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Abstract

In this paper we study properties and invariants of matrix codes endowed with the rank metric, and relate
them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing
and shortening constructions. We give upper bounds on the covering radius of a code by applying differ-
ent combinatorial methods. We apply the various bounds to the classes of maximal rank distance and quasi
maximal rank distance codes.

Introduction

Rank-metric codes have featured prominently in the literature on algebraic codes in recent years and especially
since their applications to error-correction in networks were understood. Such codes are subsets of the matrix
ring Fk×m

q endowed with the rank distance function, which measures theFq-rank of the difference of a pair of
matrices. An analogue of the Singleton bound was given in [9]. If a code meets this bound it is referred to as
a maximum rank distance(MRD) code. It is known that there exist codes meeting this bound for all values of
q,k,m,d [9, 10, 19]. For this reason themain coding problemfor rank metric codes, unlike the same problem for
the Hamming metric, is closed: for anyq,k,m,d the optimal size of a rank-metric code inFk×m

q of minimum rank
distanced is known. There are very few classes of rank-metric codes known, due in part to the Delsarte-Gabidulin
family and its generalizations [9, 10, 19], which are optimal and can be efficiently decoded [10, 14, 22].

Thecovering radiusof a code is a fundamental parameter. It measures the maximumweight of any correctable
error in the ambient space. It also characterizes themaximalityproperty of a code, that is, whether or not the code
is contained in another of the same minimum distance. The covering radius of a code measures the least integer
r such that every element of the ambient space is within distance r of some codeword. This quantity is generally
much harder to compute than the minimum distance of a code. There are numerous papers and books on this
topic for classical codes with respect to the Hamming distance (see [1, 3, 4, 5, 13] and the references therein), but
relatively little attention has been paid to it for rank-metric codes [11, 12].

In this paper we describe properties of rank-metric codes and relate these to the covering radius. We define
new parameters and give tools for the analysis of such codes.In particular, we introduce new definitions for the
puncturing and the shortening of a general rank-metric code. In many instances our tools are applied to establish
new bounds on the rank-metric covering radius. Some of the derived bounds, such as the dual distance and
external distance bounds, are analogues of known bounds forthe Hamming distance. Others, such as the initial
set bound, are unique to matrix codes. We apply our results tothe classes of maximal rank distance and quasi
maximal rank distance codes.
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In Section 2 we consider the property ofmaximality. A code is maximal if it is not contained in another code
of the same minimum distance. We introduce a new parameter, called themaximality degreeof a code, and show
that it is determined by minimum distance and covering radius of a code. These results are independent of the
metric. In Section 3 we define shortened and punctured codes rank metric codes and describe their properties. We
give a duality result relating a shortened and punctured code. In Section 4 we investigate translates of a code. We
show that the weight enumerator of a coset of a linear code of rank weight is completely determined by the weights
of first n− d⊥ cosets, and establish this using Möbius inversion on the lattice of subspaces ofFk

q. This is then
applied to get the rank-metric analogue of thedual distance bound. We also give the rank-metric generalization
of theexternal distance bound, which holds also for non-linear codes. In Section 5 we introduce the concept of
the initial set of a matrix code and use this to derive a bound on the covering radius of a code. In Section 6 we
apply previously derived bounds to maximum rank distance and quasi maximum rank distance codes.

1 Preliminaries

Throughout this paper,q is a fixed prime power,Fq is the finite field withq elements, andk,mare positive integers.
We assumek ≤ m without loss of generality, and denote byFk×m

q the space ofk×m matrices overFq. For any
positive integern we set[n] := {i ∈N : 1≤ i ≤ n}.

Definition 1. Therank distance between matricesM,N ∈ Fk×m
q is d(M,N) := rk(M−N). A rank-metric code

is a non-empty subsetC ⊆ Fk×m
q . When |C | ≥ 2, theminimum rank distance of C is the integer defined by

d(C ) := min{d(M,N) : M,N ∈ C , M 6= N}. Theweight anddistance distribution of a codeC ⊆ Fk×m
q are the

integer vectorsW(C ) = (Wi(C ) : 0≤ i ≤ k) andB(C ) = (Bi(C ) : 0≤ i ≤ k), where, for alli ∈ {0, ...,k},

Wi(C ) := |{M ∈ C : rk(M) = i}|, Bi(C ) := 1/|C | · |{(M,N) ∈ C ×C : d(M,N) = i}|.

It is easy to see thatd defines a distance function onFk×m
q .

