the SPDE, assume this drift has a linear part of the

form Lu where L is a linear operator with a complete orthonormal set of eigenfunctions {ei}

and eigenvalues {µi} ordered such that µi ≥ µi+1 for all natural numbers i > 0. Typically

L is a uniformly elliptic differential operator with non-positive eigenvalues. In terms of these

eigenfunctions, we define the finite-dimensional subspace Vn = span{e1, · · · , en}, which is the

span of the eigenfunctions associated to the n largest eigenvalues of L, and let un denote the

orthogonal projection of u onto this finite-dimensional subspace Vn:

un =
n∑
i=1

ûni ei .

where we introduced the n spectral coefficients: {ûni = 〈un, ei〉 | 1 ≤ i ≤ n}. The function un

is a standard spectral Galerkin approximation of u. Next we derive an n-dimensional system of

approximating SDEs that the spectral coefficients of un satisfy.

For this purpose, we approximate the space-time Wiener process in the SPDE by a truncated
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sum:
∑n

i=1Bi(t)ei where {Bi} are iid Brownian motions. Finally, let {F̂i} denote the spectral

coefficients of the rest of the drift of the SPDE in the finite-dimensional basis {ei}1≤i≤n. With

these truncations in hand, the spectral coefficients of un satisfy the following system of SDEs:

dûni =
[
µiû

n
i dt+ F̂i(u

n)
]
dt+ σdBi (6)

where i ranges from 1 to n. The fast version of SPECTRWM directly approximates these SDEs in

the spectral domain. Let uh(t) denote the numerical solution produced by SPECTRWM.

Algorithm II.2 (SPECTRWM: Fast Version). Given a jump size h > 0, the current time t ≥ 0,

and the current state of the process uh(t) = v, the algorithm outputs an updated state uh(t+ δt) at

time t+ δt in three sub-steps.

(Step 1): compute forward/backward jump rates:

J±
i (v) =

σ2

2h2
exp

(
±
(
µiv̂i + F̂i(v)

) h

σ2

)
(7)

for 1 ≤ i ≤ n.

(Step 2): update time via

t1 = t0 + δt

where δt is an exponentially distributed random variable with parameter

J(v) =
n∑
i=1

[
J+
i (v) + J−

i (v)
]
. (8)

(Step 3): update the state of the system by assuming that the process jumps forward/backward

along the eigenvector ei with probability:

Pr(uh(t+ δt) = v ± hei | uh(t) = v) =
J±
i (v)

J(v)

for 1 ≤ i ≤ n.

Note that this version of SPECTRWM makes jumps of size h in the individual spectral co-

efficients of uh. Every jump in the spectral domain leads to a jump of size h in uh along the

corresponding eigenfunction. The generator of this version of SPECTRWM is identical in form to

the generator given in (4) with forward/backward jump rates given in (7). However, in this case,
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the jumps and state of the system are in the spectral domain where the approximating SDEs are

defined. In this case, a straightforward Taylor expansion, shows that the infinitesimal generator

of this version is an O(h2) approximation to the infinitesimal generator associated to the approxi-

mating SDEs in (6). This version of SPECTRWM is ‘fast’ because the mean holding time in this

approximation scales like O(h2/n), in contrast to the O(h2/n2) scaling of the academic version.

III. HEAT SPDE

To assess accuracy of SPECTRWM, consider the heat SPDE on [0, 2π] with periodic boundary

conditions at 0 and 1:

du =

(
∂2u

∂x2
− λu

)
dt+ σdW ∀x ∈ [0, 2π], t ≥ 0

u(t, 0) = u(t, 2π) ∀t ≥ 0 ,

u(0, x) =
c0√
2π

+
1√
π

∑
k≥1

(c−k cos(kx) + ck sin(kx)) ∀x ∈ [0, 2π] .

(9)

where λ ≥ 0 and σ > 0 are parameters; and {ck} are the Fourier coefficients of the initial

conditions. By the usual Fourier series argument, the solution to these equations at any time

t > 0 is a Gaussian process with mean

Eu(t, x) =
c0√
2π
e−µ0t +

1√
π

∑
k≥1

e−µkt (c−k cos(kx) + ck sin(kx)) (10)

and spatial covariance

E {(u(t, x)− Eu(t, x))(u(t, y)− Eu(t, y))} =
σ2

2π
t+

σ2

π

∑
k≥1

1− e−2k2t

2k2
cos(k(x− y)) if λ = 0

σ2

2π

1− e−2µ0t

2µ0

+
σ2

π

∑
k≥1

1− e−2µkt

2µk
cos(k(x− y)) if λ > 0

(11)

where for convenience we have introduced µk = k2 + λ. We use a truncation of (10) and (11)

as a benchmark solution to verify the efficiency of the method in approximating expected values

involving (a) the solution at a fixed time and (b) the entire path of the solution.

