Green function of Orr Sommerfeld equations away from critical layers

Emmanuel Grenier* Toan T. Nguyen ${ }^{\dagger}$

April 2, 2019

Abstract

The classical Orr-Sommerfeld equations are the resolvent equations of the linearized Navier Stokes equations around a stationary shear layer profile in the half plane. In this paper, we derive pointwise bounds on the Green function of the Orr Sommerfeld problem away from its critical layers.

1 Introduction

In this paper, we are interested in the study of linearized Navier Stokes equations around a given fixed profile $U_{s}=(U(z), 0)$ as the viscosity goes to 0 . Namely, we consider the following set of equations

$$
\begin{gather*}
\partial_{t} v+U_{s} \cdot \nabla v+v \cdot \nabla U_{s}+\nabla p-\nu \Delta v=F, \tag{1.1}\\
\nabla \cdot v=0, \tag{1.2}
\end{gather*}
$$

on the half plane $x \in \mathbb{T}, z \geq 0$, with Dirichlet boundary condition

$$
\begin{equation*}
v=0 \quad \text { on } \quad z=0 . \tag{1.3}
\end{equation*}
$$

We focus on the periodic case $x \in \mathbb{T}$, the whole line case $x \in \mathbb{R}$ being similar. Throughout this paper, the background profile $U(z)$ is assumed to be sufficiently smooth, to satisfy $U(0)=0$ and

$$
\begin{equation*}
\left|\partial_{z}^{k}\left(U(z)-U_{+}\right)\right| \leq C_{k} e^{-\eta_{0} z}, \quad \forall z \geq 0, \quad k \geq 0, \tag{1.4}
\end{equation*}
$$

for some finite constant U_{+}and some positive constants C_{k} and η_{0}.
The inviscid limit problem (1.1)-(1.4) is a very classical problem that has led to a huge physical and mathematical literature, focussing in particular on the linear stability, on the dispersion relation, on the study of eigenvalues and eigenmodes, and on the onset of

[^0]nonlinear instabilities and turbulence (see [1] for an introduction on these topics, and the classical achievements of Rayleigh, Orr, Sommerfeld, Heisenberg, Tollmien, C.C. Lin, and Schlichting).

Two cases arise. Either the profile U is linearly stable for the corresponding linearized Euler equations (the case when $\nu=0$) or it is linearly unstable for these limiting equations. In this paper, we consider the unstable case, leaving the stable case to be treated in [10, which turns out to be much delicate. In the unstable case, it is well known [6] that the profile U is linearly unstable for the linearized Navier Stokes equations provided ν is sufficiently small, or equivalently, the Reynolds number $R=\nu^{-1}$ is sufficiently large. However, in order to go from linear to nonlinear instability, more precise information on solutions to the linearized problem is required. Let us mention several efforts in treating the stability and instability of nonlinear boundary layers in the small viscosity limit [2, 3, 4, 5, 6, 11, 13, 14].

A natural and traditional approach to study linearized Navier Stokes equations is to take the Fourier Laplace transform of these equations. For this, in order to take advantage of the incompressibility relation (1.2), we introduce the stream function ψ of v, defined by

$$
v=\nabla^{\perp} \psi
$$

and take its Fourier transform in the x variable, with wave number α, and Laplace transform in time, with Laplace variable

$$
\lambda=-i \alpha c,
$$

following historical notations. Equivalently, we focus on solutions v of linearized Navier Stokes equations of the form

$$
v=\nabla^{\perp}\left(e^{i \alpha(x-c t)} \phi(z)\right)
$$

with source term of the same form. This leads to the classical Orr-Sommerfeld equation

$$
\begin{equation*}
(U-c)\left(\partial_{z}^{2}-\alpha^{2}\right) \phi-U^{\prime \prime} \phi=\epsilon\left(\partial_{z}^{2}-\alpha^{2}\right)^{2} \phi-i \alpha^{-1} f, \quad \epsilon=\frac{\nu}{i \alpha} \tag{1.5}
\end{equation*}
$$

on the half line $z \geq 0$, together with the boundary conditions

$$
\begin{equation*}
\phi_{\left.\right|_{z=0}}=\phi_{\left.\right|_{z=0} ^{\prime}}^{\prime}=0, \quad \lim _{z \rightarrow \infty} \phi(z)=0 . \tag{1.6}
\end{equation*}
$$

Here, $\alpha \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$ denotes the tangential wave number and $c \in \mathbb{C}$ is the complex phase velocity.

For the mathematical analysis, it is more convenient to multiply (1.5) by $i \alpha$, which leads to

$$
\begin{equation*}
(\lambda+i \alpha U)\left(\partial_{z}^{2}-\alpha^{2}\right) \phi-i \alpha U^{\prime \prime} \phi-\nu\left(\partial_{z}^{2}-\alpha^{2}\right)^{2} \phi=f . \tag{1.7}
\end{equation*}
$$

Such a spectral formulation of the linearized Navier-Stokes equations near a boundary layer shear profile has been intensively studied in the physical literature. We in particular refer to [1, 12, 15] for the major works of Heisenberg, Tollmien, C.C. Lin, and Schlichting on the subject. We also refer to [7, 8, ,9 for the rigorous spectral analysis of the Orr-Sommerfeld equations.

In this paper, we shall derive pointwise bounds on the Green function of the OrrSommerfeld problem (1.6)-(1.7). For convenience, let us denote

$$
\Delta_{\alpha}:=\partial_{z}^{2}-\alpha^{2}
$$

and

$$
\begin{equation*}
\mathrm{OS}_{\alpha, \lambda}(\phi):=(\lambda+i \alpha U) \Delta_{\alpha} \phi-i \alpha U^{\prime \prime} \phi-\nu \Delta_{\alpha}^{2} \phi . \tag{1.8}
\end{equation*}
$$

For each fixed $\alpha \in \mathbb{N}^{*}$ and $\lambda \in \mathbb{C}$, we denote by $G_{\alpha, \lambda}(x, z)$ the corresponding Green kernel of the Orr-Sommerfeld problem. By definition, for each $x \in \mathbb{R}_{+}, G_{\alpha, \lambda}(x, z)$ solves

$$
\operatorname{OS}_{\alpha, \lambda}\left(G_{\alpha, \lambda}(x, \cdot)\right)=\delta_{x}(\cdot)
$$

on $z \geq 0$, together with the boundary conditions:

$$
\begin{equation*}
G_{\alpha, \lambda}(x, 0)=\partial_{z} G_{\alpha, \lambda}(x, 0)=0, \quad \lim _{z \rightarrow \infty} G_{\alpha, \lambda}(x, z)=0 . \tag{1.9}
\end{equation*}
$$

The Green kernel allows to solve the inhomogenous Orr-Sommerfeld problem

$$
\begin{equation*}
\mathrm{OS}_{\alpha, \lambda}(\phi)=f, \tag{1.10}
\end{equation*}
$$

or equivalently the resolvent equations of the linearized Navier-Stokes operator, through the following explicit expression for the solution ϕ

$$
\phi(z)=\int_{0}^{\infty} G_{\alpha, \lambda}(x, z) f(x) d x
$$

To construct the Green function, let us first note that as $z \rightarrow+\infty$ the homogenous OrrSommerfeld equation "converges" to the following constant-coefficient equation

$$
\begin{equation*}
\mathrm{OS}_{+}(\phi)=\left(\lambda+i \alpha U_{+}\right) \Delta_{\alpha} \phi-\nu \Delta_{\alpha}^{2} \phi=0, \tag{1.11}
\end{equation*}
$$

where $U_{+}=\lim _{z \rightarrow \infty} U(z)$. This constant-coefficient equation has four independent solutions $e^{ \pm \mu_{s} z}$ and $e^{ \pm \mu_{f}^{+} z}$, with

$$
\begin{equation*}
\mu_{s}=|\alpha|, \quad \mu_{f}(z)=\nu^{-1 / 2} \sqrt{\lambda+\nu \alpha^{2}+i \alpha U(z)}, \quad \mu_{f}^{+}=\lim _{z \rightarrow \infty} \mu_{f}(z), \tag{1.12}
\end{equation*}
$$

in which we take the positive real part of the square root.
As will be proved later, there exist four solutions to the homogenous Orr-Sommerfeld equation $\operatorname{OS}_{\alpha, \lambda}(\phi)=0$ which have either a "slow behavior" $e^{ \pm \mu_{s} z}$ or a "fast behavior" $e^{ \pm \mu_{f}^{+} z}$ as $z \rightarrow+\infty$. The two slow modes appear to be perturbations of solutions of the Rayleigh equation

$$
\operatorname{Ray}_{\alpha, \lambda}(\phi)=(\lambda+i \alpha U) \Delta_{\alpha} \phi-i \alpha U^{\prime \prime} \phi=0,
$$

whereas the two fast modes are linked to the Airy type equation

$$
\left(\lambda+i \alpha U-\nu \Delta_{\alpha}\right) \Delta_{\alpha} \phi=0,
$$

or recalling μ_{f} introduced in (1.12),

$$
\begin{equation*}
\nu\left(\partial_{z}^{2}-\mu_{f}^{2}\right) \Delta_{\alpha} \phi=0 . \tag{1.13}
\end{equation*}
$$

