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Abstract. Tensor computations–in particular tensor contraction (TC)–are important kernels
in many scientific computing applications. Due to the fundamental similarity of TC to matrix mul-
tiplication (MM) and to the availability of optimized implementations such as the BLAS, tensor
operations have traditionally been implemented in terms of BLAS operations, incurring both a per-
formance and a storage overhead. Instead, we implement TC using the flexible BLIS framework,
which allows for transposition (reshaping) of the tensor to be fused with internal partitioning and
packing operations, requiring no explicit transposition operations or additional workspace. This im-
plementation, TBLIS, achieves performance approaching that of MM, and in some cases considerably
higher than that of traditional TC. Our implementation supports multithreading using an approach
identical to that used for MM in BLIS, with similar performance characteristics. The complexity of
managing tensor-to-matrix transformations is also handled automatically in our approach, greatly
simplifying its use in scientific applications.

Key words. Multilinear algebra, tensor contraction, high-performance computing, matrix mul-
tiplication

1. Introduction. Tensors are an integral part of many scientific disciplines [38,
28, 3, 19, 18]. At their most basic, tensors are simply a multidimensional collection of
data (or a multidimensional array, as expressed in many programming languages). In
other cases, tensors represent multidimensional transformations, extending the theory
of vectors and matrices. The logic of handling, transforming, and operating on tensors
is a common task in many scientific codes, often being reimplemented many times as
needed for different projects or even within a single project. Calculations on tensors
also often account for a significant fraction of the running time of such tensor-based
codes, and so their efficiency has a significant impact on the rate at which the resulting
scientific advances can be achieved.

In order to perform a tensor contraction, there are currently two commonly used
alternatives: (1) write explicit loops over the various tensor indices (this is the equiv-
alent of the infamous triple loop for matrix multiplication), or (2) “borrow” efficient
routines from optimized matrix libraries such as those implementing the BLAS in-
terface [20, 9, 8]. Choice (1) results in a poorly-performing implementation if done
naively due to the lack of optimizations for cache reuse, vectorization, etc. as are
well-known in matrix multiplication (although for a high-performance take on this
approach see GETT [32] as discussed in section §8), and also generally requires hard-
coding the specific contraction operation, including the number of indices on each
tensor, which indices are contracted, in which order indices are looped over, etc. This
means that code cannot be efficiently reused as there are many possible combinations
of number and configuration of tensor indices. Choice (2) may provide for higher effi-
ciency, but requires mapping of the tensor operands to matrices which involves both
movement of the tensor data in memory and often this burden falls on the user ap-
plication. Alternatively, the tensors may be sliced (i.e. low-dimensional sub-tensors
are extracted) and used in matrix multiplication, but this again has drawbacks as
discussed below.

Several libraries exist that take care of part of this issue, namely the tedium of
encoding the logic for treating tensors as matrices during contractions. For example,
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the MATLAB Tensor Toolbox [2] provides a fairly simple means for performing tensor
contractions without exposing the internal conversion to matrices. The NumPy library
[35] provides a similar mechanism in the Python language. Both libraries still rely on
the mapping of tensors to matrices and the unavoidable overhead in time and space
thus incurred. In many cases, especially in languages common in high-performance
computing such as FORTRAN and C, a pre-packaged solution is not available and
the burden of implementing tensor contraction is left to the author of the scientific
computing application, although several libraries for tensor contraction in C++ have
recently been developed [10, 30, 5, 6].

A natural solution to this problem is to create a dedicated tensor library im-
plementing a high-performance, “native” tensor contraction implementation (without
the use of the BLAS), but with similar optimizations for cache reuse, vectorization,
etc. as those used for matrix multiplication. For a particular instance of a tensor
contraction this is a feasible if not tedious task, using existing techniques from dense
linear algebra. However, making a general run-time tensor library is another propo-
sition altogether, as it is highly desirable for such a library to handle any number of
tensor indices, as well as number, order, and position of contracted indices. Static
code transformation/generation techniques such as in Built-to-Order BLAS [4], DxTer
[24], and GETT [32] can produce highly efficient code but are much less flexible since
they require tensor dimensionality and ordering (and in many cases, sizes) to be fixed
at compile time. Since the number of possible contraction types grows exponentially
with the number of indices, explicitly treating each instance of tensor contraction
is an uphill endeavor in large applications with many tensor contraction instances.
Not requiring a code-generation stage is also highly beneficial to rapid prototyping of
new algorithms that use tensor contraction, while having a high-performance general
tensor contraction library can often turn prototypes into useful production code.

The newly-developed BLIS framework [37, 29, 36] implements matrix operations
with a very high degree of efficiency, including a legacy BLAS interface. However,
unlike common BLAS libraries, especially commercial libraries such as Intel’s Math
Kernel Library, BLIS exposes the entire internal structure of algorithms such as matrix
multiplication, down to the level of the micro-kernel, which is the only part that must
be implemented in highly-optimized assembly language. In addition to greatly reduc-
ing the effort required to build a BLAS-like library, the structure of BLIS allows one to
view a matrix operation as a collection of independent pieces. Matrix multiplication
(and other level 3 BLAS operations) are the default algorithms provided by BLIS, but
one may also use the available pieces to build a custom framework for purposes beyond
traditional dense linear algebra, examples of which are given in [41] and [17]. We will
illustrate exactly how the flexibility of this approach may be used to implement high-
performance tensor contraction by breaking through the traditionally opaque matrix
multiplication interface. The benefits of this approach are detailed in section §9, where
our new algorithm, Block-Scatter-Matrix Tensor Contraction (BSMTC), is compared
to a traditional tensor contraction approach, Transpose-Transpose-GEMM-Transpose
(TTGT) as implemented by the Tensor Toolbox.

The specific contributions of this paper are:
• A novel logical mapping from general tensor layouts to a non-standard (nei-

ther row-major nor column-major) matrix layout.
• Implementations of key BLIS kernels using this novel matrix layout, elimi-

nating the need for explicit transposition of tensors while retaining a matrix-
oriented algorithm.

• A new BLIS-like framework incorporating these kernels that achieves high
2



performance for tensor contraction and does not require external workspace.
• Efficient multithreading of tensor contraction within the aforementioned frame-

work.

2. The Big Idea: Tensors As Matrices. Before developing the theory of ma-
trix multiplication and tensor contraction in detail, let us first examine the high-level
concepts which guide our implementation of tensor contraction. First, we may intro-
duce tensors quite simply as the multi-dimensional extension of scalars (0-dimensional
tensors), vectors (1-dimensional tensors), and matrices (2-dimensional tensors), or
similarly as multi-dimensional arrays. Tensor contraction is the also natural exten-
sion of matrix multiplication to tensors, where for each index (dimension) in the two
input and the single output matrix we substitute one or more tensor dimensions.
Thus, a contraction of a 7-dimensional tensor A by a 5-dimensional tensor B into a
6-dimensional tensor C is in fact mathematically a matrix multiplication in disguise if
we say that for example, A is in fact 4-dimensional by 3-dimensional (for some parti-
tion of the 7 dimensions into groups of 4 and 3), B is 3-dimensional by 2-dimensional,
and C is merely 4-dimensional by 2-dimensional. The problem with mapping tensor
contraction to matrix multiplication in practice is that the data layout of tensors in
memory is much more flexible and varied than for matrices, and a direct mapping is
generally not possible.

