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UNIFORM ESTIMATE OF VISCOUS FREE-BOUNDARY MAGNETOHYDRODYNAMICS
WITH ZERO VACUUM MAGNETIC FIELD

DONGHYUN LEE

ABSTRACT. We consider viscous free-boundary magnetohydrodynamics(MHD) under vacuum in R3, especially when vac-
uum magnetic field is identically zero. It is a central problem in mathematics to perform vanishing viscosity limit to get
a solution of hyperbolic inviscid system. However, boundary layer behavior happens near the free-boundary, so existence
time 7° — 0 as kinematic viscosity € — 0 in standard sobolev space. Inspired by [I], we use sobolev conormal space to
derive uniform regularity in viscosity €. Finally, we get a solution of inviscid free-boundary magnetohydrodynamics when
initial magnetic field is zero on the free-boundary and in vacuum.

1. INTRODUCTION

In 1981, Beale [5] proved local existence result for free-boundary problem of Navier-Stokes equation. Also he proved
global regularity for surface tension case in his later work [8]. Similar work was done by many authors. We refer Allain
[6] and Tani [7], [16]. In [16], using his local result [7], Tani claimed global existence for both with and without surface
tension. These works depend on Stokes regularity using diffusive effect of Navier-Stokes. We also refer some works by
M. Padula and V.A.Solonnikov, for example, [17], [18].

Without kinematic viscosity, free-boundary Euler problem is much harder to solve. For irrotational case, many
researches were performed. Using curl free and divergence free properties of velocity field, we can introduce scalar
potential of velocity which solves Laplace’s equation. Therefore, we can change the problem into the problem on the
free-boundary. We refer some works by S.Wu [9], [10], and [I1], and recent work by Germain, Masmoudi, and Shatah
[12], in which they used space-time resonance method. For general rotational case, only local in time results are known.
See Lindblad [14], for example. He used apriori result in [I3] and Nash-Moser technique to prove local existence. Also
we refer Coutand and Shkoller [25], Shatah and Zeng [19], and Masmoudi and Rousset [I]. Especially Masmoudi and
Rousset [1] solved the problem by inviscid limit.

If we consider conducting fluid, such as plasma, we gain magnetohydrodynamics(MHD). Movement of fluid itself
generate electromagnetic force, called Lorentz force. Moreover, for magnetic field, we have Faraday’s law which is part
of Maxwell’s equations of electromagnetism. Hence, we should consider two coupled PDEs with several boundary con-
ditions and divergence free conditions. For viscous MHD, M.Padula and V.A.Solonnikov got some results in their works
[17], 18], and [20], where they used Stokes regularity which comes from smoothing effect of velocity Av and magnetic
field AH. However, there have been only few results for the free-boundary inviscid MHD. Because of nonlinear couplings
between velocity and magnetic field, linearization by standard lagrangian map is not good way to approach our problem.
Linearized compressible plasma-vacuum problem was studied by Trakhinin [28] and current-vortex sheet problem was
studied in [27] and also in [26]. Recently, C.Hao and T.Luo [21] got apriori estimate for inviscid case in the spirit of [13].

1.1. Free-boundary MHD with zero magnetic field on the free-boundary. Let us formulate inviscid free-
boundary MHD problem in whole R? with infinite depth. We write velocity field v = (u1,u2,u3) and magnetic field
H = (Hy, Ha, H3). We use §(t) to denote domain of plasma at time ¢ > 0 and write initial domain as (0) := Q. We
also write free-surface as Sp(t), and initial surface as Sp(0) := Sp. We use h(t,y1,y2) for profile of the free-surface,
where y := (y1,y2) is two dimensional horizontal variables. Note that velocity u is defined in plasma region Q(t),
whereas magnetic field H is defined in whole space R3. In the following (1)), the first equation is well-known Euler
equation with Lorentz force where P is pressure including constant downward gravitational force. The second one is
Faraday’s law in Maxwell’s equations. Both two vector fields u and H are divergence free, which mean incompressibility
of fluid and non-existence of magnetic monopole from electromagnetic theory, which is part of Maxwell’s equations.
On the free-boundary Sp(t), kinematic boundary condition and continuity of stress tensor condition are considered in
sixth and fifth equation. In (2], we give compatible initial data ug and Hy, especially Hy has zero value on the initial
free-boundary Sp in vacuum region R\ (.
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Qu+ (u-VYu+VP=(H-V)H - 1VIH]*, in Q@),

OH+ (u-V)H = (H-V)u, in Q(),

V-u=0, iI.1 Q(t), (1)
V-H=0, in Q(),

Pn=ghn+ (H®H — 3I|H|*)n, on Sg(t),

Oh=u-N, on Sp(t),

with initial data
U(O) = Uo, H(O) = H07 in Qv

Veoup=0, V-Hy=0, in € (1.2)
Hy=0 on SpU {R3\Q},
where outward normal vector N := (—=0ih, —02h,1) and n := I% g is gravitational constant. Note that downward

gravitational force was combined with pressure P and therefore we see constant g in the fifth equation in (IZIJ), instead
of in the first equation.

Let us study special structure given by initial data Hy|go = 0. If this holds, we have
OH+ (u-V)H =0, on Sp:=00.

Therefore, magnetic field is zero along particles which were on the initial free-boundary. Meanwhile, sixth equation in
([TI) is equivalent to
DF
— =0 on Sg(t),
Dt r(t)
where Sp(t) is given by equation F'(¢,y1,y2,2) := z — h(t,y1,y2) and % is material derivative. So, a particle on initial
boundary stays on the free-boundary as far as we have smooth solution of (ILT). Finally, we get boundary condition
H=0 on Sg(t),

for (). In general, it is not natural to impose zero boundary value in ([IZIJ), because second equation is hyperbolic.
Instead, this hidden boundary condition should be understood in the sense of propagation from initial data.

Meanwhile, there is no magnetic viscous dissipation crossing the free-boundary (or equivalently energy conservation).
So initial condition

Hyoe =0 in {R3\Q}
gives zero vacuum magnetic field

Hyoe =0, in {R3\Q(t)}). (1.3)

1.2. Viscous free-boundary MHD with zero magnetic field in vacuum. To solve ([I]), we construct parabolic
approximation system. Let € > 0 be kinematic viscosity of Navier-Stokes equation and A > 0 be magnetic diffusivity of
Faraday’s law. A is in fact A\ = M%, where p is constant vacuum permeability and o is electric conductivity of material.
So, magnetic diffusivity limit means o — oo, which implies perfect conductivity limit of plasma. Considering viscous
effects for fluid and magnetic field, we construct the following system

du+ (u-Vu+VP=cAu+ (H-V)H —3VIH]? in Q), e>0,

OH+ (u-V)H=XAH+ (H-V)u, in Q(t), X>0,

V-u=0, in Q(t),

V-H=0, in Qt), (1.4)
Pn —2eS(un=ghn+ (H® H — $I|H*)n, on Sg(t),

Oh=u-N, on Sg(t),

H =0, on Sr(t)U{R3\Q(#)},

with initial compatibility conditions,

u(0) =wug, H(0)=Hy, in Q,
Voug=V-Hy=0, in Q
Hy=0, on SpU{R3\Q},
IS(up)n =0, on Sp,
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where S(u) denotes symmetric part of Vu,
_ Vu+ (Vo)

S(u) : 5 ,

(1.6)

and IT means tangential projection operator, II :=1 — n ® n.

Let us explain boundary condition 4 = 0 on the free-surface and in the vacuum. Let us use Hyqe and Hpgsma to
denote magnetic fields in vacuum and plasma regions, respectively. When displacement current is not assumed, magnetic
field in vacuum solves

V- -Hyoe =0, VX Hyue =0,
by Maxwell’s equation. Unlike to inviscid case ([LT), zero boundary value of H does not propagate from initial data.
Therefore, zero magnetic value on the free-boundary and in vacuum should be understood in the sense of imposed
constraint. Physically we may need some complicate equipments to realize such condition but this system makes sense
mathematically. For hyperbolic system ([LT]) we cannot impose such constraint unless we have propagation from initial
data but for parabolic system (L4)), it is not overdetermined. Note that linearized equation in Lagrangian coordinates
for Navier-Stokes and Faraday’s law are just Stokes equation and heat equation with zero boundary value, respectively.

See (I4I3) and ([I£22]) for example.

Remark 1.1. Since we are assuming nonzero magnetic diffusivity, plasma is not perfect conductor, which implies zero
surface current. Therefore, magnetic field is curl free on the free-boundary. Of course, divergence is also divergence-free
on the boundary by Mazwell’s equations. Applying divergence-free condition and divergence theorem to the cylinder with
infinitesimal height crossing the free-boundary, we easily get normal continuity

H’Uac n = leasma -1, on SF(t)
Similarly, applying curl free condition and Stokes’ theorem to closed circuit near the boundary, we get tangential conti-
nuity
(I—l’l@l’l)Hvac = (I—l’l@n)leasmau on SF(t)

Therefore, magentic field is continuous on the boundary and special condition Hyqe = 0 gives H = 0 on the free-boundary.
Note that if we have A = 0, it corresponds to o = oo which implies perfect conductor. In that case, existence of surface
current gives normal continuity only. In mathematical aspect, when plasma is perfect conductor, X = 0 yield hyperbolic
PDFE for H and we cannot give boundary value to the second PDE of ({IF)]), in general. Instead, if initial data Hy
satisfies

Hy-n=0 on Sp(0),
then we have

H-n=0 on Sp(t),

as long as smooth solution exists. See [21] for the detail, for example. Note that propagation of zero boundary value H
is special case of propagation of H -n =0 on the free-boundary.

In (L4, it is convenient to define total pressure p as sum of pressure and magnetic pressure,
Lo
p:=P+ —|H|"
2
Considering all of these, (4] system becomes,

Ou+ (u-Viu—(H-V)H +Vp=cAu, in Q(t),

O H + (v -V)H — (H-V)u=AAH, in Q(t),

V-u=0, in Q),

V-H=0, in Q(t), (1.7)
pn — 2eS(u)n = ghn, on Sg(t),

H =0, on Sr(t)U{R3\Q(#)},

Oh =u-N, on Sp(t),

with initial compatibility conditions,

u(0) =wg, H(0)= Hy, in £,
Voug=V-Hy=0, in Q
Hy=0, on SpU{R3\Q},
IS(up)n =0, on Sp.

3
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1.3. Parametrization into a fixed domain. We rewrite the system (7)) and (LJ) in the fixed domain S :=
{(y1,y2,2)|z < 0}, lower half space in R3. We use z := (y1,y2,2) to denote a point in R® and y := (y1,92) to
denote horizontal coordinate. Parametrization into the fixed domain S is gained by ®(¢, -),

o(t,): S =Q(), @(ty,2) =y, et,y.2), 2z2<0, (1.9)
where ¢ is to be defined in below (LI0). When z > 0, we define
(t,): RN\S = RI\Q(t), ®(t,y,2) = (y,z+h(t,y)), 2z>0.
We use function v, B, and ¢ for velocity, magnetic field, and pressure in the fixed domain S,
v(t,z) == u(t, ®(t,x)), q(t,z):=p(t, &t z)), xS
B(t,z) := H(t,®(t,x)), =R

We have to decide ¢(¢,-) in (L3) so that ®(¢,-) becomes a diffeomorphism between S and Q(t). From determinant
of V&, we should have 0,p > 0 for diffeomorphism. There are many ways to take ¢. Omne easy option is to set
o(t,y,z) = z + h(t,y). However, there is no gain of regularity, so this fits in the Euler equations case. Instead, we take
a smoothing diffeomorphism similar as [I], [3], [], and [22]. We define

o(t,y,z) == Az +n(t,y, z). (1.10)

To ensure that ®(0,-) is a diffeomorphism, A should be picked so that
0.0t =0,y,2)>1, Y(y,z) €S, (1.11)

and 7 is given by extension of h to the inside of domain S, defined by
(&, 2) = x(26)h(€), (1.12)

where * is horizontal Fourier transform and & is corresponding two dimensional frequency variable. x is a smooth,
compactly supported function which is 1 on the unit ball B(0,1). This smoothing diffeomorphism was used in [3], [4],
and also in [I]. In Proposition B we will see that ¢ has § better regularity than h.

We also define new derivatives of v, B in S, to measure O;u,d; B in the fixed domain S. Then we could rewrite the
systems (L7) and (L8) in a fixed domain S. Using change of variable, we get,

(Oiu)(t,y,») = (00 — gi—(pazv)(t,y, z), i=t,1,2,

=P
dip .
O)(t.9.9) = (OB = 5 20.B)(t.y,2), i = 1,12
1
(8311,)(15, Y, 90) - (@(‘vat, Y, Z),

(0sH)(t,y, ) = (8—190823)(@3/,2).

4
So it is convenient to define the following operator,

0; 1
0¥ =0 — =29, for i=t1,2, and 0% :=
0. 0.
This definition implies that 8;f o ® = 97(f o ®), i =1¢,1,2,z for smooth f defined in S. Hence, (I.7) and (LJ) are

written in S as following.

0. (1.13)

Ofv+v-VPvu—B-VPB+ V% =2V¥-(S¥v), in S,

OfB+v-V?B—B-V¥¢ =2)\V¥-(S¥B), in S,

V¢.0=0, in S,

V¢ -B=0, in S, (1.14)
gn — 2¢(S%v)n = ghn, on 985,

Oh=v-N, on 0985,

B=0, on 9SU{R3\S},

with initial compatibility condition

v(0) =vg, B(0)= By, in S,
V¥ v9=V¥-By=0, in S,
By=0 on 0SU{R3\S},
IIS¥(vo)n =0 on J8S.

4

(1.15)



Note that S¥ is defined by changing V into V¥ in the definition of (6.

Remark 1.2. In this paper, we use ¥V for full gradient V f := (01, 02,0s)f and V,, for horizontal gradient (01,02). And,
since boundary profile h(t,y) is extended into inside the domain, we define

N :=(=Vy,1), n:= N in S. (1.16)
N
On the free-boundary 05, N|,—o = (=Vyh,1) and n|.—q is just outward unit normal vector on the free-boundary as we
used in the systems above. Sometimes we use upper index -* to stress fb := f’z:O' However, we skip upper - notation
when we have no confusion.

1.4. Functional Framework and Notations. We briefly introduce conormal space and other function spaces those
are proper to our analysis. See [I] for more explanation. First we define sobolev conormal derivatives.

Definition 1.3. We define conormal derivatives in S.

Zy =0y, Zo:=0y,, Z3:= 1 i 2;827 Z% = Z(al’a%as)a
2 2
|l 5= D 12 has) s flweeis) = D2 12 Flpeis) -
lof<s lof<s
In this paper we abbreviate the notation as |- [s = |- |gs, || |s = | - |z, and || - || = | - [12. Similarly, |- [s00 = | - [wee
and || - [[s,00 = | - lwge. For horizontal component, we use v, := (vi,v2) and V, := (J1,02). Sometimes we may use
notation Z™. This means some Z® = Z(@1:92:23) wwhere |a| := |a1| + |aa| + || = m. We will add for all such a, so we

do not need to specify a.
Definition 1.4. For m > 1,
E™:={feH}

co?

O.f € HP™ 'Y and E™® :={fec W™ o,f € Wm—t=}
with norms,

£ Tm = If 7+ 10=F 15 N f e o= [f oo + 102 lm—1,00-

We also define tangential sobolev spaces which is weaker than conormal space.

Definition 1.5.
H;,,(S) = {f € L*(S), A°f e L*(9)},

where A* is tangential Fourier multiplier by (1 + |€|2)%/2, with norm
11l #1z,,, o= 1A F ] 2

tan
Notation In this paper, Ay means A(%) where A(-) is a monotone increasing function and A(-,-) is a monotone
increasing function with all its variables. They may vary line to line.

1.5. Main results. We state two main results for this paper. First theorem states uniform energy estimate in Sobolev
conormal space when € = . We refer [22] or [29] (general case with bounded domain) for local well-posedness of (L4]).
Or see Theorem [I4.7 in appendix for scheme of well-posedness.

Theorem 1.6. Assume that (1.17)) is well-posed and consider e = X € (0, 1] case. For fized sufficiently large m > 6, let
initial data (v, B§, hg) be given so that

sup (|AGlm + \/glh?)ler% + 105 llm + 1B5llm + 10:05]lm—1 + [0 B§lm—1
£€(0,1] (1.17)
+ 1005 |l1,00 + 110285 11,00 + \/g”azzUSHL“’ + \/g”azzB(a)”L“’) <R,

and satisfy Taylor sign condition —0,q+g > co > 0 uniform ine. Also, they should satisfy initial compatibility conditions
V#.v5=0, V#-B;=0, in S,
II(S?v5)n=0, on 985, (1.18)
B5=0 on 0SU{R*S}.

Then there exist T > 0 (uniform in ) and some C' > 0 such that there exist a solution (v¢, B%,h¢) for (I.14), (I18),
(LI0), and (IZ12) on [0,T]. Moreover the following energy estimates hold. For non-dissipation type,

sup (|h°[7, + [v°|17, + |1 BEI2, + 11020°[|7, 4 10 B2, + 100717 o + 10-B°(17 &)
te[0,1] (1.19)
2 2
0= W 0,27, 10z )+ 19=B a0,y g1y < €
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For dissipation type,

sup (elh[2,, y +el0av? |} + )02 B0 )
t€[0,T) 2
(1.20)

T
e / (Ve 2, + [ VB2, + V0| p + V0. B2 _y) < C.
0

Using Theorem [[LG] we get zero kinematic viscosity-magnetic diffusivity limit.

Theorem 1.7. Let us assume that we have a unique local solution (v¢, B%,h%) € for (I.1]) with e = X on [0,T°) for
initial data (v§, B, hS) given in Theorem [0l We also assume

tim (05 = voll 2 s) + 185 = Boll as) + 115 = holl a(os) ) = 0, (1.21)
where (vo, Bo, ho) also satisfy assumptions of Theorem [0 Then there exist (v, B,h) such that those are in
0, B € L(0,T], HINS)), 0-0,0.B € L((0, T}, H(S), h € L((0,T], HIM(R?)) (1.22)

and
lim sup ([|v° = v|[ 2y + [v° = vl e () + 1B® = Bll12(s)

0.7 (1.23)
+11B° = Bll oo (sy + [1h° = hll 2(95) + 11 = Al (a5)) =0
Moreover, (v, B,q) solves
fv+v-VPv+V¥g=B-V¥B, in S,
fB+v-V¥B=DB-V¥%, in 8,
V¢.v=0, in S, (1.24)

V¢.-B=0, in S,
gn = ghn, on 085,
Oth=v-N, on 09585,

with initial data
v(0) = vy, B(0)= By, in S,
V. u9=V?-By=0, in S, (1.25)
Bo=0, on 9SU{R3S}.

1.6. Scheme of proof. The aim of this paper is to gain uniform estimate of viscous free-boundary magnetohydrody-
namics when magentic field is zero in vacuum and on the free-boundary. From bondary layer behavior, we expect

z
u~Uup + \/EU(tvyu %)7

when u g is solution of limit system ¢ = 0 and U is a some profile. Therefore, boundary layer behavior makes it impos-
sible to get uniform estimate in standard sobolev space. Note that sobolev conormal space kills normal derivatives on

the boundary by multiplying factor %, and is equivalent to standard sobolev space away from the boundary because

9% 2 is uniformly bounded for all order k € N away from z = 0. In [I], Masmoudi and Rousset used this functional
framework to solve vanishing viscosity limit problem of Navier boundary problem in [I5] and free-boundary problem
without surface tension in [I]. For the free-boundary problem with surface tension, we refer Tarek and Donghyun [23].

1. Alinhac’s unknown We use fixed domain S as defined in (LI4) and apply conormal derivatives Z™. Since we
do not take surface tension into account, we get ||v|/,, and |h|,, as high order energy. However, we have some bad
commutators which requires |h[,, 1 to be controlled, which is %-order higher than energy |hl|,,. This problem can be
fixed by introducing Alinhac’s new unknown for transformed velocity v = wo ® and magnetic field B = H o ®. We study
structure of commutators and we will see that bad commutators have transport structure. We will write the system

(CI4) in terms of Alinhac’s new variables,
(V*, Q% BY) := (Z% — 0fvZ%n, Z%q — 0T qZ%n, Z“B — 0¥ BZ“n), (1.26)
and then all commutators becomes low order in terms of h. Meanwhile, non-transport type nonlinear terms,
B-V¥B, B-V¥%uy,

in (LI4) generate some terms with higher order than energy. From (ILI4]), we have two energy estimate from first two
PDESs. Divergence free property and boundary condition of B play critical roles to cancel these high order terms when
we combine two energy estimates. This property hold for another variables whenever we use L?-type energy estimates.



2. Normal derivative Second problem arises from the fact that conormal space is weaker than standard sobolev space.
To control commutators we should control normal derivative terms, ||0,v|m-1 and [|0. Bl/m—1. These terms contain m
derivatives in total. From definition [[3] however, these cannot be controlled by ||v||,, or || B||m, because conormal space
is weaker than standard sobolev space. To estimate 0,v, we introduce new variables,

SV :=(I-n®n)(S¥v)n, SPZ:=(T-n®n)(S¥B)n.
These variables are equivalent to 0,v and 0,B in conormal space. Moreover, their boundary values vanish by fifth
equation and seventh equation in (LI4)). However, equation of S produce V?p which require |h|m+% to be controlled.

Therefore, optimal regularity of S¥ and SE are m —2, not m —1. We cannot use these estimates to close energy estimate,
but it can be used to control L*°-type terms in the next step.