Let us first consider the Rayleigh equation $\operatorname{Ray}_{\alpha, \lambda}(\phi)=0$. As z goes to $+\infty$, this equation "converges" to $\Delta_{\alpha} \phi=0$, hence $\operatorname{Ray}_{\alpha, \lambda}(\phi)=0$ has two solutions $\phi_{\alpha, \pm}$, with respective behaviors $e^{ \pm|\alpha| z}$ at infinity. We define the Evans function $E(\alpha, \lambda)$ by

$$
\begin{equation*}
E(\alpha, \lambda)=\phi_{\alpha,-}(0) . \tag{1.14}
\end{equation*}
$$

Note that the Rayleigh equation degenerates at points where $\lambda+i \alpha U(z)$ vanishes. In this paper, we restrict ourselves to the case when λ is away from the range of $-i \alpha U$. Precisely, throughout the paper, letting ϵ_{0} be an arbitrarily small, but fixed, positive constant, we shall consider the range of (α, λ) in $\mathbb{R} \backslash\{0\} \times \mathbb{C}$ so that

$$
\begin{equation*}
d(\alpha, \lambda)=\inf _{z \in \mathbb{R}_{+}}|\lambda+i \alpha U(z)| \geq \epsilon_{0} \tag{1.15}
\end{equation*}
$$

Note that $d(\alpha, \lambda)=\Re \lambda$ if $\Im \lambda \in-\alpha \operatorname{Range}(U)$. In any case,

$$
\begin{equation*}
d(\alpha, \lambda) \geq|\Re \lambda| . \tag{1.16}
\end{equation*}
$$

It turns out that two independent "slow" solutions of Orr Sommerfeld equations can be constructed as perturbations of these two solutions of Rayleigh equation.

The two "fast" solutions come from the Airy equation (1.13). This equation degenerates when $\lambda+\alpha^{2} \nu+i \alpha U$ gets small. Points z_{c} such that $\alpha U\left(z_{c}\right)=-\Im \lambda$ are called "critical layers". The behavior of Airy equation changes as we approach these points, and in this paper we only study this equation away from these critical layers. Let us quantify this notion. The Airy's equation has a typical length scale

$$
\delta(z)=\frac{1}{\mu_{f}(z)}=\sqrt{\frac{\nu}{\lambda+\nu \alpha^{2}+i \alpha U(z)}} .
$$

If $\delta(z)$ varies within a length $\delta(z)$, namely if $\delta^{\prime}(z) \delta(z) \sim \delta(z)$, or equivalently if $\alpha \sim \nu^{-1 / 2}$ then the nature of the construction changes (see (2.1) for more details). In this paper we restrict to the case $|\alpha| \ll \nu^{-1 / 2}$ or more precisely on $|\alpha| \leq \nu^{-\zeta}$ for some $\zeta<1 / 2$.

We are mainly interested in getting bounds on the Green function when λ has a small positive real part. In this case, the condition (1.15) implies

$$
\begin{equation*}
\Re \mu_{f}(z)=\nu^{-1 / 2} \Re \sqrt{\lambda+\nu \alpha^{2}+i \alpha U(z)} \geq \nu^{-1 / 2} \sqrt{\epsilon_{0} / 2} \gg \mu_{s} \tag{1.17}
\end{equation*}
$$

for sufficiently small ν and for $|\alpha| \leq \nu^{-\zeta}$ for some $\zeta<1 / 2$. We may also use these Green function bounds in order to obtain bounds on the solutions of linearized Navier Stokes equations, through contour integrations. It turns out that these contours may be chosen such that $\mu_{s} \leq \Re \mu_{f}$. Therefore, we focus on this case in this paper, leaving aside the case when $\mu_{s} / \mu_{f} \geq 1$.

Our main result is the following.
Theorem 1.1. Let $U(z)$ be a boundary layer profile which satisfies (1.4). For each α, λ, let by $G_{\alpha, \lambda}(x, z)$ be the Green kernel of the Orr-Sommerfeld equation, with source term in x, and let

$$
\begin{equation*}
\mu_{s}=|\alpha|, \quad \mu_{f}(z)=\nu^{-1 / 2} \sqrt{\lambda+\nu \alpha^{2}+i \alpha U(z)} \tag{1.18}
\end{equation*}
$$

where we take the square root with positive real part. Let $0<\theta_{0}<1$ and $\zeta<1 / 2$. Let $\sigma_{0}>0$ be arbitrarily small. Then, there exists $C_{0}>0$ so that

$$
\begin{equation*}
\left|G_{\alpha, \lambda}(x, z)\right| \leq \frac{C_{0}}{\mu_{s} d(\alpha, \lambda)} e^{-\theta_{0} \mu_{s}|x-z|}+\frac{C_{0}}{\left|\mu_{f}(x)\right| d(\alpha, \lambda)} e^{-\theta_{0}\left|\int_{x}^{z} \Re_{\mu_{f}} d y\right|} \tag{1.19}
\end{equation*}
$$

uniformly for all $x, z \geq 0$ and $0<\nu \leq 1$, and uniformly in $(\alpha, \lambda) \in \mathbb{R} \backslash\{0\} \times \mathbb{C}$ so that $|\alpha| \leq \nu^{-\zeta}$, (1.15) holds, and

$$
|E(\alpha, \lambda)|>\sigma_{0}
$$

In particular, we have

$$
\begin{equation*}
\left|G_{\alpha, \lambda}(x, z)\right| \leq \frac{C_{0}}{\mu_{s}|\Re \lambda|} e^{-\theta_{0} \mu_{s}|x-z|}+\frac{C_{0}}{\left|\mu_{f}(x)\right||\Re \lambda|} e^{-\theta_{0}\left|\int_{x}^{z} \Re \mu_{f} d y\right|} . \tag{1.20}
\end{equation*}
$$

In addition, there hold the following derivative bounds

$$
\begin{equation*}
\left|\partial_{x}^{k} \partial_{z}^{\ell} G_{\alpha, \lambda}(x, z)\right| \leq \frac{C_{0} \mu_{s}^{k+\ell}}{\mu_{s} d(\alpha, \lambda)} e^{-\theta_{0} \mu_{s}|x-z|}+\frac{C_{0}\left|\mu_{f}(y)\right|^{k+\ell}}{\left|\mu_{f}(x)\right| d(\alpha, \lambda)} e^{-\theta_{0}\left|\int_{x}^{z} \Re \mu_{f} d y\right|} \tag{1.21}
\end{equation*}
$$

for all $x, z \geq 0$ and $k, \ell \geq 0$, in which $M_{f}=\sup _{z} \Re \mu_{f}(z)$. Moreover,

$$
\begin{equation*}
\left|\Delta_{\alpha} G_{\alpha, \lambda}(x, z)\right| \leq \frac{C_{0}}{d(\alpha, \lambda)} e^{-\theta_{0} \mu_{s}|x-z|}+\frac{C_{0}\left|\mu_{f}(y)\right|^{2}}{\left|\mu_{f}(x)\right| d(\alpha, \lambda)} e^{-\theta_{0}\left|\int_{x}^{z} \Re \mu_{f} d y\right|} \tag{1.22}
\end{equation*}
$$

where we "gain" a factor μ_{s} in the first term on the right hand side.
We believe that the θ_{0} factor is purely technical, and that this Theorem holds true for $\theta_{0}=1$. In addition, we note that $\Delta_{\alpha} G_{\alpha, \lambda}$ enjoys better bounds since $\Delta_{\alpha} e^{ \pm|\alpha| z}=0$.

To prove this Theorem we first construct approximate solutions to the Orr Sommerfeld equation, and then construct an approximate Green function. An iteration argument yields the exact Green function together with the stated bounds. Our construction of the Green function for the Orr-Sommerfeld problem was inspired by the pointwise Green function approach introduced by Zumbrun-Howard [18] and Zumbrun [16, 17].

We are also interested in the construction of a pseudo inverse of Orr Sommerfeld operator near a simple eigenvalue, a construction which is detailed in Section [5,

2 Approximate solutions of Orr-Sommerfeld

In this section, we construct four independent approximate solutions to the Orr Sommerfeld equations $\operatorname{OS}_{\alpha, \lambda}(\phi)=0$, two with a "fast" behavior and two with a "slow" one. The fast modes are constructed using geometrical optics methods, namely following the BKW method. For the slow modes we will distinguish between three regimes:

- bounded $|\alpha|$. In this case the slow modes are perturbations of the eigenmodes of Rayleigh equations.
- $1 \ll|\alpha| \leq \nu^{-1 / 4}$ (or any small negative power of ν). We use the fact that Rayleigh equation is a perturbation of Δ_{α}. The slow modes are perturbations of the eigenmodes of $\partial_{z}^{2}-\alpha^{2}$, namely $e^{ \pm|\alpha| z}$.
- $\nu^{-1 / 4} \leq|\alpha| \leq \nu^{-\zeta}$, for $\zeta<1 / 2$. In this case $e^{ \pm|\alpha| z}$ is a sufficient approximation.

