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Abstract

In this paper we study properties and invariants of matrokesoendowed with the rank metric, and relate
them to the covering radius. We introduce new tools for thedyasis of rank-metric codes, such as puncturing
and shortening constructions. We give upper bounds on thericg radius of a code by applying differ-
ent combinatorial methods. We apply the various boundsdathsses of maximal rank distance and quasi
maximal rank distance codes.

Introduction

Rank-metric codes have featured prominently in the litesabn algebraic codes in recent years and especially
since their applications to error-correction in networksrevunderstood. Such codes are subsets of the matrix
ring ngm endowed with the rank distance function, which measurestgheank of the difference of a pair of
matrices. An analogue of the Singleton bound was givenlin [P& code meets this bound it is referred to as
a maximum rank distancéVIRD) code. It is known that there exist codes meeting thigrniabfor all values of
g,k,m,d [9,[10,/19]. For this reason thmain coding problenfior rank metric codes, unlike the same problem for
the Hamming metric, is closed: for anyk, m,d the optimal size of a rank-metric codeIFn{jxm of minimum rank
distanced is known. There are very few classes of rank-metric codewkndue in part to the Delsarte-Gabidulin
family and its generalizations][9, 10,/19], which are opfiianad can be efficiently decoded [10, 14] 22].

Thecovering radiusof a code is a fundamental parameter. It measures the maxwight of any correctable
error in the ambient space. It also characterizesithgimalityproperty of a code, that is, whether or not the code
is contained in another of the same minimum distance. Therguay radius of a code measures the least integer
r such that every element of the ambient space is within distanf some codeword. This quantity is generally
much harder to compute than the minimum distance of a codereTére numerous papers and books on this
topic for classical codes with respect to the Hamming desgaseel[1, 13,1415, 13] and the references therein), but
relatively little attention has been paid to it for rank-nietodes|([11), 12].

In this paper we describe properties of rank-metric codesralate these to the covering radius. We define
new parameters and give tools for the analysis of such cddgsarticular, we introduce new definitions for the
puncturing and the shortening of a general rank-metric cbdmany instances our tools are applied to establish
new bounds on the rank-metric covering radius. Some of thiwetkbounds, such as the dual distance and
external distance bounds, are analogues of known boundseddiamming distance. Others, such as the initial
set bound, are unique to matrix codes. We apply our resuliset@lasses of maximal rank distance and quasi
maximal rank distance codes.
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In Sectior 2 we consider the propertyrabximality A code is maximal if it is not contained in another code
of the same minimum distance. We introduce a new parametéFddhemaximality degre®f a code, and show
that it is determined by minimum distance and covering madiia code. These results are independent of the
metric. In SectionI3 we define shortened and punctured caad&smetric codes and describe their properties. We
give a duality result relating a shortened and puncture@ cidSectiom ¥ we investigate translates of a code. We
show that the weight enumerator of a coset of a linear codenbfweight is completely determined by the weights
of first n— d* cosets, and establish this using Mobius inversion on thiedaof subspaces dﬂ"é. This is then
applied to get the rank-metric analogue of theal distance boundwWe also give the rank-metric generalization
of the external distance boundvhich holds also for non-linear codes. In Secfibn 5 we ohice the concept of
the initial set of a matrix code and use this to derive a bound on the covedads of a code. In Sectidn 6 we
apply previously derived bounds to maximum rank distanckcarasi maximum rank distance codes.

1 Preliminaries

Throughout this papeqis a fixed prime poweif is the finite field withg elements, ankl, mare positive integers.
We assuméx < mwithout loss of generality, and denote Eﬁxm the space ok x m matrices oveiy. For any
positive integen we setn] :={i e N: 1 <i <n}.

Definition 1. Therank distance between matricedl,N F'éxm isd(M,N) :=rk(M —N). A rank-metric code
is a non-empty subsé&tf’ C IE‘{;X"‘. When|¢'| > 2, theminimum rank distance of ¢ is the integer defined by
d(%) :=min{d(M,N) : M,N € ¢, M # N}. Theweight anddistance distribution of a code® C ngm are the
integer vector$V(¢') = (W(%) : 0 <i < k) andB(%) = (Bi(¥) : 0 <i <k), where, for alli € {0, ...,k},

W(Z):={Me€:tk(M)=i}|, Bj(%):=1/|F] |[{(M,N)e € x€:dM,N)=i}|
It is easy to see that defines a distance function dﬂ‘ym.

Definition 2. A code% C ngm islinear if it is an F-subspace dF'éxm. If this is the case, then thdual codeof
¢ is the linear cod&™* := {N € F&*™: Tr(MN') = 0 for allM € ¢’} C Fg*™.

If € C IF“{;X"‘ is a linear code then one can easily check ) = min{rk(M) : M € ¥, M # 0} and
W (%) = Bi(%) for all i € {0,...,k}. Moreover, since the magv,N) — Tr(MN!) defines an inner product on
the spacé ™, we have dinf¢-) = km—dim(¢) and¢*+ = &.

Definition 3. Thecovering radius of a codes” C IE"(;X’“ is the integer
p(%) := min{i : for all X € F§*™ there existdl € ¢ with d(X,M) < i}

In words, the covering radius of a codéis the maximum distance &f to any matrix in the ambient space, or
the minimum value such that the union of the spheres of radiabout each codeword cover the ambient space.
The following result summarizes some simple propertiehigfinvariant. These facts are known from studies of
the Hamming distance covering radius and, being actuatlgpendent of the metric used, hold also in the rank
metric case. For a comprehensive treatment of the coverotggm for Hamming metric codes, séél[4, 5].