3. L type estimate It is natural to expect finite low order L>° terms in commutators. Unfortunately, we cannot use
standard sobolev embedding in conormal space even with sufficient high order regularity. Instead, we use the high order
energy of S? and SZ to control these finite low order L™ type terms in commutators. Using conormal embedding with
sufficiently large m > 6, ||S||m—2 and ||SZ||,,_2 control these low order terms. Our basic approach is to use maximal
principle of convection-diffusion equation, however, commutators between laplacian A¥ and conormal derivative Z™ are
not easy to control. Instead we use geometric re-parametrization which preserves second order normal derivative 9,
structure.

Meanwhile, we have non-transport type nonlinear term,
B-V¥B, B-V%u.

Moreover, we cannot expect cancellation between these two terms, because we use maximal principle, instead of standard
L? type energy estimate. So we assume £ = A and combine two PDE’s to get

O (v+ B)+ (v—B)-V?v+ B)+ V¥ =cA¥(v+ B),
Of(v—B)+ (v+ B)-V?v—B)+ V% =cA¥(v — B).
Some analysis with boundary condition B|gs = 0 will give finite order estimates for

152 4+ S5 1k0os  1S2 — S2|lk.00, for some small finite k € N,

(1.27)

and therefore, we get estimates for each ||S2||x.c0, [[SZ||k.00-
4. Vorticity estimate Since optimal regularities of SY and SZ were m — 2, we should estimate m — 1 order for d,v. The
reason we could not reach to m — 1 order was pressure, since we do not see gradient structure for p in the equation
of S}. Equations for vorticity w, removes pressure term, so we get hope to get m — 1 order conormal estimates. For
general rotational fluid, however, vorticities

wy = V¥ xv, wp:=V¥xDB,

do not vanish on the boundary 9S. Therefore L?-type energy estimate generate boundary integral, which need % more
space regularity to control trace. To avoid these difficulty, in [I], the authors derived new L* in time estimate using
Lagrangian map and microlocal symmetrizer, instead of strong L°° type estimate. This is weaker norm in time, but
is sufficient to control commutators, since commutator terms contains only L? in time. Also, we should use equations
(CZ7) again, because we cannot control each nonlinear terms otherwise.

One critical idea of [I] is to use Lagrangian transform which converts convection-diffusion equation into heat equation.
However, we have two equations in (L27), with different transport velocities, v + B. We consider two Lagrangian maps
Y1 and Y5, so that

8tY1:u—H, 6,5Y2=u+H,
then (t) is transformed into two fixed initial domains Q; and Qs. However, both v and H (or v and B) must be
defined in the same domain by definition of systems. One important remark is that domain Q(¢) is defined by boundary
velocity only. And, propagation of boundary profile is determined by normal velocity on the free-boundary, see sizth
equation in (1.17)). Therefore, when we have H-n = 0 (or H = 0) on the free-boundary, boundary profile is determined
only by velocity field u. So introducing two maps Y; and Ys, equations in (L27) are transformed into same domain
0 = Qs = Q. Using these transforms and the new L. type result of [1], we get estimates for

lwoll g gzt and [|ws g gy

We can check m — 1 order conormal norm of vorticity is equivalent to ||0,v||m—1, and also for B obviously. Finally we
can close energy estimate and get uniform regularities for u, B, and h.

5. Uniqueness and vanihsing viscosity limit Uniqueness is gained by L? energy estimate with higher order energy bound,
which was obtained from previous steps. For vanishing-viscosity limit e = A — 0, we use compactness argument to get
7



weak limit. And for the limit system ¢ = A = 0, we have L? energy conservation which gives norm convergence in the
limit process e — 0. Finally we get L? strong convergence.

2. FORMAL DIFFERENTIATION AND ALINHAC’S UNKNOWN

Suppose that we have a smooth solution (v, B, h). Let us study transport operator and commutators gained by Z™.
From definition of 97,

1
of +v-V¥ =0, +v,V, + 8—<p(v ‘N —0n)d,, where N = (=V,p,1).

z

If we apply conormal derivatives Z® with |a| = m, then we see some commutators look like || Z*N|| ~ |Vl ~ |@|mt1 ~
|h|m+% since ¢ is 3 smoother than h by diffeomorphism (LI0). See [1], [22], or Proposition B2 in section 4 for this
estimate. Hence, we rewrite the system in terms of Alinhac’s new unknowns, because this new unknown kills all these
bad commutators. In this section, we construct Alinhac’s unknown systematically. First, let us define the following
symbols.

N(w,B,q,¢) :=0fv+ (v-V?)v+V¥q—2sV¥ - (S¥v) — (B-V¥)B
F(v,B,p) = S"B + (U VA)B — (B-V¥)v —2\V¥ - (S¥B),
dy(v, ) :=V?* (2.1)
dp(B,p) :=V?*
B(v,B,q,¢) = (q - gh)N 2¢(S¥v)N

In the following two propositions, ~ means first order expansion in terms of f ,g.
Proposition 2.1. We have the following first order expansion.
(f+ 1) Vo2 (g+9) ~ (F- Vg + (F - V9)g+ (- VF)g = 02g(f - (V9)).

Proof. We abbreviate ,_; , for terms with index i.

. , . Oip + 0ip . ) 0.9+ 0:9
et i+ f) | 0ig+ 019 — —7T (0.9 + 0. WP
(f+1) (g+9)=(f; +f)( 9+ 3zso+3zso( 9+0:9) | + (fs+ f3) Dot 0.0
~ (8ig+8ig— (0 + 9i)(0-9 + 09) (1 B 3z90)>
0. 0.
3 ‘ L (3i90+5i¢)(5z9+3z9) 0.9+ 0.9
+ fi (&ng@zg 9 +(fs+fs )78 0.0
£+ b — fz( 0ip0:9 + 0:p0-g + 0i500:9) (| 0=
0. 0.
Fa fl f3 f3
+ fi0ig B0 dipd 9. (5zg+3zg 929 8 ) B0 D29
0i00:9 05

Nfzawg'i‘fzawg""fzawg 9i 190+f1
0. 0.

0.90.¢
+ f3059 + 3059 + 3059 — f38 prRe

. o az . .
~ Vg VRGP = S0+ [50F¢)

=(f-V®)g+(f - V2)g+(f V¥)g—029(f (V7).

Proposition 2.2. We have the following first order expansion.

O If + P ~ OF|f1P +2 - (07 ) +2f - (97 f) ~ 207 3(f - 02 f)
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Proof. We abbreviate Z?:l for j terms. For i = 1,2,

Oip + 0;

o7 éiy + i ~ (01— SEL2Y
cod B+ 0.5

3z> (f7 +21if5)

@¢+%M%@h+@bﬁ+h@ﬂ)0_8m)
0. 0.

~ 2f;0if; +20:f; f; + 2f;0i f; — 2

. . 2 . .
~ 0| f;1? + 2£;0if; + 2f;0: fj — w(aﬂﬂfjazfj + 0300 fi fi + 00 f;0- f; + 0ip f0- f5)
2 0.0

9. 0. 911015
81'90 . 81'90 . 81'90 .
~ <3z'|fj|2 - 6z<paz|fj|2> +2f; (8ifj - @@fj) +2f; (8ifj - @azfj)
o 0uti (s Doy
2; d- (al(p azwazsp)
=07 |fI> +2f - (OF ) +2f - (OF f) — 20 p(f - 07 f).
For 7 =3,
orTe 20 L (1299 o s v af
5+ S N@ T2 (f; +2f15)

2 . . 0,¢
~ @(fjazfj +0.fif; + fi0:1;) (1 - 8z<p>

82 (fjaij +0.fif; + f;0-f; — %fjazfj)
1z 2P

= |f1P+2f - (05 f) +2f - (5 f) — 2055 f - 0L f).

~

Using Proposition 2.1 and 222 we get linearization for (2.1]),

DN (v,B,q,¢) - (0,B,4,¢) =00+ (v- V)0 + V¥P§—2V¥ - (S¥0) — (B- V¥)B
+ (0 - V)0 — 0¥0(8F ¢ + v - VP) — dPqV )
+2eVP(020 @ VPO + VP ® 0Yv) + 207 (SP0) VPP
- (B V¥B -~ 9¢B(B - v%)) ,

Dd,(v,¢) - (0,¢) = V7?0 = V¥p- 070,
Ddg(B,¢) - (B,¢) =V¥-B—V?¢-97B, (2:2)
DF(v,B,@) - (0,B,9) =0f B+ (v-V?)B — (B-V¥)o — 2\V? - (S¥B)

+(0-V#)B = (B-V?)v—0¢B(0f ¢ +v-V?p) + 02v(B - V¥¢)
+ 2A\V¥ (0 B @ V9 + V) ® 0¥ B) + 200¢ (S¥ B)V¥ ¢,

DB(v, B,q,¢) - (0, B, §,$) = 2eSP0N — 9¥v @ V¥ON — V¥ ® 9¥vN — (¢ — gh)N
+ (26S8%v — (¢ — gh)) N.

On the right hand sides of above linearizations, we see V¥¢ which behaves like [V|m ~ |h[,, 1 for high order
estimate. Now, we define Alinhac’s new unknowns to remove V¥¢’s on the right hand side. For example, on the right
hand side of N, we see that —(9¢v)v - V¥¢ is one of bad terms. But this term has v - V¥ so this can be combined with
(v-V¥)0. Then —(0¢v)v- V¥ gives 1 derivative V¥ to nonlinear structure (v-V#) and remained —(97v)¢ is combined
with v to generate a new variable.

Vi=10-0%vp, Q:=q—08%qp, B:=B-0’Bp (2.3)
Lemma 2.3. Let us define
Ai(v, ) := 0 v, Fij(v, ) := 0] 9fv,

then linearizations of A and F can be expressed by
DA;i(v,¢) - (b, @) = 0f (0 — 0Fv) + 07 (Ai(v, ),

DFij(v, ) - (0, @) = 05 (0 — 0Fv¢) + 407 (Fij (v, ©))-
9



Proof. This is simple calculations which use commutativity property of 9f. See proof of Lemma 2.7 in [I] for detail. [J

Using Lemma 23] we have the following proposition. Note that on the right hand side, all bad terms (which behaves
like |Al,, 1) are removed.

Proposition 2.4. Linearization of (Z1l) can be expressed as the following, using new unknowns V, Q, and B in (Z.3),
DN (v, B,q,¢) - (0,B,§,¢) = (0f + (v-V¥) —2eV - (S¥))V + V¥Q — (B-V¥)B
+ (0 V?)v — (B- V) B+ @{0?N (v, B, P,p) — (9¢v - V?)v + (0 B - V¥)B},
Ddy(v, ) - (0,0) = V-V — 4IZ (dy (v, ),
Ddp(B,¢) - (B,¢) = V¥ B—0¢(dp(B, ),
DF(v,B,p) - (0,B,9) = (0f 4+ (v-V¥) = 2AV - (S¥))B — (B - V¥)V
+ (0 V?)B — (B - V) + ¢ {0¢(F(v, B,p)) — (0fv - V?)B + (07B - V¥)v},
DB(v, B,q,¢) - (0, B, ¢, ) = 26SPVN + 26, (SPv)N — (¢ — gh)N 4 (26S¥ — (¢ — gh)) N.
Proof. We use linearization (2.2) and Lemma 23] O

3. PRELIMINARIES ESTIMATES

In this section we collect some necessary propositions and preliminary estimates from [I]. Every functions are defined
in the fixed domain S.

Proposition 3.1. We have the following products, and commutator estimates.
e Foru,v € L°NHE, k>0,
12 uz0|| S lullLellvlle + vllzesllullk, aal+ |az] = k.
o For1<|a|<k,ge H 1N L>®, fe HE such that Zf € L*°, we have
1122, flgl S 1Z Flk-1llgllzee +11Zf [ oellglle-1-

e For |a] = k > 2, we define the symmetric commutator [Z<, f,g] = Z*(fg) — (Z%f)g — fZ%g. Then we have the
estimate

IZ% F. 9l SN ZFlleellZgllk—2 + 1 Zgll Lo l| Z fll k2

The following proposition states embedding and trace estimate.

Proposition 3.2. e For s; > 0,s2 > 0 such that s1 + s3 > 2 and f such that f € H; , 0.f € H2, , we have the
anisotropic sobolev embedding.

£ T SN0 Nz Il gz, -
e For f € H'(S), we have the trace estimates,
£ 02y < CO:S g 17150
with s1 + so = 25 > 0.
We have similar estimates on boundary 95 = R2.
Proposition 3.3. When f, g are defined in R?, we have the following commutator estimates.
IA*(fg)lL2mr2) < Cs (|f|L°°(R2)|g He(R2) T |9l Lo ®2) | f HS(R2)) )

||[Asvf]v9”L2(R2) <Cs (|Vf|L°o(R2)|g|Hs(R2) + |v9|L°°(]R2)|f
luv]s S |uly,c0lv]1-

HS(R2)) )

From (L9), Jacobian of change of variable ® is 0,¢. Let us define volume element dV; by

Fiydz = [ j@.p)dydz = [ fdVi where F(t.8(t,.2) = 1(t.5.)
Q) s s

Now, we state integration by part for [ 97 fgdV.

Proposition 3.4. In S, we have the following integration by parts rules.

/3ffgd%:—/f3fgd%+/ J9Nudy, i=1,2,3,
S S a8

/ OF FgdVi = 0, / Fgdvi — / FoFgdvi — / Foduh.
S S S oS
10



Using Proposition .4 we gain following Corollary which is useful to get L?-type energy estimate for two main PDE’s
in (CI4).
Corollary 3.5. Let v be a vector field such that V¥ -v = 0. For every smooth function f,g and smooth vector field
u,w, we have

1 1
/ (Orf +v-VPf)fdV; = 2o, / FPav; — 2 / FP(@ch — v - N)dy,
s 2 " Js 2 Jos
/ A fgdV; = / VRS VP gdV; + / v - Ngdy, (3.1)
S S a8

/ V# . (SPu) - wdV, = —/ S%u - S¥wdV; —I—/ (S¥ulN) - wdy.
s s as
The following propositions is about Adapted Korn’s inequality in S.

Proposition 3.6. Let 0. > co, |Vl L~ + [|V2¢| L~ < % for some co > 0, then there exists Ag = A(1/co) > 0, such
that for every v € H'(S), we have

”va%Z(S) < AO (/S |S¢U|2dw + HU'%,Q(S)) . (32)
As explained before, gain of regularity for 7 is very important in this paper. We give estimates for 7.
Proposition 3.7. We have the following estimates for 1.
V0@l s sy < Cslh(t)l 11, Vs >0,
190l s) < Ca (1 + ollie + Vgl (follgess + [Vyhloyy) Vs €N,
||77||W5’°° < Cs|h|s,oo, Vs €N,
[0nllw e < Cs (1 + |hls,00) [0]l5,00, Vs € N.
To treat fraction terms, the following proposition is very useful.

Proposition 3.8. For every m € N, we have,

L <A bl + 1£12) (Bl y + 11m)- (3.4

I3
With vanishing factor e, h gets one half more regularity.

=P

Proposition 3.9. For every m € N, € € (0,1), we have the estimate,

t t
AL,y < eMholny + [ Wy + [ AGT Humiaey + o) (Folf+ ey ) (3.5)

b= v|,—0.

where v
4. HIGH ORDER EQUATIONS

In this section, we apply high order conormal derivatives, Z% with |a| = m, to (LI4) and (II5) and rewrite the high
order system in terms of new unknowns

(V*, Q% BY) := (Z% — 0fvZ%n, Z%q — 0T qZ%n, Z“B — 0¥ BZ“n), (4.1)
using linearization results.
4.1. A Commutator estimate. For i = 1,2 we write,
ZO7f =0fZ°f = 0L fOf Z%n + C(f),
C(f) = Cia(f) + Cia(f) + Cis(f),

where

= 12, 82.0.1]
ng = —8zf[Z0‘78i(p, ﬁ] — Oip (Za (ﬁ) + (Zaz%)g
1('):3 = —gi—i[Za,az]f + wazi—jyazf[za,az]n'

For i = 3, result is very similar and we suffice to replace 0;¢ by 1 in above terms. We need to estimate commutators.

) a.f, (4.2)

Lemma 4.1. For 1 < |a| <m, i=1,2,3, we have

1
ez < A (£l + 1971 ) (9o + ).

Proof. See Lemma 5.1 in [I] O
11



4.2. Divergence free condition for (v, B). By applying Z, we have,
Z4(V¥ -v) =0.
Using notations in ({2,
3

VP (Z2%) — 0Fv - VE(Z%) + Y C(vi) =0,
i=1
3
Ve (Z% — 0ZvZ%p) — (V¥ - 00) 2% + ZC?(%) =0.
i=1

Second term is zero since 9;’s commute and therefore, V¥ - v = 0. Hence we get

3
Ve VT (dy) =0, C¥(dy) =Y CHuy),
i=1

(4.3)
3
V2B +C%(dp) =0, C%(dp) =Y CH(Bi),
i=1
where commutators C*(d,) and C*(dp) satisfy the following estimates by Lemma [41]
o 1
(@)1 < A (bl + 190l ) (90 + Bl ).
(4.4)

o 1
@)l < A (bl + VBl ) (IVBlos + iy
co

4.3. Navier-Stokes Equation with Lorentz force. Applying high order conormal derivatives,
ZY{0fv+ (v-V?)v+ V¥q—2cV? . (S¥v) — (B-V¥)B} =0.

Transport Let us use notation V, = ﬁ(v -N¥ — 9yn) and N¥ := (=V,n,1). Then,

Z(0f + (v- V) v =20 + vy - Vyv+V.0.)v,
= (0 +vy - Vy +V20,)Z% + (v Z*N¥ — 0, Z°n)0fv — 02 Zn(v - N¥ — 9yn)07v + C*(Ty)
= (0f +v-V?)(Z%) — 02v(0f +v - V) (ZY) + C*(T,),

(4.5)
where C*(7,) is defined by
6
Co(Ty) = T
i=1
Each terms are given by,
1
7-1(1: [Za7vyuayv]7 7-2(1: [Za7‘/zuazv]7 7—3(1: 8 sD[Zauvz]azvu
1 8ZZQ77 [Za 8z]77
T = (Zo‘ <—> + —> 0,00, TE =0,0,v—~r~— +V,[Z%, 0.|v,
! 0.p) " (9:9)2 ’ (0-0)° 1755l
(% (0% 1
7% = [Z 7’02;@]8zv-
Estimate for C*(7,) is given as following using Propositions in section 3.
o 1
e (Tl < A (o bl + ollzae ) (lolom + il y)- (45)
0
Pressure For pressure term,
ZN¥q = N¥(Z2%) = 0£qV¥(Z%¢) +C*(q), (4.7)
with estimate )
(@l <4 (- hlace + 198l ) (941 + Bl ) (1.
0
Diffusion For diffusion term,
Z% (=2eV¥ - (S¥v)) = —2eV¥ - (S¥Z%) +2eV¥ - (00 @ VP Z% + VP Z% @ 0 v) (4.9)

+ 207 (SP0)VP(Z%p) — eD¥(S%v) — V¥ - (E%),
where D*(S¢v) and (£*v) are defined by

(Eo‘v)ij = C?(Uj) + C_?(’Ui), DO‘(S“’v)i = 2C?(Sw1))ij,
12



with estimate for £%*(v),
o 1
%I < A (2 hlae + 190 ) (Il + 102001 + bl ) (110)

Lorentz force For Lorentz force term,
3
~Z%(B-V¥B) = <Z B, 8“"B> —> (Z°Bi0¢B + B;Z*0f B+ [Z®, B;,0f B])
i=1
3
=—(2°B)-V¥B > B;(0{(Z°B) — 0f BO (Z°¢) + C3(B)) —

=1 7

(2%, B;, 0¥ B (4.11)

-

1

3 3
=—(Z°B)-V¥B — (B-V?)(Z°B) + (0 B)(B-V*(Z%¢)) — Y _ BiC{(B) = Y [Z*,B;, 0 B].
=1 i=1
Let us define,
3 3

3
Co(Ts) =D 2%, B,,0fB| = Y (2%, B;,0;B] - Y [2°, B, “Pa B.
=1

=1 i=1

Using Lemma 1] we have an estimate for C*(7g),
1
I (Tl < A (bl + VBl ) (198 ]nos + [ty ) (112)
Now putting (@5, (1), [9), and [@II) together, and using linearization of N, to get
0=DN(v,B,q,¢) (Z°v,Z%B,Z%q, Z%p) — (Z“v Ve

+C*(Ty) + C%(q) — eD¥(S¥v) — V¥ - ( ZBC‘* —C*(TB).