Solutions will be constructed in function spaces L_{η}^{∞}, for $\eta>0$, that consist of smooth functions f so that the norm

$$
\|f\|_{\eta}:=\sup _{z \geq 0} e^{\eta|z|}|f(z)|
$$

is finite.

2.1 Fast modes

In this section, we shall construct two independent approximate solutions, which asymptotically behave like $e^{ \pm \mu_{f}^{+} z}$, of the Orr-Sommerfeld equation $\operatorname{OS}_{\alpha, \lambda}(\phi)=0$. We will use the BKW method. Let us first discuss its validity. Note that locally the characteristic length scale of the oscillations is

$$
\delta(z)=\frac{1}{\mu_{f}(z)}=\sqrt{\frac{\nu}{\lambda+\nu \alpha^{2}+i \alpha U(z)}} .
$$

The BKW method is valid provided δ has a small change during a period, namely provided $\delta^{\prime} \delta \ll \delta$, or equivalently

$$
\begin{equation*}
\delta^{\prime}(z)=\frac{-i \sqrt{\nu} \alpha U^{\prime}(z)}{2\left(\lambda+\nu \alpha^{2}+i \alpha U(z)\right)^{3 / 2}} \ll 1 \tag{2.1}
\end{equation*}
$$

Note that it may happen that for some particular $z_{c}, \Im \lambda+\alpha U\left(z_{c}\right)=0$. Such z_{c} are called critical layers, or turning points. If $\alpha \sim \nu^{-1 / 2}$, then the denominator and numerator of (2.1) are of order $O(1)$ at such points, hence the condition (2.1) is not satisfied and $\delta^{\prime}\left(z_{c}\right) \sim 1$.

On the contrary if $\alpha \lesssim \nu^{-\zeta}$ with $\zeta<1 / 2$, then near critical points, the denominator is of order $O(1)$ but the numerator is of order $O\left(\nu^{1 / 2-\zeta}\right)$. Therefore the condition (2.1) is satisfied provided ν is small enough. Similarly, $\mu_{f}^{-1-j} \partial_{z}^{j} \mu_{f}(z)$ is of order $O\left(\nu^{1 / 2-\zeta}\right)$ or smaller for $j \geq 1$.

Proposition 2.1. Let $N>0$ be arbitrarily large. Then for sufficiently small ν and for $|\alpha| \leq \nu^{-\zeta}$ with $\zeta<1 / 2$, there exist two approximate solutions $\phi_{f, \pm}^{a p p}(z)$ which solve OrrSommerfeld equations up to a small error term

$$
\operatorname{OS}_{\alpha, \lambda}\left(\phi_{f, \pm}^{a p p}\right)=O\left(\nu^{N}\left|\phi_{f, \pm}^{a p p}\right|\right),
$$

with $\phi_{f, \pm}^{a p p}(0)=1$ and

$$
\begin{equation*}
\phi_{f, \pm}^{a p p}(z)=e^{ \pm \int_{0}^{z} \mu_{f}(y) d y}\left(1+\phi_{ \pm}(z)\right), \tag{2.2}
\end{equation*}
$$

where $\phi_{ \pm}$and their derivatives are uniformly bounded in α, ν and z, and converge exponentially fast to 0 at $z=+\infty$.

Proof. Following a semi classical approach, we look for $\phi_{f, \pm}^{a p p}$ under the form

$$
\phi_{f, \pm}^{a p p}=\exp \left(\frac{\theta_{ \pm}^{a p p}}{\sqrt{\nu}}\right)
$$

Let $\theta=\theta_{ \pm}^{a p p}$ to simplify the notations. We compute

$$
\partial_{z}^{2} \phi_{f, \pm}^{a p p}=\left(\frac{\theta^{\prime 2}}{\nu}+\frac{\theta^{\prime \prime}}{\sqrt{\nu}}\right) \phi_{f, \pm}^{a p p}
$$

and

$$
\nu \partial_{z}^{4} \phi_{f, \pm}^{a p p}=\left(\frac{\theta^{\prime 4}}{\nu}+6 \frac{\theta^{\prime 2} \theta^{\prime \prime}}{\sqrt{\nu}}+4 \theta^{\prime} \theta^{\prime \prime \prime}+3 \theta^{\prime \prime 2}+\sqrt{\nu} \theta^{\prime \prime \prime \prime}\right) \phi_{f, \pm}^{a p p} .
$$

We now expand θ in powers of $\sqrt{\nu}$; namely,

$$
\theta=\sum_{i=0}^{N} \theta_{j} \nu^{j / 2},
$$

where the functions θ_{j} will themselves depend on α and λ. Putting the Ansatz into the Orr-Sommerfeld equations, at leading order, we obtain

$$
(\lambda+i \alpha U)\left(\theta_{0}^{\prime 2}-\nu \alpha^{2}\right)-\left(\theta_{0}^{\prime 4}-2 \nu \alpha^{2} \theta_{0}^{\prime 2}+\nu^{2} \alpha^{4}\right)=0
$$

Factorizing by $\theta_{0}^{\prime 2}-\nu \alpha^{2}$ we get

$$
\theta_{0}^{\prime 2}=\lambda+\nu \alpha^{2}+i \alpha U=\nu \mu_{f}^{2}(z),
$$

which gives

$$
\theta_{0}^{\prime}= \pm \sqrt{\nu} \mu_{f}(z) .
$$

Note that θ_{0}^{\prime} converges exponentially fast to $\pm \sqrt{\nu} \mu_{f}^{+}$and $\theta_{0}^{\prime \prime}$ converges exponentially fast to 0 . To obtain θ_{1} we equate the powers in $\sqrt{\nu}^{-1}$ and get

$$
-4 \theta_{0}^{\prime 3} \theta_{1}^{\prime}+4 \nu \alpha^{2} \theta_{0}^{\prime} \theta_{1}^{\prime}+2(\lambda+i \alpha U) \theta_{0}^{\prime} \theta_{1}^{\prime}=S
$$

where the source term $S=6 \theta_{0}^{\prime 2} \theta_{0}^{\prime \prime}$ only depends on θ_{0}^{\prime} and its derivatives. This leads to

$$
\theta_{1}^{\prime}=\frac{S}{\left(-4 \theta_{0}^{\prime 2}+4 \nu \alpha^{2}+2(\lambda+i \alpha U)\right) \theta_{0}^{\prime}}=-\frac{S}{2(\lambda+i \alpha U) \theta_{0}^{\prime}}
$$

As θ_{0}^{\prime} is bounded away from $0, \theta_{1}^{\prime}$ is correctly defined. Moreover, θ_{1} converges exponentially at infinity, as well as all its derivatives, and as $\theta_{0}^{\prime \prime}=O(\alpha), \theta_{1}=O(\alpha)$. This leads to

$$
\begin{equation*}
\theta_{ \pm}^{a p p}=\theta_{0}+O\left(\alpha \nu^{-1 / 2}\right) \tag{2.3}
\end{equation*}
$$

We then obtain equations and similar estimates on the remaining θ_{j} by equaling successive powers of ν. The Proposition follows.

2.2 Slow modes

Proposition 2.2. There exist two solutions $\phi_{s, \pm}^{a p p}$ which approximately solve the Orr Sommerfeld equations: precisely, for any N,

$$
\left|\operatorname{OS}_{\alpha, \lambda}\left(\phi_{s, \pm}^{a p p}\right)\right| \leq C_{N} \nu^{N} e^{ \pm|\alpha| z-\eta z}
$$

and behave like $e^{ \pm|\alpha| z}$ as z goes to $+\infty$: for any n,

$$
\left|\partial_{z}^{n} \phi_{s, \pm}^{a p p}(z)\right| \leq C_{n} e^{ \pm|\alpha| z}
$$

For the proof of Proposition 2.2, we shall distinguish three cases: bounded α, moderate α, and large α, that will be detailed in the next sections. We restrict ourselves to $\alpha>0$, the opposite case being similar.

