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Abstract

We prove a comparison result for viscosity solutions of (possibly degenerate) parabolic fully

nonlinear path-dependent PDEs. In contrast with the previous result in Ekren, Touzi & Zhang

[11], our conditions are easier to check and allow for the degenerate case, thus including first

order path-dependent PDEs. Our argument follows the regularization method as introduced

by Jensen, Lions & Souganidis [12] in the corresponding finite-dimensional PDE setting. The

present argument significantly simplifies the comparison proof in [11], but requires an Lp
−type

of continuity (with respect to the path) for the viscosity semi-solutions and for the nonlinearity

defining the equation.

1 Introduction

This paper provides a proof for the comparison result for viscosity solutions of the fully nonlinear

path dependent partial differential equation:

− ∂tu(t, ω)−G
(

t, ω, u(t, ω), ∂ωu(t, ω), ∂
2
ωωu(t, ω)

)

≤ 0 on [0, T )× Ω. (1.1)

Here, T > 0 is a given terminal time, and ω ∈ Ω is a continuous path from [0, T ] to Rd starting from

the origin. The nonlinearity G is a mapping from [0, T ]× Ω× R× Rd × Sd to R, where Sd denotes

the set of all d× d-symmetric matrices.

Such equations arise naturally in many applications. For instance, the dynamic programming

equation (also called Hamilton-Jacobi-Bellman equation) associated to a problem of stochastic con-

trol of non-Markov diffusions falls in the class of equations (1.1), see [10]. In particular hereditary

control problems may be addressed in this context rather than embedding the problem into a PDE
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on the Hilbert space L2([0, T ]) ⊃ Ω, see [6]. Similarly, stochastic differential games with non-Markov

controlled dynamics lead to path-dependent Isaac-Hamilton-Jacobi-Bellman equations of the form

(1.1), see [17]. The notion of nonlinear path dependent partial differential equation was first pro-

posed by Peng [15]. A crucial tool to study such equation is the functional Itô calculus, initiated by

Dupire [7], and further studied by Cont & Fournie [3]. We also refer to Peng & Wang [16] for some

study on classical solutions of semilinear equations.

The notion of viscosity solutions studied in this paper was introduced by Ekren, Keller, Touzi

& Zhang [8] in the semilinear context, and further extended to the fully nonlinear case by Ekren,

Touzi & Zhang [10, 11]. Following the lines of the classical Crandall & Lions [5] notion of viscosity

solutions, supersolutions and subsolutions are defined through tangent test functions. However,

while Crandall & Lions consider pointwise tangent functions, the tangency conditions in the present

path-dependent setting is in the sense of the mean with respect to an appropriate class of probability

measures P . In particular, when restricted to the Markovian case, our notion of viscosity solutions

involves a larger set of test functions. This is in favor of uniqueness but may make the existence

issue more difficult. We refer to Ren, Touzi & Zhang [19] for an overview.

Throughout this paper, the notion of P−viscosity solution refers that introduced in [8, 10]. For

the sake of clarity, the classical notion of viscosity solutions based on pointwise tangent test functions

will be sometimes referred to as the Crandall-Lions notion of viscosity solution.

The wellposedness of the notion of P−viscosity solutions was first proved in [8] in the semilinear

case, and later extended to the fully nonlinear case in [11]. In contrast with the classical wellposedness

theory for the Crandall-Lions viscosity solutions in finite dimensional spaces, the comparison and

existence results proved in [8, 11] are inter-connected. Moreover, the proof relies heavily on the

corresponding finite-dimensional PDE results applied to path-frozen versions of (1.1), and thus does

not really take advatange of the larger class of test functions. Finally, the technical conditions of

[8, 11] exclude the degenerate case. In particular, their main wellposedness result can not be viewed

as an extension of Lukoyanov [14], where the author studied the wellposedness of the viscosity

solutions to the first order path-dependent PDEs.

In our recent paper [21] we provided a purely probabilistic comparison proof in the semilinear

setting, which is completely disconnected from the existence result and which allows for degenerate

equations. The importance of a separate proof of comparison was highlighted in the Crandall-Lions

theory of viscosity solutions: it allows access to the Perron existence argument, and was shown to

play an important role in the regularity of viscosity solutions, and in the convergence of numerical

approximations together with the analysis of the order of the corresponding error. Similar to the

classical finite-dimensional theory of viscosity solutions, the (disconnected) comparison result in [21]

opens the door for an existence argument by the so-called Perron method, see Ren [18], or by a

limiting argument à la Barles & Souganidis [1], see Zhang & Zhuo [22] and Ren & Tan [20].

Our argument in [21] was crucially based on an adaptation of the Caffarelli & Cabre [2] notion

of punctual differentiation to our setting, namely the P−punctual differentiation. In particular,

denoting by P0 the Wiener measure on the space of continuous paths, we have reported in [21]
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an easy proof of the equivalence between our notion of {P0}−viscosity subsolution of the heat

equation and the submartingale property. This equivalence implies an easy proof of the comparison

result for linear path-dependent PDEs, thus highlighting the importance of enlarging the set of

test functions under the notion of {P0}−viscosity solutions. The semilinear case is more involved,

but uses standard stochastic analysis arguments. A crucial (and surprising) result obtained in [21]

is that all P−viscosity subsolutions with appropriate integrability are P−punctually differentiable

Leb⊗P0− almost everywhere on [0, T ] × Ω. We recall that in the finite-dimensional context, the

punctual differentiability is satisfied by an appropriate approximation of the subsolution.

The main contribution of this paper is to provide a comparison result for the viscosity solutions

of fully nonlinear path-dependent PDEs (1.1) which does not involve the existence issue. Our result

is established under general conditions on the nonlinearity. Namely, we establish the comparison

between dp−uniformly continuous subsolutions and supersolutions under the conditions that the

nonlinearity G is

- dp−uniformly continuous in θ, uniformly in (y, z, γ),

- and Lipschitz-continuous in (y, z, γ), uniformly in θ.

The last conditions represent a significant simplification of the assumptions required in Ekren, Touzi

& Zhang [11]. Moreover, we emphasize that our conditions allow for degenerate parabolic equations,

and therefore contain the first order path-dependent Hamilton-Jacobi equations of Lukoyanov [14].

Our arguments are inspired from the work of Jensen, Lions & Souganidis [12], in which one

of the main ideas is to find approximations of viscosity sub- and supersolutions of PDEs. The

approximations proposed in [12] are due to Lasry & Lions [13]. Let u be a viscosity subsolution, and

un be the approximations. A careful examination of their proof shows that good approximations

should in general satisfy:

(A1) limn→∞ un = u;

(A2) un are more regular than u (thus we may call the approximations as regularization);

(A3) un are still viscosity subsolutions for some equations approximating the original one.

A similar regularization was introduced in Ren [18], for functions in the path space, in order

to study the comparison of semi-continuous viscosity solutions to semilinear path-dependent PDEs.

However such a regularization fails to achieve the purpose of the present paper.

As a key technical tool in this paper, we introduce a new regularization for viscosity sub- and

supersolutions in the context of fully nonlinear path-dependent PDEs, which allows to prove the

final comparison result. Constrained by our method, we are unfortunately not able to compare the

viscosity sub- and supersolutions which are continuous in the (pseudo-)distance d∞,

d∞
(

(t, ω), (t′, ω′)
)

= |t− t′|+ ‖ωt∧· − ω′
t′∧·‖∞,

used in the previous works on path dependent PDEs. Instead, we prove the comparison for viscosity

sub- and supersolutions which are continuous in the sense of the following (pseudo-)distance:

dp
(

(t, ω), (t′, ω′)
)

= |t− t′|+ ‖ωt∧· − ω′
t′∧·‖pp, where ‖ω‖pp =

∫ T+1

0

|ωt|pdt.
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This continuity is slightly stronger than that under d∞. However, since ‖ω‖p → ‖ω‖∞, our conti-

nuity requirement can be viewed as a slight strengthening of the d∞−continuity. In order to justify

the relevance of the dp−continuity, we provide in this paper a large class of path-dependent fully

nonlinear equations with unique dp−continuous viscosity solutions. This is achieved by complement-

ing our comparison result with an example of stochastic control problem whose value function is

a dp−continuous P−viscosity solution of the corresponding path-dependent dynamic programming

equation.

Given a P−viscosity solution u, the regularization introduced in the present paper defines func-

tions un satisfying the above requirement (A1). However, rather than verifying (A2) and (A3) in

the sense of P−viscosity solutions, we show that un induces a continuous finite-dimensional func-

tion which is a viscosity solution of an appropriate PDE in the classical sense of Crandall-Lions.

We recall that this is a weaker conclusion than the corresponding notion of P−viscosity solutions.

This allows to reduce the comparison task to the well-established notion of viscosity solutions in

the finite-dimensional context, and represents the major difference with the approach used in our

previous paper [21] focused on the semilinear case.