Since matrix multiplication and tensor contraction are really the same thing, then,
the obvious question is, “how can existing high-performance matrix multiplication
algorithms be used for tensor contraction?” The trick is to relate the single matrix
dimensions, which are usually described by a length (number of elements), and a
stride (distance between elements), to a whole group of tensor dimensions (especially
when the number of tensor dimensions is not known beforehand). As we will show
in the following sections, this relationship between matrices and tensors is cleanly
and efficiently accomplished by creating a specialized matrix layout instead of simple
scalar strides, which by design describes the physical data layout of a specified tensor.
An existing matrix multiplication algorithm can then use this layout to access matrix
elements without knowing anything about tensors or tensor contraction. We will
demonstrate that this approach yields a relatively simple and highly efficient tensor
contraction algorithm.

3. Matrix Multiplication. Let us first review the basic techniques used in
high-performance matrix multiplication, expressed generally as C := αAB+βC. The
matrices A, B, and C are m×k, k×n, and m×n respectively. We refer to the length
and width of each matrix as its shape, and refer to individual elements of each matrix as
Aip, Cij , etc. where 0 ≤ i < m, 0 ≤ j < n, and 0 ≤ p < k. Written element-wise, the
basic matrix multiplication operation is then Cij := α

∑k−1
p=0 Aip ·Bpj + βCij ∀ (i, j) ∈

m× n. In this context, m× n is a shorthand for the Cartesian product of the ranges
[0,m) and [0, n), i.e. m× n = {(i, j) | 0 ≤ i < m ∨ 0 ≤ j < n}. The use of Cartesian
products over integers to denote such sets will be used extensively. This element-
wise definition of matrix multiplication is critical to relating it to tensor contraction,
although for brevity we will assume α = 1 and β = 0 henceforth.

Most current high-performance implementations follow the approach pioneered
by Goto [11, 12], in which the matrices are successively partitioned (sub-divided)
into panels (sub-matrices), labeled for example Ai, Bp, and Cj in Figure 1, which
are designed to fit into the various levels of the cache hierarchy. The panels of A
and B are packed (copied) into temporary buffers Ãi and B̃p in a special storage
format to facilitate vectorization and memory locality. The size of these panels are
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Figure 1: The structure of a matrix multiplication operation using the BLIS ap-
proach. Figure from https://github.com/flame/blis/wiki/Multithreading, used with
permission.

determined by cache blocking parameters mC , nC , and kC , such that Ãi (which stores
an mC × kC panel of A) is retained in the L2 cache while B̃p (which stores a kC ×nC
panel of B) is retained in the L3 cache (if present). In the original Goto approach,
these “pack buffers” are then fed into an inner kernel which performs the actual
matrix multiplication sub-problem, and which is typically written in hand-optimized
assembly code.

The BLIS approach [37] implements the inner kernel instead in terms of a much
smaller and easier to write micro-kernel. In this approach, the panels of A and B
as stored in Ãi and B̃p are further partitioned according to register block sizes mR

and nR such that a pair of mR × kC and kC × nR slivers of Ãi and B̃p, respectively,
fit into the L1 cache. The micro-kernel then uses these slivers to update a small
mR × nR micro-tile of C, which is maintained in machine registers. These five cache
and register block sizes give rise to five loops (written in C or another relatively
high-level language) around the micro-kernel, as illustrated in Figure 1.

The major logical and computational operations involved in the BLIS approach
are then: (1) partitioning of matrix operands, (2) packing of matrix panels (as a set
much smaller matrix slivers) into specially-formatted buffers, and (3) invocation of
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the micro-kernel. We will see these operations can be implemented in the context
of general tensors instead of matrices in later sections, in order to make use of the
highly-tuned BLIS framework for tensor contraction.

4. Tensor Contraction. A general d-dimensional tensor A ∈ Rnu0×...×nud−1 is
defined as the set of scalar elements indexed by the set of indices u0 . . . ud−1,

(1) A ≡ {Au0...ud−1
∈ R | (u0, . . . , ud−1) ∈ nu0

× . . .× nud−1
}

Often, the indices of a tensor (u0, . . . , ud−1) will be given more convenient labels,
such as in Aabc..., while the length of the corresponding tensor dimensions will be
denoted na, nb, etc. Indices which have the same label in more than one tensor in any
tensor expression must share the same value, and the lengths of the corresponding
dimensions in each tensor must be identical. For example, in an expression such as
Acfbd ·Bfea, the length of the index f , nf , must be the same in A and B, and only
pairs of elements with the same value of f in A and B enter the expression.

Tensor contraction generalizes the concept of matrix multiplication to higher di-
mensions (numbers of indices), just as tensors generalize the notion of matrices. Given
two input tensors A and B of dimension d(A ) and d(B), respectively, and an out-
put tensor C of dimension d(C ), a tensor contraction is specified by first selecting
ordered sets of dP = (d(A ) + d(B) − d(C ))/2 dimensions each from A and from
B and labeling the indices of the dimensions in both sets as p0 . . . pdP−1. Since the
indices are labeled the same in both tensors, their values must be the same (i.e. the
indices are bound). Similarly, the remaining dimensions of A and an ordered set of
dI = (d(A ) + d(C )− d(B))/2 dimensions in C have their indices labeled i0 . . . idI−1.
Finally, the remaining dJ = (d(B) + d(C ) − d(A ))/2 dimensions in B and C are
arranged in a selected relative order and their indices labeled j0 . . . jdJ−1. The tensor
contraction operation is then given element-wise by,

CπC(i0...idI−1j0...jdJ−1) :=

np0−1,...,npdP −1−1∑
p0,...,pdP −1=0

AπA(i0...idI−1p0...pdP −1) ·BπB(p0...pdP −1j0...jdJ−1)

∀(i0, . . . , idI−1, j0, . . . , jdJ−1) ∈ ni0 × . . .× nidI−1
× nj0 × . . .× njdJ−1

(2)

where · is scalar multiplication and πA, πB , and πC are permutations (reorderings)
of their respective indices. These permutations are necessary to write the general
definition because dimensions may have been chosen in any position and in any relative
order when determining the labeling of indices. To simplify the notation, the sets of
index labels i0 . . . idI−1, j0 . . . jdJ−1, and p0 . . . pdP−1 are denoted as index bundles I,
J , and P , respectively. The I and J bundles contain the uncontracted (free) indices,
while the P bundle contains the contracted (bound) indices. Additionally, we will
make use of Einstein notation, such that the indices in the P bundle, since they
appear twice on the right-hand side, are implicitly summed over, and the remaining
indices are implicitly iterated over. Using these simplifications, the general tensor
contraction becomes,

(3) CπC(IJ) := AπA(IP ) ·BπB(PJ)

Now the connection to matrix multiplication is readily apparent. Simplifying the
element-wise definition of matrix multiplication in the same way gives,

(4) Cij = Aip ·Bpj
5



This is identical to tensor contraction except that, (1) the index bundles I, J , and P
may contain more than one index, while i, j, and p are single indices, and (2), the
indices in the tensor contraction case may be arbitrarily ordered by the permutation
operators. In the matrix case, permutation of the indices in A, B, or C amounts
to simple matrix transposition, but in the tensor case indices from different bundles
may be interspersed as well as transposed overall. If each of the tensor dimensions is
O(N), then the tensor contraction operation requires O(NdI+dJ+dP ) FLOPs (floating
point operations), which is the same number of operations as a matrix multiplication
with m = NdI , n = NdJ , and k = NdP .