Lemmad4. Let¢ C Fﬁxm be a code. The following hold.
1. 0< p(%) < k. Moreover,p(%) =0 if and only if ¢’ = F&*™.
2. f9C IE‘{;X’“ is a code withg’ C 2, thenp(%€) > p(2).
3. If 2 CF&“Mis a code withts' C 7, thenp(¢) > d(2).
4. d(€)—1<2p(€), if |€| > 2 ands C Fg™.



Proof. To see thaltl3 holds, |84 € 2\ €. By definition of covering radius, there exists a matixc ¢ with
d(M,N) < p(%). Thusd(2) <d(M,N) < p(%).

To sed 4, observe that the packing radit(¢’) — 1) /2] of ¢ cannot exceed the covering radius, and that
equality occurs if and only i# is perfect, in which case we hay&d(¥¢) —1)/2] = p(%¢’). However there are no
perfect codes for the rank metrid [2]. O

2 Maximality

In this short section we investigate some connections legtwlee covering radius of a rank-metric code and the
property of maximality. Recall that a cod€ C Fﬁxm is maximal if |¢’| = 1 or |¢’| > 2 and there is no code

2 CFMwith 7 2 ¢ andd(Z) = d(%). In particular,F§™ is maximal.
Proposition 5 (see e.g..[4]) A code% C F‘éxmwith || > 2 is maximal if and only ifp(¥¢) < d(¥) — 1.

Proof. If € is not maximal, then there exist8C 2 with d(2) =d(%). Lemmd4 impliep(¢) > d(¢) =d(2),
i.e., p(¢)>d(%)—1. This showg<«). Let us prove(=-). If € = Fﬁxm then the result is trivial. Therefore
we assumes’ & IE“{;X"‘ and p(¥¢) > d(¥) by contradiction. By the definition of covering radius therasts
Xe IE"(;X’“\% such thad(M, X) > p(%) for all matricesM € €. Then the code” := ¥ U {X} strictly contains
¢ and hagl(2) = d(¥%). O

We now propose a new natural parameter that measures thenaiéiof a code, and show how it relates to
the covering radius.

Definition 6. Themaximality degreeof a codes C IE‘EX"‘ with |€’| > 2 is the integer defined by

. min{d(¢) —d(2): 2 CF*Mis acode withz 2 ¢} if € C FE*™,
H#) = 1 it & = Fhxm,

The maximality degree of a codg C ngm with |¢| > 2 satisfies 6< u(¢) < d(¢)— 1. Moreover, it is easy
to see thap(¢’) > 0 if and only if € is maximal. Notice tha:(%¢) can be interpreted as the minimum price (in
terms of minimum distance) that one has to pay in order torgalé to a bigger code. We can derive a precise
relation between the covering radius and the maximalityekgf a code as follows.

Proposition 7. For any codes” C ngm with |€| > 2 we haveu(¢) = d(%¢) —min{p(¥), d(¥¢)}. In particular,
if € is maximal theru(¢’) =d(%¢) — p(%).

Proof. If ¢ is not a maximal code, then by Propositidn 5 we han&') = 0 andp(%) > d(¥). The result
immediately follows.

Now assume th&¥ is maximal. If¢ = IE‘EX"‘ then the result is trivial. In the sequel we assumée F'éxm.
By Propositior.b we have m{p(¢’), d(¢)} = p(¢). We need to prove that

TakeX € IE‘{;X”‘\% with min{d(X,M) : M € €} = p(¥). Define the code? := ¢ U {X} 2 ¥. By definition
of minimum distance we hawé(Z) = min{d(¥), p(¥)} = p(¥¢), where the last equality again follows from
Proposition[b. As a consequeng®(%¢) < d(¥¢)—d(2) =d(¢)— p(%¢). Now assume by contradiction that
H(E)<d(€)—p(F). Let C F'éxm be a code witl 2 ¢ andd(%¢) —d(2) = u(¢). We haved(¢) —d(2) =
H(€) <d(€)—p(¥), and sod(2) > p(¥). This contradicts Lemnid 4. O



3 Puncturing and shortening rank-metric codes

In this section we propose new definitions of puncturing amortening of rank-metric codes, and show they
relate to the minimum distance, the covering radius and tladitg theory of codes endowed with the rank metric.
Applications of our constructions will be discussed later.

Notation 8. Given a codes’ C IE“{;X"‘ and an integer K u<k—1, we let
%u:={M € ¢ : M;; = 0 whenever < u},

the set of matrices if” whose firstu rows are zero. Moreover, A is ak x k matrix overlF, we define the code
A% :={A-M:M e ¢} CF™. Finally, 1, : Fg™ — F{ ™ denotes the projection on the l&st u rows.

Notice that ifA € GLi(IFq) then the maX — AX s a linear rank-metric isomettﬂf/‘éxm — F'éxm. In particular,

if ¢ C IE“{;X"‘ is a code, the’A% is a code with the same cardinality, minimum distance, dogardius and weight
and distance distribution &&.