The rest of the paper is organized as follows. Section 2 introduces the main notations. Section

3 recalls some useful results from the previous work on path dependent PDEs. Section 4 states

the main assumptions and results of this paper. In Section 5 we introduce the regularization, and

prove its main properties. Further, in Section 6 we use the regularization to prove the comparison

result. Finally, Section 7 concludes the paper by an example of a stochastic control problem whose

value function is a dp-continuous P−viscosity solution of the corresponding path-dependent dynamic

programming equation, under natural assumptions on the ingredients of the control problem.

2 Notations

Throughout this paper let T > 0 be a given finite maturity, Ω := {ω ∈ C([0, T ];Rd) : ω0 = 0}
be the set of continuous paths starting from the origin, and Θ := [0, T ] × Ω. For the convenience

of notation, we often denote by θ the pair (t, ω). We denote by B the canonical process on Ω, by

F = {Ft, 0 ≤ t ≤ T } the canonical filtration, by P0 the Wiener measure on Ω, and by T the set of

all F-stopping times taking values in [0, T ]. Further, for h ∈ T , denote by Th the subset of τ ∈ T
taking values in [0,h].

For ω, ω′ ∈ Ω and t ∈ [0, T ], we define

(ω ⊗t ω
′)s := ωs1{s<t} + (ωt + ω′

s−t)1{s≥t}.

Let ξ : Ω → R be FT -measurable random variable. For any θ = (t, ω) ∈ Θ, define

ξθ(ω′) := ξ
(

ω ⊗t ω
′) for all ω′ ∈ Ω.

Clearly, ξθ is FT−t-measurable, and thus FT -measurable. Similarly, given a process X defined on

Ω, we denote:

Xθ
s (ω

′

) := Xt+s(ω ⊗t ω
′

), for s ∈ [0, T − t], ω′ ∈ Ω.
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Clearly, if X is F-adapted, then so is Xθ.

As in Ekren, Touzi & Zhang [11], for every constant L > 0, we denote by PL the collection of all

continuous semimartingale measures P on Ω whose drift and diffusion are bounded by constant L,

respectively. More precisely, let Ω̃ := Ω×Ω×Ω be an enlarged canonical space, B̃ := (B,A,M) be

the canonical process. A probability measure P ∈ PL means that there exists an extension Qα,β of

P on Ω̃ such that:

B = A+M, A is absolutely continuous, M is a martingale,

‖αP‖∞, ‖βP‖∞ ≤ L, where αP

t := dAt

dt , β
P

t :=
√

d〈M〉t
dt ,

Qα,β-a.s. (2.1)

We also introduce the sublinear and superlinear expectation operators associated to PL:

EL := sup
P∈PL

EP and EL := inf
P∈PL

EP.

One may easily prove the following lemma.

Lemma 2.1 There is a constant C > 0 such that we have for all P ∈ PL and h ∈ T that

∣

∣EP[Bh]
∣

∣ ≤ CEP[h] and EP
[

|Bh|2
]

≤ CEP[h].

In this paper, we consider a new Lp-type of distance in the space Θ.

Definition 2.2 For p ≥ 1, we introduce the following distance for the space Θ:

dp(θ, θ
′) := |t− t′|+ ‖ωt∧· − ω′

t′∧·‖p, for all θ, θ′ ∈ Θ,

where

‖ω‖pp := |ωT |p +
∫ T

0

|ωs|pds, for all ω, ω′ ∈ Ω. (2.2)

We say that a function f : Θ → R is dp-continuous, if f is continuous with respect to dp(·, ·).

Remark 2.3 Let d∞(·, ·) be the distance between continuous paths introduced by Dupire [7], i.e.

d∞(θ, θ′) := |t− t′|+ max
0≤s≤T

|ωs∧t − ω′
s∧t′ |.

Note that

dp(θ, θ
′) ≤ Cd∞(θ, θ′) and lim

p→∞
dp(θ, θ

′) = d∞(θ, θ′).

In particular, a dp-continuous function is automatically continuous in Dupire’s sense.

For later use, we observe that

‖ωt∧·‖pp =

∫ T+1

0

|ωt∧s|pds = (T + 1− t)|ωt|p +
∫ t

0

|ωs|pds. (2.3)

Example 7.1 in Appendix provides sufficient conditions for the value function of a stochastic

control problem to be uniformly dp-continuous. On the other hand, as discussed in Ekren, Touzi
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& Zhang [10], the value function of a stochastic control problem can be proved to be a viscosity

solution of the corresponding path dependent Hamilton-Jaccobi-Bellman equation. Therefore, there

are many examples of fully nonlinear path dependent PDEs which have uniformly dp-continuous

viscosity solutions. In this paper, we focus on the uniqueness of such solutions.

We would like to emphasize that, throughout this paper, C denotes a generic constant, which

may change from line to line. For example the reader may find 2C ≤ C, without any contradiction

as the left-hand side C is different from the right-hand side C.

3 Preliminaries

Consider the fully nonlinear parabolic PDE:

− ∂tu− g(t, x, u,Du,D2u) = 0 t < T, x ∈ Rd, (3.1)

where ∂t denotes the time derivative, and Du,D2u denote the space gradient and Hessian, respec-

tively.

We first recall the definition of the classical Crandall-Lions viscosity solutions for parabolic PDEs.

For α ∈ R, β ∈ Rd, γ ∈ Sd, define the paraboloid ψα,β,γ :

ψα,β,γ(t, x) := αt+ β · x+
1

2
xTγx, t ≥ 0, x ∈ Rd.

Then define the jets:

Ju(t, x) :=
{

(α, β, γ) : u(t, x) ≥ u(s, y)− ψα,β,γ(s− t, y − x) + o(|s− t|, |y − x|2)
}

,

Jv(t, x) :=
{

(α, β, γ) : v(t, x) ≤ v(s, y)− ψα,β,γ(s− t, y − x) + o(|s− t|, |y − x|2)
}

.

We say that function u is a viscosity subsolution of the PDE (3.1), if

−α− g(t, x, u, β, γ) ≤ 0, for all (t, x) ∈ (0, T )× Rd and (α, β, γ) ∈ Ju(t, x).

Similarly, a function v is a viscosity supersolution of the PDE (3.1), if

−α− g(t, x, v, β, γ) ≥ 0, for all (t, x) ∈ (0, T )× Rd and (α, β, γ) ∈ Jv(t, x).

In this paper, we consider the fully nonlinear parabolic path dependent PDE:

− ∂tu−G(θ, u, ∂ωu, ∂
2
ωωu) = 0. (3.2)

In our previous work [19, 21] on viscosity solutions of path-depedent PDEs, it was already understood

that one can define viscosity solutions via jets. For simplicity, this paper starts directly from this

definition as it avoids to introduce the notion of smooth processes (i.e. those processes which satisfy

an Itô formula simultaneously under all probability measures P ∈ PL). Let

φα,β,γ(θ) := αt+ β · ωt +
1

2
ωT
t γωt, θ ∈ Θ,
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for some (α, β, γ) ∈ R× Rd × Sd. We then introduce the corresponding subjet and superjet:

J Lu(θ) :=
{

(α, β, γ) ∈ R× Rd × Sd : u(θ) = max
τ∈Thδ

EL

[

(uθ − φα,β,γ)(τ, B)
]

, for some δ > 0
}

,

JLv(θ) :=
{

(α, β, γ) ∈ R× Rd × Sd : v(θ) = min
τ∈Thδ

EL

[

(vθ − φα,β,γ)(τ, B)
]

, for some δ > 0
}

,

where

hδ := δ ∧ inf{t ≥ 0 : |Bt| ≥ δ} (3.3)

is a stopping time, and is called the localization.

Definition 3.1 A function u : [0, T ]× Ω −→ R is a

• PL-viscosity subsolution of (3.2) if −α−G(θ, u(θ), β, γ) ≤ 0 for all θ ∈ Θ, (α, β, γ) ∈ J Lu(θ);

• PL-viscosity supersolution of (3.2) if −α−G(θ, u(θ), β, γ) ≥ 0 for all θ ∈ Θ, (α, β, γ) ∈ J Lu(θ).

It was proved in Ren, Touzi & Zhang [19] that this definition is equivalent to the original def-

inition of Ekren, Touzi & Zhang [10] whenever the function u and the nonlinearity G(., y, z, γ) are

d∞−continuous. By following the same line of argument, the same equivalence of definitions holds

under our dp−continuity assumptions.

We next recall the Snell envelop characterization of the optimal stopping problem under nonlinear

expectation, see Theorem 3.5 in Ekren, Touzi & Zhang [9].

Lemma 3.2 Let X : Θ → R be dp-uniformly continuous. Consider the optimal stopping problem:

V (θ) := sup
τ∈T

h
θ
δ
−t

EL

[

Xθ
τ

]

.

Then, denoting V̂t := Vt1{t<hδ} + Vhδ−1{t≥hδ}, we have

V0 = EL[Xτ∗ ] where τ∗ := inf{t ≥ 0 : Xt = V̂t}.