5. The Traditional Approach. In order to introduce both existing and our
novel approaches to tensor contraction, let us consider a concrete, if simple, example.
Say that we have tensors A ∈ R2×4×3×3, B ∈ R4×4×6, and C ∈ R6×3×2×3×4, and we
wish to compute the tensor contraction,

(5) Cabcde := Acfbd ·Bfea

The tensor contraction may also be written in the form of (3) as,

(6) CπC(cdbae) := AπA(cdbf) ·BπB(fae)

where it is clear that in this case the index bundles as defined in the previous section
are I = cdb, J = ae, and P = f , and the action of the permutation operators is to
reorder the indices to the order of (5).

The most common traditional approach to tensor contraction is to use the similar-
ities noted above between tensor contraction and matrix multiplication to implement
the former in terms of the latter, making use of highly-tuned matrix multiplication
routines such as through the BLAS interface. To see how this is possible, assume for
a moment that we had picked a slightly different tensor contraction such that πA, πB ,
and πC were the identity permutations,

(7) C̃cdbae := Ãcdbf · B̃fae

with the same dimension length for each index such that C̃ ∈ R2×3×3×6×4 etc.
Let us assume also that the tensors are laid out in general column-major order,

which is similar to the well-known column-major order for matrices. In this format,
the entries of each tensor are arranged in memory contiguously and with increasing
colexicographic order of the indices.1 For example, the locations of elements of C̃
relative to the base address are given by,

loc(C̃cdbae) = c+ d · nc + b · ncnd + a · ncndnb + e · ncndnbna
= c+ d · nc + b · ncnd + (a+ e · na) · ncndnb(8)

where scalar multiplication of lengths is assumed. It is assumed that the values of the
indices run over their entire range in this and similar expressions (i.e. (a, b, c, d, e) ∈
na × nb × nc × nd × ne for (8)). Similarly, the locations of the indices in Ã and B̃
are given by,

loc(Ãcdbf ) = c+ d · nc + b · ncnd + f · ncndnb(9)

loc(B̃fae) = f + a · nf + e · nfna
= f + (a+ e · na) · nf(10)

1An example of colexicographic order for three indices is 000, 100, 200, . . ., 010, 110, 210, . . .,
020, . . . . . ., 001, etc.
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The range of values c + d · nc + b · ncnd for (c, d, b) ∈ nc × nd × nb = 2 × 3 × 3 is
simply the ordered range of values 0 ≤ Ī < nĪ for nĪ = ncndnb = 18, thanks to
column-major ordering. When multiple indices may be collapsed into the range of
a single contiguous index, they are said to be sequentially contiguous. Similarly the
range a+e ·na for (a, e) ∈ na×ne = 6×4 is identical to 0 ≤ J̄ < nJ̄ = nane = 24, and
the possible values of f are trivially the range 0 ≤ P̄ < nP̄ = nf = 4. Furthermore,
since the value of the combined index Ī is the same for identical values of c, d, and
b in both the A and B tensors, they may both be addressed by the same linearized
index Ī, and the same is true of J̄ and (trivially) P̄ as well. Thus, the tensors Ã , B̃,
and C̃ are structurally equivalent to matrices Ã, B̃, and C̃ that are nĪ ×nP̄ , nP̄ ×nJ̄ ,
and nĪ × nJ̄ , respectively. The tilde denotes that the tensor is compatible with a
matrix layout and vice versa. The tensor contraction is also functionally equivalent
(i.e. it results in the same values in the same locations in memory) to the matrix
multiplication,

(11) C̃ĪJ̄ := ÃĪP̄ · B̃P̄ J̄

Thus, the tensor contraction may be accomplished by simply performing a matrix mul-
tiplication with the proper parameters. This is possible whenever the indices in each of
the bundles I, J , and P in the general tensor contraction definition are sequentially
contiguous and identically ordered in each tensor (assuming general column-major
storage; the value of the linearized index must simply be the same for identical values
of the tensor indices in both tensors in the general case)–both conditions together
forming the condition of linearizability–so that they may be replaced by linearized in-
dices Ī, J̄ , and P̄ in a matrix multiplication, where the over-bar denotes linearization.

But what about our original tensor contraction? In that case, it is easy to see
that the indices are not sequentially contiguous (for example b does not follow d in
C ), nor are they identically ordered in all cases (for example, b is ordered before c in
C , but c is before b in A ). In this case, the tensors may be transposed (reordered) in
memory such that the indices become sequentially contiguous and may be linearized.
Using our example, we may copy the elements in A to their corresponding locations
in Ã , and the elements in B to B̃, perform the matrix multiplication, then copy
the resulting elements of C̃ to their final locations in C . This approach is commonly
termed the TTGT (transpose-transpose-GEMM-transpose) approach, after the GEMM
matrix multiplication function in BLAS. In general, if we define the tensor contraction
operation as in (3) then we may implement TTGT using the algorithm in Figure 2,
assuming that the temporary tensors Ã , B̃, and C̃ are stored in general column-major
order.

This method has been used to implement tensor contraction in a vast number of
scientific applications over the past few decades, and is the implementation used by
popular tensor packages such as NumPy [35] and the MATLAB Tensor Toolbox [2].
However, there are some drawbacks to this approach:

• The storage space required is increased by a factor of two, since full copies
of A , B, and C are required. This storage space may either be allocated
inside the tensor contraction routine or supplied as workspace by the user,
complicating user interfaces. This deficiency is similar to that encountered in
traditional implementations of Strassen’s algorithm for matrix multiplication
[17].
• The tensor transpositions require a (sometimes quite significant) amount of

time relative to the matrix multiplication step even after optimization of the
7



1: procedure TTGT(α,AπA(IP ),BπB(PJ), β,CπC(IJ))
2: Transpose ÃIP := AπA(IP )

3: Transpose B̃PJ := BπB(PJ)

4: C̃ĪJ̄ := α
∑nP̄

P̄=0
ÃĪP̄ · B̃P̄ J̄

5: Transpose and sum CπC(IJ) := C̃IJ + βCπC(IJ)

6: end procedure

Figure 2: Schematic implementation of the TTGT approach for tensor contraction.
Notational details explained in text.

transposition step, as evidenced by the results of the present work and else-
where in the literature [15, 14, 32]. As an applied example, after aggressively
reordering operations to reduce the number of transpositions needed in the
NCC quantum chemistry program [25] (transpositions can be elided if the or-
dering required for one operation matches that required for the next), we still
measure 15-50% of the total program time spent in tensor transposition. This
overhead is especially onerous in methods such as CCSD(T) [27, 1], where
storage size (and hence transposition cost) scales as O(N6) but computation
scales only as O(N7).

• If a comprehensive tensor contraction interface is not available (e.g. in FOR-
TRAN or C), or if tensor transposition must be otherwise handled by the
calling application to ensure efficiency, significant algorithmic and code com-
plexity is required which increases programmer burden and the incidence of
errors, while obscuring the scientific algorithms in the application. Although
it is hard to measure this deficiency of the TTGT approach quantitatively, the
long history in the literature dealing with optimization and implementation
of TTGT indicates the level of effort implied by this approach.

These deficiencies motivate our implementation of a “native” (i.e. acting directly on
general tensors) high-performance tensor contraction algorithm.