Definition 9. Let% C ngm be a codeA € GLi(IFq) an invertible matrix and ¥ u < k— 1 a positive integer. The
puncturing of ¥ with respect tA andu is the code

N(¢,Au) = 1 (A%).
When 0 ¥, theshortening of ¥ with respect tcA andu is the code
Z(%7A7 U) = TEJ((A%)U)

The shortening and puncturing of a cogleC IE“{;X"‘ are codes in the ambient spéﬁé—“)xm. Notice moreover
that linearity is preserved by puncturing and shortening.
It will be convenient for us to use the following notation retsequel.

Notation 10. Given a codeg” C F'éxm and anFg-linear subspace C FX, we denote by’ (U) the set of matrices
in ¥ whose columnspace is contained in the space

Remark 11. It is easy to see that # is linear, theri’(U) is anFq-linear subspace of for anyU. Moreover,
if U C FX is a given subspace of dimensiantheni_, = (A%)(U) asFq-linear spaces, wherk € F* is any
invertible matrix that mapge_y+1, ...,&) toU (here{ey,...,&} denotes the canonical basis[@j).

We now show an interesting relation between puncturingitehimg, and trace-duality.

Theorem 12 (duality of puncturing and shorteninghet @ C IE"(;X’“ be a linear codel € GLi(IFq) an invertible
matrix and 1< u < k—1 an integer. Then

N, Au*t =2(¢+, (AH 1 u).

Proof. LetM € 3(¢"+, (A1 u) = my(((AY)~1¢4),) andN € M(¥, A, u) = ,(A%). By definition, we can write
N = 1,(ANy) with Ny € € andM = (A ~IMy) with My € €+ and (A')~IM; € ((AY)~1%),. Since the first
rows of (A')~1M; are zero, by definition of trace we have

Tr(m5((AY M) R (AND)Y) = Tr((AH M (ANy)Y) = Tr((AY) " IMINEAY) = Tr(M;NY) = 0,

where the last equality follows from the fact tHd € ¥+ andN; € €. This proves(D). It suffices to show
that the codes$1(%,A,u)* andZ(%+, (A')~1,u) have the same dimension ovEs. Denote by{ey,...,&} the
canonical basis dF'gl, and letU := (ey,...,e,). One has

dim(N (%, A,u)1) = m(k— u) — dim(NM(%, A u)) = m(k— u) — (dim(€) — dim((A€)(U))), 1)
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where the last equality follows from tfi&-isomorphisnT1(%¢,A,u) = ¢ /(A¢)(U). By [18, Lemma 28] we have
dim((A%)(U))) = dim(A%) — m(k— u) +dim((A%)* (U1)). (2)

Observe that difA%) = dim(%) and (A%)* = (A")~1¢*. Moreover, sinceJ* = (e, 1,...,&), by defini-
tion of shortening we haveg,((A)~1¢ L) (UL)) = (¢, (A)~L,u). In particular, dinf=(%+, (A1, u)) =
dim(((A")~1€+)(U+)). Thus Equation{2) can be written as

dim((A%€)(U))) = dim(%) — m(k— u) + dim(Z(€*, (AY L, u)). (3)
Combining equation${1) andl(3) we obtain
dim(N(%,A,u)t) =dim(Z(¢+, (A) 1, u)).
This concludes the proof. O

The following two propositions show how puncturing, shoitgy, cardinality, minimum distance and covering
radius of rank-metric codes relate to each other.

Proposition 13. Let % C ngm be a code with%'| > 2. LetA € GLy(FFq) and 1< u <k-—1.
1. d(N(%,AU) > d(%) -1, if N(E,A )| > 2.
2. d(Z(%,AU)) > d(%), if 0 € ¢ and|=(%,AU)| > 2.
3. Assumeau < d(%) — 1. Then|M(%,A u)| = |€|. If € is linear, thenZ (¢, A u)| = " /|Z).
4, Assumai>d(%)—1. Then|l(%€,A,u)| > |€|/q"U-d@)+D f0 € ¢, then|Z(€, A k—u)| < gmu-d(@)+1),

Proof. Propertie$ 1112 are simple and left to the reader. The firstgfd?roperty[ B follows from the definition
of minimum distance, and the second part is a consequenc@eamfrédn 1R. Let us show Propefty 4. Write
u=d(%)—1+vwith1<v<k—d(%)+1, and define the cod€ :=N(%,A,d(¢) — 1). By Property 8 we have
|€| =|N(¢,A,d(¢)—1| = |&]. It follows from the definitions thalfl (¢, A, u) = 15,(&), where

- F((qk—d(%)-i-l)xm . F((qk—u)xm
denotes the projection on the ldst- u rows. For anyN € 15,(&) let [N] := {M € & : (M) = N}. Clearly,
[IN]N[N'] = 0 wheneveN,N’ € i,(&) andN # N’. Moreover, it is easy to see th@]| < g™ for all N € 1, (&).
Therefore

€] =

U N
Nem,(&)
and so|ll(%¢,Au)| = |%(&)| > |&]/d™. Let us prove the last part of Propefty 4. |X{(¢,A,k—u)| = 1 then
there is nothing to prove. Assumg(%,Ak—u)| > 2. ThenZ(%,A k—u) has minimum distance at least
d(A%) = d(%). Therefore by the Singleton-like bourid [9] we have

= > NI < |m(&)]-a™,
Nem, (&)

|Z(€, A k—u)| < U@,
as claimed. O
Proposition 14. Let ¢ C Fﬁxm be a code. For alh € GLi(FFq) and 1< u < k—1 we have

p(€) > p(N(%.AL) > p(4) —u.