As a consequence of the last fundamental result from optimal stopping theory, we now provide

our main technical substitute for the local compactness argument in the finite-dimensional Crandall-

Lions viscosity solutions.

Lemma 3.3 Let u be dp-uniformly continuous function satisfying u(0) > EL

[

(u − φα,β,γ)(hδ, B)
]

,

for some δ > 0 and (α, β, γ) ∈ R× Rd × Sd. Then, there exists θ∗ = (t∗, ω∗) such that

t∗ < hδ(ω
∗) and (α, β + γω∗

t∗ , γ) ∈ J Lu(θ
∗).

Proof Define the optimal stopping problem V :

V (θ) := sup
τ∈T

hθ
δ
−t

EL

[

Xθ(τ, B)
]

.

with X := u− φα,β,γ . Let τ∗ ∈ Thδ
be the optimal stopping rule. By Lemma 3.2 we have

EL[Xτ∗ ] = V0 ≥ X0 > EL[Xhδ
] and Xτ∗ = V̂τ∗ ,
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So there exists ω∗ ∈ Ω such that t∗ := τ∗(ω∗) < hδ(ω
∗) and Xt∗(ω

∗) = V̂t∗(ω
∗) = Vt∗(ω

∗), i.e.

u(θ∗) = sup
τ∈T

hθ
∗

δ
−t∗

EL

[

uθ
∗

τ − ατ − β ·Bτ − 1

2
(ω∗

t∗ +Bτ )
Tγ(ω∗

t∗ +Bτ ) +
1

2
(ω∗

t∗)
Tγω∗

t∗

]

= sup
τ∈T

hθ
∗

δ
−t∗

EL

[

uθ
∗

τ − ατ − (β + γω∗
t∗) ·Bτ − 1

2
BT

τ γBτ

]

By the definition of J Lu, this means that (t∗, ω∗) is the required point.

4 Main result

We shall establish our main comparison result under the following general conditions on the nonlin-

earity G.

Assumption 4.1 The nonlinearity G satisfies the following conditions:

(i) G is elliptic, i.e. G(θ, y, z, γ) ≤ G(θ, y, z, γ′), for γ ≤ γ′.

(ii) G is dp-uniformly continuous in θ, uniformly in (y, z, γ), i.e. for some continuity modulus ρG:

|G(θ, y, z, γ)−G(θ′, y, z, γ)| ≤ ρG(dp(θ, θ
′)), for all (y, z, γ) ∈ R× Rd × Sd.

(iii) G is uniformly Lipschitz continuous in (y, z, γ), i.e. there is a constant L0 such that

|G(θ, y, z, γ)−G(θ, y′, z′, γ′)| ≤ L0

(

|y − y′|+ |z − z′|+ |γ − γ′|
)

, for all θ ∈ Θ.

The first condition restricts the path-dependent PDE to the parabolic case. The remaining

technical conditions are required in our proofs. In contrast with the comparison result established

in Ekren, Touzi & Zhang [11], we emphasize that the above conditions do not exclude degenerate

path-dependent second order PDEs. In particular, our main result, Theorem 4.2 below, holds for

first order path-dependent PDEs which satisfy the above conditions (ii)-(iii), and thus covers the

path-dependent Hamilton-Jacobi PDEs analyzed in Lukoyanov [14].

Theorem 4.2 Let u, v : Θ → R be bounded and dp-uniformly continuous PL-viscosity subsolution

and PL-viscosity supersolution of (3.2), respectively. Under Assumption 4.1, if u(T, ·) ≤ v(T, ·),
then u ≤ v on Θ.

The proof of this result will be provided in Section 6 after the preparations of Section 5. We

conclude this short section by some remarks which will be recalled in our subsequent proof of

Theorem 4.2.

Remark 4.3 If u is a PL-viscosity subsolution of (3.2), then function ũ := e−Ltu is a PL-viscosity

subsolution of

−∂tũ− G̃(θ, ũ, ∂ωũ, ∂
2
ωωũ) = 0.

where G̃ is non-decreasing in y. A similar statement holds for PL-viscosity supersolutions.
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In view of this result, , we shall assume throughout the paper, without loss of generality, that

nonlinearity G is non-decreasing in y. Consequently, we may modify Assumption 4.1 (iii) as:

(iii’) There is a constant L0 such that

G(θ, y, z, γ)−G(θ, y′, z′, γ′) ≤ L0

(

(y − y′)+ + |z − z′|+ |γ − γ′|
)

, for all θ ∈ Θ. (4.1)

Remark 4.4 Since all dp-uniformly continuous function is dq-uniformly continuous, for q > p, it is

sufficient to prove the theorem for the largest possible values of p. For technical reasons, we shall

choose p to be odd and p > 1.

5 Regularization

In this section, we introduce the crucial regularization un of the viscosity subsolution u. Recall the

‖ · ‖p-norm defined in (2.2). For s ≥ 0, a càdlàg path η, and any increasing function ℓ, we define the

penalization function:

Φ(s, η, θ, ℓ) := ‖ℓ− I‖
2

3p+3
∞ + ‖ηs∧ℓ(·) − ωt∧·‖p+1

p+1, θ ∈ Θ,

where I : [0, T ] → [0, T ] is the identity function and ‖ℓ − I‖∞ := sup0≤t≤T

∣

∣ℓ(t) − t
∣

∣. Denote

0 := (0, 0), and define the regularization:

un(s, η) := sup
θ∈Θ\0, ℓ∈Lt,s

{

u(θ)− nΦ(s, η, θ, ℓ)
}

, (5.1)

where, for s > 0, Lt,s is the set of the increasing functions ℓ : [0, T ] → R such that

ℓ|[0,t] : [0, t] → [0, s] is an increasing bijection, and ℓ(r) := r − t+ s for r ∈ (t, T ], (5.2)

For s = 0, this set is reduced to a signleton Lt,0 = {ℓt,0}, with ℓt,0 : [0, T ] → R defined as:

ℓt,0(r) = (r − t)1(t,T ](r), for all r ∈ [0, T ]. (5.3)

Notice that for s > 0, any ℓ ∈ Lt,s is an injection, so that we can naturally define the inverse function

ℓ−1 on the image of ℓ. For later use, we also note that for all ℓ ∈ Lt,s, we have

‖ηs∧ℓ(·) − ωt∧·‖p+1 = ‖ηℓ(t∧·) − ωt∧·‖p+1. (5.4)

Remark 5.1 Notice from (5.2), (5.3) and (5.4) that the values of the function ℓ on (t, T ] do not have

any impact on the value of the penalization Φ(s, η, θ, ℓ). In order to construct a function ℓ ∈ Lt,s, it

is sufficient to define ℓ|[0,t], i.e. its values on [0, t]. The rest is given by (5.2) or (5.3). Defining ℓ on

the whole interval [0, T ] instead of only on [0, t] is only useful for notational simplicity.

Lemma 5.2 The sequence (un)n is non-increasing in n. Moreover, for bounded u, we have ‖un‖∞ ≤
‖u‖∞ for all n ≥ 0.
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Proof The non-increase of the sequence (un)n is obvious. The inequality un ≤ ‖u‖∞ follows

immediately from the definition of the regularization un. On the other hand, for s > 0, we may find

ωε ∈ Ω such that ‖ηs∧· − ωε
s∧·‖p+1 → 0 as ε→ 0. By taking θ = (s, ωε) and ℓ = I (so that ℓ ∈ Ls,s)

in (5.1), we get

un(s, η) ≥ lim
ε→0

{

u(s, ωε)− n‖ηs∧· − ωε
s∧·‖p+1

p+1

}

≥ −‖u‖∞.

In the remaining case s = 0, we may find ωε ∈ Ω such that ‖η0 − ωε
ε∧·‖p+1 → 0 as ε→ 0. Then, by

taking θ = (ε, ωε) and ℓ|[0,ε] ≡ 0 (so that ℓ ∈ Lε,0) in (5.1), we also conclude that

un(0, η) ≥ lim
ε→0

{

u(ε, ωε)− n
(

ε
2

3p+3 + ‖η0 − ωε
ε∧·‖p+1

p+1

)}

≥ − ‖u‖∞.

5.1 Some properties of the regularization

Our argument relies on using the regularization (5.1) for piecewise constant paths η of the following

form. Given 0 = s1 < s2 < · · · < si ≤ T and x1, x2, · · · , xn ∈ Rd, denote:

πi := (s1, · · · , si), xi := (x1, · · · , xi), λi := (πi, xi−1), and |xi|p :=
(
∑i

j=1 |xj |p
)

1
p , (5.5)

and define the corresponding piecewise constant path:

ηλi
s (x) =

i−1
∑

j=1

xj1{s≥sj} + x1{s≥si}, (5.6)

i.e. ηλi(x) is a càdlàg piecewise constant path with j-th jump of size xj at time sj , for j ≤ i − 1,

and a last jump of size x at time si.