6. New Matrix Representations of Tensors.

6.1. The Scatter-Matrix Layout. In order to eliminate the need for costly
tensor transpositions, it is necessary to eschew the standard BLAS interface for ma-
trix multiplication. However, we also wish to make use of highly-tuned algorithms for
matrix multiplication that, by the mathematical equivalence between matrix multipli-
cation and tensor contraction, should be applicable. The BLIS framework gives us an
opportunity to do just this. In section §3, we noted that the only operations required
in the BLIS framework are (1) matrix partitioning, (2) packing of matrix panels as
slivers, and (3) invoking the micro-kernel. The fundamental question is then, “how
can we perform these operations without changing the data layout (transposing) the
tensors?”

Going back to our example contraction, let us look at how the tensors are laid
out in the non-sequentially contiguous case and relate that to a matrix representation.
Focusing on the C tensor, the indices are grouped into bundles as I = cdb and J = ae,
while the tensor elements are laid out in general column-major order according to the
ordering Cabcde. As for C̃ , we can easily compute the locations of tensor elements in

8



C ,

loc(Cabcde) = a+ b · na + c · nanb + d · nanbnc + e · nanbncnd
= (c · nanb + d · nanbnc + b · na) + (a+ e · nanbncnd)(12)

where in the second equality the terms have been grouped by index bundle. The
values for either subexpression do not form a simple, contiguous range that can be
represented by a single linearized index. However, we can compare this expression to
the locations for the transposed tensor C̃ ,

loc(C̃cdbae) = (c+ d · nc + b · ncnd) + (a+ e · na) · ncndnb(13)

and also to the locations of the matricized form C̃, which we know has the same
element locations as C̃ ,

loc(C̃ĪJ̄) = Ī + J̄ · nĪ(14)

Since nĪ = ncndnb, we have Ī = c+d ·nc+b ·ncnd and J̄ = a+e ·na. Thus, given
some values of Ī and J̄ , we can compute the values of c, d, b, a, and e, and from those
we can finally compute the element location in the unmodified C tensor. Performing
this computation for each individual element is likely not efficient, so the relationship
between the tensor and matrix layout may be saved in a row scatter vector rscat(C ),
which gives the sum c · nanb + d · nanbnc + b · na for each value of Ī, and a column
scatter vector cscat(C ), which gives the sum a+ e ·nanbncnd for each value of J̄ . For
our example, we can compute these scatter vectors as,

rscatĪ(C ) = c · nanb + d · nanbnc + b · na

=
(
Ī mod nc

)
· nanb +

(
Ī

nc
mod nd

)
· nanbnc

+

(
Ī

ncnd
mod nb

)
· na(15)

cscatJ̄(C ) = a+ e · nanbncnd

=
(
J̄ mod na

)
+

(
J̄

na
mod ne

)
· nanbncnd(16)

The general location of elements in an nĪ × nJ̄ matrix C may then be given in the
tensor layout of C as,

(17) loc(CĪJ̄) = rscatĪ(C ) + cscatJ̄(C )

We call this additive formula for the locations of tensor elements mapped to matrix
elements and the associated scatter vectors the scatter-matrix layout, in which the
elements of a tensor stored in its natural physical layout may be addressed as if they
were a matrix. For our example C , the values of the scatter vectors are illustrated
in Figure 3. For tensor contraction, the scatter vectors rscat(A ) and rscat(C ) are
defined for each value of Ī, while the scatter vectors cscat(B) and cscat(C ) are defined
for each value of J̄ , and cscat(A ) and rscat(B) for each value of P̄ .

In general, a tensor may be stored in general column-major order, but also in the
similar general row-major order or in any other layout that preserves the uniqueness
of elements. The location of elements in a generic layout for C may be described by
a set of index strides, s(C ). The location of elements in C is then,

(18) loc(CIJ) = i0 ·si0(C )+ . . .+idI−1 ·sidI−1
(C )+j0 ·sj0(C )+ . . .+jdJ−1 ·sjdJ−1

(C )

9
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Figure 3: Example of a block-scatter-matrix layout (see section 6.2) for the tensor
Cabcde ∈ R6×3×2×3×4 with a general column-major data layout (giving strides of 1, 6,
18, 36, and 108). The matrix representation is CĪJ̄ for the bundles I = cdb and J = ae.
The blocking parameters are mR = nR = 4. Note that in this case the dimensions c
and d are sequentially contiguous and so a regular stride can be maintained for larger
blocks.

Unlike the dimension lengths, the strides must always be denoted in reference to
a particular tensor because their value for indices which are labeled the same in
multiple tensors does not need to agree for each tensor. For our example C we
have (sa(C ), sb(C ), sc(C ), sd(C ), se(C )) = (1, 6, 18, 36, 108). The scatter vectors for
a generic layout may also be simply computed,

(19) rscatĪ(A ) = i0 · si0(C ) + . . .+ idI−1 · sidI−1
(C)

and similarly for the other scatter vectors.
Turning to the operations necessary to implement the BLIS framework, we can see

that the first, matrix partitioning, is trivially implemented by partitioning of the row
and/or scatter vectors. For example, the top-right quadrant of a matrix in the scatter-
matrix layout may be represented by a sub-matrix with the first half of the full row
scatter vector and the second half of the full column scatter vector. The A, B, and C
matrices (matrix representations of A , B, and C in the scatter-matrix layout) may
then be partitioned as much as is necessary while maintaining their scatter-matrix
layouts, with essentially no overhead.

For the packing operations, the usual kernels as implemented in BLIS cannot be
used, because they assume a general matrix layout, with a constant row and column
stride (as in the general tensor layout described above). The scatter-matrix layout,
though, does not have a constant stride as can be seen in Figure 3. A new pack-
ing kernel is required that takes row and column scatter vectors and loads elements
accordingly. We have implemented such a packing kernel for general scatter-matrix
layouts. This packing kernel is not as efficient as the “normal” matrix packing kernel
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because the scatter-matrix layout inhibits vectorized loads of elements and requires a
higher memory bandwidth due to the need to read the scatter vector entries.

Finally, when invoking the micro-kernel, the scatter-matrix layout cannot be used
directly. Because the micro-kernel is hand-written in assembly code, and assumes
constant row and column strides for C, the micro-kernel must be invoked to write
to a small temporary buffer (of size mR × nR), and then the values from this buffer
written out to memory according the the scatter-matrix layout of C. This is again a
source of inefficiency as the micro-kernel is normally tuned to write out the elements
of C using vector writes. The micro-kernel does not need to be modified for scatter-
matrix layouts of A and B because the packing operations write the values in the
buffers Ãi and B̃p in a fixed layout independent of the input layout.

The implementation of tensor contraction using the BLIS framework augmented
by scatter-matrix layouts for A, B, and C with concordant packing kernels and micro-
kernel adjustments is termed the Scatter-Matrix Tensor Contraction (SMTC) algo-
rithm. The next section extends the scatter-matrix layout and SMTC to avoid most of
the inefficiency incurred by the use of scatter vectors in the packing and micro-kernel
operations.

6.2. The Block-Scatter-Matrix Layout. Since the micro-kernel is the basic
unit of work in BLIS, the size of a micro-kernel update defines a natural blocking of the
matrix dimensionsm and n. These block sizes are denotedmR and nR and are usually
4, 6, or 8 for double-precision real numbers. So, while the values of the scatter vectors
rscat(C ) and cscat(C ), are in general not “well-behaved” (monotonically increasing,
regularly spaced, etc.) over their entire range which would allow a regular scalar stride
to be used instead, they may often be well-behaved for short stretches.