Proof. Let ¥ := A¢. Thenl(%¢,A,u) = ,(2). LetX € IE‘EX"‘ be an arbitrary matrix. By definition of cov-
ering radius and punctured code there exits 2 with d(r,(M), (X)) < p(1,(2). Therefored(M, X) <
d(my(M), (X)) +u < p(my(2)) + u. SinceX is arbitrary, this showp(2) < p(m(2)) +u, i.e.,p(m(2)) >
p(Z)—u=p(€)—-u.

Now let X € Fék_“>xm be an arbitrary matrix. Compled to ak x mmatrix, sayX’, by addingu zero rows to
the top. There exist¥l € 2 with d(X",M) < p(Z). Thus

d(X, (M) = d(m(X), (M) < d(X',M) < p(2) = p().

This showsp(,(2)) < p(€), and concludes the proof. O

4 Translates of a rank-metric code

In this section we study the weight distribution of the tlates of a code. As an application, we obtain two upper
bound on the covering radius of a rank-metric code. Recatlitietranslate of a code®” C IE“{;X"‘ by a matrix
X € F§“™is the code

C+X:={M+X:Me€}CF&™

Clearly, full knowledge of the weight distribution of thetrslates of tells us the covering radius, which is
the maximum of the minimum weight of each translat&sofEven partial information may yield a bound on the
covering radius. More precisely, X € IE“{;X"‘ andW (%€ + X) # 0, thend(X,%) := min{d(X,M) : M € €} <.

So if there exists such that for eaclX e IE"(;X’“, W (% + X) # 0 for somei <r then, in particularp(%) <r. If
such a value can be determined, then we get an upper bound on the covedngsrofs’.

The goal of this section is twofold. We first show that the viaeidjstributionWo (%" + X), ..., W(% + X) of the
translates” 4 X of a linear codes” C ngm is determined by the values @k (% + X),...,.W_q4:. (¢ + X), where
dt = d(¢*). Moreover, we provide explicit formulas fa_y. ,1(€ + X),...,Wk(€ + X) as linear functions
of Wo (% + X),...,.\W_q4. (¢ + X). As a simple application, we obtain an upper bound on therguyeadius of
a linear code in terms of the minimum distance of its dual cadar proof uses combinatorial methods partly
inspired by the theory of regular support functions on gsodeveloped in [17].

In a second part, following work of Delsarte for the Hammirigtahce [[7], we apply Fourier transform
methods to obtain further results on the weight distrimgiof the translates of a (not necessarily linear) code
€ C IE"(;X’“. In particular, we obtain an upper bound for the coveringusdf a general rank-metric code in terms
of its external distance (defined below).

Throughout this section we follow Notatidn]10. We start wéttpreliminary lemma that describes some
combinatorial properties of the translates of a linear code

Lemma 15. Let ¥ C ngm be a linear code, and l&t C F'a be anFg-linear subspace of dimensian Assume
that|¢'(U)| =% /g™ Y. Then for all matriceX € Fg*™ we have

(€ +X)(U)] = €] /g,

Proof. Let f : F§ — Fy be a linear isomorphism such theJ) =V := {(x,...,) € F§ 1 x = 0 for alli > u}.
Let A be the matrix associated fowith respect to the canonical basisIEﬁ‘. Define the linear cod& := A%.
The left-multiplication byA induces bijections

cU)—2(V), (€+X)U) = (2+AX)(V).
In particular, we havéZ (V)| = |¢(U)|, and it suffices to prove that

(Z+AX)(V)| = 2(V)]. (4)



Let mm:= 1, : F§*™ — F§ ™ denote the projection on the ldst u rows. Throughout the proof we denote by

m and 7o the restnctlon ofrrto 2 and toZ + AX, respectively. Clearlyrg is linear.
By definition ofV we have kefrm) = Z(V). Therefore

m(2(V)| =12|/|2(V)| = |%]|/|€ )| = gk

In particular, nl iS surjective. Again by definition of, we have(Z + AX)(V) = 1, *(0). Moreover, one can
check that 7, 1(0)| = | *(—11(AX))|. Thus

(2 +AX) (V)| = |15 (0)] = | *(~Ti(AX))). ()

Sincery is surjective, there exists € & such thatm (N) = —(AX). One can easily check that the map(ie) —
m; 1(—m(AX)) defined byM — M + N is a bijection. Thus using Equationl (5) and the fact t#&V ) = ker(rq)
we find

|2(V)| = [ker(1w)| = |75 1(~TI(AX))| = (2 + AX)(V)].

This shows Equatiori [4), as desired. O
A second preliminary result which will be needed later isfthikwing.

Lemma 16. Let ¥ C IE‘EX"‘ be a linear code. Then for all matric¥se IE‘EX"‘ and for any subspadé C Fqy with
u:=dimU) >k—d(¢*) +1 we have

(€+X)(U) = || /g,

Proof. By Lemma[15 it suffices to prove the result #6r= 0. By [18, Lemma 28], for any subspateC IF‘;1 of

dimensionu we have %)

qm
whereU * denotes the orthogonal of with respect to the standard inner producFéf By definition of minimum
distance we have™* (U+) = {0} for all U C F§ with dim(U+) < d(¢*) — 1. Therefore the lemma immediately
follows from Equation[{() and the fact that djoh") = k—dim(U). O

€)=~y 1€ UL (6)

We can now state our main result on the weight distributiotheftranslates of a linear rank-metric code.