By Proposition 2.4 for DN (v, B, q, ) - (Z%, Z*B, Z%q, Z%p), we get the follovvlng.
(0f +v-V¥ —2eV? . (S¥))V* +V¥QY — (B-V¥)B”

= (Z*B-V¥)B+ Z% ((0¥v - V¥)v — (0Y B - V¥)B) + Z B,CY(B) 4 C*(Tp) (4.13)

+eD*(S%v) + V¥ (E%) — C*(Ty) — C%(q).
4.4. Faraday law. Similar as above, we apply Z% and perform computation for each terms.
Z*(0fB+ (v-V?)B— (B-V¥)uv—2\V¥-(S¥B)) =0
Transport When V, := ”'Ngﬂ,
=P
Z*(0f +v-V¥)B
Z%0 +vy - Vy+V.0,)B
=0(Z°B) + Z (Z%0;0;B+v;0,;Z“B + [Z,v;,0;B]) + Z*V, - 0, B+ V.Z°0,B + [Z“,V,, 0. B

=1

2 . Y
O+ vy VNZOB) + 2%, VB4 S 2005, 0,8] + 20 (SN =%\ 5 piv.o.z08
i=1 z
+V.[Z%,0.|B+ [Z%,V.,0.B]

—9
= (8f +v, -V, +V.0.)(Z2° )+ZQ<T“”)-@B+R1

1 1 1
- ZONY¥ + Z¢ - N¥ — 0 Z%p — Oy Z°
! - (8ZS0> ! 0. v " (824%7))

@ a 1
=(0f +v-V¥)(Z B)+6ZB<8 UN“"+Z 7.0 "N -1z 6tso,w]>+7€17

1
— (H¥ Rvid €]
(0f +v-V¥)(Z°B) +0.B (azw

where
2

Ry o= V.[Z2%0:]B+ Z%v, - VyB+ Y [2%v;,0;B] + [2*,V.,0.B]. (4.14)
=1
13



Note that

1 _ 70,
Za - — Zoz 1 <_ z )
() == (-
——L(aza +[2%,0,]p) — 20,02} !
= (8zgp)2 z SD y Yz SO ZSD 8Z(/7

Hence, transport part becomes
Z%0f +v-V¥)B

2 1
) —[zo71, 5. Z0.p).

=(0f +v-V¥)(Z*B) + (v- Z°N¥ — 0, Z“p)0YB + 0,BZ“ (81g0) (v-N¥ — )
o 1
+8ZB<a W N*"+Z Uu -1z atsa,a(p]>+731
=(0f +v-V¥)(Z°B) + (U-Z N—@tZO‘ p)0?YB
+0,B(v-N¥ — ;) | — ! (0.Z2% +[Z2%,0.]¢) — Z0,pZ* L 2—[Z“‘1 LN 1| +R
z tP (8%0)2 z 2 , 0z 2P 8,24%7 ) (az<ﬂ)2, 2P 1
where
- N 1
Ri1:=0.B <8 N“"-l-z 'Uz; -1z 73%07@])4‘731-
So,

Z0f +v-V?)B = (0f +v-V?)(Z°B) + (v- Z°N¥ — 0,2°0)9? B — 02 Z%p(v - N¥ — 0,0)0¢ B + C*(Tr).

and at result
Z%0% +v-V?)B = (0 +v-V¥)Z*B - 9YB(0¥ +v-V¥)Z% + C*(Tr), (4.15)

where

[Z*,0.)¢ 1\° 1
CQ(TF) = azB(’U . N‘P — atgo) (—w — ZaZQDZail (8 w) _ [Za717 (8 S0)27Z6290]>

1
(2 ® « —_—
+0.B <a -N¥ + § vz,N | —[Z2%, 0, @(p])

2
+V.[2%,0.]B+ Z%, -V, B + Z[Za,vi, B + [Z2*,V.,8.B].

=1

Using Propositions in section 4 and Lemma [T we get,

N 1

I (T < A (b + Vol + 1Bl ) (18 + 1B + Lol ). (1.16)
Forcing term (B - V¥)v
3
~Z%(B - V*¥v) (Z B;d¢v ) ==Y (Z°Bidfv+ BiZ*0fv+ (2%, B;, 0fv])
=1
3
= —(Z*B)-V¥v — Z B; (07 (Z°v) — 07v0f (Z2°¢) + C*(v)) = Y _[Z2°, Bi, 0f ] (4.17)
=1 =1
3
= —(Z%B) - V¥v — (B -V¥)(Z%) + (8¥v)(B - V¥ (Z% Z —C*(T1),

where
3

3
CoTr) =Y (2%, Bi,0f0] = S 12%, By, 0] = > _[2°, B, “Pau]
i=1

i=1 i=1

Then using Lemma [Tl we have an estimate for C*(77).

1T < A (oo blaoe + (90l + 9Bl e ) (9611 + (9B ]vos + i) (1.18)
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Diffusion Diffusion part is same as Navier-Stokes part.
ZY(=2AV¥ - (S¥B)) = —2AV¥ - (S¥YZ“B) + 2A\V? - (0B V¥ Z*p + V¥ Z%p ® 07 B)

4.1
+200%(S7B)V#(2°p) — eD*(S?B) — eV¥ - (£° B), (4.19)
where definitions and estimates of D%(S¥B) and (£“B) are sams as before.
(gaB)ij = CZQ(B]) —l—C;l(Bl), 'Da(st)i = 26]{1(8493)1']‘,
with estimate for £*(B),
o 1
le(B)] < A (— [hle,oo + ||VB||1,OO) (Wollon + 110 Bl 1 + [Al—y ) (4.20)
Combining (£15), (@IT), and [@I9) together, we get
DF(v,B,¢) - (Z%,Z“B, Z%p) — (Z“v -V¥)B
3
= —C*(Tr) + Y_ BiC{*(v) + C*(T1) + AD*(S¥B) + AV¥ - (£°B).
i=1
Using Proposition 24]
(0f +v-V¥ —2)\V¥.(S¥.))B* — (B - V¥)V*
= (Z°B - V¥ + Z% (020 - V¥)B + (0B - V¥)v) — C*(Tr)
(4.21)

3
+ Y BiC{(v) +C*(Tr) + AD*(S¥B) + AV - (£“B).
1=1

4.5. Kinematic Boundary. For the boundary condition, Z¢ = D%

s 1-e. az = 0. It is easy to check the following as
we did before. In fact, this is just same as Lemma 5.7 in [I],

0.Z%h — v - Z°N — V* . N = C*(h), (4.22)
where
« L a b (8Zv)b «@
Co(h) = —[2°,08, V,h] — 5, N2
with estimate for C*(h)
. 1
ez < & (. lollor + hlae ) (ollen -+ A1) (429

4.6. Continuity of Stress-Tensor. This is also same as Lemma 5.6 in [1],
Z*((q — gh)N — 2eS¥uN) = 0.
Using new variable V|
2eSPVIN — (Z%q — gZ"h)N + (2¢S¥v — (¢ — gh)) Z“N = C*(9) — 2e Z*h0? (S¥v)N, (4.24)

where
Co0) == —eE%v) — Y. eZP(SP)2'N+ Y eZP(q—gh)Z'N,

Bty=a, BAy=a,
0<|BI<]al 0<|Bl<]al
with estimate for C*(9)
o 1
[C¥(D)|12 < eA (a, vl 2.0 + |h|2,oo) ([0°m + |Blm) - (4.25)

5. PRESSURE ESTIMATES

In this section, we get estimate for total pressure p, for any smooth solution (v, B,q,h). We decompose ¢ into
q=q¢% + ¢V, where

APqP = —V¥ . (v-V?0) + V¥ (B-V¥B), ¢"|.—0 = gh,
AsanS = O7 qNS|z:0 = 2eS¥un - n.

We express A% as elliptic operator.

nPf = 2V (BV),

15



where

azSD 0 _6190 1
E=|( 0 D¢ —Op ) = 5o PP
—Oip —O2p —H(BMB)ZZ(BW) =7
and
0. 0 0
P=| 0 0. 0
—81@ —82(p 1
Matrix E is positive symmetric and there exists d(co) > 0 such that
EX-X >0|X[?, VeR?,
if |Vyellpe < Cl—o, and 0, < ¢o > 0. We have an estimate
1
[ Ellwr.ee < A(aa hlk+1,00)- (5.1)
Also, using the following decomposition,
6,277 0 _6177
E=I4+E, E=| 0 0:m O ., I =diag(A, A, 1/A),
—On  —0an A((91n) Xéi?;n) )=02n
we also get an estimate,
. 1
BNl s < A(—, [hl1,00)[]sy 1 (5.2)
C 2
0

We employ the following lemmas about elliptic problem, from [I]. First Lemma is for Euler part, ¢*.

Lemma 5.1. For elliptic equation in S,
—V - (EVp)=V-F, pl.=o=0,

we have the estimates :

1 1
Vel < A o) [ Fllzz, IV2pll < A Pl )V - I+ 1),

tan tan

1
Vol SA(av|h|2,oo+|h’|3+HF”H2 IV Fllg, )bl s +1F(8), k=1, (5-3)

tan

1
19=2pllk—1 < (T 1hl200 4 1hls + 1 Fllzz,,, + 1V - Fllag, )Pl y +1F ] + 1V - Flla), k=2

Proof. See Lemma 6.1 in [I]. O

Second lemma is about Navier-Stokes part, ¢™*.
Lemma 5.2. For elliptic equation in S,

~V - (EVp) =0, pl.=o = f",
we have the estimates :
Vol e < A(%, (2,00 + [hls + 1,00 + |15 /2) (hlksrsa + [ 0lks1/2)- (5.4)

Proof. See Lemma 6.2 in [IJ. O

Using above two lemmas, we can get estimates for ¢, ¢™V*.
Proposition 5.3. For ¢¥, we have the estimates :

Vg [lm—1 + 1022¢" -2 < A(%, 2,00 + |hls + vl g1 + | Bllproe + [0l g3 + (| Bll =)

x ([ollp + I Bllpe + |hl_y),

E E 1 (5.5)
IVa™ 00 + 1102207 [loe < AT [hl200 + [Bla 4 [0 re + |1 Bllzroe + vl + [ Bllp),
1
1Vg" 2,00 < ACohl200 + 1Rl + vl + ([ Bllzre + [lvlles + (1Bl z2)-
Proof. See Proposition 6.4 in [I]. We just suffice to add same types of norms for B. g
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Proposition 5.4. For ¢V°, we have the estimates for m <1 :

1
Vg™ gm—1 < Ao [hla.co + Rl + [lvllp2ee + ol z) (10l 3+ ely 1),

1 (5.6)
Vg™ < Ao [hl2co + bl [vllz2ee + flvlles)-
Remark 5.5. Note that ¢N° can be estimated in standard sobolev space, not necessarily in conormal one.
Proof. See Proposition 6.3 in [I]. O
The following proposition will be used for Taylor sign condition.
Proposition 5.6. For T € [0,T°), we have the following estimate.
T T
1
| 10007 im < [ A b + Bl + ol + 1Bl + 10200+ [0-Bll + ol + |Bllzns) (g

X (1+€l|0-20| Lo + A0z Bl Lo + €|0220]|3 4+ Al|0-2Bl|s)dr.
Proof. This is a version of Proposition 6.5 in [I]. First,
A?GE = V% . (v- V) + V¥ (B-V?B), ¢"|.—o = gh.
Taking 0,
V- (EV8iq") = =V - (0:(P(v-V¥0))) + V- (3:(P(B - V?B))) = V- (&, EVP?), 8:¢"|.=0 = gd:h.
We divide into ¢¥ := ¢* + ¢® so that,
V- (EVO,PY) = -V - (8,(P(v-V*®v))) + V- (8,(P(B-V¥?B))) =V - (0, EVPE), 9,P!|.—o =0,
V- (EVO,PP) =0, 0,PP|.—¢ = g0,h.

Estimate for ¢ is exactly same as [I], and for ¢°, we use Lemma 6.6 in [I], where F' also includes similar structure for
B. We get

T T
; 1
/ (0:0:4")" |1~ < / A (5’ [0l s + [[0]l 200 + [[0ll6 + | Bll &> + [| Bl 2. + [ Bl + [h]s + |h|3,oo>
0 0

X (14 |0 Lo + [|Owv]|3 + [|0: B Lo + ||0:B||3) ds.

Estimate for ||0,v||3 + ||Owv||L= + ||0.B||3 + ||0: Bl L= is gained from the two main equations of (L4]), Proposition [£.3]
Proposition (.4l and Proposition

1
1020l[3 + [|0pv]| o + (0= Bl|s + [|0: B~ < A <av I1Bllgs + | Bll g2 + ([0l s + [[0] g2 + |Al5 + Ihlz,oo>

(5.8)
X (1 +¢€l|0:20| L + €[|0z20]l3 + Al| 022 Bl L + Al|0:2B]3) -
Euler part ¢” is given by Lemma 53} Putting altogether, we get the result.
T T
1
/ 1(0:004")" |1~ < / A (—, [vlle + 0zvlla + vl 2.0 + | Blls + 10 Bll4 + [| Bll g2, + [Rl6 + |h|3,oo>
0 0 Co (59)
X (14 ¢l|0:20]|ne + €]|0220]|3 + A||022B|| L + Al|02.Bl|3) ds.
O
6. L? ENERGY ESTIMATE
Proposition 6.1. For any smooth solution of (1.17]), we have the following zero-order energy estimate.
d
— (/ |v|2dV; +g/ |h|2dy+/ |B|2dW) —1-45/ |S?v|?dV; +4)\/ |S?B|*dV; = 0.
dt \Js s s s s
Proof. Multiplying v and integrating on S for Navier-Stokes, and also using boundary condition, we get
d
—/ lv[2dV; + 45/ |S?v|2dV; —/ [v)?(hy — " - N)dy = 2/ (2eS%v — qI)N - vdy + 2/ v+ (B-V¥)BdV,.
dt Js s o5 o5 s
Then using kinematic boundary condition and Continuity of stress tensor condition,
d
—/ lv[2dV; + 45/ |S¥v|?dV; = 2/ v (B-V¥)BdV, — 2/ )gh(IN - v)dy,
dt Js s s a8
d
— /|v|2dvt+g/ |h|?dy +4g/ |S?v|*dV; :2/v-(B-V“")BdV;. (6.1)
dt \Js a8 s s
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Multiplying B and integrating on S for Faraday’s Law, we get

d
—/ |B|2th+4)\/ |S? B|*dV; :2/ B-(B-V“")vd%—i—él)\/ S?B(N - B)dV;.
dt Js s s 8s

Using divergence free condition, we know that

/ B-(B-V*)udV, = / (B-v)(B-n)dy — / v+ (B-V?)BdV,
5 as 5
(6.2)
= —/ v-(B-V?)BdV,.
5
Therefore, Faraday’s law gives
d
—/ |B|2dV; + 4)\/ |S? B|2dV; = —2/ v+ (B-V¥)BdV,. (6.3)
dt Js s s
We add (61 and (63]), and cancel both right hand sides to finish the proof. O

7. HIGHER ORDER ENERGY ESTIMATE

Using the results of section 3, 4, and 5, we can make high order energy estimates. We define the A, (¢) which contains
all low order terms.

Aoclt) = A (e Jo(Ol e + VBNl + 1B zne + VRN BOl= + o0l + [t ). (71)

7.1. Navier-Stokes Equation with Lorentz force. We apply L? energy estimate in section 6 to (3), EI3), E22),
and ([L24), to get

d
—/ |Va|2th+45/ |S“"Va|2dvt—2/(B-V“’)B"‘-Vath
dt Js s s

(7.2)
=Rs+Rc+Rp+ 2/ (2eSPVY — Q%Id)n - Vdy,
z2=0
where Rg and R¢ are defined as
Rs = 2/ (eD¥(S%v) +eV? - (E%(v))) - V¥V,
o (7.3)

Ro = -2 /S ((C*(Ty) +C()) - V™ — C*(d,) Q%) Vi,

and Rp is defined as
3
Rp = 2/ {(ZO‘B -V#)B+ Z% ((0%v - Vv + (0YB-V¥)B) + ZBZ-CZ-O‘(B) + CO‘(TB)} VYV, (7.4)
s i=1
7.2. Faraday law. We perform similar work and get the following energy estimate using [@3]) and ([@2T]).
d
— / |BY|?dV; + 4/\/ |SPB*2dV; + 2 / (B -V#)B*.V*dV,
dt Js s s

= 2/{(Z“B VYW + Z% (020 - V) B + (07 B - V¥)v)
S

3 (7.5)
—C™(Tr) + Y viCi(B) +C*(T1) + eD*(S¥B) + eV¥ - (£*(B))} - B*dV,
1=1
= 4)\/ (S@Ba)n . Bady +Rsy, +Rep +Rpy = Rsy +Rey + Rpy,
oS
where
Ry = 2/{5D"‘(S“’B) +eV? - (E¥(B))} - B*dV;
S

Rey = —2 / Co(Tr) - BodV (7.6)

S

3
Rp, = 2/ {(ZO‘B V)0 + Z% (020 - V)B + (2B - V¥)u) + Y viCH(B) + ca(m} - BYdV.
S =1
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7.3. More commutator estimates. We need to know the estimates of Rg, Rc, Rp, Rsy, Rcy, and Rp,, those are
defined in (3)), (Z4), and ([Z6). All the estimates come from Propositions in section 3 and Lemma 11
1) Estimate of Rg. For Rg, using ([C3)) and (@I0),

IRsll < & A O{IVVNUAVN + 11020l m—1 + [y 1)

. (7)
+ ([ollEm + 1812, 1) + 100l o (1R]7, + V1) },
where Ao (t) is defined in ([TT]).
2) Estimate of R¢. We use (L), [@8]), (£4), and Proposition 53] to get,
ICE @ NV < Ao () (10l Em + 1Bl + [hlm) V™.
So, we get
IRl < Aool®) ([ollm + 1Bl + Bl + elhlyr g +ele8lns y ) V7] .
< Rool®) (ITV IV 4 ol + 1Bl + V2 + 0P + €l )
3) Estimate of Rp. We know that
o 1
12 B < A = Ilaoe + 9Bl ) (IVBllm-t + bl )
0
from Lemma Tl For C*(7g), using Proposition B
3
=312 50078 < A (1Bl + 107 Bl ) (1Bl + 107 o)
i=1
1
<A oo 1BlE2 4o ) (1Bllmm + [Alm)
Hence, we get
1 m
Rel <A (5’ [0l g1 + | Bllp2. + |h|2,oo) (V™I + IBllem + |hlm) - (7.9)
4) Estimate of [ _ (2eS#V* — Q*Id)n - V*dy.
/ (2eSPV* — Q%Id)n - V¥dy = / (—9Z%h + 07qZ“h)N - V¢
z=0 o8
" (7.10)
- 2/ (2eS%v — (¢ — gh)I) Z“N -V + R,
as
(4)
where
Rp = / (C*(0) — 2eZhI? (SPv)N) - V<, (7.11)
as
and is estimated by
|Re| < e[ VY™ IVl + Moo ()| 0z m—1]hlm (712)
+ Ao ()1 + 1(9:000%)" |2 ) (1[5, + el o + V™), '
by @24)) and [@29). (A) can be estimated by
(4)] < / (26890 — ¢¥ST) Z°N - Vo dy‘
z=0
S |Zavyh|_% |(2gstpv_qNSI)(Va)b|% (713)

< R ()l 3|V
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Meanwhile, for (B),

(B) ::/ (—9Z°%h+82qZ*h)N -V
as
= / (=9Z°h+ 02" Z°h)N - V> dy + / 02¢NZ*hy* - N
2=0 z2=0

g/ (= gZ°h+ 024" Z°h)9, Z%h
oS

(7.14)
— / (= 9Z%h+ 024" Zoh)v® - (Z*Vyh — C*(h)) dy + Aoo(t)e|hlm| (V)"
as
< / (= 9Z°h+ 024" Z%h)0sZ*h + Ao (t) (|hlm + V]| 2 ) |Alm + Moo ()e|Alm| (V)P
as
1d
=55 | (9-024")1Z°h)? ~ / 0:(924")1Z°hJ* + Moo (t) ([Pl + [0l ) Rl + Aoo (E)elalm | (V)°,
24dt Jos os
where we used Proposition 5.4 (£22), and (£23). Therefore, using (TI0), (Z21)), (CI3), and (TI4), we can write this
term as
1d ~
2/ (2eS¥V* — Q*Id)n - Vdy = Y (g —0%¢")|Z°h|? + R, (7.15)
z=0
with estimate,
Rl < Ao (O] £(L+ 1020l ol + elo?l) (V)] + el 071 -
+ (L4 1(0:0:4")° | =) B}, + ||U||Em|h|m}a
where we used Proposition [5.4]
5) Estimate of Rg,. We use [@I0). We suffice to replace v in (7)) into B.
Rssl < 8Aoo(lt){||Vl3'a||(||l3'a|| +10:Bllm—1+ |hlpny 1) 71

+ (IBllEm + 1215, 1) + 1022 B o< (R[5, + ||3“||2)}-
6) Estimate of R¢,. Simply we get,
[Resll < Ao ()| Bllm + 110=Bllm—1 + [hlm) 1 B. (7.18)

7) Estimate of Rp,. This can be estimated similar as Rp,
IRpsll < A <% [0l g1 + (Bl g2 + Ihlz,oo> UB™ [ + | Bl zm + [hlm) - (7.19)
7.4. Energy estimate for Navier-Stokes Equation with Lorentz Force. Using (Z2) and (ZI5),
(/ [V|2aVv; + / (g—@qu)|Zo‘h|2dy) +4g/ ISPV 2dV; —2/(B-V“’)B"‘-Vath
dt 2 a8 s s

:Rs—FRc—I—RP—I—'}iB,

where estimates for four terms on the RHS are given by (1), (Z8]), (), and (ZI6). High order regularity of h requires
positivity of g — 99¢¥, which is known as Rayleigh-Taylor sign condition. Therefore, if we assume,

(7.20)

1
az(/) Z Co, |h|2,oo S C_, g — (8;pqE)|Z:0 Z %)7 vt € [OaTE]v (721)
0
we get
t
YOI+ O, + e [ Isevmitavi- Y2 [ [ (5 vese veavids
s Vo 0 /s
t
< Ao (IV"O)12 + 0O)E) + [ el TV (10714 ol + il + [l ) ds
t
[ Do) (4100005 1) (V712 + ol + 1B+ I+ €l ) d.
where

O = Y VeI, ISV @)= Y ISPl

la|<m |la|<m
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Using Young’s inequality, Proposition B.6] and Proposition 3.9 we get the following proposition.
Proposition 7.1. Under the assumption of (7.21)), we have the following estimate.