For example, cscat(C ) for our sample tensor contraction as calculated from (16)
begins with the sequence 0, 1, . . . , na − 1 = 5, then jumps up to nanbncnd = 108,
continues 108, 109, . . . 108+na−1=113, jumps again and so on. So, for small stretches
that don’t cross one of the large jumps, CĪJ̄ behaves very much like a row-major matrix
with a unit “stride” for J̄ . Similarly, for small stretches of Ī, rscat(C ) also behaves
as if it were a constant stride of nanb = 18.

Thus, when CĪJ̄ is partitioned into mR × nR micro-tiles, it is quite possible that
the ranges of Ī and J̄ for many of these micro-tiles may fall entirely into one of these
constant stride regions. In fact, the fraction of micro-tiles that do so is 53% for our
example, and generally a much higher fraction for real problems with larger tensor
dimensions. When a micro-tile of CĪJ̄ has constant strides then it may be fed directly
into the micro-kernel without writing to a temporary buffer first. To make use of
this optimization, a value is stored for each mR-length block of rscat(C ) and each
nR-length block of cscat(C ) which is either the stride for this block, when it falls
in a region of constant stride, or the value 0 to denote that no such stride exists.
These values are stored in row and column block-scatter vectors rbs(C ) and cbs(C ),
as illustrated in Figure 3.

For a general row or column scatter vector scat(T ) of length l, we may use
a blocking parameter b to create a block-scatter vector bs(T ) of length

⌈
l
b

⌉
. The

ith entry of the block-scatter vector bsi(T ) is equal to some positive integer s if
scatj(T ) − scatj−1(T ) = s for all i · b < j < min(l, (i + 1) · b) and equal to 0
otherwise.

The row scatter vector rscat(A ) and the column scatter vector cscat(B) may
be blocked into block-scatter vectors by mR and nR, respectively, but the scatter
vectors for the P bundle (cscat(A ) and rscat(B)) do not have any natural blocking
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smaller than kC in the BLIS approach. Since kC is usually quite large (e.g. 256
on the Intel Haswell architecture for double precision), it is unlikely that generating
block-scatter vectors with this block size will yield any benefit. Instead, we introduce
an additional blocking parameter kP that is small (on the order of mR and nR) with
which to generate block-scatter vectors cbs(A ) and rbs(B). To make use of this
block-scatter vector, the packing operation on a mR × kC sliver of A or a kC × nR
sliver of B is broken down into a sequence of mR × kP or kP × nR micro-tile packing
operations, which take advantage of constant strides from the block-scatter vectors
whenever possible.

The implementation of tensor contraction using the BLIS framework augmented
by block-scatter-matrix layouts for A, B, and C with concordant packing kernels
and micro-kernel adjustments is termed the Block-Scatter-Matrix Tensor Contraction
(BSMTC) algorithm. While we have implemented both SMTC and BSMTC, the clear
advantages of BSMTC over SMTC leads us to report performance results only for the
former.

6.3. Using the (Block-)Scatter-Matrix Layout. The scatter-matrix and
block-scatter-matrix layouts require storage of the scatter and block scatter vectors
for each of the index bundles. We wish to avoid allocating these vectors at the start
of the tensor contraction algorithm for several reasons,

• This requires at least one general memory allocation (malloc) per call which
may involve virtual memory operations (e.g. mmap).

• This requires unbounded (i.e. scaling with input tensor size) additional stor-
age (O(nĪ + nJ̄ + nP̄ ), although the total amount is still much less than the
O(nĪnJ̄ + nĪnP̄ + nP̄nJ̄) required in TTGT).

• This complicates the interface because users may want to supply external
workspace or precomputed scatter vectors, etc.

Instead, we delay the transition to a scatter- or block-scatter-matrix layout until the
input and output matrices have been partitioned into panels of fixed (bounded) size.
For the tensors A and B this occurs when panels Ãi and B̃p are packed into contiguous
storage (see Figure 1), and for C this occurs just before entry into the inner kernel
(the last two loops around the BLIS micro-kernel). At this stage, the maximum size
of the scatter vectors is known, and they can be allocated from persistent storage in
the same manner as the pack buffers Ãi and B̃p. In our implementation, the size of
the memory allocations for the pack buffers is increased slightly to accommodate the
scatter vectors for A and B, and a separate buffer is only required for the scatter
vectors of C .

We then have four layout types which are encountered during the contraction
algorithm: general tensor layout, scatter-matrix layout, block-scatter-matrix layout,
and packed matrix layout (for Ãi and B̃p). The way these layout types are handled
in the key operations in the BLIS approach are summarized in Figure 4, along with a
comparison to a normal matrix layout (which is handled essentially the same as the
packed matrix layout).

7. Implementation Details.

7.1. Framework Implementation. The SMTC and BSMTC algorithms we
have implemented use a BLIS-like framework and the actual BLIS micro-kernels.
The reasons we did not pursue using the BLIS framework directly are subtle. On
one hand, the BLIS framework does offer substantial flexibility in defining custom
operations such as packing kernels, but not quite the level of flexibility we require
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Layout
Type

When Partitioning When Packing After each
Micro-kernel
Invocation

(Packed)
Matrix

Keep track of u and v

implicitly by adjusting
base pointer.

Reference elements
using base pointer
and matrix row and

column strides.

Update to Muv done
in micro-kernel.

Scatter-
Matrix

Keep track of offset in
rscat(T ) and cscat(T )

vectors (no change to
base pointer).

Reference elements
using base pointer
and rscat(T ),

cscat(T ).

Accumulate from
micro-kernel into
buffer, then scatter

into TĪJ̄ .
Block-
Scatter-
Matrix

Keep track of offset in
{r, c}scat(T ) and
{r, c}bs(T ) vectors. If
rbs(T ) and/or cbs(T )

are constant stride for the
current block, adjust base

pointer.

Pack as regular
matrix if rbs(T ) and

cbs(T ) for the
current block are

valid, as a
scatter-matrix
otherwise.

Use micro-kernel
update if rbs(T ) and

cbs(T ) are valid.
Treat as

scatter-matrix
otherwise.

Tensor Keep track of the current
values of Ū and V̄ and
compute {uk}

dU−1
k=0 etc.

when necessary.

n/a n/a

Figure 4: Handling of tensor layout types in important BLIS kernels. Each layout is
assumed to refer to a tensor TπT (UV ) (one of A , B, or C ) for some index bundles U
and V and its matrix representation TŪV̄ , while matrix layouts refer to a general ma-
trix Muv. Note that packing of block-scatter-matrix layouts may also take advantage
of cases where only one of rbs(T ) and cbs(T ) indicates a constant stride.

especially with regards to the loops inside the macro-kernel and at the level of the
micro-kernel. On the other hand, we also wished to explore alternative techniques for
implementing the BLIS approach. One significant difference of our implementation
to BLIS is that where BLIS uses a recursive data structure to specify the necessary
partitioning and packing operations at runtime (the control tree), we use a C++11
variadic template structure which enables the compiler to automatically select the
appropriate partitioning and packing operations based on the type of the tensor or
matrix object passed to each step.