Theorem 17. Let %’ C F&*™ be a linear code, and I&t € F&*™ be any matrix. Writed* := d(¢*). Then for all
i € {k—d*+1,...k} we have

won-Fwaol g 4

=0 I—U — ] e T u a qm(k—u) .
In particular, the distance distribution of the transféte X is completely determined by m, |¢’| and the weights
\/VO(%—FX)? '-'7V\4(—dL (%4—)()

Proof. Recall from [20] that the set of subspaceﬁi‘éﬁs a graded lattice with respect to the partial order given by
the inclusion. The rank function of this lattice is the diraiem of vector spaces, and its Mobius function is given
by

uST) = (-1
for all subspaceSC T C IF‘;1 with dim(T) =t and dim(S) = s. More details can be found on page 317/of [20].
Throughout the proof a sum over an empty set of indices islagefinition. For any subspaseC IE“{; define

f(V):=[{M e % +X:columnspaceM) =V}| and g(V):= ;v f(V)=[(€+X)(V)|.

7



By the Mdobius inversion formulal([20], Proposition 3.7.1gr any subspace C IE‘E we have

f(V)=UZV\(‘5+X)(U)! HU,V). (7)

Fix any integeii with k —d+ + 1 < i < k. By definition of weight distribution we have

WH(E +X) = Z f(V).
VCF
dim(V)=i

Therefore by Equatiori{7) the numB&f(¢ + X) can be expressed as

W(Z +X) = VZFH UZVK%JFX)(U)HJ(U’V)
dm(V)=i

= > (€ +X)(U)| uU,V)
UCdeinvw(%l)J—l

_ % +X)(U SRY;

U;Fk!( )(U)] vgu .H( )

|

Qo
o
3
3,
=
T

We now re-write the quantity

= I ¢ +X)U u\v
UZO Uég (€ +X)(V)] gu .u( )
dim(U)=u dim(V)=i
oy % +X)(U 1) ~Yq(2)
UZO Uég (€ +X)(V)] 'gu.( ) d
dim(U)=u dim(V)=i
B e ﬁ:l‘ﬂ T @ +X))) ®)
=0 a9 UCF§
dim(U)=u
(€ +X)(V)]
UCF
dim(U)=u

in a more convenient form. By Lemrhal16, fot> k—d+ + 1 we have

S 1@+ = | [ela. ©
UCFK q
dim(U)=u

On the other hand, far < k— d+ we have

UCF§
dimU)=u

(€ +X)(U)

= |{(U,M):U CF dimU) =u, M € € +X, columnspacéM) C U}|

= ; {U CF§:dim(U) =u, U 2 columnspacéM)}|
Me



Z)vvJ (€ +X) {k ﬂ (10)

Combining equation$ [8),](9) anld_{10) one obtains the di$émenula. O

As a simple consequence of Theorlerh 17 we can obtain an upped lom the covering radius of a linear code
¢ C F&“™in terms of its dual distance, as we now show. Ket F§*™ ¢ % ThenWs (% + X) = 0. Theoreni 17
with i := k—d* +1 gives

VVk+dL+1((5+X)=k;Zd:(—1)‘”q( ){k ”] iwJ (% +X) [k ﬂ [k_d‘jH] %]/,

In particular Wi (€ + X), ..., W_q1,1(% + X) cannot be all zero. This implies the following.
Corollary 18 (dual distance bound)~or any linear cod&” C Fﬁxm we havep(%) < k—d(¢+) + 1.

We now relate the covering radius of a code with its exterishdce. In particular, we derive another upper
bound on the covering radius of a linear code in terms of th& distribution of the dual code. This is the rank
distance analogue of Delsarte’s external Hamming disthoaed (c.f. [15], 7, 4]), and improves the dual distance
bound of Corollary 18.

The approach usasKrawtchouk polynomials and Fourier transforms to obtatations on the weight dis-
tribution of the translates of a code }H’ﬁxm. The properties off-Krawtchouk polynomials were described in
[7,[8]. The Fourier transform arguments used are indeperudéhe choice of metric used and so extend from the
Hamming metric case. The principle novelty is the introéurcbf ag-annihilator polynomial, used in the proof
of Lemmd 23.

Throughout the reminder of this secti@f C IE‘{;X’“ denotes a (possibly non-linear) code, gnds a fixed
non-trivial character ofFq, +).

Definition 19. LetY € IE"(;X’“. Define thecharacter map on (IF(‘;X M +) associated t&¥ by
@ 1 FE™— C X x(Tr(YXT)).
Clearly g (Y) = @ (X) for all X,Y € F‘éxm. We denote byb thekmx kmsymmetric matrix with values it
defined as having entrg, (X) in the column indexed bX and in the row indexed by. Define theQ-module of

lengthkmm € = {(@% : X € F&*™) : @ € Q} . For eachy, extendgy to a character of as follows:

@€ —C o = (o :Xngxm)H;dxcp{(X).

Thendo = (g ()Y € ngm) € €. The rows of® are pairwise orthogonal, as can be seen from:

;@(X)fpz(x) = ;W(Y)W(Z) = ;W(Y -2)= ;40{7200

Therefored?.s/ = dT o7 = Mo and saer is determined completely by its transform

[ dM ifY=2,
o otherwise.

A =0 = ()Y €FE™.