The following lemma provides an estimate on 1-optimal (θ̂, ℓ̂) in the definition of un(s, η), in the

case that η = ηλi(x). For the sake of clarity, we recall the corresponding notion.

Definition 5.3 We say that
(

θδ, ℓδ
)

is δ-optimal in the definition of un(s, η), if

ℓδ ∈ Ltδ,s and un(s, η)− u(θδ) + nΦ
(

s, η, θδ, ℓδ
)

< δ. (5.7)

We shall denote by 1 the column vector of ones with appropriate dimension, so that with the

notations of (5.5), the flat tail of the path ηλi(xi) is given by:

ηλi
s (xi) = xi1 = x1 + . . .+ xi, s ≥ si, for all i.

Lemma 5.4 Let λi be as in (5.5), x ∈ Rd, xi := (xi−1, x) (we slightly abuse the notation xi so as

to simplify the formulas below), and s ∈ [si, T ]. Let u be a bounded function. Then, for a 1-optimal

point (θ̂, ℓ̂) for un
(

s, ηλi(x)
)

, we have:

|xi1−ω̂t̂| ≤ Cn− 1
p+1 ,

∥

∥ℓ̂−I
∥

∥

∞ ≤ Cn− 3p+3
2 , and

∥

∥ηλi(x)−ω̂t̂∧·
∥

∥

p
≤ C

(

n− 1
p+1+i n−3p+3

2p

∣

∣xi
∣

∣

p

)

, (5.8)

for some constant C depending only on T and ‖u‖∞.
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Proof Set η := ηλi(x). By the uniform bound on u and un in Lemma 5.2, it follows from (2.3)

and (5.7) that

∥

∥ℓ̂− I
∥

∥

2
3p+3

∞ ∨ |ηs − ω̂t̂|p+1 ∨
∫ t̂

0 |ηℓ̂(t) − ω̂t|p+1dt ≤ C0

n := 1+2|u|∞
n . (5.9)

Since ηs = xi1, this provides the first two required estimates.

By the Minkowski inequality, the Hölder inequality, and (2.3), we have

∥

∥η − ω̂·∧t̂

∥

∥

p
≤

∥

∥η − ηℓ̂(.∧t̂)

∥

∥

p
+
∥

∥ηℓ̂(.∧t̂) − ω̂·∧t̂

∥

∥

p

≤
∥

∥η − ηℓ̂(.∧t̂)

∥

∥

p
+ T

1
p(p+1)

∥

∥ηℓ̂(.∧t̂) − ω̂·∧t̂

∥

∥

p+1

=
∥

∥η − ηℓ̂(.∧t̂)

∥

∥

p
+ T

1
p(p+1)

(

∫ t̂

0

∣

∣ηℓ̂(t) − ω̂t

∣

∣

p+1
dt+ (T − t̂)

∣

∣ηs − ω̂t̂

∣

∣

p+1
)

1
p+1

≤
∥

∥η − ηℓ̂(.∧t̂)

∥

∥

p
+
(

(1 + T )2
C0

n

)
1

p+1

, (5.10)

where the last inequality follows from (5.9). In the special case s = si = 0, we have η ≡ η0 and

ℓ̂|[0,t̂] ≡ 0, and we therefore get
∥

∥η − ηℓ̂(.∧t̂)

∥

∥

p
= 0. Otherwise, in the case s > 0, denoting xi := x,

we have

∥

∥η − ηℓ̂(.∧t̂)

∥

∥

p

p
=

∫ T

0

∣

∣

∣

i
∑

j=1

xj
(

1{t≥sj} − 1{ℓ̂(t∧t̂)≥sj}
)

∣

∣

∣

p

dt

≤ ip
(

i
∑

j=1

|xj |p
∫ T

0

∣

∣1{t≥sj} − 1{ℓ̂(t∧t̂)≥sj}
∣

∣dt
)

≤ ip
(

i
∑

j=1

|xj |p
∣

∣sj − ℓ̂−1(sj)
∣

∣

)

≤ ip|xi|pp‖ℓ̂− I‖∞ ≤ ip|xi|pp
(C0

n

)

3p+3
2

by using again (5.9). The third required estimate is obtained by plugging the last inequality into

(5.10).

The previous lemma leads to:

Lemma 5.5 Let u be bounded and dp−uniformly continuous. Then, limn→∞ un(0) = u(0).

Proof First, we clearly have

un(0) ≥ lim
ε→0

(

u(ε, 0)− nε
)

= u(0).

On the other hand, for ε < 1, choose an ε-optimal (θ̂, ℓ̂) in the definition of un(0, 0). It follows

from Lemma 5.4 that

dp
(

0, θ̂
)

= |t̂|+ ‖ω̂t̂∧·‖p ≤ C
(

n− 3p+3
2 + n− 1

p+1

)

=: δn,

where C is a constant independent of ε, and thus δn does not depend on ε. Then

∣

∣(un − u)(0)
∣

∣ = (un − u)(0) ≤ ε+ u(θ̂)− u(0)

≤ ε+ sup
dp(θ,0)≤δn

(

u(θ)− u(0)
)

≤ ε+ ρu(δn) −→ ρu(δn),

by the uniform continuity of u. Since δn −→ 0, this shows that limn→∞ un(0) = u(0).
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5.2 A finite-dimensional regularization

For any λi as in (5.5), we now introduce the finite-dimensional function

un,λi(s, x) := un
(

s, ηλi(x)
)

, (s, x) ∈ [si, T ]× Rd. (5.11)

In this subsection, we explore the regularity of this function for fixed λi.

Notice that, for any s, λi, x, there exists a sequence (ωε)ε ⊂ Ω such that ‖ηλi
s∧·(x) − ωε

s∧·‖p → 0.

Then, since u, v,G are assumed to be uniformly continuous on Θ, these functions have natural

extensions for such càd-làg paths. Similar to (5.11), we denote

uλi(s, x) := u
(

s, ηλi(x)
)

, (s, x) ∈ [si, T ]× Rd.

Our first result provides an estimate of the deviation of the penalization at the final time T .

Lemma 5.6 Let u be bounded and dp−uniformly continuous. Then, for λi as in (5.5), x ∈ Rd, and

xi := (xi−1, x), we have

ρn := sup
{
∣

∣(un,λi − uλi)(T, x)
∣

∣ : i ≤ n1+ 1
5p , |xi|p ≤ n

1
2+

6
5p
}

−→ 0 as n→ ∞.

Proof Set η := ηλi(x), and choose a sequence of (ωε)ε ⊂ Ω such that
∫ T+1

0
|ηt − ωε

t |p+1dt −→ 0,

as ε→ 0. Then, we clearly have

un,λi(T, x) := un(T, η) ≥ lim
ε→0

u(T, ωε) = uλi(T, x),

where the last equality follows from the dp-continuity of u.

On the other hand, choosing an ε-optimal (θ̂, ℓ̂) in the definition of un(T, η), it follows from

Lemma 5.4 that

dp
(

(T, η), θ̂
)

= |T − t̂|+ ‖η − ω̂t̂∧·‖p
≤ C

(

n− 3p+3
2 + n− 1

p+1 + i|xi|pn− 3p+3
2p

)

≤ C
(

n− 3p+3
2 + n− 1

p+1 + n1+ 1
5pn

1
2+

6
5pn− 3p+3

2p

)

≤ C
(

n− 3p+3
2 + n− 1

p+1 + n− 1
10p

)

=: δ′n.

For the second inequality, we used the constraints i ≤ n1+ 1
5p , and |xi|p ≤ n

1
2+

6
5p . Then,

(

un,λi − uλi
)

(T, x) ≤ ε+ u(θ̂)− u(T, η)

≤ ε+ sup
dp((T,η),θ)≤δ′n

(

u(θ)− u(T, η)
)

≤ ε+ ρu(δ′n) −→ ρu(δ′n), as ε→ 0.

Hence, we have 0 ≤
(

un,λi − uλi
)

(T, x) ≤ ρu(δ′n), and the required result follows from the fact that

δ′n −→ 0 as n→ ∞.

We next analyze the regularity of the finite-dimensional regularization.
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Lemma 5.7 The function un,λi is:

(i) 2
3p+3−Hölder continuous in s ∈ (si, T ], uniformly in x ∈ Rd,

(ii) locally Lipschitz-continuous in x ∈ Rd, uniformly in s ∈ (si, T ],

(ii) lower semicontinuous at the points (si, x), x ∈ Rd, i.e. un,λi(si, x) ≤ lims′↓si,x′→x u
n,λi(s′, x′).

Proof 1. We first consider s, s′ ∈ (si, T ], and we estimate the value of un,λi(s, x)− un,λi(s′, x′)

for x, x′ ∈ Rd. Choose an ε-optimal (θ̂, ℓ̂) in the definition of un
(

s, ηλi(x)
)

= un,λi(s, x). Given this

ℓ̂ ∈ Lt̂,s, we define ℓ̂′ ∈ Lt̂,s′ by its values on [0, t̂] (see Remark 5.1):

ℓ̂′(t) := ℓ̂(t)1[0,ℓ̂−1(si)]
(t) +

(

si +
s′ − si
s− si

(ℓ̂(t)− si)
)

1(ℓ̂−1(si),t∗]
(t), t ∈ [0, t̂].