Definition 2. A codeC ⊆ Fk×m
q is linear if it is anFq-subspace ofFk×m

q . If this is the case, then thedual codeof
C is the linear codeC⊥ := {N ∈ Fk×m

q : Tr(MNt) = 0 for all M ∈ C } ⊆ Fk×m
q .

If C ⊆ Fk×m
q is a linear code then one can easily check thatd(C ) = min{rk(M) : M ∈ C , M 6= 0} and

Wi(C ) = Bi(C ) for all i ∈ {0, ...,k}. Moreover, since the map(M,N) 7→ Tr(MNt) defines an inner product on
the spaceFk×m

q , we have dim(C⊥) = km−dim(C ) andC⊥⊥ = C .

Definition 3. Thecovering radiusof a codeC ⊆ Fk×m
q is the integer

ρ(C ) := min{i : for all X ∈ Fk×m
q there existsM ∈ C with d(X,M)≤ i}

In words, the covering radius of a codeC is the maximum distance ofC to any matrix in the ambient space, or
the minimum valuer such that the union of the spheres of radiusr about each codeword cover the ambient space.
The following result summarizes some simple properties of this invariant. These facts are known from studies of
the Hamming distance covering radius and, being actually independent of the metric used, hold also in the rank
metric case. For a comprehensive treatment of the covering problem for Hamming metric codes, see [4, 5].

Lemma 4. Let C ⊆ Fk×m
q be a code. The following hold.

1. 0≤ ρ(C )≤ k. Moreover,ρ(C ) = 0 if and only ifC = Fk×m
q .

2. If D ⊆ Fk×m
q is a code withC ⊆ D , thenρ(C )≥ ρ(D).

3. If D ⊆ Fk×m
q is a code withC (D , thenρ(C )≥ d(D).

4. d(C )−1< 2ρ(C ), if |C | ≥ 2 andC ( Fk×m
q .
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Proof. To see that 3 holds, letN ∈ D \C . By definition of covering radius, there exists a matrixM ∈ C with
d(M,N)≤ ρ(C ). Thusd(D) ≤ d(M,N)≤ ρ(C ).

To see 4, observe that the packing radius⌊(d(C )− 1)/2⌋ of C cannot exceed the covering radius, and that
equality occurs if and only ifC is perfect, in which case we have⌊(d(C )−1)/2⌋ = ρ(C ). However there are no
perfect codes for the rank metric [2].

2 Maximality

In this short section we investigate some connections between the covering radius of a rank-metric code and the
property of maximality. Recall that a codeC ⊆ Fk×m

q is maximal if |C | = 1 or |C | ≥ 2 and there is no code
D ⊆ Fk×m

q with D ! C andd(D) = d(C ). In particular,Fk×m
q is maximal.

Proposition 5 (see e.g. [4]). A codeC ⊆ Fk×m
q with |C | ≥ 2 is maximal if and only ifρ(C )≤ d(C )−1.

Proof. If C is not maximal, then there existsC (D with d(D) = d(C ). Lemma 4 impliesρ(C )≥ d(C ) = d(D),
i.e., ρ(C ) > d(C )−1. This shows(⇐). Let us prove(⇒). If C = Fk×m

q then the result is trivial. Therefore
we assumeC  Fk×m

q and ρ(C ) ≥ d(C ) by contradiction. By the definition of covering radius thereexists
X ∈ Fk×m

q \C such thatd(M,X)≥ ρ(C ) for all matricesM ∈ C . Then the codeD := C ∪{X} strictly contains
C and hasd(D) = d(C ).

We now propose a new natural parameter that measures the maximality of a code, and show how it relates to
the covering radius.

Definition 6. Themaximality degreeof a codeC ⊆ Fk×m
q with |C | ≥ 2 is the integer defined by

µ(C ) :=

{

min{d(C )−d(D) : D ⊆ Fk×m
q is a code withD ! C } if C ( Fk×m

q ,
1 if C = Fk×m

q .

The maximality degree of a codeC ⊆ Fk×m
q with |C | ≥ 2 satisfies 0≤ µ(C )≤ d(C )−1. Moreover, it is easy

to see thatµ(C )> 0 if and only if C is maximal. Notice thatµ(C ) can be interpreted as the minimum price (in
terms of minimum distance) that one has to pay in order to enlargeC to a bigger code. We can derive a precise
relation between the covering radius and the maximality degree of a code as follows.