For example, all operands begin as Tensor<T> objects which are straight-forward
C++ objects representing general tensors, but are then wrapped in TensorMatrix<T>
objects that divide the indices into bundles and keep track of partitioning of the
matrix representation of the tensor. These objects are eventually “matrified” into
BlockScatterMatrix<T> objects by generating scatter and block scatter vectors for
the current matrix partition. Finally, AĪP̄ and BP̄ J̄ are packed into regular Matrix<T>
objects using the block-scatter matrix layout. Overloaded packing and micro-kernel
wrapper functions handle each of these types as appropriate. Our implementation
does use the various assembly micro-kernels and blocking parameters from BLIS,
though, and in testing we have found no measurable difference in performance of
matrix multiplication. The C++ template specification for the BSMTC driver is

13



// TensorMatrix <T> A, B, C;

GEMM <PartitionN <NC >,
PartitionK <KC>,
MatrifyAndPackB <KP,NR >,
PartitionM <MC>,
MatrifyAndPackA <MR,KP >,
MatrifyC <MR,NR >,
PartitionN <NR>,
PartitionM <MR>,
MicroKernel <MR,NR >

>::run <T> gemm;

// comm is the thread communicator
// (threading details not shown)
gemm(comm , alpha , A, B, beta , C);

Figure 5: Variadic template implementation of BSMTC. The steps specified
in the GEMM<...> template can be directly compared to those in Figure 1
with the addition of tensor “matrification” (conversion from TensorMatrix<T> to
BlockScatterMatrix<T>).

given in Figure 5.
In this template implementation, the data type (float, double, etc.) is a template

parameter, but the number of dimensions in each tensor is not. We have found requir-
ing this parameter to be a compile-time constant to be overly restrictive in practice.
However, because the dimensionality is not known a priori (or bounded), the interface
layer must perform some small memory allocations to manipulate arrays of dimension
lengths, strides, labels, etc. Most malloc implementations contain optimizations for
very small allocations however (for example, Apple’s OS X has a per-thread pool for
blocks of up to 992 bytes), and indeed we do not measure a significant overhead in our
implementation due to these allocations. Additionally, dimension labels (represented
by a string type) almost always fall in the range of the small string optimization
(SSO) which eliminates some allocations. If handling short vectors becomes an issue,
it is also feasible to enforce a maximum dimensionality for tensors so that a static
allocation or the stack may be used.

7.2. Multithreading. Run-time information controlling the tensor contraction
operation is stored in the variadic template object on a per-thread basis. This infor-
mation includes the address of the packing buffers and the desired level of parallelism
at each loop, but also information about the current thread communicator. The
thread communicator is a concept that was adopted in BLIS to aid in parallelization
[29, 36], and closely resembles the communicator concept from MPI. Each communi-
cator references a shared barrier object which the threads utilize for synchronization.
Parallelism is managed at each level by splitting the communicator into a set of sub-
communicators to which work is assigned. As in BLIS, there are five parallelizable
loops as can be seen in Figure 1, although the loop over dimension p (with block
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size kC) is not parallelized since this would require additional synchronization and/or
temporary buffers with reduction.

7.3. Tensor Layout and Access. For both matrices and tensors, it is impor-
tant to attempt to access elements in a way that maximizes spatial locality of the
data. For matrices where one of the strides is unit (as is always true in the BLAS
interface), this means simply ordering loops such that the stride-1 (unit stride) di-
mension is iterated over in the inner loop. This affects access during packing and
during the update to C := AB in the micro-kernel. Since the micro-kernel is usually
hand-written in assembly, it is simpler to hard-code a preference for unit row stride
and to compute the equivalent operation CT := BTAT in the case that the column
stride is unit instead. This assures high performance for all eight variants of matrix
multiplication depending on transposition of each operand. For tensors, however, the
number of possible types and combinations of transpositions is enormous. Addition-
ally, it may not be possible to simultaneously guarantee stride-1 access in all operands
if dimensions appear in different orders in two tensors. For example, in the contraction
Cijk := AjliBlk in general column-major layout it is impossible to achieve stride-1
access in both A and C simultaneously.

Because of this complication, we heuristically reorder the tensor dimensions within
each bundle I, J , and P from their original, user-defined ordering. Since this reorder-
ing is purely logical, it does not require movement of the tensor data as in tensor
transposition, and only affects the order in which tensor dimensions are iterated over
during the contraction algorithm. Additionally, while the dimensions are being pro-
cessed, any dimensions of length 1 may be removed since the stride along these di-
mensions is meaningless. Lastly, dimensions that are sequentially contiguous in all
cases may be folded into a single dimension, which decreases the indexing overhead
and increases the number of regular stride blocks in the scatter vectors. The heuristic
steps employed are:

1. Remove any dimensions of length one.
2. Fold dimensions in I, J , and/or P that are sequentially contiguous in all

tensors.
3. Sort the dimensions in I and J by increasing stride in C .
4. If sj0(C ) = 1, swap A with B and I with J .
5. Sort the dimensions in P by increasing stride in A .

The optimal ordering of dimensions to reduce the number of cache and TLB misses
may differ from that achieved by the above heuristics, but these steps at least ensure
that CĪJ̄ has unit row stride if possible, enabling efficient updating in the micro-
kernel, and ensure that A has priority for stride-1 access over B since it is packed
more frequently.

The data layout and ordering of dimensions specified by the user can have a
significant impact on performance for tensor contraction, since certain orderings may
prohibit stride-1 access regardless of logical reordering. As for matrices, ensuring that
at least one stride in each tensor is unit is the simplest condition that the user can
check for performance. However, there are several other guidelines for tensor layout
which can aid in maximizing tensor contraction efficiency:

• Dimensions should be ordered the same in each tensor (or more generally,
dimensions should have strides in each tensor which are ordered the same in
magnitude).

• Dimensions should be sequentially contiguous where possible. Alignment of
the first leading dimension (the stride of the second dimension) may be influ-
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ential on some architectures.
• The dimensions of largest size should have the shortest strides, and the di-

mension with stride 1 should especially be as long as possible.
Related work on explicit tensor transpositions (see for example [33]) may also provide
a systematic way to optimize the ordering of tensor dimensions and help overcome
inefficiencies in tensor layout.

8. Related Work. As mentioned previously, there are a variety of tensor-related
packages available for popular programming platforms such as NumPy [35] for Python,
the Tensor Toolbox [2] in MATLAB, the template libraries Eigen [13] and Blitz++ [39]
in C++, among many others. These libraries provide a simple and intuitive interface
for creating and manipulating tensors, for example providing traditional array-style
access to individual elements, managing transposition and reshaping, etc. Tensor
contraction facilities are provided in many of these libraries, either using explicit (al-
though sometimes compiler-generated) loop-based code, or using the TTGT approach.
In some applications a non-high performance library is sufficient, but the deficiencies
of the TTGT approach are highly relevant for high-performance code. Additionally,
the quality of and interface provided for tensor operations varies significantly from
library to library. It is our hope that the high-performance and self-contained (since
it does not require large amounts of workspace) implementation provided by BSMTC
can provide a standard level of performance and functionality.

Within specific scientific domains, high-performance libraries have appeared that
implement the TTGT approach. For example, in quantum chemistry there are soft-
ware packages such as the Tensor Contraction Engine (TCE) [16], Cyclops Tensor
Framework [30], libtensor [10], and TiledArray [5, 6] that provide general tensor and
in some cases specific quantum chemistry-related functionality. Many of these libraries
could benefit directly from a native tensor contraction kernel since they focus primar-
ily on distributed-memory algorithms and tensor blocking for algorithmic and space
efficiency. Other approaches such as Direct Product Decomposition (DPD) packing
[34] are specifically focused on improving the efficiency of the TTGT approach, but
could also be used on top of the BSMTC algorithm.