Any subsetz C F£*™ can be identified with the 0-1 vect@ = (% : Z € F§*™) € ¢, where

1 fzew,
% _{ 0 otherwise.



For anyX € F§*™, the translate cod® + X C F§*™ is then identified withie' +X = (¢z-x : Z € F&*™). It is
straightforward to show thag, (¢ + X) = @/ (¢) @y (X). This immediately yields the inversion formula

Cx = qkacp{ (¢+X) = qka(py
For eachi € [k we letQ' be the set of matrices iF§*™ of ranki.

Lemma 20 (see[9]) LetY € IF'&X"‘. Thencp{(ﬁ) depends only on the rank &% If Y has rankj, then this is
given by
k—¢

e § oG] [
go k—|q 4 q
In terms of the transform d®' this gives

Q' = (R(rk(Y)) :Y € Fg*™).

Itis known [&,[9] that theR (]) are orthogonal polynomials of degre the variableq~!. Therefore, any rational
polynomial y of degree at mosk in g~/ can be expressed as@linear combination of the-Krawtchouck
polynomials: y(x) = le(:ijPj (x). Again, the orthogonality relations mean that the coeffiiecan be of can

be retrieved as )
1 .
Y = g i; y(i)R

We letP = (R (j)) denote thék+ 1) x (k4 1) matrix with (j,i)-th component equal t8( j). Then theransform
of B(%) = (Bi(¢) : 0 <i <K) is defined as* (%) := |%|B(%)P. The coefficents oB* (%) are non-negative
[9, Theorem 3.2].

LetZ:=(Dz:Z¢ ngm) whereDz = [{(X,Y) : X,Y € €,X+Y = Z}|. It can be checked that

Then

3,71 = 50z 5 0(2) = §Dz0(@) = FORE) = 4] 3 BRI = 1B P

and in particular we have

[€1B (€)= (Y &(2):0<i<k)=( Z_cp{(%)zsogigk).

ClearlyB; (%) = 0 implies thatgp, (¢) = 0 for eachY € Q'

Definition 21. Theexternal distanceof a codeg C F'éxm is the integer
0" (%) = |{i € [k : B{(¢) > 0},

the number of non-zero coefficentsBi(%’), excludingBy(¢) .

For ease of notation in the sequel we writé:= 0*(%¢). Let 0< by < ... < bg- < k denote the indicesof
non-zeroB; (¢’) for i > 0.

Definition 22. Theannihilator polynomial of degreec™ in the variableq > of ¢ is




This is theg-analogue of the Hamming metric annihilator polynomial,[§. 168]. Notice that thb; are the
zeroes ofx anda (0) = “%ﬂ.

Lemma 23. LetX € Fﬁxm be an arbitrary matrix. Then

aWj(% +X) = 1.
1

Q

In particular, there exists sonjec [0*] such thawV; (¢ + X) > 0.

Proof. We must show thay 7, a;j(Wj(% + X) : X € FE*™) = (1: X € F§*™). Since® is invertible, this holds if
and only if for all,

. 0 ifY;ﬁO
AN . kx . kxm
@(nga,V\lj(%JrX).Xqu >—(p{(1.X€IE‘q )——{ Kkm ifY =0

This was the approach taken, for examplelin [15, Chapteerha 18]. Lel € IE"(;X’“. Then
g* o*
@ 3 W (E+X) XEFGT ) = 3 & TW(E+X)@(X)
=1 =1

- S Y w(@FX)

whereY has rankﬁn.1n
Now o (0) = ‘ﬁ?‘ and@(%) = |%), so@(%)a(0) = g™ Suppose that has rank/ > 0. The roots ofr are

precisely thosg > 1 such thaBj(¢’) is non-zero. On the other hand,Bf(¢") = 0 theng, (%) = 0. It follows
that the productp, (¢')a(¢) = 0 and so

o*

Oy aWi(¢ +X): X e F&™) = d(1: X € FE*™),
=1

as claimed. O

We can now upper-bound the covering radius of a general megtkic code in terms of its external distance
as follows.

11



Theorem 24 (external distance boundJor any codeg’” C Fg™*" we havep(C) < 0*(%). Furthermore, if¢’ is
Fq-linear thenp(¢) is no greater than the number of non-zero weight&of excludingWo ().

Proof. The first part of the theorem is an immediate consequence miia23. The second part follows from
the fact thaB; (¥) = Bi(¢') =W (%), provided thats’ is linear. This can be easily seen from the definition of
B*(%¢) on page 10 and the MacWilliams identities for the rank mg&jc O

Example 25. Letm=rs and let% = {33 fix® : f € Fqn}. Then? is the set of allFg-linear maps fronFgn
to itself. Thereforeg” has elements dfg-ranks Q1,2,....,r. Let f have ranki overFg. Let Im f C Fgm have
Fes-basis{vy,...,vi} and let{uy, ...,us} be anFy-basis ofF . Then{ujvj:1<i<s 1< j<i}isanFg-basis of
Im f in Fgm, and so has dimensidas. Then% has non-zero rank weigh{s, 2s, ...,rs} overFg, so thato(¢+) <r.

5 Initial set bound

In this section we propose a definition of initial set of a aineank-metric code inspired by [16]. Moreover we
exploit the combinatorial structure of such set to deriveipper bound for the covering radius of the underlying
code. Our technique relies on the specific “matrix stru¢tafeank-metric codes.