In particular, we observe that

(ℓ̂′)−1(si) = ℓ̂−1(si), (5.12)

and

sup
t≤t̂

|ℓ̂t − ℓ̂′t| ≤ sup
ℓ̂−1(si)≤t≤t̂

∣

∣si + (ℓ̂(t)− si)
s′ − si
s− si

− ℓ̂(t)
∣

∣

≤ sup
ℓ̂−1(si)≤t≤t̂

(

ℓ̂(t)− si
) |s− s′|
s− si

≤ |s− s′|. (5.13)

Then we have

un,λi(s, x)− un,λi(s′, x′) ≤ ε+ n
(

Φ
(

s′, ηλ(x′), θ̂, ℓ̂′
)

− Φ
(

s, ηλi(x), θ̂, ℓ̂
)

)

. (5.14)

It follows from (5.13) that

‖ℓ̂′ − I‖
2

3p+3
∞ − ‖ℓ̂− I‖

2
3p+3
∞ ≤ sup

t≤t̂

|ℓ̂t − ℓ̂′t|
2

3p+3 ≤ |s− s′| 2
3p+3 . (5.15)

Moreover, using (5.12), we directly estimate that:

‖ηλi(x′)ℓ̂(t̂∧·) − ω̂t̂∧·‖p+1
p+1 − ‖ηλi(x)ℓ̂(t̂∧·) − ω̂t̂∧·‖p+1

p+1

≤
∫ T+1

ℓ̂−1(si)

|
i−1
∑

j=1

xj + x′ − ω∗
t∧t∗ |p+1dt−

∫ T+1

ℓ̂−1(si)

|
i−1
∑

j=1

xj + x− ω∗
t∧t∗ |p+1dt

≤ (p+ 1)|x− x′|
∫ T+1

0

(

|x− x′|+ |
i−1
∑

j=1

xj + x− ω̂t∧t̂|
)p
dt. (5.16)

In view of the control on ‖ω̂t̂∧·‖p ≤ C from Lemma 5.4, this provides the statements (i) and (ii) by

plugging (5.15) and (5.16) into (5.14).

2. We next estimate the difference of un,λi(si, x) − un,λi(s′, x′) for s′ ∈ (si, T ]. We consider two

alternative cases.

Case 1: i > 1. Then, si > 0. Choose an ε-optimal (θ̂, ℓ̂) in the definition of un,λi(si, x). Given this

ℓ̂ ∈ Lt̂,si
, we define ℓ̂′ ∈ Lt̂+ε,s′ by:

ℓ̂′(t) := ℓ̂(t) for t ≤ ℓ̂−1(si) = t̂, and ℓ̂′ linear on [t̂, t̂+ ε].
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In particular, we note that (ℓ̂′)−1(si) = ℓ̂−1(si). Then we have

un,λi(si, x)− un,λi(s′, x′) ≤ ε+ u(θ̂)− u(t̂+ ε, ω̂t̂∧·)

+n
(

Φ
(

s′, ηλi(x′), t̂+ ε, ω̂t̂∧·, ℓ
′)− Φ

(

si, η
λi(x), θ̂, ℓ̂

)

)

.

Note that

‖ℓ̂′ − I‖
2

3p+3
∞ − ‖ℓ̂− I‖

2
3p+3
∞ ≤

(

‖ℓ̂− I‖∞ ∨ |s′ − t̂− ε|
)

2
3p+3 − ‖ℓ̂− I‖

2
3p+3
∞

≤
(

max
{

0, |s′ − t̂− ε| − ‖ℓ̂− It̂‖∞
}

)
2

3p+3

≤
(

max
{

0, |s′ − t̂− ε| − |si − t̂|
}

)
2

3p+3

≤
(

|si − s′|+ ε
)

2
3p+3 .

Further, by following the line of calculation in (5.16), we obtain that for all |x|, |x′| ≤ R there is a

constant C (dependent on R, but independent of n) such that

un,λi(si, x)− un,λi(s′, x′) ≤ ε+ ρu(ε) + n
(

(|si − s′|+ ε)
2

3p+3 + C|x− x′|
)

−→ n(|si − s′| 2
3p+3 + C|x− x′|).

This implies that (iii) holds in the present.

Case 2: i = 1. Then, si = 0 and ηλi(x) ≡ x. Choose an ε-optimal (θ̂, ℓ̂) in the definition of

un,λi(0, x). Since ℓ̂ ∈ Lt̂,0, we have ℓ̂|[0,t̂] ≡ 0. Assume ε < s′, and define ℓ′ ∈ Lt̂+ε,s′ :

ℓ̂′(t) := ε
t

t̂
1[0,t̂](t) +

(

t̂+ ε− t+ s′
t− t̂

ε

)

1(t̂,t̂+ε](t), t ∈ [0, t̂+ ε].

Then we have

un,λi(0, x)− un,λi(s′, x′) ≤ ε+ u(θ̂)− u(t̂+ ε, ω̂t̂∧·) + n
(

Φ
(

s′, x′, t̂+ ε, ω̂t̂∧·, ℓ̂
′)− Φ

(

0, x, θ̂, ℓ̂
)

)

.

Note that

‖ℓ̂′ − I‖
2

3p+3
∞ − ‖ℓ̂− I‖

2
3p+3
∞ ≤

(

|t̂− ε| ∨ |s′ − t̂− ε|
)

2
3p+3 − |t̂| 2

3p+3

≤
(

max
{

ε, |s′ − t̂− ε| − |t̂|
}

)
2

3p+3

≤
(

|s′|+ ε
)

2
3p+3 .

Then following the same line of calculation as in (5.16), we can again verify that (iii) also holds in

this case.

5.3 Viscosity solution property of the regularized solutions

In this subsection, we prove a crucial property of the regularization (5.1). Namely, the induced

finite-dimensional function un,λi is a Crandall-Lions viscosity subsolution of the corresponding PDE
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with an appropriate error term. We recall that this does not imply the stronger claim that un,λi

is a P− viscosity subsolution, since the last notion involves a larger set of test functions. This is a

major difference between the approach of this paper and the one followed in our previous paper [21]

focused on semilinear path-dependent PDEs.

Proposition 5.8 Let λi be as in (5.5), and u be a PL-viscosity subsolution of PPDE (3.2) on

[0, T )× Ω. Then un,λi is a Crandall-Lions viscosity subsolution of the PDE:

−∂sun,λi −G
(

s, ηλi(x), un,λi , Dun,λi , D2un,λi
)

− αn(s)− βu,n(x) ≤ 0, on (si, T )× Rd.

where, for some constant C > 0, αn and βn are given by:

αn(s) := C
(

n|s− si|+ (n|s− si|)
1

p+1 + n− 1
2

)

, (5.17)

βu,n(x) := (ρG + L0ρ
u)
(

C
(

n− 1
p+1 + i

∣

∣(xi−1, x)
∣

∣

p
n− 3p+3

2p
)

)

. (5.18)

Proof Let (s, x) ∈ [si, T )× Rd, and (α, β, γ) ∈ Jun,λi(s, x). Then for all ε > 0,

un,λi(s, x) = max
t∈[s,s+h],|y−x|≤h

{

un,λi(t, y)−(α+ε)(t−s)−β·(y−x)−1

2
(y−x)T(γ+εId)(y−x)

}

, (5.19)

for some h ∈ (0, 1), where Id is the d× d-identity matrix. Let h := hδ ≤ h be a stopping time as in

(3.3), for some δ < h to be chosen later. From (5.19), we deduce that

un,λi(s, x) > E := EL

[

un,λi(s+ h, x+Bh)− (α + 2ε)h− β · Bh −
1

2
BT

h (γ + εId)Bh

]

. (5.20)

Our objective is to deduce from this inequality an appropriate point in the P−subjet of u.