2.2.1 Approximate slow modes for bounded α and λ

As z goes to $+\infty$, the Rayleigh equation "converges" to $\Delta_{\alpha} \phi$. Therefore the Rayleigh equation admits two particular equations, called $\phi_{\alpha, \pm}$ which behave like $e^{ \pm|\alpha| z}$ as $z \rightarrow+\infty$. Moreover $\left|\partial_{z}^{n} \phi_{\alpha, \pm}(z)\right| \leq C_{n} e^{ \pm|\alpha| z}$ for every positive n. Note that

$$
\mathrm{OS}_{\alpha, \lambda}\left(\phi_{\alpha, \pm}\right)=-\nu \Delta_{\alpha}^{2} \phi_{\alpha, \pm} .
$$

Using the Rayleigh equation, we compute

$$
\Delta_{\alpha} \phi_{\alpha, \pm}=\frac{i \alpha U^{\prime \prime} \phi_{\alpha, \pm}}{\lambda+i \alpha U}
$$

which gives

$$
\begin{gathered}
\operatorname{OS}_{\alpha, \lambda}\left(\phi_{\alpha, \pm}\right)=-\nu \Delta_{\alpha}\left(\frac{i \alpha U^{\prime \prime} \phi_{\alpha, \pm}}{\lambda+i \alpha U}\right) \\
=-\nu\left(\frac{i \alpha U^{\prime \prime}}{\lambda+i \alpha U}\right)^{2} \phi_{\alpha, \pm}-2 \nu \partial_{z} \phi_{\alpha, \pm} \partial_{z}\left(\frac{i \alpha U^{\prime \prime}}{\lambda+i \alpha U}\right)-\nu \phi_{\alpha, \pm} \partial_{z}^{2}\left(\frac{i \alpha U^{\prime \prime}}{\lambda+i \alpha U}\right) .
\end{gathered}
$$

Note that $\lambda+i \alpha U$ is bounded away from 0 , therefore

$$
\left|\mathrm{OS}_{\alpha, \lambda}\left(\phi_{\alpha, \pm}\right)\right| \leq C \nu e^{ \pm|\alpha| z-\eta z},
$$

and similarly for all its derivatives.
We now look for approximate solutions of Orr Sommerfeld solutions $\phi_{s, \pm}^{a p p}$ of the form

$$
\phi_{s, \pm}^{a p p}=\sum_{j=0}^{N} \phi_{\alpha, \pm}^{j}
$$

for arbitrarily large N, starting with $\phi_{\alpha, \pm}^{0}=\phi_{\alpha, \pm}$. We have

$$
\operatorname{Ray}_{\alpha}\left(\phi_{\alpha, \pm}^{j+1}\right)=-\mathrm{OS}_{\alpha, \lambda}\left(\phi_{\alpha, \pm}^{j}\right) .
$$

Note that

$$
\begin{equation*}
\mathrm{OS}_{\alpha, \lambda}\left(\phi_{s, \pm}^{a p p}\right)=-\nu \Delta_{\alpha}^{2} \phi_{\alpha, \pm}^{N} . \tag{2.4}
\end{equation*}
$$

We will focus on the construction of $\phi_{s,-}^{a p p}$, the construction of $\phi_{s,+}^{a p p}$ being similar. To end the proof of Proposition 2.2 we need to bound the various $\phi_{\alpha,-}^{i}$, which is done through the iterative use of the following Proposition.

Proposition 2.3. There exist constants C_{n} such that the following assertion is true. For any $\beta>0$ and any smooth function ψ there exists a smooth solution ϕ of $\operatorname{Ray}_{\alpha}(\phi)=\psi$ such that

$$
\sup _{k \leq n}\left\|\partial_{z}^{k} \phi\right\|_{\alpha}+\sup _{k \leq n}\left\|\partial_{z}^{n} \Delta_{\alpha} \phi\right\|_{\alpha+\beta} \leq \frac{C_{n}}{E(\alpha, \lambda)} \sup _{k \leq n}\left\|\partial_{z}^{k} \psi\right\|_{\alpha+\beta}
$$

where $\|\phi\|_{\eta}=\sup _{z \geq 0} e^{\eta|z|}|\phi(z)|$.

Proof. We first construct the Green function of the Rayleigh operator. Let

$$
\widetilde{\phi}_{\alpha,+}(z)=\phi_{\alpha,-}(0) \phi_{\alpha,+}(z)-\phi_{\alpha,+}(0) \phi_{\alpha,-}(z)
$$

Then $\widetilde{\phi}_{\alpha,+}(0)=0$ and the Wronskian of $\widetilde{\phi}_{\alpha,+}$ and $\phi_{\alpha,-}$ equals

$$
W\left(\widetilde{\phi}_{\alpha,+}, \phi_{\alpha,-}\right)=\phi_{\alpha,-}(0) W\left(\phi_{\alpha,+}, \phi_{\alpha,-}\right)=2 \alpha \phi_{\alpha,-}(0)
$$

evaluating this latest Wronskian at infinity. The Green function of the Rayleigh operator is therefore

$$
\begin{aligned}
G(x, z) & =\frac{1}{2 \alpha \phi_{\alpha,-}(0)} \phi_{\alpha,-}(x) \widetilde{\phi}_{\alpha,+}(z) & \text { if } & z<x \\
G(x, z) & =\frac{1}{2 \alpha \phi_{\alpha,-}(0)} \widetilde{\phi}_{\alpha,+}(x) \phi_{\alpha,-}(z) & \text { if } & z>x .
\end{aligned}
$$

We then have

$$
\phi(z)=\int_{0}^{+\infty} G(x, z) \psi(x) d x .
$$

Using the asymptotic behavior of $\phi_{\alpha, \pm}$ we get the claimed bounds on $\left\|\partial_{z}^{n} \phi\right\|_{\alpha}$ with $n=0$ and $n=1$ by a direct computation. Higher derivatives are obtained by differentiating

$$
\partial_{y}^{2} \phi=\alpha^{2} \phi+\frac{i \alpha U^{\prime \prime}}{\lambda+i \alpha U} \phi+\psi,
$$

keeping in mind that α is bounded and λ is away from the range of $-i \alpha U$. Next, we write

$$
\Delta_{\alpha} \phi=\frac{i \alpha U^{\prime \prime}}{\lambda+i \alpha U} \phi+\psi
$$

which gives the desired bounds on $\Delta_{\alpha} \phi$.

2.2.2 Approximate slow modes for $1 \ll|\alpha| \leq \nu^{-1 / 4}$ or large λ / α

For large α, or for large λ / α, the Rayleigh operator is a small perturbation of $\partial_{z}^{2}-\alpha^{2}$ and we can construct approximate eigenmodes $\phi_{s, \pm}^{a p p}$ using a perturbative construction. Namely, the Rayleigh equation may be rewritten as

$$
\Delta_{\alpha} \phi=\frac{i \alpha U^{\prime \prime} \phi}{\lambda+i \alpha U} .
$$

Note that $\alpha^{-1} e^{-\alpha|x-z|}$ is a Green function for Δ_{α}. We therefore define the following operator \mathcal{T} by

$$
\mathcal{T}[\phi](z):=\int_{0}^{\infty} \alpha^{-1} e^{-\alpha|x-z|} \frac{i \alpha U^{\prime \prime} \phi(x)}{\lambda+i \alpha U} d x .
$$

We shall prove that for sufficiently large α, the map \mathcal{T} is well-defined and contractive from $L_{\alpha+\eta}^{\infty}$ to itself. Indeed, for $\phi \in L_{\alpha+\eta}^{\infty}$, as $\lambda+i \alpha U$ is bounded away from 0 , we have

$$
|\mathcal{T}[\phi](z)| \leq C_{0} \int_{0}^{\infty} e^{-\alpha|x-z|} e^{-\eta x-\alpha x}\|\phi\|_{\alpha+\eta} d x \leq C_{0} \alpha^{-1}\|\phi\|_{\alpha+\eta} e^{-\eta z-\alpha z} .
$$

This proves that $\mathcal{T}[\phi] \in L_{\alpha+\eta}^{\infty}$. If α is large enough then \mathcal{T} is a contraction in this space. On the other hand, if λ / α is large enough we rewrite

$$
\frac{i \alpha U^{\prime \prime} \phi(x)}{\lambda+i \alpha U}=\frac{U^{\prime \prime} \phi(x)}{U-i \alpha^{-1} \lambda}
$$

which is bounded by $C /\left(\alpha^{-1} \lambda\right)$. Hence \mathcal{T} is a contraction if λ / α is large enough.
We now construct two independent solutions of the Rayleigh equation, which behaves like $e^{ \pm \alpha z}$ for large z. Let us detail the "-" case. We look for $\phi_{s,-}$ under the form

$$
\phi_{s,-}=\sum_{n \geq 0} \phi_{-}^{n}
$$

with $\phi_{-}^{0}=e^{-\alpha z}$ and $\phi_{-}^{n+1}=\mathcal{T}\left[\phi_{-}^{n}\right]$. As \mathcal{T} is contractive, the previous sum converges in $L_{\alpha+\eta}^{\infty}$. Note that in particular

$$
\phi_{\alpha,-}=e^{-\alpha z}\left(1+O\left(\alpha^{-1}\right)_{L_{\alpha+\eta}^{\infty}}\right),
$$

and similarly for its derivatives. The construction of $\phi_{\alpha,+}$ is similar.
The construction of approximate solutions of Orr Sommerfeld is similar to that of the previous section. We start with $\phi_{s,-}$ and note that

$$
\nu\left\|\Delta_{\alpha}^{2} \phi_{s,-}\right\|_{\alpha+\eta} \leq C \nu|\alpha|^{2} \lesssim \nu^{1 / 2} .
$$

We then introduce $\phi_{s,-}^{1}$, defined by

$$
\operatorname{Ray}_{\alpha}\left(\phi_{s,-}^{1}\right)=-\nu \Delta_{\alpha}^{2} \phi_{s,-},
$$

which can be bounded using the \mathcal{T} operator. To end the proof of Proposition 2.2, we iterate the construction as in the previous section.