V@I + (B2, + <[k () +1+5/ ||VVmH2ds—Z //B V9)BE VR dVds
t
< A (va<o>||2 OV + <O, 3) + [ Acs) (110010 e) (IV7IF + [1BIE + 1+ <l ) ds

[ A (0l +10:BIE ) s
(7.22)

Note that ||v||gm and ||Bl|gm are absorbed into |V™||, 110:0]lm-1, |B™], and ||0,Bl|m—1 by definition.

7.5. Energy estimate for Faraday Law. Using (T3,
%/S|B“|2dvt + 4)\/5 |IS?BY|?dV; + 2/5(3 -VP)B* - VAV, = Rs, + Rey + Rpy-
Using estimates (C.I7), (CI8), and [CI9), we get,
|Bm|2+4)\/t/ |S*"Bm|2thds+22/t/(B~V*")B“ V¥ dVids
0 Js va J0 Js
Ao (IB™2) + / A ITB (187 + [Bllan + o + Bl ) ds
+ Bels) (IB™ 2+ o, + 1B+ W, + el ) .

There is no 9,9,qF part here since it come from R 3 which come from ([TI7). Again, using Young’s inequality, Proposition
3.6l and Proposition 3.9, we get the following proposition.

Proposition 7.2. Under the assumption of
1
aZQD 2 Co, |h|2,oo S ) Vt S [OaTs]u
Co

we have
t t
HB’”H2+A/ IIVBm||2ds+22/ /(B-W)Ba-vadvtds
0 JS

< Ao (IIB™(0) /A (1™ + [0l + B, + b2, ds+/ Ao ()10 B2, _,)ds

(7.23)

From two main estimates (7.22) and (Z.23)), then we see that we should estimate some terms in Ao (such as |0, v||k,00)
and [|0.v||2,_; +1|0.B||?,_;. Note that we should use Proposition 5.6 to estimate |(0.9;¢”)?|r~ on the right hand side.

8. NORMAL ESTIMATE

From Propositions [[.1] and [[2] we should estimate ||0,v||m—1 and ||0,B|lm—1, because they are not controlled by
||[v]];m and || B||,. First, the following Lemma [Blis true for both v and B.

Lemma 8.1. For every integer m > 1, normal part of 9,v,0,B can be estimated as follow.

1
. < — oo m 1
o0 n||m1_A<CO,|w|L )(w I+ by )

1 m
0.8 nlhy1 <A (- IVBl ) (18714 Al
Proof. This is derived easily from divergence free condition of v and B. See [I]. O

Lemma 8.2. For every integer k > 0, when we define,

SV .=TIS%vn, SP:=TIS¥Bn, M:=I-n®n.
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Then we get

1 v
00l < A (2 190l ) (1S5l + Ales + o).

(8.1)
0.0l < & (= Bollene ) (IS5l + Bler s + ohra).
This is exactly same as B, because these come from definition and divergence free condition.
1
0.0 < & (9Bl ) (120 + il + 1Bl
) (8.2)
0.8l < A (Bl ) (195200 + il + 1 Bllsa).
Proof. We suffice to use definition ([TI3)), divergence free condition of v and B, and Lemma [811 See [I]. O

From this lemma, we estimate S¢, VS, SZ and VSZ| instead of 0,v, 0.,v, 0,B, 0..B. So we make equations of
SY and SZ and estimate them.

Proposition 8.3. We have the following estimate.

||s;;||$n,2+2a/ Ives2, st—z/ /Z"‘SU B-V#)Z°SPdVids
< BollS3 (02,5 + / Moo () (Iollzm + 1Bl + By + VElney ) (1S5 m—z + 1S lhms + [Al,,_y ) ds (8:3)

T T
42 [ 1o I3 mads + Aoe [ TSI, s
0 0
Note that from |h|m_%, we cannot gain m — 1 order estimate. m — 2 is optimal reqularity for S;,.
Proof. We apply V¥ to the system (I4]) to get,
IV + (v- VPV + (VP0)? — (B-V?)V?B — (V¥ B)? + (D¥)?q — e A¥V¥#v = 0.
We take symmetric part, then we get (D¥ is symmetric part.)
IfSv + (v - v*")s% + = ((v*’ )2+ (V¥0)T)?)
—(B-V¥)S¥B — — ((WB) +((V?B)")?) + (D?)?q — eA?(S¥v) = 0
Applying -n and tangential projection operator II, we get
IS + (v-V?)SY — (B-V¥)SE — cA?(SY) = Fs, (8.4)
where Fg := F + FZ + F3,
1
Fl = —51 (V#0)2 + (VF0)T)*) n+ (9,11 + v - VFII)SPon + IIS?v(dyn + v - V¥n),
FZ = —2207T1OF (S¥vm) — 2eT1(9F (S¥0)0f n) — e(A¥T)S?un — elISPvA¥n — II((D¥)?g)n,
1
=TI ((V*B)*> + ((V*B)")*)n — (B - V¥I)S¥ Bn — [IS* B(B - V¥n).
Note that,
(0f S?v)n := 9f (SPvn) — SPvd;n,
(07 S?v)n := I1(9f (S¥vn) — SPvd;n)
=107 (S¥vn) — [1(S?vdn) = 8F (1IS¥vn) — (0,I1)S¥n — II(S¥vd;n)
=97 (S;) — (6,11)S¥n — 1ISPvdn.
We can easily estimate Fé, Fg, and Fg
1F& 2 < Aoc(®) (1S3 m—2 + [l + lollm1 )
1E8llm2 < Ao (IVESillms + Bl gy + 0%y ) + Acc(®) (Wl + Bl ) (8.5)

1FElm-2 < Aoc(®) (152 - + [Blo_y + 1Bl )
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Remark 8.4. In above three estimates, the order of v and h give critical optimal criteria. For h,
Flm Vi YV~ (Bl oy ~ Bl
F2 ~ el ~ e AV ~ el|m-2+43 ~ el y1-

We already got full regularity of h, so cannot raise its order. Fg is similar as F&. For v,

Fg ~ [[vllm—1, 185 lm—2,
F§ ~ Ao )IIVa® [ pm-1 ~ 0] .

Regularity of v in FZ is also mazimal, although we cannot try (m — 1) order. F3 is similar.

Note that from boundary compatibility condition, we have,

Splz=0=0. (8.6)
Therefore, from revised basic L? energy estimate, Proposition [6.1]
1d
——/ |SU|2dV; + a/ |VeSL12dV; = / Fs - StdV; +/ Sv.(B-V¥®)SEav;. (8.7)
2dt Js s s s

Applying Z* to [B4l), we get
O Z°SY + (v-V¥®)ZYSY — (B -V®)ZSE — e NP ZY(SY) = Z*(Fs) + Cs,

where
Cs :=Ct +C% +C3,
with
Cs :=[Z2%,] - VS5 + (2%, V.)0.5y = C§ +C§.,
C:=¢e[Z%, N¥)SY,
BN

C3:=—-[Z°B,] - V,SE + [z X

10.S7 :==C3 +C&..

High order estimate becomes,

1d

——/ |ZaS};|2th+s/ 20V ST |2dV, :/(ZQ(FS)+CS)-zasgdm+/ 798" (B - V#)2°SBav;.

2dt Js s s s

Note that Z*S}|.—o = 0 by ([88) and definition Z3 := ;%-0. and hence, boundary integration vanishes. The last term

will be canceled with similar term from faraday’s Law. Estimates of C§ and C% are given in [I], using some variants of
Hardy’s inequality (Lemma 8.4 in [I]), which is valid only when function is zero at z = 0. It is important that we have
such condition of SY, from continuity of stress tensor boundary condition, i.e. fifth equation in (I4).

€51 < A )(ISh lm—2 + [Vl gm—1 + Rl 1),

[ €&+ 27534 < AT 283 + Sullm-2)
S

% (/2198 8lms + 1Sullm—2 + Ao (B)(Bly— g +/21A,,_ 1))
Differences to [I] are
/ Z(F2)-Z*S’dV;, and /Cg - Z98YdV,.
s s
Since structures of F g, Cg are nearly similar to F Sl, Cé, we get similar results, by replacing v into B. Hence, when
|Oé| =m— 27
Ld
2 dt
+ Ao () ([0llem + 1Bl + By +VElbly ) (I1Slm—z + 1S s + [Rl—y )

+ &0’ g 1 197 =2 + AoV S3 12, .
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This implies,

T T
IS5, o+ 22 [ I9oS3IE sds—2 [ [ zoSy (B ve)zsPavids
0 0 S
T
< NollS3(0) 2,2 + / Aoc(s) (ol + 1Bl + By + VERLyey ) (1S5lm—z + 1152 -2 + |Al,_y ) ds

T T
42 [0y [S3llmoads + Ao [ VSR, s
0 0

We perform similar estimate for Faraday’s law.

Proposition 8.5. We have the estimate.
T T
15512 _2+2)\/ ||V“"Sf|\,2n_2ds+2/ /Z“S;j (B-V?)Z*SBdV,ds
0 0 S
T
< AolISEO)II3 -2 + / Ace(s) (I[0llem + 1Bl + By + VAl ) (192ms + 182 Iz + ALy ) ds (8:8)

T
+ Ao)\/ VS22, _sds.
0

Proof. Applying V¥ to the equation, we get
OfV¢B + (v-V#)V¥B + (V¥B)(V¥v) — (B - V¥)V¥v — (V¥0)(V¥B) — A\AYV¥B = 0.

We take transpose to get

9fS¥B+ (v-V¥)S¥YB — (B -V¥)S¥v — AA¥(S¥B)

+% ((V#B)(V*#v) — (V#)(V¥B) + (V¥0)' (V?B)" — (Vv¢B)" (V¥u)") = 0.

Applying n and II, we get

0f Sy + (v-V9)Sp — (B V?)S, = AA?(S]) = B,
where Fg = Eé + Eg + Eg and

Ef = (014 v - V¥I)S?Bn + [1SY B(d;n + v - V¥n)

1
-3 ((V¢B)(V*#v) — (V#0)(V¥B) + (V¥0)T (V¥ B)T — (Vv¢B)T(Veu)T) =0, (8.9)
E% = —2)\07T107 (S¥ Bn) — 2\I1(0f (S B)0fn) — M(AI1)S¥ Bn — A[IS? BA%n,
E¥ = —(B-V?I)S?vn — IIS¥v(B - V¥n).
We estimate Eg, E%, and Eg
1B -2 < Acc(t) (1Rl + 1S3llm—2 + 1S -z + [ Bllm—1 + [llm—2)
1B -2 < oo (VS llm—z + [l ) (8.10)
1B -2 < Aoo(®) (Wluey + 1S2lm2 + [ Bllm—z + [ollm-1) -
Since B is uniformly zero in R3\S, we have boundary condition
S§|z:0 =0. (811)
And therefore Z*S5 = 0 holds similar as S? case. It is easy to get L? estimate
1d
——/ |SB2av; + )\/ |VeSE12av, = / Es - S%dV; +/ SB.(B-v¥)SLaV;. (8.12)
2dt Js s s s

Applying Z¢, we get
Of 785 + (v-V9)Z*SE — (B -V¥)Z°SY — A\A?Z*(SB) = Z%(Es) + Cs,
where
Cs = Cg +C5 +Cg,
24



with
Ct = [Z%,) -V, SE +[2%,V,)0.88 = (?éy +C§,

C% .= \[Z°, A%]SE, (8.13)

_ B-N _ _
C}:= —[Z°B,]-V,S! +2°, W]azgz =C +C3.
High order estimate becomes,

2dt/ |Z>SB| 2th+/\/ |ZoveSE12av; = /(Z“(E5)+@s)~Zanth+/ZO‘Sf-(B-V“")Z"‘SZth.
S S

Estimates of these terms are similar, so when o = m — 2, we get

2dt/|Z“SB|2th+)\/ |Zov¥SB|2av, </ZQSB (B-V¥)Z*SLdV;

+ Aoo(®) ([Wlem + 1Blen + By + VARl g ) (151ns + 152 s + Bl )
+ RoAIVSE2,

(Comparing with previous Proposition B3 A[v?],, 41 |S5||,—2 does not appear, since it comes from pressure estimate
¢"V®. However, there is no pressure term in Faraday’s law.)

T T
ISP o428 [ VPSP sds =2 [ [ 208D (5 ve)z0savids
0 0 S
T

< AolISEO)II3, -2 + / Aoe(s) ([0ll5m + 1Bl + ALy + VARlnry ) (11522 + 157 2 + |Al_y ) ds

T

+A0/\/ VS22, _sds.
0
To make cancellation with previous proposition, we calculate
/f Vgdvi= [ fegBow - [VoBG 9 - [0 B9 == [ g (B9
a8 S S S
Hence,
T T
ISP o+ 23 [ IVeSEE sz [ [ 208y (B V)2 dvids
0 0 S
T

< MollSZ(O) 2,2 + / Ace(s) (I0llem + 1Bl + Bly—y + VARLry ) (11822 + 1S5 -2 + |Al_y ) ds

T

+A0/\/ VS22, _5ds.
0

O

Now we add two Proposition B3] and to cancel the last terms on the LHS. And then we use induction for
T v T "
e Jo IVSEIG—sds, A [y IVSLI%, _sds.

Proposition 8.6. We have the following estimate.

T T
ISEI2, s + 11551205 + 22 / IVSEI2, ads + 2 / IVeSPI2, _yds
0 0
< Ao (IS2(0)2,s + ISEO)[2,_s)
T
+/ A
0
T T
4 / Aoo(s) (192021 + 19:BI2,_y) + ¢ / vV,
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Proof. We sum Proposition B3] and to get

T T

IS5, o+ IS 2,0+ 25 [ VS22 sds + 22 [ [VSEIE, pds
0 0

< 20 (IS3O)IE, 5 + ISE O )

T
- / Ace(s) (I0llem + 1Bl + Blny + Velblss ) (I2hm—s + 11SZ bmes + B,y ) ds

T T T
422 [ 1] IS mads + A ( |ivsiiz sds e [ ||vsf||$ngds>.
0 0 0

Using trace estimate Proposition B2l we have,
0%ty S IVVT A+ [Vl A Ao ()R] ey g

and therefore,

T T T
] 1St <o [TV [ A (I 1T+ el )

We can replace |[V¥SY||k by [[VS?| k., and use induction for (5 fOT VS22, _sds + )\fOT ||VS§||fn73ds> to finish proof.
O

9. L*° TYPE ESTIMATE

From this section, we set ¢ = A\. We estimate all L> type terms in A (t). First we state basic properties of
Proposition 9.1 in [I].

Proposition 9.1. We have the following estimates.
|hlk,0o + VEllkt1,00 S |Pl2rk + VElRly 14y 1, KEN,
1 v
[o()]l2,00 < A(a, [hla,00 + [V + 1S3115).

(9.1)
[10:0[11,00 < Ao ([[Shll1,00 + [[0]]2,00)

\/g”azzvnoo < AO(\/g”azS:;”oo + ||S:;||1,oo + ||U||27OO)=

and estimate Note that last three inequalities hold for B version because they come from Proposition [3.3, structure of
Ve, B, interpolation, and Young’s inequality.

Inspired by above proposition, we define the following quantity.
Qun(t) = |hfy, +elhly o + IV + 1B™ 12 + 15515 -2 + 155113 0o + €105 17
ST 1z + IS2 11 o + €l10=57 17 -

From Proposition[[.2] we know that we should estimate ||0.v||m-1, ||0.B|lm-1. But we have only m—2 order estimate
in section 8. We will get ||0,v]|m—1, |02 B|lm-1 at section 10. In this section, we control some L type terms here and
11521l m—2, [|SZ]|;m—2 would be sufficient to estimate them, for sufficiently large m. First we state a corollary which
resembles corollary 9.3 in [I]. These terms come from L type terms in A (¢).

Corollary 9.2. When m > 6, for each time t,
[vll2,00 + [1820111,00 + VEDz20]| oe + | Bll2,00 + 10:Bll1,00 + VEl|022 Bl 1o + |hla,e0 < A (% Qm> . (92)
Therefore, by above Corollay [0.2] we get
Amoo(t) := A(%a [0l + 1020]lm—2 + [ Bllm + [10:Bllm—2 + |hlm + VElhlmi 1 + |hla,00
s + VEIR..oll + | Blgace + VEIOL:Blim) <A (2,0 ) m 2.

Hence we control Q,, instead of A, . Now we start with estimates of ||S?||1 00 and ||SZ||1.c0-
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9.1. Zero order estimate. First we note that zero-order estimate is just come from maximal principle of transport
equation, estimate ([@I3), but we should be careful that we treat the term from Lorentz force. From (84,

I SY + (v-V?)SY — (B-V¥)SE —cA?(SY) = Fs,
and therefore we get, .
180 ()L < (1SR (0)][ +/0 (IEsllz + (B - V)5S [|2=) -
Main problem is that |VSZ| L« is not controlled by A, . In fact, we need ||,.B||L= to control this. This is same
for Faraday law. From the equation of S5,
ISP 4+ (v-VP)SY — (B-V?)S! —eA?(SE) = Eg
and we get

t
IS7 Oz < 157 (0) +/0 (IEsllze + (B - V)Sy <) .

We also need ||0,,v|| = to control ||(B - V)SY||L~. Instead of attacking S¥ and SZ separately, we treat these terms by
adding and subtracting two equations,

P (SY + SBY 4 (v —B) - V) (Sl + SB) —eN?(SY + SP) = Fs + Es

5 5 5 (9.4)
02 (SY — 5P) + (v + B) - V¥)(SL — SB) — eA?(SY — SB) = Fs — Fs.
Using maximal principle for ([@4]), we get
t
152 + SBY (Ol < (2 + SE) Oz + / |Fs + sl (9.5)
where
t t t t t
/ |Fsllo < / IseVm? 4+ (1 +a>/ Ao (5), / | Esllz~ < / Ao (5).
0 0 0 0 0
This result is nearly same for (SY — SZ) case. Therefore,
t t
152+ SEY Dl < 1520z~ + [1SE(0) ] 1~ + e / ISPV + (1 + <) / o (9.6)
t t
152 = SB)(0) = < IS2O)]|~ + [ SE Oz~ + ¢ / 1SPV™2 + (1 + <) / T (9.7)
By (05 and (T,
t t
1S D)l ISE B < IS2O)]|z~ + |SEO)l|z~ + ¢ / ISPV 2 4 (1 +¢) / T (9.8)

9.2. First order estimate. To estimate first order terms, we divide thin layer near the boundary of S, then we can
apply sobolev embedding to lower part, since it loose essential information for conormal norms. Main part is L™ es-
timate for ||xZS%|| L=, where x is zero away from thin layer near the boundary. Here, we know that direct maximal
principle of transport equation is not good way because of commutators between Z and A¥.

Let us define transformation W,
U(t,-): S =R? x (—00,0) = Q(t), (9.9)

= () + o)

where n® is unit normal at the boundary, i.e. (—=V,h,1)/|N|. To ensure that this is diffeomorphism near the boundary,
we check
1 0 —61]7, —Zallh —Zalgh 0
D\I/(t, ) = 0 1 —62]1 + —Zaglh —Zaggh 0
Oh  O2h 1 0 0 1

This is diffeomorphism near the boundary since norm of second matrix is controlled by |h|2,00. So, we restrict ¥(¢,-) on
R? x (—6,0) so that it is diffeomorphism. (Note that § depends on cq. Function y is gained by x(z) = k(5507) € [0,1],
where k is smooth compactly supported function which is 1 near 9S. Next, we write laplacian A¥ with respect to
Riemannian metric of above parametrization. Riemannian metric becomes,

9y, z) = (g(%’ 2 (1)) (9.10)
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where g is 2 x 2 block matrix. And with this metric, laplacian becomes,

Dol = 0.of + 50-(nlg)0-f + g, (911)

where

1 TR
Daf == D 05713120, 0),
|g| 2 1<4,5<2
where §¥ is inverse matrix element of §. Notice that this map is invertible near the boundary, thin layer of thickness §
which depends on ¢g. And we localize S¥v by multiplying x(z) = &( ﬁ), that means this is 1 at thin layer and then

smoothly decay to zero. We define

SX:=x(z)S%v and S% := x(2)S¥B. (9.12)
We find the equation for the SX and S%,
O SX 4 (v-V?)SY — (B-V?)SE —eA?P(SY) = Fsx := FX + F,, (9.13)

where

FX = (V,0,x)S%v — (%.—Nazx) S¥YB —eV?yx - VPS%y — e A?xS%v,
¥

F, :== —x(D¥)%q - g ((V#0)* + ((V#0)")?) + g ((V¥B)* + ((V¥B)")?).

Note that F'’X has SPv and S¥ B where as F,, has only non symmetric parts. Note that F'X is supported away from the
boundary, because of Vy and
[FX[11,00 < Amyoolt)-
For Faraday’s law equation,
OfSE+ (v-V?)SE — (B -V?)SX —eA?(S}) = Esx, (9.14)

where BN
Esx := (V,0,x)S¥B — ( 8.

z

8zx) SPv —eV¥yx - V¥PS?B — e A¥xS¥B.