(i) For ε̂ := un,λi(s, x) − E, let (θ̃, ℓ̃) be a (1 ∧ ε̂)-maximizer in the definition of un,λi(s, x). Then

E < u(θ̃)− nΦ
(

s, ηλi(x), θ̃, ℓ̃
)

. (5.21)

We recall from Lemma 5.4 that, with xi := (xi−1, x), we have

∣

∣xi1− ω̃t̃

∣

∣ ≤ Cn− 1
p+1 and dp

(

(s, ηλi (x)), θ̃
)

≤ C
(

n− 1
p+1 + i n− 3p+3

2p |xi|p
)

. (5.22)

On the other hand, it follows from the definition of un in (5.1) that

un,λi(s+ h, x+Bh) ≥ uθ̃(h, B)− nΦ
(

s+ h, ηλi(x+ h), θ̃, ℓ̃
)

. (5.23)

Combining (5.20), (5.21) and (5.23), we get

u(θ̃) > EL

[

uθ̃(h, B)− (α+ 2ε)h− β · Bh −
1

2
BT

h
(γ + εId)Bh + n∆Φ

]

, (5.24)

where

∆Φ := Φ
(

s, ηλi(x), θ̃, ℓ̃
)

− Φ
(

s+ h, ηλi(x+ h), θ̃, ℓ̃
)

=

∫ T+1

0

∣

∣ηλi (x)s∧ℓ̃(t) − ω̃t̃∧t

∣

∣

p+1
dt−

∫ T+1

0

∣

∣ηλi(x +Bh)s∧ℓ̃(t) − ω̃t̃∧t

∣

∣

p+1
dt.
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(ii) In this step, we derive an appropriate minorant of ∆Φ. Since ℓ̃ ∈ Lt̃,s, this difference reduces

to

∆Φ =

∫ T+1

ℓ̃−1(si)

∣

∣ηλi (x)s∧ℓ̃(t) − ω̃t̃∧t

∣

∣

p+1
dt−

∫ T+1

ℓ̃−1(si)

∣

∣ηλi(x+Bh)s∧ℓ̃(t) − ω̃t̃∧t

∣

∣

p+1
dt

=

∫ t̃

ℓ̃−1(si)

(

∣

∣x̄− ω̃t

∣

∣

p+1 −
∣

∣xi1+Bh − ω̃t

∣

∣

p+1
)

dt

+

∫ t̃+h

t̃

(

∣

∣xi1− ω̃t̃

∣

∣

p+1 −
∣

∣xi1+Bh − ω̃t̃ −Bt−t̃

∣

∣

p+1
)

dt.

We next use the obvious identity |ap+1 − bp+1| ≤ |a− b|∑p
j=0 |a|j |b|p−j ≤ (p+ 1)|a− b|(|a|+ |b|)p.

This together with (5.22) allows to control the integrand of the second term:

∣

∣

∣

∣

∣xi1− ω̃t̃

∣

∣

p+1 −
∣

∣xi1+Bh − ω̃t̃ −Bt−t̃

∣

∣

p+1
∣

∣

∣
≤ (p+ 1)

∣

∣Bh −Bt−t̃

∣

∣

(

2|xi1− ω̃t̃|+ |Bh −Bt−t̃|
)p

≤ (p+ 1)
∣

∣Bh −Bt−t̃

∣

∣

(

2Cn− 1
p+1 + |Bh −Bt−t̃|

)p
.

Since 0 ≤ t− t̃ ≤ h = hδ, we see that |Bh −Bt−t̃| ≤ 2δ. We then obtain for sufficiently small δ:

∣

∣

∣

∣

∣xi1− ω̃t̃

∣

∣

p+1 −
∣

∣xi1+Bh − ω̃t̃ −Bt−t̃

∣

∣

p+1
∣

∣

∣
≤ 2δ(p+ 1)

(

2Cn− 1
p+1 + 2δ

)p
< ε n−1.

Therefore,

∆Φ ≥ −ε n−1
h+

∫ t̃

ℓ̃−1(si)

(
∣

∣xi1− ω̃t

∣

∣

p+1 −
∣

∣xi1+Bh − ω̃t

∣

∣

p+1)
dt

≥
(⋆)

−ε n−1
h−

∫ t̃

ℓ̃−1(si)

[

(p+ 1)Bh · (xi1− ω̃t)|xi1− ω̃t|p−1+ C|Bh|2(|Bh|p−1 + |xi1− ω̃t|p−1)
]

dt,

where the last inequality (⋆) follows from an easy calculation reported in Step (v) below. Since

|Bh| ≤ δ ≤ 1, this provides

∆Φ ≥ −ε n−1
h−

∫ t̃

ℓ̃−1(si)

[

(p+ 1)BH ·(xi1− ω̃t)|xi1− ω̃t|p−1 + C|BH |2(1 + |xi1− ω̃t|p−1)
]

dt

≥ −ε n−1
h−

∫ t̃

ℓ̃−1(si)

[

(p+ 1)BH ·(xi1− ω̃t)|xi1− ω̃t|p−1+C|BH |2(2 + |xi1− ω̃t|p)
]

dt. (5.25)

(iii) We now deduce from the previous step the corresponding minorant of EP[∆Φ], for an arbitrary

P ∈ PL. By Lemma 2.1, we deduce from (5.25) that

EP[∆Φ] ≥ −EP[h]
(

ε n−1 + C

∫ t̃

ℓ̃−1(si)

∣

∣xi1− ω̃t

∣

∣

p
dt+ C|t̃− ℓ̃−1(si)|

)

. (5.26)

We shall verify in Steps (vi) and (vii) below that the following estimates hold:

|t̃− ℓ̃−1(si)| ≤ Cn− 3p+3
2 + |s− si|, (5.27)

∫ t̃

ℓ̃−1(si)

|xi1− ω̃t|pdt ≤ Cn− p
p+1

(

n− 3p+3
2 + |s− si|

)
1

p+1

, (5.28)
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where C is a positive constant independent of n. Then

n EP[∆Φ] ≥ −EP[h]
(

ε+ αn(s)
)

,

where αn(s) is as defined in (5.17).

(iv) We are now ready to prove the required result. Plugging the last minorant in (5.24), we see

that

u(θ̃) > EL

[

uθ̃(h, B)− (α+ αn(s) + 3ε)h− β ·Bh −
1

2
BT

h
(γ + εId)Bh

]

.

By Lemma 3.3, there is a point θ∗ such that

t∗ < h(ω∗) and
(

α+ αn(s) + 3ε, β + (γ + εId)ω
∗
t∗ , γ + εId

)

∈ J Lu(t̃+ t∗, ω̃ ⊗t̃ ω
∗). (5.29)

By choosing δ small enough, we have

|(γ + εId)ω
∗
t∗ | ≤ |γ + εId|δ ≤ ε

L0
, (5.30)

dp
(

θ̃, (t̃+ t∗, ω̃ ⊗t̃ ω
∗)
)

= t∗ +
(

∫ T+1

t̃

|ω∗
(t−t̃)∧t∗ |

pdt
)

1
p ≤ Cδ ≤ ε. (5.31)

Since u is a PL-viscosity sub-solution, it follows from (5.29) that

−α− αn(s)− 3ε−G
(

t̃+ t∗, ω̃ ⊗t̃ ω
∗, u, β + (γ + εId)ω

∗
t∗ , γ + εId

)

≤ 0.

Recall that u is dp−uniformly continuous. By using Assumption 4.1 and the estimates (5.22), (5.30)

and (5.31), we deduce from the last inequality that

−α− αn(s)− 4ε− βu,n(x)−G(s, ηλi (x), u
(

s, ηλi(x)
)

, β, γ + εId) ≤ 0,

where βu,n(x) is as defined in (5.18). Finally, sending ε→ 0 and using the monotonicity assumption

in Remark 4.3, we obtain

−α− αn(s)− βu,n(x) −G
(

s, ηλi(x), un,λi(x), β, γ
)

≤ 0.

(v) Proof of (⋆) Clearly, this inequality is implied by

|a+ b|p+1 ≤ |a|p+1 + (p+ 1)a · b|a|p−1 + C|b|2(|b|p−1 + |a|p−1), for a, b ∈ Rd, for some C ≥ 0,

which we now verify. Since p > 1 is odd, see Remark 4.4, we have

|a+ b|p+1 = |a|p+1 + (p+ 1)a · b|a|p−1 +R, where R :=
∑

k+j≤ p+1
2 ,k+2j≥2

(a · b)k|b|2j |a|p+1−2k−2j .

The required inequality follows from the existence of a constant C, depending only on p, such that

|R| ≤ C

p+1
∑

k=2

|b|k|a|p+1−k ≤ C|b|2
p−1
∑

k=0

|b|k|a|p−1−k ≤ Cp|b|2
(

|b|p−1 + |a|p−1
)

.
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(vi) Proof of (5.27). Recall the estimates in (5.8). Since ℓ̃ ∈ Lt̃,s, we have

|t̃− ℓ̃−1(si)| = |ℓ̃−1(s)− ℓ̃−1(si)|
≤ |ℓ̃−1(s)− s|+ |s− si|+ |ℓ̃−1(si)− si|
≤ Cn− 3p+3

2 + |s− si|.

For the last inequality, we used the fact that (θ̃, ℓ̃) is 1-optimal in the definition of un,λi(s, x).

(vii) Proof of (5.28). We directly estimate that

∫ t̃

ℓ̃−1(si)

|xi1− ω̃t|pdt ≤
(

∫ t̃

ℓ̃−1(si)

|xi1− ω̃t|p+1dt
)

p
p+1

(

t̃− ℓ̃−1(si)
)

1
p+1

≤ Cn− p
p+1

(

n− 3p+3
2 + |s− si|

)
1

p+1 ,

where the last inequality follows from (5.27) together with the 1-optimality of (θ̃, ℓ̃).