2.2.3 Approximate slow modes for $\nu^{-1 / 4} \leq|\alpha| \ll \nu^{-1 / 2}$

We look for eigenmodes of the form

$$
\phi_{s, \pm}^{a p p}=\exp \left(\alpha \theta_{ \pm}^{a p p}\right)
$$

where $\theta_{ \pm}^{a p p}$ may be expanded in powers of α^{-1}. As in Section 2.1, we get

$$
-\nu \alpha^{4} \theta_{0}^{\prime 4}+2 \nu \alpha^{4} \theta_{0}^{\prime 2}-\nu \alpha^{4}+(\lambda+i \alpha U)\left(\alpha^{2} \theta_{0}^{\prime 2}-\alpha^{2}\right)=0,
$$

This time we choose $\theta_{0}= \pm 1$ and iterate as in Section 2.1 to prove Proposition 2.2. Note again that the leading order of $\Delta_{\alpha} \phi_{s, \pm}^{a p p}$ vanishes.

3 Approximate Green function

We now construct an approximate Green function $H^{a p p}$ using the approximate solutions $\phi_{s, \pm}^{a p p}$ and $\phi_{f, \pm}^{a p p}$. We will decompose this Green function into two components

$$
H^{a p p}=G^{a p p}+\hat{G}^{a p p}
$$

where $G^{a p p}$ does not take into account the boundary conditions and focus on the discontinuity at $y=x$, and where $\hat{G}^{a p p}$ restores the proper boundary conditions.

Hence, first forgetting the boundary condition, we look for $G^{a p p}(x, y)$ of the form

$$
\begin{align*}
& G^{a p p}(x, y)=a_{+}(x) \frac{\phi_{s,+}^{a p p}(y)}{c_{2}}+b_{+}(x) \frac{\phi_{f,+}^{a p p}(y)}{\phi_{f,+}^{a p p}(x)} \text { for } y<x, \\
& G^{a p p}(x, y)=a_{-}(x) \frac{\phi_{s,-}^{a p p}(y)}{c_{1}}+b_{-}(x) \frac{\phi_{f,-}^{a p p}(y)}{\phi_{f,-}^{a p p}(x)} \text { for } y>x, \tag{3.1}
\end{align*}
$$

where the normalization constants c_{1} and c_{2} will be fixed later. Let

$$
\begin{equation*}
v(x)=\left(-a_{-}(x), a_{+}(x),-b_{-}(x), b_{+}(x)\right) . \tag{3.2}
\end{equation*}
$$

By definition, $G^{a p p}, \partial_{y} G^{a p p}, \sqrt{\nu} \partial_{y}^{2} G^{a p p}$ are continuous at $x=y$ and $\nu \partial_{y}^{3} G^{a p p}$ has a jump at $x=y$, of magnitude 1. Let

$$
M=\left(\begin{array}{cccc}
\phi_{s,-} / c_{1} & \phi_{s,+} / c_{2} & \phi_{f,-} & \phi_{f,+} \tag{3.3}\\
\partial_{y} \phi_{s,-} / c_{1} \mu_{f} & \partial_{y} \phi_{s,+} / c_{2} \mu_{f} & \partial_{y} \phi_{f,-} / \mu_{f} & \partial_{y} \phi_{f,+} / \mu_{f} \\
\partial_{y}^{2} \phi_{s,-} / c_{1} \mu_{f}^{2} & \partial_{y}^{2} \phi_{s,+} / c_{2} \mu_{f}^{2} & \partial_{y}^{2} \phi_{f,-} / \mu_{f}^{2} & \partial_{y}^{2} \phi_{f,+} / \mu_{f}^{2} \\
\partial_{y}^{3} \phi_{s,-} / c_{1} \mu_{f}^{3} & \partial_{y}^{3} \phi_{s,+} / c_{2} \mu_{f}^{3} & \partial_{y}^{3} \phi_{f,-} / \mu_{f}^{3} & \partial_{y}^{3} \phi_{f,+} / \mu_{f}^{3}
\end{array}\right)
$$

where the functions $\phi_{s, \pm}=\phi_{s, \pm}^{a p p}$ and $\phi_{f, \pm}=\phi_{f, \pm}^{a p p}$ and their derivatives are evaluated at $y=x$. Then

$$
\begin{equation*}
M v=\left(0,0,0,1 / \nu \mu_{f}^{3}\right) \tag{3.4}
\end{equation*}
$$

In the following sections we will bound the solution v of (3.4). Let us define the four two by two matrices A, B, C and D by

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) .
$$

Note that, using (2.3),

$$
D=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)+O\left(\alpha \mu_{f}^{-1}\right)
$$

Hence the matrix D is bounded and invertible, upon recalling that $\alpha \ll \mu_{f}$ in the range of α that we consider (see (1.17)). Moreover its inverse is bounded and equals

$$
D^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)+O\left(\alpha \mu_{f}^{-1}\right)
$$

We shall consider two cases: bounded α and unbounded α.

3.1 First case: bounded α

We take $c_{1}=c_{2}=1$. Note that $A=A_{1} A_{2}$ where

$$
A_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \mu_{f}^{-1}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
\phi_{s,-} & \phi_{s,+} \\
\partial_{y} \phi_{s,-} & \partial_{y} \phi_{s,+}
\end{array}\right) .
$$

The determinant $E^{\text {app }}(\alpha, \lambda)$ of A_{2} is a perturbation of the Evans function $E(\alpha, \lambda)$ in the sense

$$
E^{a p p}(\alpha, \lambda)=E(\alpha, \lambda)+O\left(\nu^{\sigma}\right)
$$

for some positive σ. Hence if $E(\alpha, \lambda) \neq 0$, then A_{2} and A are invertible provided ν is small enough, and A_{2}^{-1} is bounded. Moreover the matrix M has an approximate inverse

$$
\widetilde{M}=\left(\begin{array}{cc}
A^{-1} & -A^{-1} B D^{-1} \\
0 & D^{-1}
\end{array}\right)
$$

in the sense that $M \widetilde{M}=I d+N$ where

$$
N=\left(\begin{array}{cc}
0 & 0 \\
C A^{-1} & -C A^{-1} B D^{-1}
\end{array}\right) .
$$

Note that C is of order $O\left(\mu_{f}^{-2}\right)$ since α is bounded, that B is bounded and that $A^{-1}=$ $A_{2}^{-1} A_{1}^{-1}$ is of order $O\left(\mu_{f}\right)$. Hence we have $N=O\left(\mu_{f}^{-1}\right)$. Therefore $(I d+N)^{-1}$ is well defined and uniformly bounded for ν small enough provided $E(\alpha, \lambda) \neq 0$. As a consequence,

$$
M^{-1}=\widetilde{M}(I d+N)^{-1}=\widetilde{M} \sum_{n} N^{n}
$$

Note that the two first lines of N^{n} vanish. Therefore

$$
(I d+N)^{-1}\left(0,0,0,1 / \nu \mu_{f}^{3}\right)=\left(0,0, O\left(1 / \nu \mu_{f}^{4}\right), 1 / \nu \mu_{f}^{3}+O\left(1 / \nu \mu_{f}^{4}\right)\right)
$$

As D^{-1} is bounded and $A^{-1} B D^{-1}$ is of order $O\left(\mu_{f}\right)$, we obtain that $a_{ \pm}$and $b_{ \pm}$are respectively of order $O\left(1 / \nu \mu_{f}^{2}\right)$ and $O\left(1 / \nu \mu_{f}^{3}\right)$. Note that α is bounded in this case, which give the desired bounds since

$$
\nu \mu_{f}^{2}=\lambda+\nu \alpha^{2}+i \alpha U
$$

hence

$$
\left|\nu \mu_{f}^{2}\right| \geq d(\alpha, \lambda)
$$

which ends this first case.

3.2 Case 2: large α

We take $c_{1}=\phi_{s,+}^{a p p}(x)$ and $c_{2}=\phi_{s,-}^{a p p}(x)$. In this case A is of the form

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-\alpha \mu_{f}^{-1} & \alpha \mu_{f}^{-1}
\end{array}\right)(1+o(1)) .
$$

Its inverse A^{-1} equals

$$
A^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -\alpha^{-1} \mu_{f} \\
1 & \alpha^{-1} \mu_{f}
\end{array}\right)(1+o(1)) .
$$

Note that D^{-1} and B are bounded and A^{-1} is order $O\left(\mu_{f} / \alpha\right)$. As C is of order $O\left(\alpha^{2} / \mu_{f}^{2}\right)$, N (defined in the previous section) is of order $O\left(\alpha / \mu_{f}\right)$. Hence, as $|\alpha| \ll \mu_{f}$ in view of (1.17), we have

$$
(I d+N)^{-1}=\sum_{n}(-1)^{n} N^{n}
$$

This leads to

$$
\begin{equation*}
(I d+N)^{-1}\left(0,0,0,1 / \nu \mu_{f}^{4}\right)=\left(0,0, O\left(\alpha / \nu \mu_{f}^{4}\right), O\left(1 / \nu \mu_{f}^{3}\right)\right) \tag{3.5}
\end{equation*}
$$

It remains to evaluate the image of this vector by \widetilde{M}. As D^{-1} is bounded, we obtain that $b_{ \pm}$are of order $O\left(1 / \nu \mu_{f}^{3}\right)=O\left(1 / \mu_{f} d(\alpha, \lambda)\right)$.