Note that for Faraday’s law, equation of SZ is much simpler than S¥ and we do not have F, type commutators. Note
that Egx is supported away from the boundary because of Vy and
”ESXHLOO < Am,OO(t)-

Now, we define S,, Sp in Q(t) and SX, S%, SY, and S} on S which are localized S¥(v) and S¥(B) near the boundary.

S} and S} are main terms to estimate and this measure SX = S (v) and SX = S7 _(B) in corresponding point,

SgB(t,y, 2) = 5’U7B(t, U(t,y,z)) = S§7B(t, (@~ o W)(t,y,2)). (9.15)
So S, and Sp solve (note that ¢ come from ® so S solves similar equation in original domain.)
Sy + (u-V)S, — (H -V)Sp — eAS, = Fox (t,®7(t,-)), (9.16)
oSp + (u-V)Sp — (H -V)S, —eAS, = Esx (t, 7 1(t,-)). (9.17)
We use Laplacian (@I0) to transform above equation via W. Then S\ and S¥ solve
1
ASY + (wy - V)SY — (wp - V)Sh — ¢ (azzsf +50-(1n]g)0.5Y + Agsz?) = Pt @ 0wt ), (918)
1
0iSp + (w, - V)SE — (wp - V)S, —¢ (ausg +50:(In|g])0: S5 + Agsg) = Egx(t, (@ o W)(t, ), (9.19)

where
wy == (DY) (v(t,® " o U) — 9,0)
>f( )_1( ( g ) — 0, ) (9.20)
wp = X(DY)""B(t, " o V).

SY is compactly supported near the boundary and function ¥ is slightly larger support in z such that yS¥ = S¥. Note
that this function allows us to have w which is also supported near the boundary. Now we set the alternatives for S}

and S, which are S/, and S§ ,,
Sitn = (6,)8,/0"(t,v), 021)
S =Tt y)SEn"(t, y), '

where IT" = I — n® ® n®, which means tangential projection to the boundary. We get the equations for S;JI” , and Sg)n:

1
00t + (1 V)%, — (- V)55, — ¢ (0. + j.nlg. ) 82, = £ (922
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where
FY = (I"Fsxn’ + F) + FY? + FYSY

with

EV = (0 + woy - V)II?) Syn® + TI°SY (9, + wyy, - V)0,

EV2 = —ell’(A;SY )n’,

F? = ((wpy - Vy)I) Spn’ + I°SE (wp,y, - V)0,

1
OrSE o+ (wy - V)SE ,, — (wp - V)Sy, — ¢ (azzsgm + 50:(In |g|)5z) Sha =By, (9.23)
where
EY = (I"Esxn® + B! + B2 + EY®)

with

EV = ((0r + woy - Vy)II?) SE0’ + T SE (9 4w,y - V)0,
EY? .= —cll’(A;SE)n’,
EV? = ((wpy - Vy)II’) Syn’ + 11°S) (wg,y - V,)n’,
and boundary condition
SYnlsm0 =0, S .l:=0=0. (9.24)
This is because S;Ifn = IIS¥vn := S}, and Sg,n =TIS¥Bn := SZ on the boundary. Now we state the Lemma (0.6 in [T].

Lemma 9.3. Consider T : S — S such that T (y,0) =y, Vy € R? and let g(x) = f(Tx). Then for every k > 1, we
have the estimate

191lx,00 < AV T N k-1,00) [ f1]1,00-

Remark 9.4. Meaning of this lemma : Sobolev conormal spaces are invariant by diffeomorphism which preserve the
boundary. i.e If fis conormal k,oco, then f o T is also conormal k,o0 if T preserves the boundary. Similar holds for
| - || type sobolev space.

We use above lemma (and remark) to show that equivalency of S¥ and SY,,, and also for B.

v,n?

v v 1 m v
1S nll1.00 < Aol ll1.00 + [[Vl12,00), [1Snll1.00 < Ao <||S1\;Il,n||l,oo A [hlm + V7 + ISnIImz)) :

(9.25)
1 m
15 mll1.00 < Ao(1SF 11,00 + 1 Bll2,c0)s 157 1,00 < Ao <||Sg,n”1,oo + A(a, |hlm + [1B™ ] + |Sf|m2)> :
We should get estimate for w, . Using the same argument and definition ([©@.20]),
1 1
ol e < A 2+ Dol + 10 e ) < (Bl + ol + 102 ) < A8
0 “ (9.26)

1 1
sl < A (a, hsme + || B 1,00) <A (a, hls.oo + ||v|2,oo) < Amc(D).

Now we make proposition about estimate of || Z;S,,, | Lo, [| ZiS , || L. Note that ||S), [, [|SE .||z is already given
above by just maximal principle.

Proposition 9.5. We have the folloiwng estimate.

12585 @)z, 112587 ()| < Ao ([(0) ][ g2 + [ B(O)l| p2.=)

1 . m v
A (— IV 1B 4 152 s + 12 s + |h|m)

(9.27)
+ /Ot Mmoo (8) (L4 1S5 111,00 + 187 ll1,00 + €l VV™ | + €| lI3,00 + €llvll 4,00 + €l S7 l13,00 + €ll Blla,00) -
Proof. 1) When i = 1,2, we apply 0; to get these two.
00; Sy, + (wy - V)0;Sy,, — (wp - V)9, Sp,, — € <azz + %(’L(ln |g|)(9z) 0iSy 0.25)

v,nviz

— O, FY — dyw, - VSY, + dywg - VS, — %azsk“ 92 (In |g)),
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0,0iSp n + (wy - V)OS, — (wp - V)9 Sy,, — ¢ <azz + %[L(ln |g|)8z) 9iShn

(9.29)
— O,EY — duw, - VSY,, + dwp - VSY, — gazsgnafz (In|g]).
We also add and subtract these two equations.
1
0,0:(S), + SE.) + (wo —wp) - V)0i(Sy,, + SE.,.) — ¢ <azz + 5az(ha |g|)8z> 9i(Sy  + SB.n)
(9.30)
= 0,(Fy) + BY) + (Oywp — diw,) - V(S + S5 ,,) — %az(St“,n +S5.,)07. (Ing]),
1
001(SL, ~ SB) + (w0, + wn) - V)OS, — 55, — ¢ (0: + 30.nlg0. ) (S, - S,
(9.31)

= Oi(FY — EY) = (Oawp +0w,) - V(SY, — S§.,) = 20-(S),, — S )92 (In |g)).

Maximal principle yields
10,S% 0+ Sh) )= < 12 + S5Ol + [ (10F + B
+ (@rwp = w,) - V(SY, + S )l +£10:(SY, + S )02 () 1~ )
< 10STn Ol + 15Ol + | (10 FY 1 + 105 o~
Qs — Biw) - V(5K + 85 im + oA o) (1052, = + 10:5 1))
< 10553.(0)l| L= + 1|8:SE 1 (0) || e + /Ot (||3iFﬁP||L°° + |0y || L=

+ [(@ws = ws) - V(S + S5 )1 + Amoc(s)),
(9.32)

10:(8%,, = S5Ol < 105, — S5)O) [~ + / t (1.5 = EX) o
+ @wp + Bws) - V(SE, = S o +0-(SY, — S )% (ng]) - )
< 0:8Y Ol + 0:5% (0= + / t (10:FY oo+ 10:E 12
+ [ (@wp + dw,) - V(SY,, = S )| + EA%, [Bls,0) (0=l + 1055 ll1~) )

t
<105y, (0) || Lo + [10:S 5 ,, (0) ]| Loe +/O (||3iFf||L°° + [|0: B || oo

+ [(@rwp + Bw,) - V(SE, = SE )l + Amoc(s) ).
(9.33)

We estimate high order terms in the RHS.
D) 0w, - VS, || L estimate.

9w, - VSq‘;I},n”L"O < ”wvHLOOHS;P,n”Loo + ||aiwv,38zS$n||L°° < Apoo(t) + ||8iwv738z81\;1j,n”11°°-

Note that,
w’” = (D®(t,y,0))" (v° = (0,9:h)),

and

(SIS
—_

— (¥ - N = 8;h) =0,
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by boundary condition. So d;w, 3 also vanishes on the boundary since i = 1,2. Then we get the estimate of the last
term of above,

z
1—

1—=2
||8iwv,33z53n||mo < 2 OiWy 3

1—
z (0 + |8zaiwv)3|Loo

z z,loc

1—2
0.5l < 100 1S 1

<l iz 185 100 < 10:0iw0 3]l Lo 1S3 0 100 (9.34)

1
<A (2l + lollz2 ) < A8
0

Hence

||(9in . VSEnHLOO S Am,oo(t)-
Similarly, we get

(| Diw, - ng,nHL“’ < Am,OO(t)'
II) ||O;wp - ngﬁnnm estimate.

18iwp - VSE ol < lwll1,00llSE nll1,00 + 10w 30:55 nll Lo < Amoo(t) + 0wp 30:55 ol L~

Similar as I), w% = 0, since B vanish on the boundary, so

wl = (DV(t,y,0))"(B") = 0.
Using zero boundary value property of d;w’%, we get

10iwp - VSE pllnee < Amoo(t).
and similarly,

||(9in . VS;IthLOO S Am,oo(t)'
1) ||0;FY | e estimate.

81F7;I] = 81 (HbFSxIlb) + &-Ff’l + (‘?Z'F'T\LII72 + 81-F,\LI"3,
1Y Hloos 15200 < Amoo(),
||F7;P’2||l,oo < eAmoo(t) (157 113,00 + [Vl 4,00) -
Considering 0; (HbFSx nb), we get
1EY 00 < Amyoo(t) (14 €183 l13,00 + €llvllaco + T ((D¥)?q) n°[l1,00)
[T* (D)%) n° 1,00 < Ao (IIVG" 2,00 + V4" l2.00) < Ao (1+¢]ISPV™])).

Hence,
13 1,00 < Mmoo (t) (L]l Shlls,00 +€lv]la,c0 + €l VV™) -
IV) |0;E¥ ||~ estimate.
8ZE3 =0; (HbEsx Ilb) + 81-E,'f’1 + 81-E7‘f*2 + (%Eg’g,
1ER  100s 1B [11,00 < Amoo(t),
1B 21,00 < Mmoo (t) (157 13,00 + [1Bla,0) -
Considering 0; (Hbng nb) (These is no terms like F},, so there is no terms of pressure), we get simply
1B 100 < Am,oo(8) (1 +€ll S 13,00 + €l Blla,oo) -
Combining above results of I) ~ I'V') above, we get

10:(S3rn + SB n) @z < 1087, (0)[[ L + [10:S5 , (0)]| 2

t (9.35)
+ / Am,oo(s) (L4 VY™ + ]IS ls,00 + €187 ll3,00 + llvlla,00 + [l Blla,o0)
0
10:(Sy = SE )OIz < 110:8y, (0|2 + 055 1, (0)] £
¢ 5 (9.36)
+ / Am,oo(s) (1 + el VY™ +ellSplls,00 + €llSy 13,00 + €llvlla,00 + [l Bllaso) -
0
Therefore, we get
19S5 (W)l L2 105 B ()]l Lo < 11038y (0)l| 2= + 10:S 1, (0)] Lo
(9.37)

t
+/ Am,oo(s) (L4 VV™ || +ellSpll3,00 +ll Sy 13,00 + €llvllao0 + €l Blla,co) -
0
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2) When ¢ = 3, we apply Z3 = ﬁ@z. commutator between Zs3,c0,. should be treated carefully. It is convenient to

eliminate €09, (In |g|)0, in modified laplacian. This is done by defining,
pult . 2) = 91757, = lg| FTI°Smt,

Lo R (9.38)
pB(t,y,2) = 9|7 Sp , = 19| TI"Spn”.
Since these solve,
Bipo + wy -V, —wp - Vpg — €0.py = 9|1 (EY + Fy) == H,, (9.39)
where p p
v 1 B 1
Fy = I (wv'v_5822)|g|4+ T (wB-V)|g|4,
lg]2 lg]2
and
1
Opp +wy - Vpp —wp - Vp, —0..pp = gl (B, + Ey) := Ha, (9.40)
where p )
B 1 v 1
Ey:=— (wy -V —€0..) 9|7 + I (wp - V) |g|7.
lg]2 lg]2
We treat p, instead of Z3S), (same for B) since we have equivalency
Z3S1\)Pn L < AO Pull1,005 Pul|1,00 < AO Sq‘;lln 1,005
1235 0.nll [y [y 1Sl (0.41)

12585 nllL= < Aollpslliee:  l10Bl100 < AollSE nll1,c0-

So we get equivalent relation between [|S)Y,,||1,00 and [|py||1,00. This is same for B. Note that p,, pp are also zero on the
boundary z = 0. The following is Lemma 9.6 in [I].

Lemma 9.6. For smooth function p,
Op+w-Vp=e0,.p+H, (9.42)

where ws vanishes on the boundary. Assume p and H are compactly supported in z, then we have,

t
1Zip(@)[ = < [ Zipoll Lo + [lpoll Lo +/O ((lwll g2 4+ 10zzwsll Lo )([[pll1,00 + [lplla) + 1Hl1,00) 7= 1,2,3.

By adding and subtracting two p equations, we have
Oi(pv + pB) + (wy —wg) - V(py + pB) — €022(pv + pB) = H1 + Ha, (9.43)

0i(pv — pB) + (wy +wB) - V(py — pB) — €0.2(py — pB) = H1 — Ha. (9.44)
Using Lemma [0.6]
1 Z3(po + pB)(t)|| Lo < | Z3(pw + pB)(0)| L + [[(po + pB)(0)|| L

t
T / (o = wsll g2~ + 11022 (w0 = wi)all ) (9o + P8l + oo+ o5l (9.45)

a0 + [Hall1.00)

1Z3(po — pB) ()|l L= < 1| Z3(py — pB)(0)|l Lo + [[(pv — pB)(0)| Lo
t
+/0 ((Ilwv +wBl| g2 + 1|02z (wy + wB)sllL=)(lpo — pBlI1,00 + [lPv — pPB4) (9.46)

11,00 + [l ).

We estimate terms on the RHS of ([@43]) and (@.44).
I) [[H1ll1,000 [|[H1l]l2,00 estimates.
#1100 < IEX 100 + [ Fyllioe and  [[Hall1,00 < [|EX 1,00 + [ Egll1,00-
We already estimated || F)Y ||1 0o, [|EY||1.00 above. So,
[H1ll1,00 < Am,oo(t) (14 [[SPV™ | + &[S ]l3,00 + €l|v]la,00) »
[Hall1,00 < Am,oo(t) (1 +€llS7 13,00 + €l Blla,co) -

ID) |lpulla, ||pBlla estimates.

1
loulls < A (— hle + ||s§{n||4> < A oot),

1
ol <A (oo bl + 185 0l ) < Anos(0).
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M) ||wy|| g2, ||wB|| g2 estimates. From definition,

[wylg2e, [[wB | E20e < A oo(t)-

IV) [|0z2wy 3| Lo, [|022wB 3|1 estimates. It looks that this term has two normal derivatives. First,

102 (DY 0,0 1 < & (M + O4hla ) < A0
Main part is third component,
102 (XDY ' o(t, @' 0 W), || o
Key point is that this is bounded by term with (DW~1)°,
1022 (XD~ 0(t, @1 0 ), [[Le < X0z (DD(t,y,0)) ot @71 o W), [ + A oo(t),
< [|x0z2 (0(t, @71 0 ¥) - 0°) [ + Ao (t),

where we used ([@37). We write v(t, ! o W) = u(t, V) := u¥(t,y, z) ,then using divergence free condition of u, we can
change 1-normal derivative to tangential derivative so that 9., — ;. to be controlled by A, . At result, from [I],

||6zzwv,3||L°°7 ||azsz,3||L°° S Am,oo(t)

So we get the estimates for || Z3(py + pB)lL=, | Z3(pv — pB)||L> in the same form.

t
1Z3(pv + pB)l L, [1Z3(po — pB)IlL> < || Z3(p0 + pB)(0)]| Lo~ +/ Am,oo(S)(l +11pull1.00 + 181,00
0

(9.47)
+elSPV™| +ellSnlls.co + ellvllace + el Sy 300 + €||B||4,oo)a
with
1Z3(pv + pB)(0)[[ e < Ao ([[0(0)[| 2. + [[B(O)]| 200 -
Using same technique again, we get the same estimates for each ||Z3py||n, || Z3pB| L.
t
1Zapu @) 1 Zap @)z~ < Aa(lo@) 2o + [ BOlp2oe) + [ Amocs) (14 Il + ol
0 (9.48)
+el|SPV™| + ellShlls.00 +llvlla,00 +ellS7 13,00 + €||B||4,oo)-
3) We now know that ||ZiS(\I;7B))n||Loo estimate, and || Z3py, B||L. Moreover, we have equivalent relation,
po.B ~ Sy ~ ST,
with help of
1 m m v
A (S B+ 1822+ 182 s + 1 )
Finally we get
1ZS5 @)z, 1258y (t)llze < AO(HU(O)HE%’O + ”B(O)HE?’OO)
1 m m v
8 (VP B+ 12 + 152 s + 1
) (9.49)
b [ B () (14 181+ 152
0
+e YV +ellShlls,o + €llvllaco + €ll Sy lls,00 + €||B||4,oo)-
|
From zero and first order estimates, we get an estimate for |[SYZ||; .
Proposition 9.7. We have the following estimates for ||S¥|1.00 and ||SZ1 0.
ISR cor 157 DI 0 < Ao (1S5 O 0 + 15 ()17 o)
1 m m v
8 (VP4 1B+ 122 + 15 lna + 81
(9.50)

t t
+140) [ Aty [ (IS8R oo+ 1521

+eIVV™2 + e VB2 + [ VSt s + el VSEII s )-
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Proof. By Proposition [@.5 and (@3],

1S5 Oll1.00, 157 O)l1.00 < Ao ([0(0)l] g2 + [|B(O)l| p2.o)
1 m m v
# 8 (a4 1B+ 182 e + 15 e + 1l
t (9.51)
+1+8) [ Amon(o) (14 13100 + 18200
0
+ el VY™ + €l1Stla.c0 + ellvllace + £l SE g0 + €l Blla,oo)-
We estimate £||S2|3.00, €[|V]|4.005 €I1SE|3.00, and e[| B|4,00- For £[|S?]3.00 and &||SZ||3 o0, by embedding,
VElSilIz00 < Amoo(t) + VEIVV™ + Ve VS, m—2,
Vel 13,00 < Mmoo (t) + VEIIVB™ | + VE[VS [|m—2-
For €]|v]|4,00 and || B||4,005
Velvllaee < Amoo(t) + VE[VV™,
Vel Bllaoc < Amoo(t) + VE[VB™.
By using above 4 estimates and Young’s inequality, we get the result. g
9.3. 2||0.S || L~ s /2]|0-S2 || L~ estimates.
Proposition 9.8. We have the estimate for \/2||0,S%| 1 and \/2||0.S2|| 1,
¢
elldzpulltee, €llOzppllie < Am,oo(0) + 2/0 (EIVV™I? + el VB™ | + ellVShllm o + +el VST 17, -2)
(9.52)

" Anoo(8)
o vV t—T
Proof. This estimate corresponds to estimate of v/£]|0,,v||Le. Our strategy is to derive the estimate for \/2]|0,py 5| L=,
because, for both v, B,

+ (1 + 16V1) dr.

9.5 = Hb%SX(t, &' o W)n.
We can apply Lemma 03] so we get similar control,
0:57 11,00 < Aol|0-IT"SX(t, &' o U)n’|
Then using |11 — I1°| + [n — n®| = O(2),
1025 111,00 < Ao ([10:5n11,00 + [|V]|2,00) -
What we need is inverse argument. since the map 7 in Lemma B3] conserves boundary,

HazSn| Lo < Ao (HazSg”l,oo + ||U|

1,00

2,00) )

and

10-pl1,00 = 110 (JgI* 1157 0") 1.
On the right hand side, 9, hit |g| and S¥ and we have,
HazSg”l,oo < Ao([19:p]11,00)-

Hence, we get the control what we expected for both v and B.
\/gHazSnHl,oo < Ao (\/gHazval,oo + HU”Q,OO) )
(9.53)
\/gHazSnHl,oo S AO (\/gHazpBHl,oo + HB”Q,OO) .
As we know, p,, pp solve
Oi(pv + pB) + (wy —wg) - V(py + pB) — €022(pv + pB) = H1 + Ha,
0t(pv — pB) + (wy +wB) - V(py — pB) — €0.2(py — pB) = H1 — Ha.

This is heat equation with respect to z-direction, with zero boundary data on z = 0. We use heat kernel,

1 (z==2)2 (=422
G(t,y,z) = i (e e m )
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Using initial data po and source (H; + Hz) — (wy, — wp) - V(p, + pB), we get

Ved: (pu + pB)(t, y, 2 / VEd.G(t, 2,2 )poly, 2)dz'
(9.54)

t 0
+/ / Ved,G(t — 1,2,2 ) {H1 + Ha — (wy, —wg) - V(py + pB)} (1,y,2')dzdr.
0 Joo
Since G has a gaussian form, we get
Vell0z(po + pB) ()|l < VEl|02(py + pB)(0)| L~
— — (||H1 + Ha|lL> v — - V(pw w)d
== | = U + el + s = w5) - Vo, + po)lae)dr

I) Using previous estimates for ||H1]/1,00 and ||H2

[Hill1,00 < Amoo(t) (1+€[ISPV™]| + 2[5,
HH2||1,<>O < Am,OO(t) (1 + EHSE

) )

).