6 Comparison result

In this section, we fix a, m := mn ∈ N, and the partition (sni )i as follows:

0 < a < (5p)−1, mn := ⌊n1+a + 1⌋, and sni := (i− 1)m−1
n T, i = 1, . . . ,mn + 1,

where ⌊α⌋ denotes the largest integer minorant of α. We fix a piecewise constant path with jumps

occurring at {snj }j≤i, for all i ≤ mn:

ηλ
n
i (x) with λni := (πn

i , x
n
i−1), π

n
i := (sn1 , · · · , sni ), and xni−1 := (xn1 , · · · , xni−1) ∈ Ri−1.

The following is a direct corollary of Proposition 5.8.

Corollary 6.1 Function un,λ
n
i is a Crandall-Lions viscosity subsolution of the PDE:

−∂sun,λ
n
i −G

(

s, ηλ
n
i (x), un,λ

n
i , Dun,λ

n
i , D2un,λ

n
i

)

−Ru,n(x) ≤ 0, on
(

sni , s
n
i+1

)

× Rd,

where Ru,n(x) := Cn− a
p+1 + βu,n(x). Moreover

(i) un,λ
n
i (sni+1, x

n
i+1) = un,λ

n
i+1(sni+1, 0),

(ii) un,λ
n
i is locally 2

3p+3−Hölder-continuous in s, Lipschitz-continuous in x on
(

sni , s
n
i+1

)

,

(iii) un,λ
n
i is lower-semicontinuous at sni , i.e. lims′↓sni ,x′→x u

n,λn
i (s′, x′) ≥ un,λ

n
i (sni , x).

We next state the similar result for supersolutions. Let v be a bounded and uniformly continuous

PL-viscosity supersolution. Then we introduce the regularization:

vn(s, η) := inf
θ∈Θ\0, ℓ∈Lt,s

{

v(θ) + nΦ(s, η, θ, ℓ)
}

.

By the same arguments as in the previous section, we have that the function vn,λ
n
i satisfies the

corresponding symmetric properties.

18



Corollary 6.2 Function vn,λ
n
i is a Crandall-Lions viscosity supersolution of the PDE:

−∂svn,λ
n
i −G

(

s, ηλ
n
i (x), vn,λ

n
i , Dvn,λ

n
i , D2vn,λ

n
i

)

+Rv,n(x) ≥ 0, on
(

sni , s
n
i+1

)

× Rd,

where Rv,n(x) := Cn− a
p+1 + βv,n(x). Moreover

(i) vn,λ
n
i (sni+1, x

n
i+1) = vn,λ

n
i+1(sni+1, 0),

(ii) vn,λ
n
i is locally 2

3p+3−Hölder-continuous in s, Lipschitz-continuous in x on
(

sni , s
n
i+1

)

,

(iii) vn,λ
n
i is upper-semicontinuous at sni , i.e. lims′↓sni ,x′→x v

n,λn
i (s′, x′) ≤ vn,λ

n
i (sni , x).

As a final ingredient for our proof of the comparison result, we introduce for (s, x) ∈ [sni , T ]×Rd:

un,λ
n
i ,κ(s, x) := e2L0sun,λ

n
i (s, x)− κn−1−a

s− sni
− 1

2n
|x|2,

vn,λ
n
i ,κ(s, x) := e2L0svn,λ

n
i (s, x) +

κn−1−a

s− sni
+

1

2n
|x|2.

By the standard change of variable in the Crandall-Lions theory of viscosity solutions, we deduce

from Corollaries 6.1 and 6.2 that the functions un,λ
n
i ,κ and vn,λ

n
i ,κ are respectively viscosity sub-

solution and super-solution on (sni , s
n
i+1]× Rd of

−∂sun,λ
n
i ,κ − Ḡ

(

s, ηλ
n
i (x), un,λ

n
i ,κ, Dun,λ

n
i ,κ +

x

n
,D2un,λ

n
i ,κ +

1

n
Id
)

−Ru,n(x) ≤ 0,

−∂svn,λ
n
i ,κ − Ḡ

(

s, ηλ
n
i (x), vn,λ

n
i ,κ, Dvn,λ

n
i ,κ − x

n
,D2vn,λ

n
i ,κ − 1

n
Id
)

+Rv,n(x) ≥ 0,

where Ḡ(θ, y, z, γ) = −2L0y + e2L0tG(θ, e−2L0ty, e−2L0tz, e−2L0tγ). In particular, note that

Ḡ(θ, y, z, γ)− Ḡ(θ, y′, z, γ) ≤ − L0(y − y′)+ + 3L0(y − y′)−,

and therefore

L0(y − y′) ≤
(

Ḡ(θ, y′, z, γ)− Ḡ(θ, y, z, γ)
)+ ≤

∣

∣Ḡ(θ, y′, z, γ)− Ḡ(θ, y, z, γ)
∣

∣. (6.1)

Proof of Theorem 4.2 Without loss of generality, we only prove (u− v)(0) ≤ 0.

1. Following the classical argument of doubling variables, for fixed n and i, we define

wκ,ε(s, x, x′) := un,λ
n
i ,κ(s, x)− vn,λ

n
i ,κ(s, x′)− 1

2ε
|x− x′|2.

There is a constant C > 0 only dependent on T and the bound of u, v, and a point (ŝκ,ε, x̂κ,ε, x̂
′
κ,ε) ∈

Qn := [sni + n−1−aκ/C, sni+1]×OC
√
n ×OC

√
n such that

wκ,ε(ŝκ,ε, x̂κ,ε, x̂
′
κ,ε) = max

(s,x,x′)∈(sni ,s
n
i+1]×Rd×Rd

wκ,ε(s, x, x′).

Since Qn is compact,
{

(ŝκ,ε, x̂κ,ε, x̂
′
κ,ε)

}

ε
has a converging sub-sequence whose limit is denoted by

(ŝκ, x̂κ, x̂
′
κ). In particular, it is easy to show that x̂κ = x̂′κ.

2. We continue by discussing two alternative cases.

Case 1. Suppose that there are only a finite number of κ such that ŝκ < sni+1, and thus there is
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sub-sequence still denoted as {ŝκ}κ such that ŝκ ≡ sni+1. By Corollaries 6.1 (ii) and 6.2 (ii), un,λ
n
i ,κ

and vn,λ
n
i ,κ are continuous on (sni , s

n
i+1]. This provides for all s ∈ (sni , s

n
i+1] that

(

un,λ
n
i ,κ − vn,λ

n
i ,κ

)

(s, 0) ≤ lim
ε→0

{

un,λ
n
i ,κ(ŝκ,ε, x̂κ,ε)− vn,λ

n
i ,κ(ŝκ,ε, x̂

′
κ,ε)

}

≤
(

un,λ
n
i ,κ − vn,λ

n
i ,κ

)

(sni+1, x̂κ)

≤ sup
|x|≤C

√
n

(

un,λ
n
i ,κ − vn,λ

n
i ,κ

)

(sni+1, x)

≤ e2L0s
n
i+1 sup

|x|≤C
√
n

(

un,λ
n
i − vn,λ

n
i

)

(sni+1, x)

We next send κ ց 0 and then s ց sni . By the semicontinuity properties of un,λ
n
i and vn,λ

n
i at sni

stated in Corollaries 6.1 (iii) and 6.2 (iii), we obtain

(un,λ
n
i − vn,λ

n
i )(sni , 0) ≤ e

2L0T

n1+a sup
|x|≤C

√
n

(

un,λ
n
i − vn,λ

n
i

)

(sni+1, x).

Case 2. Otherwise, there is a sub-sequence still denoted by {ŝκ}κ such that ŝκ < sni+1 for each κ.

Then, by the Crandall-Ishii Lemma in the parabolic case (see for example Theorem 12.2 on page 38

in [4]), there are α,X, Y such that

(

α, ε−1(x̂κ,ε − x̂′κ,ε), X
)

∈ Jun,λ
n
i ,κ(ŝκ,ε, x̂κ,ε),

(

α, ε−1(x̂κ,ε − x̂′κ,ε), Y
)

∈ Jvn,λ
n
i ,κ(ŝκ,ε, x̂

′
κ,ε),

and X ≤ Y . By the viscosity properties of un,λ
n
i ,κ and vn,λ

n
i ,κ of Corollaries 6.1 a,d 6.2, respectively,

this implies that

−Ru,n(x̂κ,ε)− Ḡ
(

ŝκ,ε, η
λn
i (x̂κ,ε), u

n,λn
i ,κ, ε−1(x̂κ,ε − x̂′κ,ε) +

x̂κ,ε

n , X + 1
n Id

)

≤ 0 ≤ Rv,n(x̂′κ,ε)− Ḡ
(

ŝκ,ε, η
λn
i (x̂′κ,ε), v

n,λn
i ,κ, ε−1(x̂κ,ε − x̂′κ,ε)−

x̂′

κ,ε

n , Y − 1
n Id

)

.