Moreover, we compute

$$
D^{-1}\left(0, O\left(1 / \nu \mu_{f}^{3}\right)\right)=\left[(-1,1)+O\left(\alpha \mu_{f}^{-1}\right)\right] O\left(1 / \nu \mu_{f}^{3}\right) .
$$

As

$$
B=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(1+O\left(\mu_{f}^{-1}\right)\right)
$$

we obtain

$$
B D^{-1}\left(0, O\left(1 / \nu \mu_{f}^{3}\right)\right)=\left[(0,1)+O\left(\alpha \mu_{f}^{-1}\right)\right] O\left(1 / \nu \mu_{f}^{3}\right)
$$

As a consequence, we obtain

$$
A^{-1} B D^{-1}\left(0, O\left(1 / \nu \mu_{f}^{3}\right)\right)=O\left(1 / \alpha \nu \mu_{f}^{2}\right) .
$$

It remains to bound the images of the $O\left(\alpha / \nu \mu_{f}^{4}\right)$ term in the equation (3.5). We have

$$
D^{-1}\left(O\left(\alpha / \nu \mu_{f}^{4}\right), 0\right)=\left[(1,1)+O\left(\alpha \mu_{f}^{-1}\right)\right] O\left(\alpha / \nu \mu_{f}^{4}\right)
$$

Hence

$$
B D^{-1}\left(O\left(\alpha / \nu \mu_{f}^{4}\right), 0\right)=\left[(1,0)+O\left(\alpha \mu_{f}^{-1}\right)\right] O\left(\alpha / \nu \mu_{f}^{4}\right)
$$

and $A^{-1} B D^{-1}\left(O\left(\alpha / \nu \mu_{f}^{4}\right), 0\right)=O\left(\alpha / \nu \mu_{f}^{4}\right)$. Using again $\alpha \ll \mu_{f}$, we obtain that $a_{ \pm}$are of order $O\left(1 / \nu \mu_{f}^{2} \alpha\right)=O(1 / \alpha d(\alpha, \lambda))$.

3.3 Boundary condition

We now add to $G^{a p p}$ another approximate Green function $\hat{G}^{a p p}$ to handle the boundary conditions. We look for $\hat{G}^{a p p}$ under the form

$$
\hat{G}^{a p p}(y)=d_{s} \frac{\phi_{s,-}(y)}{d_{1}}+d_{f} \frac{\phi_{f,-}(y)}{\phi_{f,-}(0)}
$$

where the normalization constant d_{1} will be fixed later, and look for d_{s} and d_{f} such that

$$
\begin{equation*}
G^{a p p}(x, 0)+\hat{G}^{a p p}(0)=\partial_{y} G^{a p p}(x, 0)+\partial_{y} \hat{G}^{a p p}(0)=0 . \tag{3.6}
\end{equation*}
$$

Let

$$
\hat{M}=\left(\begin{array}{cc}
\phi_{s,-} / d_{1} & \phi_{f,-} / \phi_{f,-}(0) \\
\partial_{y} \phi_{s,-} / d_{1} & \partial_{y} \phi_{f,-} / \phi_{f,-}(0)
\end{array}\right),
$$

the functions being evaluated at $y=0$. Then (3.6) can be rewritten as

$$
\hat{M} d=-\left(G^{a p p}(x, 0), \partial_{y} G^{a p p}(x, 0)\right)
$$

where $d=\left(d_{s}, d_{f}\right)$. Note that

$$
\left(G^{a p p}(x, 0), \partial_{y} G^{a p p}(x, 0)\right)=Q\left(a_{+}, b_{+}\right)
$$

where

$$
Q=\left(\begin{array}{cc}
\phi_{s,+}(0) / c_{2} & 1 \\
\partial_{y} \phi_{s,+}(0) / c_{2} & \partial_{y} \phi_{f,+}(0) / \phi_{f,+}(0)
\end{array}\right) .
$$

By construction

$$
\begin{equation*}
d=-\hat{M}^{-1} Q\left(a_{+}, b_{+}\right) . \tag{3.7}
\end{equation*}
$$

Let us first consider bounded α. We take $d_{1}=1$. This leads to

$$
\hat{M}=\left(\begin{array}{cc}
\phi_{s,-}(0) & 1 \\
\partial_{y} \phi_{s,-}(0) & -\mu_{f}+O(1)
\end{array}\right) .
$$

Note that $\hat{M}=M_{1} M_{2}$ with

$$
M_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \mu_{f}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
\phi_{s,-}(0) & 1 \\
\partial_{y} \phi_{s,-}(0) / \mu_{f} & -1+O\left(1 / \mu_{f}\right)
\end{array}\right) .
$$

The determinant of M_{2} equals to $-E(\alpha, \lambda)=-\phi_{s,-}(0)$, up to a small term of order $\mu_{f}^{-1} \sim$ $\sqrt{\nu}$, recalling that α is bounded. Hence M_{2} is invertible, and M_{2}^{-1} is bounded if $E(\alpha, \lambda) \neq 0$, provided ν is small enough. Then

$$
\hat{M}^{-1} Q=M_{2}^{-1} M_{1}^{-1} Q .
$$

Note that $\left(a_{+}, b_{+}\right)=\left(O\left(1 / \nu \mu_{f}^{2}\right), O\left(1 / \nu \mu_{f}^{3}\right)\right)$. Hence $Q\left(a_{+}, b_{+}\right)=O\left(1 / \nu \mu_{f}^{2}\right)$. Therefore $M_{1}^{-1} Q\left(a_{+}, b_{+}\right)=\left(O\left(1 / \nu \mu_{f}^{2}\right), O\left(1 / \nu \mu_{f}^{3}\right)\right)$. Hence, as the second term of the first column of M_{2} is of order $O\left(1 / \mu_{f}\right)$ we get, as desired, that

$$
\begin{equation*}
d=\left(O\left(1 / \alpha \nu \mu_{f}^{2}\right), O\left(1 / \nu \mu_{f}^{3}\right)\right), \tag{3.8}
\end{equation*}
$$

keeping in mind that α is bounded.
For large α we choose $d_{1}=\phi_{s,-}(0)$. Then

$$
Q=\left(\begin{array}{cc}
1 & 1 \\
\alpha+O(1) & \mu_{f}+O(1)
\end{array}\right)
$$

$$
\hat{M}=\left(\begin{array}{cc}
1 & 1 \\
-\alpha+O(1) & -\mu_{f}+O(1)
\end{array}\right)
$$

and

$$
\hat{M}^{-1}=\frac{1}{\mu_{f}-\alpha+O(1)}\left(\begin{array}{cc}
\mu_{f}+O(1) & 1 \\
-\alpha+O(1) & -1
\end{array}\right) .
$$

In this case $\left(a_{+}, b_{+}\right)=\left(O\left(1 / \alpha \nu \mu_{f}^{2}\right), O\left(1 / \nu \mu_{f}^{3}\right)\right)$. A direct computation of $\hat{M}^{-1} Q\left(a_{+}, b_{+}\right)$ again gives (3.8). Combining all the previous estimates ends the proof.

4 Exact Green function

Let

$$
H^{a p p}=G^{a p p}+\hat{G}^{a p p}
$$

be the complete approximate Green function. By construction, $H^{\text {app }}$ satisfies the zero boundary conditions (1.9). We now construct the exact Green function $G(x, z)$ as an infinite sum

$$
\begin{equation*}
G(x, z)=\sum_{n \geq 0} G_{n}(x, z), \tag{4.1}
\end{equation*}
$$

where $G_{0}=H^{a p p}$,

$$
G_{1}=-H^{a p p} \star\left(\mathrm{OS}_{\alpha, \lambda}\left(H^{a p p}\right)-\delta_{y=x}\right),
$$

and G_{n} is defined by iteration through

$$
G_{n+1}=-H^{a p p} \star \mathrm{OS}_{\alpha, \lambda}\left(G_{n}\right)
$$

Hence, it suffices to prove that the series (4.1) converges in a suitable function space, which follows immediately from the following lemma. The stated bounds for $G(x, z)$ in Theorem 1.1) then follow from those on $H^{a p p}(x, z)$.