Notation 26. Given positive integera,b and a seS C [a] x [b], we denote byi(S) € F&*P be the binary matrix
defined byl(S)jj :=1if (i, ]) € S andI(S) := 0if (i, j) ¢ S Moreover, we denote by(S) the minimum number
of lines (rows or columns) required to cover all the onel ).

The initial set of a linear code is defined as follows.
Definition 27. Let < denote the lexicographic order @i x [m]. Theinitial entry of a non-zero matrit € Fg<™
is in(M) := min<{(i, j) : Mj; # O}. Theinitial set of a non-zero linear cod& C ngm is

in(%):={in(M):M e %, M #0}.

We start with a preliminary lemma.
Lemma 28. Let ¥ C ngm be a non-zero code. The following hold.

1. dim(%¢) = |in(¥)],

2. in(%) C [k—d(€)+1] x [m].

Proof. Lett :=dim(%), and let{Mg,...,M; } be a basis o¥’. Without loss of generality we may assuifiel) <
in(Mp) < --- <in(M). If M € ¢\ {0}, then there exist elemends, ...,a& € Fq such thatM = $!_, aM;, hence
in(M) € {in(My),...,in(M;)}. This shows &) = {in(My),...,in(M;)}. In particular,|in(¢)| =t = dim(%).
Notice moreover that if iM;) > (k—d(%¢’) +1,m), then clearly rkM;) < d(%¢’) — 1, a contradiction. Therefore
we have

(1,1) =in(Mz) < --- <in(M;) < (k—d(%)+1,m).

This shows ifi©’) C [k—d(€) + 1] x [m]. O

Remark 29. Let a,b be positive integers and I&C [a] x [b] be a set. Assume thM € IE‘%Xb is a matrix with
M;; = 0 whenevel(i, j) ¢ S Then rKM) < A(S). This can be proved by induction an(S).

We can now state the main result of this section, which pes/iah upper bound on the covering radius of a
linear rank-metric cod& in terms of the combinatorial structure of its initial set.

Theorem 30(initial set bound) Let ¢ C Fﬁxm be a non-zero linear code. We hgugs’) < d(¥¢) —1+A(9),
whereS:= [k—d(%) + 1] x [m] \ in(¥).

12



Proof. Let X € F'éxm be any matrix. Itis easy to see that there exists a uniquaxrdte ¢ such thalXj; = M;;
for all (i, j) € in(¥¢). Such matrix satisfieeX —M);; =0 for all (i, j) € in(¥¢’). Let X — M be the matrix obtained
from X — M deleting the lasti(¢) — 1 rows. We have

d(X,M) = k(X —M) < d(€) — 1+ k(X —=M) < d(%€) — 1+ A(S),

whereS denotes the complement of(i#) in [k—d(%) + 1] x [m], and the last inequality follows from Remark
[29. SinceX is an arbitrary matrix, this shows(¢) < d(¢) — 1+ A(S). O

Remark 31. The initial set of a linear code” C IE‘EX"‘ can be efficiently computed from any basiséas follows.
Denote byw : F&*™ — Fi'k the map that sends a matiik to themk-vector obtained concatenating the rowsvof
Given a basigMy,...,M;} of ¢, construct the vectong :=w(Mj), ..., :=w(M;). Perform Gaussian elimination
on {vi,...,\t} and obtain vectors,...,w. Clearly, {w1(vy),...,.w1(%)} is a basis of¢, and one can easily
check that

in(%) = {in(w1(w)),....in(w (%))}

The following example shows that Theorém 30 gives in somescasetter bound than Corolldryl 24 for the
covering radius of a linear code.

Example 32. Let q = 2 andk = m= 3. Denote by% the linear code generated over by the four matrices

100 ([010 [00¢0 [0o0O0
o001, |o oo, [100, |01 1.
ooo |100 J0o10 (100

We haved(%) = 2. Moreover, since

001 [o 0O [00 I
0 0o0,100,100
000 (010 010

we haveo(¢+) = 3, and so Corollary 24 giveg(%) < 3. On the other hand, one can easily check that the
initial set of ¢ is in(¥¢) = {(1,1),(1,2),(2,1),(2,2)}. Thus following the notation of Theorem]30 we have
S={(1,3),(2,3)} andA(S) = 1. It follows p(¥¢) <d(¢)— 1+ A(S) = 2. Therefore Theorein BO gives a better
bound onp(%) than Corollary 24. In fact, one can check tjpa®’) = 2.

€€,

6 Covering radius of MRD and dually QMRD codes

It is well known [9] that if ¢ C IE"(;X’“ is a code with|¢’| > 2, then log |¢’| < m(k—d(%)+1). A code? C
IE"(;X’“ is MRD if [¢| =1 or |¢| > 2 and log|%¢'| = m(k—d(%¢) + 1). MRD codes have the largest possible
cardinality for their minimum distance. In particular, yr@re maximal. Therefore combining Propositidn 5 and
[1we immediately obtain the following result.

Corollary 33. Let% C IE‘{;X’“ be an MRD code with%’| > 2. Thenp (%) < d(¥¢’) — 1. Moreover, equality holds
if and only if the maximality degree ¢f is precisely 1.

The upper bound of Corollafy B3 is not sharp in general, ashee sn the following example. This proves
in particular that not all MRD code®” & IE‘EX"‘ with |¢’| > 2 can be nested into an MRD code 2 ¢ with
d(2)=d(%¥)—1.