By (6.1), we obtain

L0

(

un,λi,κ(ŝκ,ε, x̂κ,ε)− vn,λi,κ(ŝκ,ε, x̂
′
κ,ε)

)

≤ L0

(

2n−1 + n−1|x̂κ,ε + x̂′κ,ε|
)

+ ρG
(

C|x̂κ,ε − x̂′κ,ε|
)

+Ru,n(x̂κ,ε) +Rv,n(x̂′κ,ε)

≤ 2Cn− a
p+1 + 2L0

(

n−1 + Cn− 1
2

)

+ ρG
(

C|x̂κ,ε − x̂′κ,ε|
)

+ ρ
(

n− 1
p+1 + i n− 3p+3

2p

∣

∣xni
∣

∣

p

)

,

where ρ(·) := (2ρG + L0ρ
u + L0ρ

v)(C·) and xni := (xni−1, x). Hence for any s ∈ (sni , s
n
i+1] we have

(

un,λ
n
i ,κ − vn,λ

n
i ,κ

)

(s, 0) ≤ lim
ε→0

(

un,λi,κ(ŝκ,ε, x̂κ,ε)− vn,λi,κ(ŝκ,ε, x̂
′
κ,ε)

)

≤ Cn− a
p+1 + ρ

(

n− 1
p+1 + i n− 3p+3

2p

∣

∣xni
∣

∣

p

)

≤ Cn− a
p+1 + ρ

(

n− 1
p+1 + i n− 3p+3

2p
(

|xni−1|p + C
√
n
)

)

.

We next let κց 0 and then let sց sni . By the semicontinuity properties of un,λ
n
i and vn,λ

n
i stated

in Corollaries 6.1 (iii) and 6.2 (iii), we obtain

(

un,λ
n
i − vn,λ

n
i

)

(sni , 0) ≤ Cn− a
p+1 + ρ

(

n− 1
p+1 + i n− 3p+3

2p
(

|xni−1|p + C
√
n
)

)

.
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3. By the results of Cases 1 and 2 in the previous Step 2, we conclude that

(un,λ
n
i − vn,λ

n
i )(sni , 0) ≤ max

{

e
2L0T

n1+a sup
|x|≤C

√
n

(

un,λ
n
i − vn,λ

n
i

)

(sni+1, x),

Cn− a
p+1 + ρ

(

n− 1
p+1 + i

(

|xni−1|p + C
√
n
)

n− 3p+3
2p

)}

.

We next use Corollaries 6.1 (ii) and 6.2 (ii) so that by direct iteration, it follows that:

(un − vn)(0) ≤ e2L0T max
{

sup
i≤n1+a,|xi|p≤Cnâ

(

un − vn
)(

T, ηλi(xi)
)

,

Cn− a
p+1 + ρ

(

n− 1
p+1 + Cn1+anân− 3p+3

2p

)}

,

≤ e2L0T max
{

sup
i≤n1+a,|xi|p≤Cnâ

(

un − vn
)(

T, ηλi(xi)
)

,

Cn− a
p+1 + ρ

(

n− 1
p+1 + Cn− 1

2p+a+ a
p

)}

,

where â := 1+a+p/2
p = 1

2 + a+1
p ≤ 1

2 + 6
5p . Since u(T, ·) ≤ v(T, ·), we have

(

un − vn
)

(T, η) ≤
(

un − u
)

(T, η) +
(

u− v
)

(T, η)−
(

vn − v
)

(T, η)

≤
∣

∣

(

un − u
)

(T, η)
∣

∣+
∣

∣

(

vn − v
)

(T, η)
∣

∣

Recall the notation ρn introduced in Lemma 5.5. Since a < 1
5p , we have

(un − vn)(0) ≤ e2L0T max
{

2ρn, Cn
− a

p+1 + ρ
(

n− 1
p+1 + Cn− 1

10p
)

}

.

By Lemma 5.5, the regularizations un and vn converge to u and v, respectively. Then, by sending

n→ ∞, we obtain the required result

(u− v)(0) ≤ 0.

7 Appendix

In this section we provide sufficient conditions for the value function of a stochastic control problem

to be dp−uniformly continuous.

Example 7.1 Let X be a controlled diffusion dXα
s = σ(s,Xα, αs)dWs, where W is a Brownian

motion, where the function σ : (θ, α) 7→ σ(θ, α) is bounded and dp−Lipschitz continuous in θ.

Denote the shifted process:

dXα,θ
s = σθ(s,Xα,θ, αs)dWs.

We consider the stochastic control problem:

u0 := sup
‖α‖∞≤1

E
[

g(Xα
T∧·)

]

,
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where the function g is uniformly continuous in Lp-norm, i.e. |g(ω)−g(ω′)| ≤ ρ
(

‖ω−ω′‖p
)

(without

loss of generality we may assume that ρ is concave). Introduce the dynamic version:

u(θ) := sup
‖α‖∞≤1

E

[

gθ
(

Xα,θ
(T−t)∧·

)

]

.

Our main objective in this section is to prove that

the function u is dp−uniformly continuous. (7.1)

To see this, we first estimate that

|u(t, ω)− u(t, ω′)| ≤ sup
α

E
∣

∣gt,ω(Xα,t,ω
(T−t)∧·)− gt,ω

′

(Xα,t,ω′

(T−t)∧·)
∣

∣

≤ sup
α

E

[

ρ
(

‖ωt∧· − ω′
t∧·‖p + ‖Xα,t,ω

(T−t)∧· −Xα,t,ω′

(T−t)∧·‖p
)]

≤ sup
α
ρ
(

dp
(

(t, ω), (t, ω′)
)

+ E‖Xα,t,ω
(T−t)∧· −Xα,t,ω′

(T−t)∧·‖p
)

, (7.2)

where we applied Jensen’s inequality in the last step. We next focus on the estimation of

E‖Xα,t,ω
s∧(T−t)∧· −Xα,t,ω′

s∧(T−t)∧·‖
2p
p

≤ C

∫ T+1

0

E

∣

∣

∣

∫ s∧(T−t)∧r

0

(

σt,ω(λ,Xα,t,ω, αλ)− σt,ω′

(λ,Xα,t,ω′

, αλ)
)

dWλ

∣

∣

∣

2p

dr

≤ C

∫ T+1

0

E

∫ s∧(T−t)∧r

0

∣

∣σt,ω(λ,Xα,t,ω, αλ)− σt,ω′

(λ,Xα,t,ω′

, αλ)
∣

∣

2p
dλdr

≤ (2Clip)
2pC(T + 1)

∫ s

0

(

dp
(

(t, ω), (t, ω′)
)2p

+ E‖Xα,t,ω
λ∧(T−t)∧· −Xα,t,ω′

λ∧(T−t)∧·‖2pp
)

dλ,

where Clip is the Lipschitz constant of σ. By the Gronwall inequality, this provides

E‖Xα,t,ω
(T−t)∧· −Xα,t,ω′

(T−t)∧·‖2pp ≤ C̃dp
(

(t, ω), (t, ω′)
)2p

, with C̃ = (2Clip)
2pC(T + 1)e(2Clip)

2pC(T+1)T .

Plugging the last inequality into (7.2), we get

|u(t, ω)− u(t, ω′)| ≤ ρ
(

(

1 + C̃
1
2p
)

dp
(

(t, ω), (t, ω′)
)

)

. (7.3)

We next estimate |u(t, ω)− u(t′, ω)| for t < t′. By the dynamic programming, we have

|u(t, ω)− u(t′, ω)| =
∣

∣ sup
α

E[ut,ω(t′ − t,Xα,t,ω)]− u(t′, ω)
∣

∣

≤ sup
α

E
∣

∣ut,ω(t′ − t,Xα,t,ω)− u(t′, ω)
∣

∣

≤ sup
α

E

[

ρ
(

(

1 + C̃
1
2p
)

dp
(

(t′, ω ⊗t X
α,t,ω), (t′, ω)

)

)]

≤ sup
α
ρ
(

(

1 + C̃
1
2p
)

E

[

dp
(

(t′, ω ⊗t X
α,t,ω), (t′, ω)

)

])

≤ sup
α
ρ
(

(

1 + C̃
1
2p
)

(

∫ T+1

t

E
∣

∣Xα,t,ω
(s−t)∧(t′−t)

∣

∣

p
ds
)

1
p
])

,

where we applied the result of (7.3) in the third inequality. Finally using the classical estimate

sup
α,t,ω,r

E
∣

∣Xα,t,ω
r∧(t′−t)

∣

∣

p ≤ Ĉ(t′ − t)
p
2
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(because σ is bounded), we see that

|u(t, ω)− u(t′, ω)| ≤ ρ
(

(

1 + C̃
1
2p
)(

(T + 1)Ĉ
)

1
p (t′ − t)

1
2

)

. (7.4)

The required result (7.1) is now a direct consequence of (7.3) and (7.4).
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