Lemma 4.1. For each x, assume that

$$
\left|f^{x}(y)\right| \leq e^{-\alpha^{\prime}|x-y|}
$$

for some α^{\prime} such that $\alpha^{\prime}<|\alpha|$ and $\alpha^{\prime}<\Re \mu_{f}$. Then

$$
\left|\mathrm{OS}_{\alpha, \lambda}\left(G^{a p p} \star f^{x}\right)(y)\right| \leq C \nu^{N-2} e^{-\alpha^{\prime}|x-y|} .
$$

Proof. Note that

$$
\operatorname{OS}_{\alpha, \lambda}\left(G^{a p p} \star f^{x}\right)(y)=\int \operatorname{OS}_{\alpha, \lambda}\left(G^{a p p}\right)(z, y) f^{x}(z) d z
$$

However we recall that $\phi_{s, \pm}^{a p p}$ satisfy

$$
\begin{aligned}
& \left|\mathrm{OS}_{\alpha, \lambda}\left(\phi_{s, \pm}^{a p p}\right)\right| \leq C \nu^{N} e^{ \pm|\alpha| z}, \\
& \left|\mathrm{OS}_{\alpha, \lambda}\left(\phi_{f, \pm}^{a p p}\right)\right| \leq C \nu^{N}\left|\phi_{f, \pm}^{a p p}\right| .
\end{aligned}
$$

Using the bounds on the coefficients on $G^{a p p}(z, y)$, this leads to

$$
\left|\mathrm{OS}_{\alpha, \lambda}\left(G^{a p p}(z, y)\right)\right| \leq C \nu^{N-2} e^{-\alpha|y-z|} .
$$

The Lemma follows by convolution.

5 Construction of a pseudo inverse

We now focus on the case when λ is close to a simple eigenvalue λ_{0}.
Theorem 5.1. Let α be fixed. Let λ_{0} be a simple eigenvalue of Orr $r_{\alpha, \lambda}$ with corresponding eigenmode $\phi_{\alpha, \lambda_{0}}$. Then there exists a bounded family of linear forms l^{ν} and a family of pseudoinverse operators $\operatorname{Orr}_{\alpha, \lambda}^{-1}$ such that for any stream function ϕ,

$$
\operatorname{Orr}_{\alpha, \lambda}\left(\operatorname{Orr}_{\alpha, \lambda}^{-1}(\phi)\right)=\phi-l^{\nu}(\phi) \phi_{\alpha, \lambda_{0}}
$$

for λ near λ_{0}. Moreover, the pseudoinverse Orr $r_{\alpha, \lambda}^{-1}$ may be defined through a Green function $\widetilde{G}_{\alpha, \lambda}(x, z)$ which satisfies the same bounds in (1.19).

5.1 Principle of the construction

Let us sketch the principle of the proof on a simplified case. Let A_{0} be a $N \times N$ matrice of rank $N-1$ (which is a toy model for the Rayleigh operator when λ is a simple eigenvalue), and let $A(\varepsilon)$ be a bounded family of $N \times N$ matrices (toy model for Orr Sommerfeld equation). We want to construct an inverse for

$$
A^{\varepsilon}=A_{0}+\varepsilon A(\varepsilon) .
$$

Let us first invert A_{0}. Let v be a unit vertor, orthogonal to the image of A_{0}. Let P be the orthogonal projector on the image of A, namely

$$
P v=f-(f . v) v .
$$

Let B be a pseudo inverse of A_{0}, namely a matrix such that, on the image of $A_{0}, A_{0} B=I d$. Then $u=B P f$ solves

$$
A_{0} u=f-(f . v) v .
$$

We now fulfill a similar construction for A^{ε} for small ε. Let $u_{0}=B P f$. Then

$$
A^{\varepsilon} u_{0}=f-(f . v) v+\varepsilon A(\varepsilon) u_{0} .
$$

We know define $u_{1}=-B P A(\varepsilon) u_{0}$. Then $u_{0}+u_{1}$ solves

$$
A^{\varepsilon}\left(u_{0}+\varepsilon u_{1}\right)=f-\left(f . u_{0}\right) v+\varepsilon\left(A(\varepsilon) u_{0} \cdot v\right) v-\varepsilon^{2} A(\varepsilon) B P A(\varepsilon) u_{0}
$$

and the construction follows by iteration.

5.2 Rayleigh equation

In this section we fix α and investigate the Rayleigh operator $R a y_{\alpha, \lambda}$ when λ is near a simple eigenvalue λ_{0} of $R a y_{\alpha, \lambda}$. We will also assume that $\operatorname{Ker}\left(\operatorname{Ray} y_{\alpha, \lambda_{0}}^{2}\right)=\mathbb{C} \phi_{\alpha, \lambda_{0}, \pm}$. At $\lambda=\lambda_{0}$, $\phi_{\alpha, \lambda_{0}, \pm}$ are colinear (that is, the Jacobian of $\phi_{\alpha, \lambda_{0}, \pm}$ vanishes). Up to a renormalisation we may assume that $\phi_{\alpha, \lambda_{0},+}=\phi_{\alpha, \lambda_{0},-}$. For $\lambda \neq \lambda_{0}$ the solution of $\operatorname{Ray} y_{\alpha, \lambda}(\phi)=\psi$ is explicitely given by

$$
\begin{equation*}
\phi(z)=\phi_{\alpha, \lambda,+}(z) \int_{z}^{+\infty} \frac{\phi_{\alpha, \lambda,-}(x)}{J a c(x)} \psi(x) d x+\phi_{\alpha, \lambda,-}(z) \int_{0}^{z} \frac{\phi_{\alpha, \lambda,+}(x)}{J a c(x)} \psi(x) d x \tag{5.1}
\end{equation*}
$$

where

$$
J a c(x):=\phi_{\alpha, \lambda,-}(x) \partial_{x} \phi_{\alpha, \lambda,+}(x)-\phi_{\alpha, \lambda,+}(x) \partial_{x} \phi_{\alpha, \lambda,-}(x)
$$

is the Jacobian of $\phi_{\alpha, \lambda, \pm}$. Note that, as λ_{0} is a simple eigenvalue, $\operatorname{Jac}\left(\lambda_{0}\right)=0$ and that for λ near λ_{0},

$$
J a c(\lambda)=\left(\lambda-\lambda_{0}\right) \widetilde{J} a c(\lambda)
$$

where $\widetilde{J} a c(\lambda)$ is a smooth function with $\widetilde{J} a c\left(\lambda_{0}\right) \neq 0$ since λ_{0} is a simple eigenvalue. Let us also define

$$
\widetilde{\phi}_{\alpha, \lambda, \pm}=\frac{\phi_{\alpha, \lambda, \pm}-\phi_{\alpha, \lambda_{0}, \pm}}{\lambda-\lambda_{0}} .
$$

Then it follows from (5.1) that

$$
\phi(z)=\frac{\phi_{\alpha, \lambda_{0},+}(z)}{\lambda-\lambda_{0}} \int_{0}^{+\infty} \frac{\phi_{\alpha, \lambda_{0},+}(x)}{\widetilde{J} a c(x)} \psi(x) d x+\widetilde{\phi}(z)
$$

where

$$
\begin{equation*}
\widetilde{\phi}(z)=\int_{0}^{+\infty} \widetilde{G}(x, z) \psi(x) d x \tag{5.2}
\end{equation*}
$$

with

$$
\widetilde{G}(x, z)=\frac{\widetilde{\phi}_{\alpha, \lambda,+}(z) \phi_{\alpha, \lambda,-}(x)+\phi_{\alpha, \lambda,+}(z) \widetilde{\phi}_{\alpha, \lambda,-}(x)+\left(\lambda-\lambda_{0}\right) \widetilde{\phi}_{\alpha, \lambda,+}(z) \widetilde{\phi}_{\alpha, \lambda,-}(x)}{\widetilde{J} a c(x)}
$$

if $x>z$, and a similar expression if $x<z$. This computation may be rewritten as follows. Let l be the linear form defined by

$$
l(\psi)=\int_{0}^{+\infty} \frac{\phi_{\alpha, \lambda_{0},+}(x)}{\widetilde{J} a c(x)} \psi(x) d x .
$$

Then, for any ψ, if $l(\psi)=0$ then $\widetilde{\phi}$ solves $\operatorname{Ray}_{\alpha, \lambda}(\widetilde{\phi})=\psi$. In particular, as the image of the Rayleigh operator $\operatorname{Im}\left(\operatorname{Ray}_{\alpha, \lambda_{0}}\right)$ is of codimension 1, $\operatorname{Ker}(l)=\operatorname{Im}\left(\operatorname{Ray}_{\alpha, \lambda_{0}}\right)$. Note that, as λ_{0} is a simple eigenvalue, $\phi_{\alpha, \lambda_{0},+}$ is not in $\operatorname{Im}\left(\operatorname{Ray} y_{\alpha, \lambda_{0}}\right)$. Therefore, $l\left(\phi_{\alpha, \lambda_{0},+}\right) \neq 0$. As a consequence

$$
\tilde{\psi}=\psi-\frac{l(\psi)}{l\left(\phi_{\alpha, \lambda_{0},+}\right)} \phi_{\alpha, \lambda_{0},+} \in \operatorname{Im}\left(\operatorname{Ray}_{\alpha, \lambda}\right)
$$

since the image by l of this function vanishes. We then have

$$
\begin{equation*}
\operatorname{Ray}_{\alpha, \lambda}(\widetilde{\phi})=\psi-\frac{l(\psi)}{l\left(\phi_{\alpha, \lambda_{0},+}\right)} \phi_{\alpha, \lambda_{0},+}, \tag{5.3}
\end{equation*}
$$

where

$$
\tilde{\phi}(z)=\int_{0}^{+\infty} \tilde{G}(x, z) \tilde{\psi}(x) d x .
$$

That is, $\widetilde{\phi}$ defines the pseudoinverse $R a y_{\alpha, \lambda}^{-1}$ of $R a y_{\alpha, \lambda}$ for λ near λ_{0}. We shall now fulfill a similar analysis for the $\operatorname{Orr}_{\alpha, \lambda}$ operator.