Remark III.1. The dynamics of the heat SPDE involves a ‘competition’ between the dissipative

drift term and the space-time Gaussian white noise. When λ = 0, the noise wins in the sense that
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∆x

x0 = 0 xn = 2πx1

f0 f1 fn−1 fn

xn−1

. . .

FIG. 1: Grid. This cartoon shows the grid used for all of the test problems in this paper. The black dots

mark the interior grid points, and the white dots mark the boundary grid points. Due to the periodic

boundary conditions, the approximating SDEs only need to be evolved on the n grid points: x0, · · · , xn−1.

Also, for any function f : [0, 2π]→ R, we use the shorthand notation fi = f(xi) for 0 ≤ i ≤ n.

the zeroth order mode of the Fourier series solution is a Brownian motion, and as a consequence,

the SPDE has no stationary distribution. This is reflected in the secular term appearing in (11) in

the case λ = 0. However, for any λ > 0, the zeroth order mode of the Fourier series solution is an

OU process, and the heat SPDE has a stationary distribution.

Referring to Figure 1, we discretize [0, 2π] using an evenly-spaced grid:

{xi = i∆x | 0 ≤ i ≤ n}

with spatial step size ∆x = 2π/n. Let fi = f(xi). On this grid, we approximate the diffusive part

of the drift in (14) by a finite-difference method:

∂2f

∂x2
(xi) =

f(i+1) mod n − 2fi + f(i−1) mod n

∆x2
+O(∆x2)

which is valid if f has four derivatives. The resulting discretization matrix is the discrete Laplacian

with periodic boundary conditions in 1D, and its eigenvalues and eigenvectors are analytically

known. Samples paths generated by SPECTRWM are given in Figure 2 for two different values of

λ. The finite time weak accuracy of the scheme is verified in the graphs labelled (a) in the legend

of Figure 6. The accuracy of the method in approximating the time integral of this covariance over

[0, 1] (a path-dependent expected value) is verified in the graph labelled (b) in the figure legend.

Both of these graphs are in agreement with the local consistency estimate provided in (5). Figure 4

shows that SPECTRWM is able to accurately represent the decay of high frequency modes. This

is expected since the algorithm is based on a random walk in the spectral coefficients.

10



FIG. 2: Heat SPDE on [0, 2π]. Sample paths produced using SPECTRWM at the parameter values

indicated in the figure title and with a trivial initial condition. Colors indicate the height of the surface, and

are added in order to make the surface plots a bit more clear. These sample paths illustrate the stabilizing

effect of the parameter λ.
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FIG. 3: Heat SPDE on [0, 2π]. This figure verifies the accuracy of SPECTRWM for the parameter values

given in the figure title and for (a) the expected value of the solution squared at time t = 1 and (b) the time

integral of this expected value over [0, 1]. The dashed lines are for reference.
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FIG. 4: Heat SPDE on [0, 2π]. This figure compares the fast version of SPECTRWM with σ = 1, λ = 0,

and n = 11 with the Crank-Nicolson scheme using n = 101 grid points and ∆t = ∆x. The initial

condition for this numerical test is shown in the left panel. The expected value of the true solution is the

dashed line shown in the right panel. As is well known, the Crank-Nicolson scheme has trouble damping

the high frequency modes, whereas the fast version of SPECTRWM does not have this issue.

IV. OVERDAMPED LANGEVIN SPDE

To assess ergodicity of SPECTRWM, consider a nonlinear, overdamped Langevin SPDE:
du =

(
∂2u

∂x2
− u3

)
dt+ σdW ∀x ∈ [0, 2π], t ≥ 0

u(t, 0) = u(t, 2π) ∀t ≥ 0 ,

(12)

with initial conditions that we will describe shortly. Using the same discretization as before, the

approximating SDEs are themselves overdamped Langevin SDEs, which preserve a probability

density function:

πn(v) ∝ exp

(
−∆x

( ∑
0≤i≤n−1

v4i
4

+
vTLv

2

))
where v = (v0, · · · , vn−1). For the first test, we took an initial condition at very high energy

as shown in Figure 5. This figure suggests that SPECTRWM is geometrically ergodic when the

underlying SDE is. For the second test, we took a trivial initial condition, a very large jump size

h =
√

∆x and computed the accuracy of SPECTRWM. Following Chapter 2 of [65], we modified

the jump rates so that the algorithm exactly preserves the stationary density of the approximating

SDEs.
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FIG. 5: Overdamped Langevin SPDE on [0, 2π]. Sample paths produced using SPECTRWM at the

parameter values indicated in the figure title. Colors indicate the height of the surface, and are added in

order to make the surface plots a bit more clear. These sample paths illustrate the stabilizing effect of the

parameter λ.