13



Example 34. Takeq =2 andk = m= 4. Let% be the linear code generated oW&r by the following four
matrices:

1 0 0O 0100 0 010 0 001
0 001 0011 0111 1110
0 0 1 0o 0 0 0 1f° 1 010"’ 0101
01 00 1100 1 001 0111

We have dini%’) = 4 andd(%) = 4. In particular,% is a linear MRD codes. On the other hand, one can check
thatp(¢) =2+#d(%¢)—1=3, and thaju (%) = 2.

We conclude observing that combining properfi€$11, 2[dnd Rroposition 1B one can easily obtain the
following general result on the puncturing of an MRD code.

Corollary 35. Let% C ngm be an MRD code. Then for afye GL(Fq) and for any 1< u < k— 1 the punctured
codel(%,A,u) is MRD as well.

Dually QMRD codes were proposed i [6] as the best alteraatilinear MRD codes for dimensions that are
not multiples ofm. A linear rank-metric cod&” C F'éxm is dually QMRD if dim(%’) f mand the following two
conditions hold:

d(%) =k—[dim(€)/m|+1,  d(€*)=k—[dim(&*)/m] +1.

Clearly, a code is dually QMRD if and only if its dual code isatly QMRD. The following proposition
summarizes the most important properties of dually QMRDesod

Lemma 36 (see Proposition 20 of [6])Let € C F'éxm be a linear code. The following are equivalent.
1. € is dually QMRD,
2. ¢+ is dually QMRD,
3. dim(%){mandd(¥) +d(¢~+) =k+1.

Moreover, the weight distribution of a dually QMRD codeis determined bk, mand din{%).

We now apply the external distance bound to derive an uppandon the covering radius of dually QMRD
codes. We start by computing the external distaocéy’), of a dually QMRD cod&’ of given parameters. Since
% is linear by definition, as in the proof of Corolldry]24 we havg %) = |{i € [K] : W (€*) # 0}|. We will need
the following preliminary lemma.

Lemma 37. Let 1<t <km-—1 be any integer. There exist linear codgs. ¥ C IE“{;X"‘ such that#” is dually
QMRD, Z is MRD, dim(%) =t andd(%) = d(2).

Proof. Leta := [t/m]|. Itis well known (see e.g. the construction [of [9, SectioB6[19]) that there exist linear
MRD codes#” C Z with dim(&’) = ma and dim{(2) =m(a +1). Let& ¢ € & 2 be a subspace with dife’) =t.
Since& is MRD, it is maximal. Therefore (%) = d(2). Now consider the nested codes ¢ ¢+ ¢ &+. Since

2 and& are MRD, their dual codeg* and&+ are MRD as well (se€ [9, Theorem 5.5] 6r [18, Corollary 41]
for a simpler proof). In particulaz* is maximal, and sd (%) = d(&+). SinceZ and&+ are MRD, we have
d(2) =k—(a+1)+1andd(&+) = k— (k—a) + 1. Therefore

d(@)+d(¢H) =d(2) +d(6H) =k— (a+1)+1+k—(k—a)+1=k+1,
and the result easily follows from Lemrnal 36. O

We can now compute the external distance of a dually QMRD.code

Theorem 38. Let %’ C FX*™ be a dually QMRD code. Thes*(%) = d(%).
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Proof. Since% is linear, as in the proof of Corollafy P4 we hawé(¢) = |{i € k] : W(¢*) > 0}|. By Lemma

[37 there exist a dually QMRD codé; and a linear MRD code” such thaté; C 2, dim(¢) = dim(%1) and

d(%1) = d(2). Since¥ and%; have the same dimension and are both dually QMRD, by Lemmaeaual

codes¢* and%;- have the same weight distribution. In particular,(¢’) = o*(%1). Therefore it suffices to
prove the theorem for the codd. By Lemma 36 we havd(%;-) = k+1—d(%1). This clearly implies

0*(%1) <k— (k+1—-d(%1)) +1=d(%1). (11)
On the other hand, by Corollary24 we haw&(41) > p(¢1), and by Lemmal4 we haye(41) > d(2). Therefore
0" (1) > p(61) > d(Z) =d(%1). 12)

The theorem can now be easily obtained combining inegesliifil) and(12). O

Corollary 39. The covering radius of a dually QMRD coé@gsatisfiesp(¢’) < d(%). Moreover, equality holds
if and only if ¢ is not maximal.

Proof. Combine Corollaryf 24, Theorem 138, Propositldn 7 and the tlaat " is not maximal if and only if
u(€) =0, by definition of maximality degree. O

The upper bound of Corollafy B9 is not sharp in general, ashee sn the following example. This proves
in particular that there exist dually QMRD codes that areimak In particular, there exist dually QMRD codes
that are not contained into an MRD code with the same minimistarkce.

Example 40. Takeq= 2 andk = m=4. Let% be the linear code generated oV&r by the following three
matrices:

1000 010 0 010
0 001 1011 0111
0 0 1 0 0 0 0 1) 1 01 0"
01 00O 1100 1 001
We have dini%’) = 3 andd(%’) = 4. Hence dinf&*) = 13 andd(¢*) = 1. Therefored(¢’) +d(¢*) = 5, and

% is dually QMRD by Lemm@a_36. One can check tpa¥’) = 3+# d(%) = 4, and thaju (%) = 1.
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