5.3 Orr Sommerfeld equation

Let us now prove Theorem [5.1. We follow the analysis in the previous section to construct the Green function $\widetilde{G}_{\alpha, \lambda}(x, z)$ for the pseudoinverse of $\operatorname{Orr} r_{\alpha, \lambda}$. Let $\lambda_{0}^{\text {app }}$ be a simple eigenvalue of the approximate Evans function $E^{a p p}$. Ray ${ }_{\alpha, \lambda}$ operator. To simplify the notation we drop the "app" and set $\lambda_{0}=\lambda_{0}^{a p p}$. At $\lambda=\lambda_{0}$, the matrix M, defined by (3.3), is singular since its first two columns are colinear. Up to the multiplication by a constant of $\phi_{s,-}$, we may assume that $\phi_{s, \pm}$ coincide at $\lambda=\lambda_{0}$. To desingularize it we introduce

$$
\Lambda=\left(\begin{array}{cccc}
\left(\lambda-\lambda_{0}\right)^{-1} & 1 & 0 & 0 \\
-\left(\lambda-\lambda_{0}\right)^{-1} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then, recalling (3.2) and defining $\widetilde{M}=M \Lambda$, with the notation of (3.4), we have

$$
\begin{equation*}
v=\Lambda \widetilde{M}^{-1}\left(0,0,0,1 / \nu \mu_{f}^{3}\right), \tag{5.4}
\end{equation*}
$$

when $\lambda \neq \lambda_{0}$. The arguments applied to the matrix M in Section 3 may now be applied to \widetilde{M} since the corresponding matrix

$$
\widetilde{A}_{2}=A_{2} \Lambda=\left(\begin{array}{cc}
\left(\phi_{s,-}-\phi_{s,+}\right) /\left(\lambda-\lambda_{0}\right) & \phi_{s,+} \\
\left(\partial_{y} \phi_{s,-}-\partial_{y} \phi_{s,+}\right) /\left(\lambda-\lambda_{0}\right) & \partial_{y} \phi_{s,+}
\end{array}\right)
$$

is non singular near $\lambda=\lambda_{0}$, keeping in mind that λ_{0} is a simple eigenvalue.
Let $l_{4}=\left(l_{4,1}, \ldots, l_{4,4}\right)$ be the fourth line of the inverse of \widetilde{M}. It follows from (5.4) that

$$
v=\Lambda l_{4}(x) / \nu \mu_{f}^{3}
$$

The singular part v^{s} of v, namely the terms involving $\left(\lambda-\lambda_{0}\right)^{-1}$, is

$$
v^{s}=\frac{1}{\nu \mu_{f}^{3}} l_{4,1}(x)(1,-1,0,0) .
$$

Let us now compute $l_{4,1}(x)$. We have to evaluate $\Lambda^{-1} A_{2}^{-1} A_{1}^{-1} B D^{-1}(0,1)$ (see Section 3.1). But, up to higher order terms, $A_{1}^{-1} B D^{-1} \sim\left(0, \mu_{f}\right)$. Note that

$$
A_{2}^{-1}=\frac{1}{E^{\operatorname{app}}(\alpha, \lambda)}\left(\begin{array}{cc}
\partial_{y} \phi_{s,+} & -\phi_{s,+} \\
-\partial_{y} \phi_{s,-} & \phi_{s,-}
\end{array}\right) .
$$

Hence when λ is close to λ_{0},

$$
A_{2}^{-1} A_{1}^{-1} B D^{-1}(0,1) \sim \frac{\mu_{f}}{E^{a p p}(\alpha, \lambda)} \phi_{s,+}(-1,1)
$$

namely like $C\left(-\mu_{f}, \mu_{f}\right) \phi_{s,+} /\left(\lambda-\lambda_{0}\right)$. At leading order, the computation is exactly the same as in the previous section. Let

$$
L(\psi)=-\int_{0}^{+\infty} l_{4,1}(x) \psi(x) d x
$$

Then, at leading order, $L=l$. Moreover, the regular part v^{r} of $v=v^{r}+v^{s}$ is

$$
v^{r}=\frac{1}{\nu \mu_{f}^{3}}\left(l_{4,2}, l_{4,2}, l_{4,3}, l_{4,4}\right) .
$$

We now define $\widetilde{G}^{\text {app }}(x, z)$ to be the approximate Green kernel that corresponds to the regular part v^{r}, recalling the Green function construction in (3.1)-(3.2). Setting

$$
\tilde{\psi}=\psi-\frac{L(\psi)}{L\left(\phi_{\alpha, \lambda_{0},+}\right)} \phi_{\alpha, \lambda_{0},+},
$$

we have $L(\widetilde{\psi})=0$ and so

$$
\operatorname{Orr}_{\alpha, \lambda}\left(\widetilde{G}^{a p p} \star \psi\right)=\widetilde{\psi}
$$

The exact Green function $\widetilde{G}_{\alpha, \lambda}(x, z)$ then follows by iteration as in Section 4 .

References

[1] P. G. Drazin and W. H. Reid. Hydrodynamic stability. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by John Miles.
[2] W. E. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 2, 207-218.
[3] F. Gallaire and F. Rousset. Spectral stability implies nonlinear stability for incompressible boundary layers. Indiana Univ. Math. J., 57(4):1959-1975, 2008.
[4] Gérard-Varet, D. and Dormy, E.. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23 (2010), no. 2, 591-609.
[5] D. Gerard-Varet, Y. Maekawa, and N. Masmoudi. Gevrey stability of Prandtl expansions for 2d Navier-Stokes. Duke Math. J., to appear.
[6] E. Grenier. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math., 53(9):1067-1091, 2000.
[7] E. Grenier, Y. Guo, and T. T. Nguyen. Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin), 35(4):343-355, 2015.
[8] E. Grenier, Y. Guo, and T. T. Nguyen. Spectral instability of characteristic boundary layer flows. Duke Math. J., 165(16):3085-3146, 2016.
[9] E. Grenier, Y. Guo, and T. T. Nguyen. Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math., 292:52-110, 2016.
[10] E. Grenier and T. T. Nguyen. Green function for linearized Navier-Stokes around a boundary layer profile: near critical layers. arXiv:1705.05323., 2017.
[11] Y. Guo and T. Nguyen, A note on Prandtl boundary layers. Comm. Pure Appl. Math. 64 (2011), no. 10, 1416-1438.
[12] C. C. Lin. The theory of hydrodynamic stability. Corrected reprinting. Cambridge University Press, New York, 1966.
[13] Y. Maekawa. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure Appl. Math., 67(7):1045-1128, 2014.
[14] M. Sammartino and R. E. Caflisch. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm. Math. Phys., 192(2):463-491, 1998.
[15] H. Schlichting and K. Gersten. Boundary-layer theory. Springer-Verlag, Berlin, enlarged edition, 2000. With contributions by Egon Krause and Herbert Oertel, Jr., Translated from the ninth German edition by Katherine Mayes.
[16] K. Zumbrun. Multidimensional stability of planar viscous shock waves. In Advances in the theory of shock waves, volume 47 of Progr. Nonlinear Differential Equations Appl., pages 307-516. Birkhäuser Boston, Boston, MA, 2001.
[17] K. Zumbrun. Stability of large-amplitude shock waves of compressible Navier-Stokes equations. In Handbook of mathematical fluid dynamics. Vol. III, pages 311-533. NorthHolland, Amsterdam, 2004. With an appendix by Helge Kristian Jenssen and Gregory Lyng.
[18] K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47(3):741-871, 1998.

[^0]: *Equipe Projet Inria NUMED, INRIA Rhône Alpes, Unité de Mathématiques Pures et Appliquées., UMR 5669, CNRS et École Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France. Email: Emmanuel.Grenier@ens-lyon.fr
 ${ }^{\dagger}$ Department of Mathematics, Penn State University, State College, PA 16803. Email: nguyen@math.psu.edu. TN's research was supported by the NSF under grant DMS-1405728. Part of this work was completed when TN was visiting the ENS de Lyon.