Other research has focused on improving the efficiency of the TTGT approach
through optimization of the tensor transposition step (and other associated operations
in quantum chemistry). Explicit searches of the space of tensor transpose algorithms
along with code generation techniques has been used to generate high-performance
tensor transpose kernels [33]. Tensor transposition along with handling of index per-
mutation symmetry in the TTGT approach has been addressed specifically in the
chemistry community [15, 14, 22].

One alternative to TTGT not previously discussed is the use of tensor slicing.
In this approach, the dimensionality of each tensor in the contraction operation is
successively reduced by explicitly looping over lower-dimensional tensor contraction
sub-problems. When enough dimensions have been eliminated in this way, the inner
kernel becomes one of the standard BLAS operations, although depending on which
dimensions have been eliminated the inner kernel may be a level 2 (matrix-vector) or
even level 1 (vector-vector) operation rather than matrix multiplication. Analysis of
the resulting inner kernel can be used to optimally eliminate indices to produce an ef-
ficient algorithm [7, 26], while for certain contraction types performance modeling and
auto-tuning have been used to generate efficient parallel implementations [21]. Tensor
slicing has also been applied to tensor contraction on GPUs [23]. These approaches
can also be considered native tensor contraction algorithms since they do not require
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explicit tensor transposition and may offer an alternative path to high-performance
implementations; however we do not directly compare to tensor slicing since no stan-
dard algorithm or library has emerged for this approach, and also because in practice
tensor slicing is restricted to those tensor contractions which allow for appropriate
stride-1 access in the matrix multiplication kernel. Additionally, since virtually all
approaches to tensor slicing in the literature rely on code generation techniques that
are specific to the number of tensor dimensions, particular tensor contraction desired,
and in some cases dimension lengths, they cannot be directly equated to the TTGT
approach and to our work, where any tensor contraction may be computed regardless
of dimensionality, shape, and size. For a comparison of tensor slicing compared to
TTGT and other code-generation approaches to tensor contraction, see [32].

Lastly, another native tensor contraction approach has recently been developed
independently by Springer and Bientinesi [32], termed GETT. The GETT algorithm
is similar to BSMTC in that elements from the input tensors are packed into fixed-size
buffers to improve cache reuse, and that a small micro-kernel is used at the basic unit
of work. However, there are several critical differences between GETT and BSMTC.
Firstly, BSMTC represents tensors as a special matrix layout, which transparently
allows any type of logical matrix operation (e.g. partitioning) to be performed with
no changes, while GETT preserves the full-dimensional tensor structure throughout
the computation. In practice, this may limit the flexibility of GETT with respect to
the choice of micro-kernel size and cache blocking parameters since these parameters
must evenly divide the lengths of the tensor dimensions to which they correspond,
while on the other hand this eliminates the edge cases requiring the full scatter vector
in BSMTC. Secondly, GETT uses a generated micro-kernel and heuristically deter-
mined cache blocking parameters, which may not reach the same level of efficiency as
the assembly-coded micro-kernel and fine-tuned parameters in BLIS. However, GETT
can also adapt to varying tensor shapes while the BLIS parameters are fixed. Lastly,
BSMTC is an entirely run-time algorithm that can operate on any size or shape of
tensor, while GETT uses heuristically guided search and code generation to imple-
ment tensor contractions for a fixed size and shape. We have adopted the Tensor
Contraction Benchmark [31] from [32] for some of the results presented in this work,
as the benchmark spans a variety of literature-derived tensor contractions from fields
such as quantum chemistry. The results using this benchmark presented here are
roughly comparable to those in [32].

9. Results.

9.1. Experimental Setup. All of the experiments performed were run in dou-
ble precision on a single Intel Xeon E5-2690 v3 processor running at 2.6+ GHz on
the Lonestar 5 system at the Texas Advanced Computing Center. The BLIS haswell
micro-kernel exploits the AVX2 and FMA3 features of the Haswell architecture sup-
ported by this chip. The processor has twelve cores with private 32KB L1 data and
256KB L2 caches, while the 30MB L3 cache is shared among all twelve cores. The
theoretical peak floating point performance of this processor is 41.6 to 56 GFLOPs
(billion floating point operations per second) depending on the clock boost from Intel’s
Turbo Boost. The practical peak performance, as measured by timing the Intel Math
Kernel Library (MKL) on large matrix multiplications is ∼ 45 GFLOPs on one core
and ∼ 500 GFLOPs on 12 cores (∼ 41.7 GFLOPs/core). The blocking parameters
used were: mR = 6, nR = 8, kP = 4, mC = 72, nC = 4080, and kC = 256 for double-
precision elements, which is consistent with those used in BLIS. We compiled the
BLIS micro-kernel and our own framework with the Intel Composer XE 2016 Update
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BLIS BSMTC TTT

(b) Multi-core performance (twelve cores).

Figure 6: Performance of matrix multiplication and randomly generated tensor con-
tractions for square matrix/tensor shapes on a Xeon E5-2690 v3 processor.

1 compilers. Each experiment was run a number of times to warm the caches, and
the run with the lowest time (highest performance) is reported. The multithreaded
experiments used the Intel OpenMP runtime with threads pinned to their respective
cores (single-threaded runs were pinned to an arbitrary core). All experiments were
performed on double-precision data types. The unmodified BLIS library was used for
all matrix multiplications, since it is directly comparable to our tensor contraction
algorithms. BLIS was shown to achieve performance within a few percentage points
of widely-used alternatives such as OpenBLAS [42, 40] and within 10% of MKL on
similar processors [37, 36]. The TTGT approach was implemented in our benchmarks
by the TTT algorithm of the MATLAB Tensor Toolbox v2.6 [2] in MATLAB R2016b,
with an additional call to the MATLAB permute function to return the C tensor to
the proper layout (the layout of the output C in the TTT algorithm is always the
matricized form C̃IJ).

In each performance graph, the y-axis runs from zero to the theoretical peak
performance for one core of the processor, expressed in GFLOPs or GFLOPs/core for
multi-core results, running at the maximum Turbo Boost frequency. Since the Turbo
Boost feature of newer Intel processors can produce highly dynamic performance
properties, we attempted to control for this effect by running all of the experiments
in our suite twice, and then reporting the numbers from the second run. This process
should cause the processor to heat up sufficiently to bring the frequency down to a
stable value.

9.2. Randomly Generated Tensor Contractions. In order to assess the
overall performance of BSMTC compared to both matrix multiplication (of similar size
and shape) and to TTT, we measured the performance of randomly generated tensor
contractions and corresponding matrix multiplications for a range of overall tensor/-
matrix sizes of two shapes: square (m = n = k) and rank-k update (m = n � k).
These problem sizes and shapes span a reasonable range of possible computations
along the orthogonal axes of total problem size and communication vs. computation
bound problems, both factors that are expected to affect the relative performance of
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Figure 7: Performance of matrix multiplication and randomly generated tensor con-
tractions for rank-k update matrix/tensor shapes on a Xeon E5-2690 v3 processor.