We should control ¢||SY ellv]l3,00, €[1SE | 2,00, and || B||3,00-

lIS3l2.00 < EIVSLIZ ST < A oo (e TSEIE, s,
1181000 < eI VSZIF1SE s < Am ool VSE|

m—2

1 1
eflvllzoo <ellVollf[[ollf < Am,oo(®) (L+[[VV™]),

<el|VBIIBlZ < Amoo(t) (L+[[VB™]]).

IT) We have,
\/gHazpv(O)HL“’ < Am,OO(O)v \/gHazpB(O)HL“’ < Am,OO(O)-

III) Using the fact that w is zero on the boundary, we give 9, to w and tame the second term into conormal regularity
not the 0, regularity.

< Mmoo (1):

[(wo —wg) - V(pv + pB)[L> < |lwo — wB| Erellpy
Hence, similar as coupled equations,

VEl0:(pv + pB)(®)llL>e; VENO:(pv — pB)(B)l|Loe < Mmoo (0)

tAmOO()
0 \/

Therefore, similar as before,

\/gHasz(t)HLw, \/gHazpB(t)”LOO < Am,oo(o)
A
\/_

Now we square these inequalities. Main stuff is squaring the last term of these inequalities. There are two cases. First,
when we product two different terms we can use young’s inequality to get the terms like e fot [[VV™||dr, what we want.
When we squre this terms, we should be careful, because if we use Holder’s inequality for L? — L? then we may get
terms like fot é’_"—j;;dr. This is bad, since it blows up near zero. So we use L*L*L? Holder inequality to get

() triwsaihoanr) = () IS ﬁ@
: (%)(/nvsn,n)(/ﬁ)

t A4 B ¢ , A
< = vSy 4¢7.
— 0 \/m </O H n||m2>
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2 (L4 9VE + el VB™ 1 + el V8Ll + 2V SE

+

- (9.56)
(14 00V 1F + | TB™1% + 2| VS35 o +elIVSEIIE, s ) dr




Now we can use Young’s inequality to get the terms what we want. We skip other terms, since they are nearly same.
Finally we get,

t
ellOzpulloe, €lldzpploe < Am,oo(0) + 2/0 (VY2 + el VB™ | + el VSalI7 s + +ell VS [17-2)

; Ao (5) (9.57)
+(1+16V71) i ﬁdr.
0
9.4. fg VEIIVZ0][1,005 fg VE||V2B|1,0 estimates. We need estimates of fot VEIIV20][1 00, fot VE|IV2B|1  later.
Lemma 9.9. Let m > 6 and supjg ) Am,oc(t) < M. Then
VE [ 10t < AQDG + 100V 4 [ TV + VB 4 VSUE, o+ IVSEIE ). (959)

This is same for fg V0., B

1,00
Proof. 1t is similar as Proposition One more conormal derivative order changes nearly nothing, since our m is
sufficiently large. Integration for ¢ changes \/% into v/%. O

Proposition 9.10. Under the same assumption, we get the following.

t t t
Ve / IV20]100, VE / IV2Blls o < AM)(1 + £)? <1+a / <|vvm|2+|vzsm||2+||vsm2+||vs§|z2>>.
0 0 0

(9.59)
Proof. First, estimate of /2 fg [IVvl2,00 is easy, because we already know,
IVll2,00 < Mmoo (8)([157]]2,00 + [[0]l3,00)-
Therefore, the following is easy.
VE [ 190 < [ (o) + [0V 19S5 ).
Next, with help of Lemma [0.9] we have everything we need to finish the proof. We skip the detail. O

10. VORTICITY ESTIMATE

We could not get estimate for ||0,v]] gm-1 in previous sections. Instead m — 2 was optimal. However, if we weaken

L to LY=? we may get the m — 1 regularity. We define
wy =V xv, w, =(Vxu)(t,®),

wp:=V¥x B, wp=(VxH)t®). (10-1)
Since
Wy XN = %(D“"n — (D¥v)'n) = S¥vn — (D%v)'n, (10.2)
we get
Wy XN = %&Lu —g¥ (8J—v . n)(?yi.
By using
Oy = 1 "919‘;'2; 1926 5 o 010000 — Dapidow, (10.3)
we get the following estimate. Estimate for B is exactly same as v.
1271020l < Mmoo () [Vl + [l — 3 + wollm—1),
(10.4)

12710 BI| < Mmoo (Y (1Bllm + Bl g + w5 ]lm1).

These imply that we suffice to control ||wy||m—1 and ||wg||m—1 to control ||0,v]|m—1 and ||0,B||m—1, respectively. Applying
V¥#x Kkill pressure term in Navier-Stokes equation, therefore we get similar structure from two main PDEs.

O wy + (v-V)w, — (B-V9)wp — (wy - VP)v + (wp - VF)B = e Afw,,

Ofwp+ (v-V¥)wp — (B - V9w, — (wy - VP)B + (wp - V¥)v = eAfwp.
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Situation is quite different to .S, case. The reason we used S}, instead of J,v is that it is equivalent to 0,v and moreover,
it is zero boundary condition. For vorticity, we have

wxn=I(wxn)#0, on 0I5S,

in general. Moreover equation of w X n is more complicate than the equation of w. This means w X n has no advantage
than w. Thus we just use ||w]||m—1 directly. Applying Z< gives, (Jo| <m —1)

O Z%y + (v- V)2, — (B-V?)Zp — eA?Z%w, = F, (10.6)
where
F:=Z%w, V%) - Z%wp - V¥B) + (s,
Cs :=C§ +C% + C,
with
Cé = [Z%y] - Vyw, + [Z2°%,V,] 0w, = Céy + Céz,
C% = e[Z%, A¥]w,,
C3 = —[Z°B,] - Vyws + [2°, %]am =} +CL.
For wp,
o Z%p+ (v -V9)Zwp — (B-V?) 2%, —eAN?Z%wp = E, (10.7)
where
E :=Z%w, - V¥B) — Z*(wp - V%v) + Cs,
Cs:=Cs+C% +C§,
with

Ct = [Z2%0y] - Vywp + [Z2%,V;]0.wp = Cg, +C§,,

C% :=¢e[Z% A?)wp,

_ B-N ~ ~
C3 :=—[Z°B,] - V,w, + [2°, W]azwv =C3 +C3.

And for boundary data we use the following boundary estimate
IVu(-,0)[s < A([[vll1,00 + [Rl2,00)([0(; 0)s41 + [Als41),
from Lemma 5.5 in [I] to get
(Z%w,)°| < As,o0 () ([0, + [2lm), (10.8)
(Z°wp)"| < Moo (t)(|Blr, + [Alm)- (10.9)
Using Proposition [3.2]

(Z2w0)"] < Ao t) IV IV R + V7] + [l )
(2°wp)"| < Aooo(®) (IVB™IFIB™ 12+ B™ + [hlm)

and surely,

t t
Ve / (2w < Aeo(EVE / (VY™ V™) + V™12 + B2

. . (10.10)
\/5/0 (Z°wp)"|? < As,oo(t)\/E/O (VB HB™ |+ 1B™ % + |h[7,) -
Using Young’s inequality,
t t t
VE [Nz < e o [ el (4 )
t t t
VE [zewn)P << [IVBIP+ [ Nols) (IB7IP + IAE2).
0 0 0
We split
Z%, = wg‘)h + winh, Z%pg = w%)h + w%‘,mh,
and estimate each four terms on the right hand sides.
1) Wy ks W ,p SOlVe, non-homogeneous equation,
Of wypn + (V- V)i, = (B V2w, — eA%wy ), = F, (10.11)
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with initial and zero-boundary condition,

and

(@nn)" =0, (@i nn)e=o0 = wu(0),

Of Wi un + (v VO o — (B - VO oy — eAPWE ), = E,

'Unh

with initial and zero-boundary condition,

(w%,nh)b =0, (W%ynh)t:O = WB (O)

IT) Meanwhile, Wy hy WE solve, homogeneous equation,

ofwyp, + (v-VP)wy )y — (B-VP)wh ), —eA%wy), =0,

with zero initial and general boundary condition,

and

(wg )" = (Z%)", (wgp)i=o =0,

8fw%1h + (- V)i, — (B-VP)wy ), —eA¥wg ,, =0,

with zero initial and general boundary condition,

We state the energy estimates for these two vorticity terms. For non-homogeneous terms, we define

(W%,h)b = (Z°wp)’, (W5 n)t=0 = 0.

fomt2 = 3 el / IVem=1)2 = / SVl
0

la]<m—1 la]<m—1
Y P S I / Vw2 = / S Vel
Ia‘Sm—l ‘a|<m 1

For homogeneous terms, we define similarly

t
2= S fwal? / [Vem 2 = / IV a2,

la]<m—1 o] <m—1
t
o= Y tegal? [ Ivegsi= [ Y Ivepl
la]<m—1 0 o] <m—1

. . . o o o o
In following subsections, we estimate wy',,;,, Wg 5, Wy p,, and wi , since

ol = D 1Z2°%017 = > llwf +wil? < 2l 117 + 2lwp .
la]<m—1 o] <m—1

. . o o
10.1. Non-homogeneous estimate. We estimate wy', ;, wg -

Proposition 10.1. We have the following vorticity estimate for Wy -

||w'u nh ||2 + 25/ / |V¢wv nh |2d‘/td5 - 2/ / B VW wB nh wv nh d‘/tds

< Aol O)]° + / Amoe(s) (101 + 1B + el + 0l + 11 +<lhl, )

+s/ Mmoo (5) (IVSZI12 s + [VSE|I2 _,) ds

Proof. Using equation for Wy s (with dirichlet boundary condition) we get L? type energy estimate.

/|w'u nh|2d‘/t+a/ |V<pw'u nh|2d‘/t /(va)w% nh 'wgnhd‘/t :/F'w'gnhd‘/’f'
2dt S ’ ’ S ’

D 12wy - VZ0),

Simply we get

|Z%(wp - V¥B)|| estimates.

122wy - V2) I < Mmoo ®) (0t + [[ollm + bl )

12°(ws - VBl < Mmoo ®) (05 it + [ Bllm + hl,—y )
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D) | [ €3 - aVe

As like in S¥B estimate,
/ CE - w8 @Vi| < Ao (VEIVZw |l + wllm—1) (VEIV@ollm— + 1 + Mmoo (1Bl + VElRlry ) ) -
S

I10) ||C§y||7 ||C§y|| estimates.
This is also similar as previous S2'P estimate,

1€, I < Am.oo(t) (lwollm—1 + [Vl + [lm)
1€3, 1 < Mmoo (®) (lwnllim—1 + [1Bllm + |hlm) -

estimate.

IV) [|Cs I, [IC2_|| estimates.
This is the main part of proof. In S%Z section, |a| = m — 2 was optimal, since |h|m_% and ||v]|gm. Note that in pressure

estimate, if we use V¥ (v-V¥)v = V¥v : (V¥0)T then we could get 1 regularity for v. Nevertheless m —1 is not available
because of the worst h regularity term which come from ||[V¢”|| in Fs and Cs.. But now, since we consider vorticity,
|[Vg®| does not appear, so only the problem is |h|m_% in C's_. What we show here is that we can get § regularity of h

in fact. (We did not have to do same thing in Sy, section, since pressure generate |h|,,_1.)
To estimate Cg_, we should estimate terms like (with |y| +[8] <m — 1, |y[ <m —2)
1Z2°V.0. 20w, ||.

We write this as

~ 1 _ -
c;2° ( - Zv) ZaZVw,,

with |3 + 8] <m — 1, |3] < m — 2. Then using Lemma 8.4 in [I](variant of Hardy’s inequality when function is zero
at z =0),

< Amoe®([0lm + 3 fo- 0:2°N = 0.2°0¢ll,5 )

m=2 la|<m—1

—Zz

1
< Bonelt) (Jellcs + gy + [ 5220 N = 0.0

m—2

Last term is main term.

1—=2
z

If we brutely estimate this, then we get
10 ZNI| ~ [Vplm-141 ~ [lmi1 ~ [~lny 1,

so we loose % regularity. We treat this carefully. First, we should see that Zs does not lose regularity of h. From
definition of p(t,y,2z) = Az +n(t,y, 2),

()

—0- —0. (x(&)ﬁ(é“))‘ < ‘1%25 V(€2)

where y2 is 1 on By (0), which is bigger support than .
This is because, Vy has support on annular domain, B2(0) — B1(0). Above regularity means applying Z3 does not
reduce 1 regularity. So, as # 0 case is not harmful, which means,

o 0.2°N = 0.2°0u0 2 < Amoolt) (Il + 900y ) < Amioe(8) (1hluy + [0llm ) s 3 0.
When as =0,
V-0, ZN — 0,Z°0m = =010, (¢ %y 1 Zh) — 020, (Y, %y D2 Z“h) — 0, (Y %y O, ZVN) 1= Ta,

| Z31)| = < ‘X2(52)ﬁ‘ ,

where

"/Ajz = X(gZ)

So by inverse fourier transformation with respect to horizontal variable,
L _ry
va() = 5% (2).

Note that x is in Schwartz class, so x is also in Schwartz class. Moreover, when |z| < 1,

29.(2) = D% (2) = = 5% (1) + (V0 (¥) -y < Z+ e, (10.20)

For some function ¢ with compact suuport neat origin. This is because V is also in Schwartz class.
i) When z < —1,

ITallp2(snpeion) = ll—010: (D4, %, i) — 020, (D4, #, Bzh) — . (D™, #, 3y)|
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1 1
< Am,oo(t) ‘ 0. (ﬁ(Dawz) *y Vyh> + ‘ 0. (ﬁ(Dawz) *y (9th> .
z L2(SN[2]>1) z L2(SN[2]>1)
Since D, is also similar as 1., we get
1Tall L2(sniz1>1) < Amyoo(t) (0]l g2 + A1) - (10.21)

ii) When z > —1
To = =010, (V¥ %y O1ZYh) — 020, (Y %y O2Z%h) — Oy (1 *y OLZD)
= 000, (1, %y O ZR) — 050, (1, %y ZYh) — 0, (1. %y O, Z°h) + R,

where
R = (00 —v1)0. (¢, %y 01Z%h) + (V5 — v2)0, (1. %, D2 Zh) .
Using taylor expansion with respect to z, we get
IR[ < Am,oo(t)[2][0: (12 %y Z9Vyh)| < |Z5 (12 %y Z9Vyh)|.
Note that Z3 do nothing about regularity to 1., so
IR < Ao () ]y (10.22)
For first part in 7T,
— 000, (¢, %y D1 Z°h) — 30, (. %y D2 Zh) — D, (1, *, O Z°h)
=0, (Y2 #y (=021 Z%h — 0302 Z2%h — 9, Z°1))
0. [ ((68.0) = 0(60.0)0(y ~ 1) Zh(0.y)
s

+ (va(t,9/,0) = va(t,, 0) 0y — )82 2°h(t, ) ) dy.

By taylor expansion,

v—v)Zob(CE)|.

(v (t,y',0) — 0¥ (t,y,0))0:0:(y — y')| < |Vyvl| L~ -

So, for Vz € (0,1],

sup [0 / (vi(t, 3, 0) — vi(t, 1, 0)) = (y — ) 2 h(t, )
z€(0,1] oS
Ay o o
<9l s [ L ! y>z2d(y y)
ze(0,1] Joas | # Z Z

< IV, ol sup / P W)y < Amoolt).
2e(0,1] Jos

For the first term of 7,
| = k01270 = 0§0.2°R = 2Rl 1y = 1€ (R) = (V)" = 4l 13 < Ame(t) (Iollm + ],y )
thus
10 (¥2 #y (—08NZ%h — 0302 Z2%h — 0, ZP)) || < Ao (t) (||v||Em + |h|m,%) .
Finally we get
1Tall 2502121y < Amaoo(®) ([0l + [Rlm) -
Considering i) and ii), and a3 # 0,
1Cs, | < Am.oo(t) (lwollm—1 + [ 2 + [lm) (10.23)

For ||C%_||, we can do similar thing for B, since B is zero on the boundary, so control is better.

1C3, 1| < Mmoo (t) (lwnllm—1 + [ Bl + |hlm) - (10.24)
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Considering T) ~ IV),
t t
il + 2 [ [ 1o Pivids =2 [ [ (B9 0w dvids
' 0 Js ’ 0o Js ' ’
t
< Agflws (0] +/0 A ,oo(8) (||v||%m + 1Bl Em + llwollz 1 + lwsllz 1 + |, + Elhlfm%)

t
+0e [ (Il + IVenl, ) ds
0

For the last term,
\/g"vwv||m—2 S Am,oo (\/g||azzv||m—2 + \/g”azvnm—l) + Am,oolh|m_%

This gives, (by summing for all indices)
s L2 4 25/ / IVew L12aVids — 2/ / VAW, i, W LdVids

< Aol (0))17 + / Ao IIUIIEm 1 BlEom + llwolly + llws |7 + R[5, + €|hlfn+%)

te / Amoo(5) (IVSZ 2,y + [VSE|2,_,) ds

O
For wg . similarly we get,
Proposition 10.2. We have the following vorticity estimates for wi ),
|wp P+ 25/ / VoW CHPdVids + 2/ / VAW, i, W Lavids
< Aoflw 1 (O)]* + / Ao |v||Em Bl Em + lwolly + lwslly + 1Al +elhl2,, ) (10.25)
£ [ M) (19831210 + 95, ) ds
0
Proof. Using equation for wg ,;, (with dirichlet boundary condition) we get L? type energy estimate.
1d
331 | balaVire [ 10 P Ve |80 oty = [ Eewpud (1020

I) ||Z%wy - VZB)||, |Z%(wp - V¥v)|| estimates.
Simply we get

122 (@, - V2B < Ame(t) (Ilwellm—1 + 1Bl + [y )
122 (@ws - T2 < Amoo(®) (Jwsllm—1 + 0]l + Ry ) -

1) ’fs C% - wi ,,dV;| estimate.

As like in S¥B estimate,
[ G| < Do (VEIVZuSs il + [lnmr) (VEIT 2 + [t + Ao () (Bl + VEIBL1 1))
s

I1I) ||(f§y||7 ||@gy|| estimates.
This is also similar to previous SU7 estimate,

ICs, Il < Am.oo (Iwpllm—1 + [0llm + [2lm) ,
I1C3, I < Ao (lwollm—1 + | Bllm + [Alm) -

IV) [ICL_|I, IC2_|| estimates.
We skip the detail, since it is nearly same as previous Proposition [[0.1}

ICs, I < Mmoo (lwollm—1 + [|Bll g + |hlm) (10.27)
I1C3, 1 < Mmoo (lwpllm—1 + [vllEn + [hlm) - (10.28)
Hence as like previous Proposition, we get the result. g

Summing above two Propositions [[0.1] and [[0.2], we get the following.
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Proposition 10.3. Non-homogeneous part estimate.
o + g @1 e [ [ veaptpavias e [ [ wewg)pavis
< Do (I35 O + 1B AOI) +& [ Auoe (197 1Eucs + 19S21312) ds (10.29)

t
+ / Mmoo (1015 + 1Bl + lwolZ s + lwpliZy + b2 + elbl2, .y ) ds.

Hence, w,; has zero boundary condition, we get the L™ type energy estimate. Main difficulty of this section is how
to estimate wj;, which has nonzero boundary condition. In this case, we get only L} type estimate.

10.2. Homogeneous estimate. In this section, we estimate wy j,, wp j, those have nonzero boundary condition as we
see in (I0.I3)) and ([IO.I4)). We define two maps Y; (i = 1,2),

Vi:Q =R 0Yi(tx) = (u— H)(tYi(t,z)), Yi(0,2) =z, (10.30)
Y21 Q=R 9Ya(t,2) = (u+ H)(t, Ya(t,2)), Ya(0,2) = . '

Let us compare image of these two maps. Images Y71(¢,Q) and Ya(¢,) are defined only by boundary values of vector
fields, (u + H)®. If we write boundary graphs as hy and hsg, then

hia(t) := h12(0) + /t(u + H)" N = h(0) + /t u’-N =h(t), H" =0, on 0. (10.31)
Now, we have equations for Wy py W, h,o i
O (wop +wh )+ (v—B)- VP (wy ), +wi ) — AP (wy ) +wi ) =0, (10.32)
with initial and boundary condition,
(Wi +wh )" = (Z°%0)" +(Z2°wp)", (Wi +wi p)i=o = 0.
And,
Of (wyp —wip) + (v+ B) - VA(wy ), — wh ) — A% (wy), —wi ) =0, (10.33)
with initial and boundary condition,
(wg,h - W%’,h)b = (Zawv)b - (ZawB)ba (wg,h - w%,h)t:f) =0.
([I032) can be transformed into
O (g p +wpp) o N+ ((v-B)od ')V (wgp +wp)o P —eA (wgp +whp)o ‘Irl) =0,

10.34
O (Wi +whp)o® ) +(u—H) -V (Wi, +wh,)o® ) —eA (W), +whp)o® ™) =0. ( )
u + H case is also similar, so we get,
1
O (g ) +wh )o@ oY) — sa—&- (ai;0; (W), +wip) 0@ oY1) =0,
10 (10.35)
O (WS ) —wh )o@ 1oYs) — Eboa (0305 (wo ), —whp) 0@ T 0Ys)) =
where Y7 5 are defined in (I0.30) and,
= [J3|7 == |det VY1 (0,2)[2, by := [J3|2 := | det VY5(0,)|2.
Matrix a;; and b;; are defined by
aij =|J§|2 P!, Py =0Y1-0;V (10.36)

bij = 2|2 P Py = 0,y - 0,Ys.