V. BURGERS SPDE

We apply SPECTRWM to the following Burgers SPDE:
du =

(
ν
∂2u

∂x2
− u∂u

∂x

)
dt+ σdW ∀x ∈ [0, 2π], t ≥ 0

u(t, 0) = u(t, 2π) ∀t ≥ 0 ,

(13)

with a bump function initial condition as depicted in Figure 7. To construct approximating SDEs,

we use the same setup for the linear part and discretize the nonlinear advective term using either:

f
∂f

∂x
(xi) ≈


1

2∆x

(
f 2
(i+1) mod n − f 2

(i−1) mod n

)
1

∆x

(
f(i+1) mod n − fi

)
fi

13



FIG. 6: Overdamped Langevin SPDE on [0, 2π]. This figure verifies the accuracy of SPECTRWM in

computing the first and second moment of each component of the approximating SDE with N = 20 grid

points. The x-axis labels the components. We use as benchmark solution the preconditioned MALA

algorithm, which obtains proposal moves from the θ-method with θ = 1/2 [30].

As we confirm in Figure 7, the latter discretization leads to an approximation that is unstable. This

qualitatively confirms the results in [44, 45]. A quantitative comparison is not possible, because

the precise form of the spurious drift term depends on the approximation being used.

VI. KPZ SPDE

Here we apply SPECTRWM to the following KPZ SPDE:
du =

(
∂2u

∂x2
+ λ

(
∂u

∂x

)2
)
dt+ σdW ∀x ∈ [0, 2π], t ≥ 0

u(t, 0) = u(t, 2π) ∀t ≥ 0 ,

(14)

with a sinusoidal initial condition as depicted in Figure 8. To construct approximating SDEs, we

use the previous setup for the linear part and discretize the nonlinear term using either:

∂f

∂x
(xi)

2 ≈


(

1

2∆x

(
f(i+1) mod n − f(i−1) mod n

))2

(
1

∆x

(
f(i+1) mod n − fi

))2
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FIG. 7: Burgers SPDE on [0, 2π]. Sample paths produced using SPECTRWM at the parameter values

indicated in the figure title. Colors indicate the height of the surface, and are added in order to make the

surface plots a bit more clear. The left panel uses a valid semi-discrete approximation, while the right

panel uses a semi-discrete approximation that converges to a non-ergodic SPDE.
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FIG. 8: KPZ SPDE on [0, 2π]. Sample paths produced using SPECTRWM at the parameter values

indicated in the figure title. Colors indicate the height of the surface, and are added in order to make the

surface plots a bit more clear. The left panel uses a valid semi-discrete approximation, while the right

panel uses a semi-discrete approximation that converges to a non-ergodic SPDE.
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VII. CONCLUSION

What this paper has achieved is a generalization of the 1D random walk approximation of

Brownian motion to SPDEs. Indeed, somewhat like the 1D random walk which makes jumps of

fixed size h to the left or right with equal probability, SPECTRWM jumps of fixed size h forward

or backward along the leading n eigenfunctions of the linear part of the drift with jump rates that

depend only on its current state. Moreover, just as the 1D random walk uses a mean holding time

of h2 for the sake of local accuracy, the mean holding time of SPECTRWM is also determined by

local accuracy.

Aside from its mathematical interest, this generalization has practical uses. Indeed, since

SPECTRWM is a (continuous-time) jump process with fixed jump size, this method solves in

a natural way several problems that one encounters when simulating SPDEs, including their long-

time simulation, the approximation of their path-dependent expected values, and by construction

of its jumps, SPECTRWM is faithful to the domain of the SPDE solution. Being a Markov jump

process, SPECTRWM also has the advantage of being easy to quantitatively analyze since it ad-

mits an infinitesimal generator, which can be used to analyze its stability and accuracy [65, 86].

Appendix A: Local Consistency

Here we show that the infinitesimal generator of SPECTRWM is an accurate approximation of

the infinitesimal generator of the approximating SDE given in (1). Referring to (4), Taylor expand

the terms f(v ± hei) to obtain:

Qf(v) =
∑

1≤i≤n

(J+
i − J−

i )

(
h∇f(v)T ei +

h3

6
D3f(v)(ei, ei) +O(h5)

)
+(J+

i + J−
i )

(
h2

2
D2f(v)(ei, ei) +

h4

12
D4f(v)(ei, ei) +O(h6)

)
To leading order, the forward/backward jump rates satisfy:

(J+
i + J−

i ) =
σ2

h2∆x
+O(∆x)

(J+
i − J−

i ) =
1

h
(µiv

T ei + Fn(v)T ei) +O(h∆x2)

Thus,

Qf(v) =
∑

1≤i≤n

(µiv
T ei + Fn(v)T ei)∇f(v)T ei +

σ2

2∆x
D2f(v)(ei, ei) +O(h2∆x+ h2)
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To finish, we use the fact that ei is an eigenvector of Ln to obtain:

Qf(v) = trace

((
∇f(v)vTLn +∇f(v)Fn(v)T +

σ2

2∆x
D2f(v)

) ∑
1≤i≤n

eie
T
i

)
+O(h2∆x+ h2)

= vTLn∇f(v) + Fn(v)T∇f(v) +
σ2

2∆x
trace(D2f(v)) +O(h2∆x+ h2)
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