BSMTC compared to TTT. The square problem sizes investigated range from 20 to
2000 for single-core runs and from 50 to 5000 for multi-core runs (giving a problem
∼ 16 times as large on twelve cores), while the k length for the rank-k update cases
ranges from 5-500 in all cases, with m = n = 4000 on one core and m = n = 16000
on twelve cores (again a 16× increase in problem size). For each of the problem sizes
expressed as a matrix multiplication (i.e. in terms of m, n, and k), we randomly
generate three similarly-shaped tensor contractions. For each matrix dimension, we
randomly choose from one to three tensor dimensions for the corresponding bundle,
where the product of the tensor dimensions is close to the original matrix dimension.
The order of the dimensions in each tensor is then randomly permuted. In order to
plot the tensor contraction results in a fashion consistent with the prescribed matrix
multiplication sizes, “effective” matrix lengths for the generated tensor contractions
are determined from the actual number f of FLOPs performed. For square problem
sizes we set m̃ = ñ = k̃ = ( f2 )1/3, and for the rank-k update cases we set k̃ = f

2mn
where m and n are the fixed matrix dimensions. The performance results for matrix
multiplication (using BLIS), and for tensor contraction with BSMTC and TTT are
given in Figure 6 and Figure 7.

The performance of the BSMTC algorithm is very close to that of raw matrix
multiplication for the majority of tensor shapes. For the parallel rank-k update prob-
lems, some tensor shapes lead to reduced performance with BSMTC. These shapes
belong to one of two classes, (1) tensors with a very small leading edge length, which
inhibits the performance benefit of the blocked scatter vector (i.e. all operations
must use the full scatter vector), and (2) contractions where stride-1 access cannot
be obtained in all three tensors simultaneously. Operations in both of these classes
are marginally affected in the computation bound regime, but are disproportionately
penalized when communication (memory accesses) are the limiting factor. It may be
possible to combine BSMTC with the technique of dimension sub-division used in [32]
to improve locality in the packing kernel (this would essentially yield a 3-D packing
kernel) to address class (2).
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The TTT results meet the performance of matrix multiplication and BSMTC
only for square tensor shapes on a single core. Moving either to multi-core or to
more communication bound tensor shapes (such as in rank-k update) results in a
significant slow-down. For parallel square tensor contractions, TTT only achieves
∼ 1

4 to 3
4 the performance of BSMTC, becoming competitive only for very large

matrix sizes. Similarly TTT is ∼ 1
2 as fast as BSMTC on average for rank-k updates

on a single cores, dropping to ∼ 1
4 on average in parallel.

In parallel, BLIS achieves approximately 90% parallel weak-scalability (i.e. the
per-core parallel performance is 90% of the single-core performance), which is nearly
identical to the scaling of MKL. The scalability for BSMTC is only slightly less,
possibly due to load imbalance stemming from edge cases which must use the full
scatter vector. TTT, as might be expected, shows significantly lower scalability, since
the tensor transposition step is inherently bandwidth limited. The performance vari-
ability is also reduced reduced in parallel (except for an evident bifurcation of the
parallel results for rank-k, possibly an artifact of the parallelization scheme employed
by MATLAB), since a large number of threads may reach the bandwidth limit fairly
easily while a single core requires a highly efficient and tuned tensor transpose kernel
to do the same. Thus, while more efficient tensor transposition may be beneficial to
TTT on a single core, the benefit in parallel may be somewhat more limited, especially
compared to the performance gains evidenced by BSMTC.

9.3. Explicit Tensor Contractions. In addition to randomly generated tensor
contractions, we have also measured the performance of BSMTC and TTT for a set of
tensor contractions from the Tensor Contraction Benchmark [31]. The performance
for both algorithms was measured for each tensor contraction both on a single core and
across all twelve cores of the processor (using the same tensor size). The performance
of an equivalent matrix multiplication was also measured for each contraction as a
reference. The results for the benchmark are collected in Figure 8. The specific
contraction is identified by the index string, which lists the tensor indices of each
tensor in the order C − A − B. Thus, the string abc − adec − ebd denotes the
contraction Cabc := Aadec ·Bebd.

The tensor contractions are arranged from communication bound on the left to
computation bound on the right. In the single-core computation bound cases, as for
randomly generated square tensor contractions, the performance of BLIS, BSMTC,
and TTT is similar and very close to the peak performance of the machine. As
the contractions become more communication bound, the absolute performance for
all algorithms drops, with BLIS gradually dropping from ∼ 40 GFLOPs to ∼ 10
GFLOPs. BSMTC performance is broadly similar, except for the left-most six cases.
TTT, however, shows a much sharper drop-off in performance, very quickly dropping
to ∼ 20 GFLOPs and then shortly thereafter to < 10 GFLOPs while BSMTC still
maintains close to 30 GFLOPs. While BSMTC performance is greatly improved over
that for TTT, there are some instances where it does not recover the full performance
of matrix multiplication. On inspecting the tensor indices for these contractions, for
example abcde− efcad− bf , one may note that the tensor Aefcad cannot be packed
with stride-1 access (since the e dimension has larger stride than a in the C tensor,
which always takes priority). Since packing this tensor requires a significant portion
of the running time, using an inefficient access pattern is especially detrimental. As
mentioned previously, this performance bottleneck may be avoided by using a more
complicated packing kernel. However, BSMTC also exceeds the performance of BLIS
in several instances. This is likely due to the particular transpose variant of ma-
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Figure 8: Performance of a variety of tensor contractions and the equivalent matrix
multiplications on a Xeon E5-2690 v3 processor.

trix multiplication employed (all BLIS results use the “No transpose/No transpose”
variant), which may be less optimal than that used inside BSMTC.

The parallel results show similar trends as the single-core results, but to a much
more extreme degree. While BLIS and BSMTC performance is only lightly impacted
by strongly scaling to twelve cores, TTT can only surpass ∼ 5 GFLOPs/core for the
large, square tensor shapes. The speedup of BSMTC over TTT in the single-core case
ranges from ∼ 0.7 (abcd−dbea−ec) to ∼ 5 (abcdef−dfgb−geac), while in the multi-
core case it ranges from ∼ 1.3 (ab−ac−cb and following) to 21.1 (abcd−ebad−ce). The
speedups for the six-dimensional tensor cases are especially exciting as they represent
critical contractions encountered in the popular CCSD(T) quantum chemistry method

21



[27, 1].

10. Summary and Conclusions. We have presented two novel mappings from
a general tensor data layout to a matrix layout, which allow for tensor elements to be
accessed in-place from within matrix-oriented computational kernels. We have shown
how kernels using these mappings within the BLIS approach to matrix multiplication
produce new tensor contractions algorithms which we denote Scatter-Matrix Ten-
sor Contraction (SMTC) and Block-Scatter-Matrix Tensor Contraction (BSMTC).
These approaches achieve an efficiency uniformly higher than that of the traditional
TTGT approach as implemented in the MATLAB Tensor Toolbox, approaching that
of matrix multiplication using the BLIS framework. Our implementations of these
algorithms also achieves excellent parallel scalability when using multithreading.

The BSMTC algorithm exhibits performance very close to that of matrix multi-
plication across a wide variety of tensor shapes and sizes, in sequential as well as in
multithreaded execution, while also avoiding the workspace requirements of TTGT,
we conclude that these algorithms should be considered as high-performance alterna-
tives to existing tensor contraction algorithms. The efficiency and simplicity of these
algorithms also highlights the utility and flexibility of the BLIS approach to matrix
multiplication.

Source Code Availability. The BSMTC tensor contraction algorithm has been
implemented in the TBLIS (Tensor-Based Library Instantiation Software) framework,
which is available under a BSD license at https://github.com/devinamatthews/tblis.
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