Note that in above equations (I0.34]), we use two different transformation ® o Y7 and ® o Y>. However, in these two
transforms, we can use same @, since image of Y7 and Y5 are identical by (I03T).

Now we define,
(wip £wh ) 0 @7Ho X) i= W,
and these solve,
8tW+ — Eaial (aijajWJr) = O,
10 (10.37)
(%VV, - 5%81 (blj(?JWf) =0
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Multiplying decaying factor, we define,

QY =e "Wy, Q% =W, (10.38)
We get
a0 (02 + Q%) — €05 (a:;0,97) =0,  QF[mpe = 7" (Wi ) +whp) 0 ® "o X) (t,y, ho(y)), (10.39)
and similarly,
bo (0% +70%) —20; (b;0;Q%) =0, Q%|omp, =€ " (WS ) —wh ) 0 @71 o X) (t,y, ho(y)). (10.40)

We will use Theorem 10.6 in [I]. To do this we should first show that Y7, Ys satisfy similar property as Lemma 10.5 in
.
Lemma 10.4. Let us assume that for T € [0,T¢], T¢ < 1, there exist M > 0 such that the following holds.
T
amAﬁm@)+/m(ﬂvvw2+dW%ﬂF+fﬂV$mi+ﬂVSfﬁ)SA[ (10.41)
[0,7] 0
Under above assumption, for t € [0,T] and i = 1,2 we have the following estimates.
|J7f(t7 x)lwl,oo + |1/J1(t7x)|wl,oo S A07
IVYi(t)] oo + 10:VYi(0)] oo < Ao,
VY () 1,00 + [0:VYi(8) 1,00 < MMM,
VEV3Yi] e + VE 092V, < A + 1262001,

(10.42)

where
Ji(t,z) = |det VY;(t, )|, 1=1,2.

Proof. 1) First one comes from the fact that J;(t,z) = J;(0,z), since u, H are both divergence free.
2) Secondly,
oDY; = D(v ¥ B)D® ' DY;.

Taking L and using Gronwall’s inequality,
[VYi(t, ) o < Age M,
Again, taking L°° to above chain rule and using the result, we get
0 VYi(t, )| oo < AgelPDE,

These two inequalities give second result.
3) We take conormal derivative Z to above chain rule,

o Z(DY;) = ZD(v ¥ B)D® ' DY; + D(v ¥ B)ZD® ' DY; + D(v ¥ B)D® ' ZDY;.
Now we use above results 1) and 2), and Gronwall’s inequality to get
IVYi(t, Yo < MMM,
Again using conormally differentiated chain rule,
[0:VYi(t, )1 < AM)NDE,
4) We take 1/eV to chain rule, to get
Ved; D?Y; = \/eD*(v F B)D® ' DY; 4+ \/eD(v ¥ B)D*® ' DY; 4+ \/eD(v ¥ B)D® ' D?Y;.

We use Proposition [@.10] and Gronwall’s inequality, then

VEIT ¥l £ AGO0 020 A0 [V

VE[V2Y| o < A1+ 1)2eAE

Using this result, chain rule, and Gronwall’s inequality, estimate for 9, VY;|;=1,2 are also same.

VEIOTPYi] . < AL 412000

We are ready to apply Theorem 10.6 in [I].
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Theorem 10.5. There exist o which depends on M defined by [I041) such that for v > v, solution of (I.39) and
satisfy the following estimate, respectively.

T
1927 s 0y < AODVE [ 02 (10.43)
Proof. From Lemma [[0.4] we can apply Theorem 10.6 in [I] directly for both (I0.39) and (I0.40). O
Now we state estimate for homogeneous part.
Proposition 10.6. Under the same assumption in[I04) we get, for |a| <m —1,

T
/O (I9v™ 2 + 1987 ). (10.44)

T
Bl faoginy < AOD [ (VI + 1877+ 1) + 5

HwihHi%O,T;L?) J 2

Proof. We define,
2
1712 i {1 Pfl,pp oy PP =1 o [0,7)x S},

Pan ;L2)

By sobolev embedding,

T
HQiHi‘l(o,T;m) <C HQI_IHE%(O,T;U) < A(M)\/E/O e ((wip Ewpp) o o X)z'

For general sobolev embedding, C' may blow up as T" — 0. But here, C' is independent to 7. This is because we use
sobolev embedding on R;. We can change variable to function on S using ® and estimate J; of Lemma [I0.4] to get

o+ gy < AOOVE [ o) (2wl
(10.45)
<8z [ (I + lzmn ).
We apply ([I0I0) for boundary integrals to finish the proof. O
11. UNIFORM ESTIMATE
We prove uniform energy estimate for ¢ = A. For sufficiently large m > 6, let initial data satisfy
Zin(0) = llvol g + [ Bollgm + |holm + vVElholmsy + llvoll g2 + (| Boll 2.0 (1L.1)

+ Vel|022v0]| Lo + VE[|022Bol| L < 0.

By the assumption of Theorem[I.6] for smoothed data (UO , By 9 hg’[s), we have local existence time T75°. And VT < T,
we have additional regularity by parabolic estimate,

Nowl) = s ([0 + 1B + O, + <0
o) e + 1B e + ell0eat (D) e + 202 B0
o (T ] ——
e / IVl + / IVBI2, += / Vol 5 +e [ VoI, < oo,

where (v, B, h) is solution for regularized initial data (v’ ,Bg 5, h 5) Without loss of generality, we can assume that
(ZZI) holds by choosing sufficiently small 7% < 1. From section 7, section 8, and section 9, we know that it is
equivalent to control

Em(T) = sup (IIVm( WP+ 1B + (A, + elh ()17, 44

(11.2)

1S Ol + 157 (0)F2.0 +l10:S, (D170 + 6||3z55(t)||%m)

) ) (11.3)
+ (HWUHLAL([Q’T];H?;*U + ||wB||L4([O,T];HZ§71))
T T
o A A S TRy (T
0 0
instead of N, (T). We know that
1 1
Nop(T) € A Ea(T)). E0(T) < A= N0 (D)), (1L4)
0 0



where second inequality holds by product estimates. When two parameter R and ¢q satisfy % << R, we define Ty 0 as,
1

720 —sup {7 € 0.1] £,(0) < R bOlaoe < o 0.0 2 o0 9= 0o = o e 0TI (119
0

Now we combine our propositions and corollaries to get uniform energy estimate for both € and §. From Corollary
02 for T < T,
And from Corollary 0.59]
T
| VAl < A
0

Using (7.22)), (C.23), Proposition ([@.1), Lemma (3.9), Proposition [[0.3] and Proposition [[0.6 to obtain

1 T
En(T) < A Tn0)) + AT + AR) [ 10200071
0 0
Using Proposition again,
En(T) < A(Ci,zm(o)) + ARWVT, (11.6)
0

which is independent to both ¢ and §. Moreover, for Vi < T < Tf’5,
|h(t) 2,00 < [1(0)l2,00 + A(R)T,

0.0 1~ [ 090~ = 1- AR,
0 . (11.7)
0 — (026" (8) > g — (0947 s=0 — A(R) / (14 [(0:0:45)] )

> g~ (024")|-=0 = A(R)VE.

Note that above four inequalities in (IT.6]) and (IT7) are all (e, d)-independent inequalities. Hence, we can choose
proper R = A(Z,(0),]h|2,00) so that we can pick T, which is (g,0)-independent and for all T < Min(T,, T<°), four
inequalities in (ILH) are satisfied. Now we can send regularizing parameter 6 — 0, to get uniform time interval T
for initial data Z,,(0). This is possible because for each &, N, (T) is uniformly bounded in d so we can use strong
compactness.

12. UNIQUENESS

12.1. Uniqueness of Theorem In the previous section, we proved existence of viscous system (LI4). In this
subsection we prove uniqueness of the system. We suppose two solutions (v!, BY, ol ¢1), (v?, B2, 92, ¢?) with same initial
condition. We will perform L? energy estimate (zero order estimate) and use Gronwall’s inequality to show that L2
norm of differences are locally zero. We write

v° = vf — 05, B := B - BS, he = hi —hs, ¢ =¢ — g5
with initial condition ©(0) = B(0) = h(0) = 0. Let both solutions satisfy on [0, T¢],
NE(TS) < R, i=1,2.
By divergence free condition, V¥ - v =0, ¢ =1,2,
((?t +vg ;- Vy + ‘/Ziaz) vi + Vg —eA¥iv; = (B - V9)B,.

Then we have equation about (¢, B%, h¢,¢). First for Navier-Stokes,

(0 + 05y - Vy + VED.) 0 + VO — e AP — (BS - PIV)BE = F, (12.1)
where
1 1 .
Fim (05 = 05) - 05 + (Vs = Va0 — 5 — 5 ) (P V4R)
+ L PPy VE) e[~ - L)V (BVeS) + eV - ((Bs — E1)VS)
gy 2T .05 0.5 T g g 2o

+ (B P;V)B; + (Bf - (P — P3)V)Bs.
For Faraday’s law, similarly as above, we have

(O +v5, - Vy+VE,0.) B —eA¥*B° — (B - P{V)t° = E, (12.2)
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where

1 1
E = (1};)2 — 1};)1) . vyBS + ( ;72 - Vf)l)ang + e (f@; - 8294;?) v . (E1VB§)
+ aa (ng - ((By — E1)VBS) + (B - PSV)vs + (B - (Py — Py)V)vs.
For divergence-free condition,
_ 1 1 1
Ve gt = — <m - f@i) V- (Pl’l);) — @V . ((PQ - Pl)'US), same for B. (123)
For Kinematic boundary condition,
oh® — (UE)Z,l -Vyh + ((’Ui,l)b - (U§,2)b) = ((U;z)b - (U;l)b) - Vyhs. (12.4)
Continuity of stress tensor condition becomes,
gny — 2¢ (S710°) ny — gh® = 2 ((S¥* — S¥2)v5) n; + 22 (S?205) (n; — ng). (12.5)

Using ([Z1)-([235), we get L2- energy estimate. Details are nearly same as high order estimate which was shown
throughout this paper. (Since initial condition is zero, no initial term appear on right hand side)

t
1o (0)12. + | B )] + R ()2, +g/0 (I9e 12 + [V 3|12, ds
(12.6)

t
_ 2 = 2 = 2 _ _
<A [ (19N + 1B+ s + 19T s [70s)) .
Using pressure estimate, we also get,

IV@llLisy < AR) (18| /2 + 10 a5y + 1Bl s)) -
Now with help of Proposition 3.9 we get the result.

t
15572 + | B0l + (1) + VE B (O)] e+ / (1o 32 + [V B#3. ) ds
(12.7)

<AR) [ (19 N+ 1B O+ [ ) ds.

In above equations for (o5, B%, h®, ), right hand side does not have low order than L? energy. However we have already
uniform bound of high-order energy, so we can collect high order terms into A(R).

12.2. Uniqueness of Theorem [I.7l For two solutions (v1, B1,h1,q1), (v2,, Ba, ha,g2) with same initial condition.
Suppose,
sup (oillm + 10:01 sy + 10:08 o + 1 Bill + 10:Billyyy + 10:Billy oo + |hilm) S B, i=1,2. (128)
Define © := v; — vy, B := By — By, h:= hy — hy, §:= q1 — ¢2 and we write equation of (7, h, ), as before. Euler
equation becomes, -
(O +vy1-Vy+V.10:) 0+ V9 q— (B, - V?)B =F', (12.9)
where
1 1

F' = (vy2 —vy1) Vyva+ (Vio — V. 1)0,02 — <r(p2 - oo

) (PE%a) + 5 (P2~ P Vo)

292
+(B-PyN)By + (By - (P{ — P;)V)Bs.
For Faraday’s law, similarly,
(&g + Vy,1 - Vy + ‘/;71(92) U — (Bl . Vsal)’lj = El, (1210)
where
E' = (vy2 —vy1)  Vyva + (Voo — V. 1)0,02 + (B - PyNV)vy + (By - (P} — P3)V)va.
For divergence-free condition, (same for B)

Vo= — <azl(p2 — 8:301) V- (Pivg) — 6Z1902V (P — Py)va). (12.11)
For Kinematic boundary condition,
Oph — vz)l -Vyh+ (’Ugl - ’1)22) =— (”2,2 - 0271) - Vyho. (12.12)
Continuity of stress tensor condition becomes simply,
qn; = gh. (12.13)
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By performing basic L?-estimate and pressure estimate,

lo®) 13 + | BOI[Z. + [AO)] 2 < AR) / (1) 30 + 1B 50 + [B(3) 53 ) . (12.14)

We should control [|v]|; on right hand side. But, since there are no dissipation on the left hand side, we cannot make
it absorbed. Instead, we use vorticity. Let’s define vorticity w, = V% x v, wg = V¥ x B (which is equivalent to
wy = (V xu)(t,®) and wg = (V x H)(t,®) ). We have (same for B),

1 1 g
Wy XN =g (D?vn — (D#v)"'n) = SPvn — (D¥v)'n = 50nu = g"” (0jv-m) Dy

Hence, it suffice to estimate w, instead of 0,v,
10-0ll s + 10:Bllx < AR) (lowllzz + lwsllzz + llols + Bl ) (12.15)
To estimate w (both for v, B), we use vorticity equation

L? energy estimates of 7, and wp are

I Ol + I @1 < AR [ (B + 156 ) + [ + 1B s + (o)) ds. (1217)

So we finish the proof.

13. INVISCID LIMIT

Proof for this section is exactly same as [I]. For interior, it is clear that we can just add B-related terms those
have same regularity as v. For boundary condition, since we have B = 0 on the boundary, definition of weak solution
makes sense also. At result, we get sequence (up to subsequence) (v°(t), B*(t), h*(t)), which converges to (v, B,h) in
weak L2(S) x L2?(S) x L?(R?). By Proposition 61} we have L? energy conservation, so this it converges in strong
L?(S) x L*(S) x L3(R?). L* follows from L? convergence, uniform bounds of energy, and anisotropic embedding
Proposition

14. APPENDIX

In appendix, we show well-posedness of the system (7). Full detail is given in [22], so we explain scheme of the
proof, instead of full detail.

14.1. Lagrangian coordinate and main statement. We use standard Lagrangian map X (¢,-) : £ — = and define
v(t,§) = u(t, X(t,§)) = u(t, v),
B(t,§) == H(t,X(t,§)) = H(t, ), (14.1)
q(t,€) == p(t, X(t,€)) = p(t, ).
)-

We should rewrite the system (7)) in terms of (v, B, q) and (¢, ¢
to ©Q, Sp. Then (1) and (L) can be rewritten in (¢,£) in €.

Let IIf be corresponding transform from (¢), Sp(t)

v —vOA,w+Vyqg=B-V,B in Qr,
—AA\,B=B-V,v, in Qr,
Ve -v=0, in Qr,
V,-B=0, in Qr, (14.2)
q—2vD,(v)n™ .n® = gh on Spr,
B=0, {SpU{R\Q}}x[0,T),
v(0) = ug, B(0) = Hy, Qx{t=0},

with compatibility conditions
V- vg=0, in €,
Vy-Byg=0, in
By =0, on {SpU{R3\Q}},
MWD, (v)n™ =0, on Sg,
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where Qr :=Q x [0,T), Spr := Sr x [0,T), and

FO = fOt, ) =T (¢, ),
vv = (vv,luvv 27 ) gv g(V1,V2,V3)

t

G =g = <8a—)?) o (I+/Ot(Dv)dT) 7 (14.4)

1
D, (f) == 5((Vol) + (Vo f)).
We will solve the system ([[42)) with (I43]) in Sobolev-Slobodetskii, fractional sobolev space.

Definition 14.1. By W.(Q), we define,
lallfyyy = D ID%ullZaq) + llullfy g, (14.5)
0<]a| <l

where

[Jul|? : Z\al D)2 iflE€Z,
Vvl ! u(x “u .
WD T S gy Sy o PR i — )+ {1} ¢ Z,0 < 1< 1.

Definition 14.2. We also define the anisotropic space WQ’ /2 (Qr) as

ull = [lull} o+l

ll/Z(Q ) Wio(Qr OL/Q(QT)
(14.6)
= [ Mgyt + [ ey
Definition 14.3. By H.ly’l/2(QT),*y >0, we define,
HU’HE’ZYJ/?(Q )’ ||u||HlU( Qr) + ||u||i]2’l/2(QT)7 (14‘7)
where
T
oy = [ € ) g
(7
e A LT (145)
T oo k k 2
0 0 dr
—2t
+/0 € Wdt/o <§> ug(t, ) — <§) ug(t —,°) e
L2()

if 1/2 is not an integer, k = [1/2], uo(t,z) = u(t,z)(t > 0), uo(t,z) = 0(t < 0). If1/2 is an integer, then the double
integral in the norm should be replaced by
2
P )1/2
at u(tv )
o) |

T
/ 672’yt
—o0

and (82) ult=0(j =0,1,2,---,1/2 — 1) should be satisfied.

dt
(@)

)

£
2

11
Definition 14.4. We also introduce the space H$+2’2’ (Sp1) to treat trace on the boundary Sp .

T
2 — —27t 2 dt
HUHH5+%’%’%(SF,T) /O ‘ <|’UJ|W2H%(SF) K ”u” UANCH )>

T <ll/a\* o\" ’ dr
+/ 6_27tdt/ (—) uo(t,-) — <—) uo(t =) T+0—2k
| o |\ot ot wi(se) |
2

if £/2 is note an integer, k = [(/2], uo(t,x) = u(t,z)(t > 0), uo(t,x) = 0(t < 0). If £/2 is an integer, then the double
integral in the norm should be replaced by
2
9\ 2

T
/ 6727)&
o w,*(Sr)

and (%)j uli—o(j = 0,1,2,-- -, é — 1) should be satisfied.

(14.9)
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Definition 14.5. We define,

1
l 2 l S l S
(el SE22 o= (lullS02 + 3 UDsullS)? + 37 10320, (14.10)
|s|=2 |s]=0

where
) \2 . 2 -1 2
(el ) = Wl gy + T 2200

And, since we deal nonlinear terms on right hand side of (I7-2), we need LY type norm. We define

2 L (142)2 2
lullzrveiseigpy = lullgr +§3$IIU(t)IIWé+1(Q)- (14.11)

We state a Lemma for above function spaces from Proposition 1 in [I§].
Lemma 14.6. For smooth u(x) and v(z), (defined in a domain Q C R™), they satisfy the following inequalities,
lwvllwye) < cllullwioyllvlws @), s>n/2, 1 <n/2,
[wollL2o) < cllullwyellvllyp2-iqy 1< n/2, (14.12)
uvllwe ) < ¢ (||U||W2l(sz)||v||W;(Q) + ||v||W2L(Q)||u||W§(Q)) , lis>n/2.
Using above functional spaces, we claim the following well-posedness result.

Theorem 14.7. Letl € (3, 1), and initial conditions hg € W2l+5/2(SF), uo = vo € WiTH(Q), and Ho = By € Wi (Q),
with compatibility conditions

V"UQZV-BQZO, m Q,

D(vg)ng — (D(vg)ng - ng)ng =0, on Sp,

Hy=0, on Sp.
Then there exist a unique solution (v, B, q) to the system (I7.3) such that

vl gr+2arzar(@pay + I Bl miszirzsrp.y + ||VQ||W;vl/2(QT*) + ||Q||Wé+1/2wl/2+1/4(5F,T*)

< Co (
for some T* > 0. Moreover for any T > 0, we can choose sufficiently small e(T) such that if

|UO||W21+1(Q) + ||B0||W21+1(Q) + ||h0||W21+3/2(R2)) )

||UO||W21+1(Q) + ||BO||W2%+1(Q) + ||h0||W21+3/2(R2) < 5(T)7
then we have a unique solution for (I7.3) and (IZ.3) on the time interval [0,T].
14.2. Linear problem. We study linearized problem for two main PDE of (I4.2).

14.2.1. Stokes problem. From ([42]), we start from linear Stokes problem. We use result by A.Tani [7] for the following
Stokes system.

v —vAv+Vqg=f, in Qrp,
Vov=p, in Qr
v(0) = v, in Qx{t=0}, (14.13)
2vD(v)n — (D(v)n-n)n]=d, on Srr,
—q¢+2vD(v)n-n=>b, on Sgr.
From Theorem 2.1 in [7], we state

Proposition 14.8. (Linear Stokes problem with zero initial data) Let | > %, 0 < T < o0, and v be sufficiently large so
that v > vo > 1. And we assume Sp € W2l+3/2. Then, for

(f,p,d, b) c H’ly,l/Q(QT) X Hi+l,(l+1)/2(QT) X H’ly+1/2,l/2+1/4(SF)T) X Hi+1/2)1/2)l/2(SF,T);

satisfying compatibility conditions d-ng = 0, (p,d)|t=0 =0, p =V - R, and R € H,l,+1’1’l/2(QT), there exist a unique
solution (v,q) € H,ly+2’l/2+l(QT) X H,l,+1’1’l/2(QT) to the problem (14.13) with zero initial condition vo = 0. Moreover
we have the following estimate,

ol v207241 gy + Nl rnira gy < CU N atragmy + el nssaon,
+ ”R”HS‘Z/ZH(QT) + ||d||H£Y+1/2,L/2+1/4(SF,T) + ||b||H’ly+1/2,1/2,l/2(S )},

T
where ||Q||§{§+1,1,1/2(QT) = ||Q||§{§,L/2(QT) + ||VQ||§{€,1/2(QT)'
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For general data, vy # 0, we first produce a function Uy(¢, ) which has same initial data data Uy(0) = vo and its
space-time sobolev norm is bounded by vg. We gain the following Lemma.

Lemma 14.9. 1) For v € W2l+2’l/2+1 (Qr) where 1/2 <1 < 1, there is extension U € W;’T/z(Qoo) such that
+2
TS5 < Cllvollyir g

where ||U||“+2) is defined in definition (T7-10).
2) Let w(0) =0 and w € W2l+2’l/2+1(QT), then there exist a extension Wy € W2l+2’l/2+1(Qoo) such that

< .
||wm||W2;+z,z/z+1(Qm) =~ O||U}||W21+2,l/2+1(QT)
Using above Lemma we gain linear result for general data.

Proposition 14.10. (Linear stokes problem with general initial data) Let | € (3,1), 0 < T < oo and S € W2H_3/2,
And (f7 P, uo, (bu d)) m m Satisfy

(f, p, w0, (b,d)) € W (Qr) x Wit ED2(Qpy sk W (Q) x Wit /2124 (5 1),
p=V-R, where ReL*Qr) and RpeWo'*(Qr),

V- Ug = p|t:07
d|t:0 = 2V[D(’U)Il0 — (D(’U)Ilo . no)n0]|5F,
d - ng = 0.

Then system (1Z.13) with general initial data vy has a solution
v e Wy Q) N Or W Q) a e Wy P(Qr), Vae W' (Qr). q e Wy A (S,
with the estimate

l l
10l 221y + Nl + IVlEL + lallyrrarzensags, s
l _
< CTHILNIG, + ol yrerasnrag, o+ IRlyowes gy + T | Rillr2@r) (14.14)

+ ||(b7 d)||W2H1/2’l/2+1/4(5’F,T) + Tﬁl/2||b||W21/2’0(SF,T) + ||’LL0||W21+1(Q)},
where C(T) is time dependent constant on T non-decreasingly.

Proof. Let us write w = v — U, where U satisfies

1

[ {10060+ X IDUCONE ey | et + 101 ginsn gy < Cllnlygos oy (14.15)
|s|=2
U(0) =vp, and U € Wl+2’%+1(QOO). Then (w, ¢) solves linear stokes problem with zero initial data,
%_1: —vAw+Vqg=f— %—It]—I—VAU =f', in Qr,
V-w=p-V-U:=p, in Qr,
2vD(w)n — (D(w)n-n)n] =d - 2vDU)n— (D(U)n-n)n]:=d, on Sgr, (14.16)
q—2vD(w)n-n:= -, on Spr
w(0) =0, Qx{t=0}
For source terms (f’, p/,d’,b’) in the right hand sides, we can estimate the followings.
I 1
1718, < CULNG, + luollwsr@):
16 w0 gy < Cllpllprero gy + luollyier o)),
(14.17)

”dl||Hé+1/2‘l/2+1/4(SF,T) <C (HdHWé“/z‘l/z““(SF,T) + ||u0||W2l+1(Q)) )

||bl||Hé+1/2,1/2,z/2(SF’T) <C (”bHWé“”’”“l“(SF,T) + T_l/2||b||w21/2,0(5F,T) + ||U0||W21+1(Q)> :
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We apply the result of Proposition 48 with (IZI7) to get,
||w||H(L)+2,L/2+1(QT) + ||q||H[l)+1,1,L/2(QT) < e'YT (||w||H€+2’L/2+1(QT) + ||Vq||sz,z/z(QT))
< Oe'yT{Hf/HHz,L/z(QT) + ||p/||Hz+1,(z+1)/2(QT) + HRNHHS’”Q“(QT) + ”d/”HQH/Z’Z/ZHM(SF,T) + ”b/HHLH/QJ/Q’UQ(SF,T)}
COUFIG, + ol s igr + T2 1Rl @n) + 1Rl g,

+ |1(d, b)”WzHl/Q’l/Hl/‘L(SF,T) + Tﬁl/2||b||W01/2’0(SF,T) + ||’Uo||W2L+2(Q)},
(14.18)

where 7 is a fixed constant, found in Proposition I4.8 and C(T') depends on time T, non-decreasingly on T', which means
it does not blow up as T — 0. Meanwhile, from boundary condition,

||q||W20,L/2+1/4(SF’T) S ||2VD(’U)TLQ . nOHW;‘Z/HIM(SF,T) + ||b||W20’l/2+1/4(5F,T)' (1419)

Lastly, we should estimate L3 type estimate of w,U. Since w has zero initial data, we use Lemma [I4.9]

||w||cTW2%+1(Q) = HwextHcooWQl“(Q) <C (||wext||LgoW;+2(Q) + ”athXtHLgoWzl(Q))

(14.20)
< C||wext||W2l+1,l/2+1(Qm) < CHw”Wé“‘””l(QT)’
where weyt € VVHr2 24y is an extension of w which satisfies (we can choose time-independent C')
||wext||W21+1,L/2+1(Qoo) S C||’LU||W21+1,1/2+1(QT).
Similarly,
||U||CTW2L+1(Q) < ||Uext||coow2l+1(sz) <C (||Uext||L2 wit?(Q) + ||5tUext||LgoW2%(Q)> (14.21)

< Cll¥extllwgriirznq.,) < Cllvollwgo o).

1+2,1/2+1 . . . .
where Ugyy € W2+ L2t is an extension of U which satisfies

||Uext||W2l+1,l/2+1(Qoo) < C||U0||W2l+1(9)7
from Lemma 4.9 From (IZIT),

v H(z+2 (142)2

1+2)2
+sup||v|| {IIUII( +sup||U|| + vl

Wity S + o Hw”wl+1 Q)}

so putting Lemma [49 (I418), (I£19), (I£20), and [IZ2T) together, we finish the proof. O

14.2.2. Heat equation. For linearized equatino for Faraday’s law, we solve,
—AM\B =g, in Qr,
B=0, on {SrpU{R3\Q}}x[0,T), (14.22)
B(O)ZBQZHQ, in QX{tZO}.

WiTH(Q)

Proposition 14.11. For the system (14.23), we have a unique solution with the following estimates.

1Bllrasrssiary < OT) (1918, + 1 Bollrroy)
where C(T') depends on time T non-decreasingly.

14.3. constant coefficient nonlinear problem. We solve constant coefficient nonlinear problem of (I4I3]) and
2.
ve—vAv+Vqg=(B-V)B+f, in Qr,
V-v=p, in Qr,
v(0) = v, in Qx{t=0},
2uD(w)n — (D(v)n-n)n]=d, on Spr,
—q¢+2vD(v)n-n=>b on Spr,
—AMB=(B-V)v+g, in Qr,
B=0, on {SpU{R\Q}}x[0,7T),
B(0) =By, in Qx{t=0}.
Main problem is to control nonlinear forcing terms (B-V)B and (B - V)v on the right hand sides. We first prove the
following Lemma.

(14.23)
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Lemma 14.12. When | > —, we have the following nonlinear estimate.
||FVGHQZ)T < C(T + T(l_l)/2 + T1/2)|‘F||Hl+2,1/2+1(QT) ||GHHZ+2,Z/2+1(QT).
Proof.

(1 -
|FVGIG; = IFVGIE e o, + T IFVCIiaqy)

(Qr)

— HFVGH?%Z,O(QT) + ||FVG|\§V2O,Z/2 + T FVG|[12(00-

(Qr)
Using Lemma (TZ8),

HFVG||Q)<HFVG||Wzo o TIEVGllyoar2 g ) + T IFVG 12

(Qr)

<C THFHCTWzﬁ“(Q)HGHCTWzﬁ“(Q) + T_l/2HFVG”L2(QT)

(1)
1/2

(14.24)

/T /T I(FVG)(t) = (FVG)(3)75

L2(Q)
dtds
S|1+z

(1

We focus on the last term (7). Let us write ¢ —s = h. Domain can be divided symmetrically into two region ¢t > s,s > t.
By changing order of integral and Lemma (I4.0]),

/ /T I(FVG)( (FVG>< Nz e

_ S|1+l

T
SC/O %/}L ||F(s)V(G(s—|—h)—G(S))Himz) ds

T g T )
< CIFI, e ) / o / G5 + ) — G5))3 e ds

T
dh
+C|Glle, WH(Q)/ hm/ IF (s + h) = F() 3z (o) ds

d 2
< CT||FH2CTW5+1(Q)/O W/ IG(s+ h) — (8))HW21(Q) ds

T dn T 2
TCTICeqwin | prar f, 1FE+ )= Folwy e ds

S CT”FHéTwéJrl(Q ||GH

(14.25)

2
i, %+HTI(QT) + CTHG”CTW2Z+1 Q)”FH

< CT||FHiIZ+2,l/2+1(QT) ”GHHH?J/Z“(QT)'

+1y 1 I+1
H1+2( H1+2( ) §+T(QT)

For (IT),
(I11) = T2 FYG| 2(or)

1/2
<orV? </ alk %L(m|va|§vzl(mdt> (14.26)
—1
<crt >/2|\F||CTW2L+1(Q)|\G||CTW21+1(Q).

Hence, from ([[424)), (I£25), and (IZ26), we have the following estimate.
l
IFVGG, < C{TIFllg,wie @ |Gllopwi o) + T 21 Fl oy o) 1Gllopwier o)
+ T1/2||FHHZ+2,Z/2+1(QT) ||GHHZ+2,Z/2+1(QT)}
S C(T + T(l_l)/2 + T1/2)||FHHZ+2,Z/2+1(QT)HG||HL+2,L/2+1(QT).

52



We use Proposition [4.10, I4.1T] and Lemma [[ZT2] to solve system (I4.23)).
Proposition 14.13. Letl € (1/2,1), and Sp € W2l+3/2. Assume that (f, p,vo, (b,d)) in ([E23) satisfy
(f, p o, (b,d)) € Wy (Qr) x Wy ™ D2(Qr) e Wit (@) s Wy P A (5 ),
p=V R, ReI*Qr),
Ry e W'2(Qr).
Also assume that the following compatibility conditions hold.
V v = pli=o, dli=o = 2v[D(v)ng — (D(v)ng - ng)no||sx, d-ng=0.
Then system (I4.23) has a solution
ve WP Qr) oW (Q), g e Wy (@),
Vg e ng’l/2(QT), ge W2l+1/2’l/2+1/4(5F,T)-
Proof. We construct iteration scheme as following.
oMY _pApmHD L gt = (B . )BM) 4 £ i Qr,
V- U(m+1) =P in QT?
D (0) = vy, in Qx {t =0},
20D n — (D™ Y)n-n)n] =d, on Sgr,
—q+2vD™Nn.n=>b, on Spgr, (14.27)
Bt(m+1) _ M\B(m+1) — (B(m) . V)v(m) +g, in Qr,
B(m+1) =0, on SF,T U {RB\QT},
Bt (0) = By, in Qx {t=0},
(v®,¢", BY) = (0,0,0).

From Proposition [ZI0 and MZI1 in section 3, we have a unique solution (v(™+1) ¢(m+1) Bm+1)) " for given data
(vm), Bm),

ot e Wy Q) M Cr (@),
B e Wy Q) n Cr (@),
gt e W (Qy), (14.28)
Vgt e Wy *(Qr),
q€ Wé’l/Q(SFﬁT).
To get uniform bounds, we first define

A+ .= ||’U(m+1)||Hl+2’l/2+1(QT) + ||B(m+1) ”Hl*?’l/?*l(QT) + ”q(erl)”g)T

(14.29)
+ ||Vq(’"+1)||g)T + ||q(m+1)||Wé“/2’”2“/4(SF,T)'
Then we use estimates of Proposition [4.10] and 41T to get,
ACED < C({[(B™ - V)B™ g, + 1B - V)™ o) + (£l + lllg)

llollyennregs, oy + 1Rllgorz gy + T2 Bl 2@r) (14.30)

+ (o, d)||W21+1/2’l/2+1/4(SF,T) + T_l/2||b||w2l/2’0(SF’T) + ||“0||W2?+1(Q) + ||HO||W2’“(Q)}-

We also define data part as
1 1
D(T) := 111Gy +lglGy + Ipllyercvrags, )+ I Rlyoue g,

+ Tﬁl/2||R||L2(QT) -+ || (b, d)”Wng/z’l/Hl/‘L(SF,T) (14.31)

F T2 2005,y + l0llior gy + 1Bollysn oy
Using this definition, (IZ30) can be controlled by,

A(m-l—l) < C(T) (D(T) + (T + T(l—l)/2 + T1/2)A(m)2) . (1432)
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Now we suffice to show uniform bound and contraction mapping to apply fixed point argument.
Uniform bound By cauchy sequence argument, we can pick sufficiently small Ty > 0 such that

A < 2(C(0) +1)D(Ty) = Mg, ¥Ym e N. (14.33)
Contraction mapping Let us define difference,

p(mED) _y(m)  p(mdl)  plmtl) _ glm) . glml)  (mt1) _ gm) . g(m+1),

Again, using Proposition T4.10 0411l and Lemma [I4.12]
A = VO 211y + B rsarans gy

+ 1 QUG + IV NG, + QU V| yssarszensags,

< oM{B™ - v)B|G + (/B . v)Bm=D | (14.34)
+ B WG, + 1B V)G )

< C(T)T +TY=D72 £ 7Y2) Moy AT,

We can find sufficiently small T > 0, (Without loss of generality, we pick this so that smaller than Tp), such that
C)(t 4+ tI=D2 L V2 My <1, VE< T,

since C(T) is time dependent on T non-decreasingly, so that finite near 7' = 0. Hence we have an unique solution via
fixed point argument. O

14.4. Proof of theorem [I4.7l In this subsection, we give finish the proof of Theorem [[Z7 First, we solve (IZ2) and
([I43). And then, propagation of divergence free condition of magnetic field from initial data will be justified.

14.4.1. Fully nonlinear system. We want to solve

v —vAw+Vyq=B-V,B, in Qr,

B, —A\A,B=B-V,v, in Qr,

Vy-v=0, in Qrp,

v(0) = vy, Qx {t=0},

B=0, {SrpU{R3\Q}}x][0,T),

B(0) = By, Qx{t=0},

q—2vD,(v)n® - n() = gh, on Ser,

2vD(v)n™ — 20(D,(v)n™ -0 )n™ =0, on Sgr.

(14.35)

Note that this system does not contain divergence free condition of B, since ([[4.22]) does not include any condition
about divergence free of B. We first state a lemma which resembles Lemma (IZ4.12)).

Lemma 14.14. Forl > % we have the following nonlinear estimate.

T —

IFGIIG, < CONE | gisnanra e |Gllmsrarnrzn:
where C(T') depends on T non-decreasingly.

We alrady have a unique solution (v, B, q) for 0 < ¢t < T to system ([[423) with (f, p, uo,d,b) = (0,0,0,0, —gh). We
find a solution of the form (v, B,q) = (v +v*,B 4+ B*,q + ¢*). Then system ([Z3%]) becomes,

vf —vAW* + Vgt =v(Dy — AN)v—(V,—V)q+B - (V, — V)B,
+B.-V,B*+B*-V,B+B*-V,B*, in Qr,
Bf = A\AB* = XNAy, —A)B+B - (V, = V)v,
+B -V, v*"+ B*-V,v+ B*-V,v*, in Qr,
Vy v ==V, v, in Qr,
v*(0) =vg, B*(0)= DBy, in Qx{t=0},
—q* 4 2vD, (v )N - n®) = 20D, (v)n® - n®) + 20D, (v)ng -n9, on Sgr,
2v[D(v*)n® — (D, (v*)n® - n)n®] = —20D(v)n® — (D, (v)n® - 0], on Spr.

(14.36)

We make the following iteration scheme to solve above (IZ36]). Note that V - v = 0.
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where

and

v:(m+l) — v D) L g mt) — (A, — A)w(™ — (V= V)™ + B - (V,, — V)B,
+B - V,,B*(M 4 B*(m) .y B4 B*(m) .y, B*(m)
= fM, in Qr,
Bt _ NAB*m+) = \(A,, — A)BM™ + B - (V,, — V)V,
+B - V,,0*(™ 4 B*(m) .y, v + B*(M) .y, p*(")
=g¢"™, in Qr,
V- pr(mtl) — (V=Vm) o = pm) - in Qrp,
vt (0) = ug, B*mHD(0) = Hy, Qx {t =0},
—¢* D) L 2uD(v* ™+ - n = 20D ™)n - n — D,, (v™)n(™ . n(™)
= p(m)

(14.37)

; on Spr,

2v[D(v* ™t )n — (D, (v*™+t)n - n)n] = —20{[D,, (v )N — (D,, (v™ )™ . n™) )],
~[D(v*™)n — (D(*™)n - n)n]}
= d(m), on SF,T7

(U*(O),B*(O),q*(o)) — (07070)7

(W™ BIM gm) .= (v 4 v* ™) B 4 B g 4 ¢,
m)

Vm = Vv(m), Dm = D,U(m), n(m) = TLU(
pm) .= v . ROM RO .— (I — gm))y(m)  gm) . g

(14.38)
(m)

T Gr < 61, TV2B™GrY < 6o, (14.39)

Using Proposition [[4.10 and [4.17]

HU*(erl)HHZ+2,1/2+1(QT) =+ ||B*(m+1)”HHQ*”Q“(QT)
*(m *m ! m
+ gl + 19g VNG, + 1 sz,
m 1 m l m m
< Cum{IF NG, + g™ NG, + o™y rrnrnragg, ) + IB™ yauzes g (14.40)
+ TRy + 1O d™yinzizing,
TP yar20 6,y + N0l oy + IHollgor oy -

Similar as before, we claim uniform bound and contraction mapping property.
Uniform bound Using Lemma [[ZT2] we can derive

where

1N < (T, 61,62) Zin (1 + Zin), (14.41)

m m m l
JAREES ||’U( )||HL+2,L/2+1(QT) + HB( )HHH2’Z/2+1(QT) + Hq( )H(Q)T (14 42)
m l m '
+ qu( )H(Q)T + ||q( )||W2z+1/2,l/2+1/4(5F,T)7

and C(T,d1,02) is positive constant depending increasingly on both arguments with property that C(T,d1,02) — 0 as

T — 0 and may vary line to line. Using exactly same argument, we have the same estimate for (™), p(™) R(™) R,ﬁ’”

)

)
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d™)  and b(™)
lg™ 1), < CT,61,62) Zun (1 + Zun),
||P(m)||W21+1,(l+1>/2(SF,T) < C(T,61,02) Zm(1 + Zin),
IR yyar201 g, < CT,01,02) Zn(1 + Zim)
+ C(T,61,82) Zin ([0 410y + 1DV o2 ),
T2 R 2y < C(T,81,6,) T2 2, (14 Zyn) < C(T, 61, 62) Zn(1 + Zon),
||d(m)||W§+1/2,z/2+1/4(SF,T) < C(T7 o1, 52)Zm(1 + Zm)’

||b(m)||Wé+1/2‘l/2+1/4(SF,T) + Tﬁl/QHb(m)||W21/2v0(SF1T) S C(T7 515 52)Zm(1 + Zm)
(14.43)

Similar as (IZ42]), we define,
Z:;L = ||’U*(m)||Hz+2,l/2+1(QT) + ||B*(m)||HL+2,L/2+1(QT) + ||q*(m)||g)T (14 44)

*(m l *(m .

+ || Vg )||(Q)T + [|g*¢ )||W2H1/2,L/2+1/4(SFYT

Then, combining (IZA4T)) and ([I4743)),

)

Ziy Sho+MZ5 +ha 232,
with positive constant hg, hi, ho with following properties.
1) ho = ho(T, 01, d2) is monotone increasing function with all its argument.
2) h172 = hlﬁg(T, 51, 52) —0asT —0.

From cauchy sequence argument, there exist z* such that if Z) < z*, then
Zk 1 < ho+ bz, 4 ho(zm)™ < 2%

Hence we have uniform bound,
zZn < zZ* Vm (14.45)
Contraction mapping We use the similar notation in section 4, to denote difference.
P D) _prlm) = pr(mAl) - prmAl) _ pr(m) = grimAl) - ge(ma) _px(m) = gr(mAL),
We make equation of V*™) B*(m) and Q*(™) and use Proposition [Z10 and IZIT with vg = By = 0, to get
Yin = IV sz gy + 18" gesases on

w(m l *(m l *(m
+ QG + IV NG+ QT rasarainsagg,
*(m l *(m l *(m *(m
< GOSN, + 17N + 10" ™ greraenrag, )+ IR ™ o g,

+ TR 2y + 167, d ™)y jzassersag,

(14.46)

)+ T_l/2||b*(m)||W;/2’“(SF,T)}’

where C\(T) is non-decreasingly time dependent constant, which means it does not blow up as 7' — 0. SImilar as before,
we can control every terms in right hand side, to get

Y < XY, (14.47)

m

where x < 1 if we pick a e and sufficiently small 7" which is smaller than T} of (IZ39). Hence, by contraction mapping
principle, we solve (IZ33]). So far, we proved Theorem [[Z7] except V - H = 0.

14.4.2. Divergence free of H. To show propagation of divergence free property, we appeal to maximum principle of
convection-diffusion equation.

H + (u-V)H — (H-V)u=\AH,

V-u=0,

V-Hy=0.
Taking divergence to above equation and using notation H :=V - H,

He+ (u-VYH + (Vu) : (VH) — (VH) : (Vu)! — (H - V)(V - u) = \AH,
where A : B := Z” A;;B;;. Hence,
Hi + (u-V)H — AAH = 0.

Then by maximum principle of convection-diffusion equation,

(V- H)(@)llL = [[HE)ll> < [[H(O0)[|z = [V - HollL~ =0,
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during the time interval for the solution H.
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