Proposition 7. For any codeC ⊆ Fk×m
q with |C | ≥ 2 we haveµ(C ) = d(C )−min{ρ(C ), d(C )}. In particular,

if C is maximal thenµ(C ) = d(C )−ρ(C ).

Proof. If C is not a maximal code, then by Proposition 5 we haveµ(C ) = 0 andρ(C ) ≥ d(C ). The result
immediately follows.

Now assume thatC is maximal. IfC = Fk×m
q then the result is trivial. In the sequel we assumeC ( Fk×m

q .
By Proposition 5 we have min{ρ(C ), d(C )}= ρ(C ). We need to prove that

µ(C ) = d(C )−ρ(C ).

TakeX ∈ Fk×m
q \C with min{d(X,M) : M ∈ C } = ρ(C ). Define the codeD := C ∪{X} ! C . By definition

of minimum distance we haved(D) = min{d(C ), ρ(C )} = ρ(C ), where the last equality again follows from
Proposition 5. As a consequence,µ(C ) ≤ d(C )− d(D) = d(C )− ρ(C ). Now assume by contradiction that
µ(C )< d(C )−ρ(C ). LetD ⊆ Fk×m

q be a code withD !C andd(C )−d(D) = µ(C ). We haved(C )−d(D) =
µ(C )< d(C )−ρ(C ), and sod(D) > ρ(C ). This contradicts Lemma 4.
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3 Puncturing and shortening rank-metric codes

In this section we propose new definitions of puncturing and shortening of rank-metric codes, and show they
relate to the minimum distance, the covering radius and the duality theory of codes endowed with the rank metric.
Applications of our constructions will be discussed later.

Notation 8. Given a codeC ⊆ Fk×m
q and an integer 1≤ u≤ k−1, we let

Cu := {M ∈ C : Mi j = 0 wheneveri ≤ u},

the set of matrices inC whose firstu rows are zero. Moreover, ifA is ak× k matrix overFq we define the code

AC := {A ·M : M ∈ C } ⊆ Fk×m
q . Finally, πu : Fk×m

q → F
(k−u)×m
q denotes the projection on the lastk−u rows.

Notice that ifA∈GLk(Fq) then the mapX 7→ AX is a linear rank-metric isometryFk×m
q → Fk×m

q . In particular,
if C ⊆ Fk×m

q is a code, thenAC is a code with the same cardinality, minimum distance, covering radius and weight
and distance distribution asC .

Definition 9. Let C ⊆ Fk×m
q be a code,A∈GLk(Fq) an invertible matrix and 1≤ u≤ k−1 a positive integer. The

puncturing of C with respect toA andu is the code

Π(C ,A,u) := πu(AC ).

When 0∈ C , theshortening of C with respect toA andu is the code

Σ(C ,A,u) := πu((AC )u).

The shortening and puncturing of a codeC ⊆ Fk×m
q are codes in the ambient spaceF(k−u)×m

q . Notice moreover
that linearity is preserved by puncturing and shortening.

It will be convenient for us to use the following notation in the sequel.

Notation 10. Given a codeC ⊆ Fk×m
q and anFq-linear subspaceU ⊆ Fk

q, we denote byC (U) the set of matrices
in C whose columnspace is contained in the spaceU .

Remark 11. It is easy to see that ifC is linear, thenC (U) is anFq-linear subspace ofC for anyU . Moreover,
if U ⊆ Fk

q is a given subspace of dimensionu, thenCk−u
∼= (AC )(U) asFq-linear spaces, whereA∈ Fk×k

q is any
invertible matrix that maps〈ek−u+1, ...,ek〉 to U (here{e1, ...,ek} denotes the canonical basis ofFk

q).

We now show an interesting relation between puncturing, shortening, and trace-duality.

Theorem 12(duality of puncturing and shortening). Let C ⊆ Fk×m
q be a linear code,A∈ GLk(Fq) an invertible

matrix and 1≤ u≤ k−1 an integer. Then

Π(C ,A,u)⊥ = Σ(C⊥,(At)−1,u).

Proof. Let M ∈ Σ(C⊥,(At)−1,u) = πu(((At)−1C⊥)u) andN ∈ Π(C ,A,u) = πu(AC ). By definition, we can write
N = πu(AN1) with N1 ∈ C andM = πu((At)−1M1) with M1 ∈ C⊥ and(At)−1M1 ∈ ((At)−1C )u. Since the firstu
rows of(At)−1M1 are zero, by definition of trace we have

Tr(πu((A
t)−1M1)πu(AN1)

t) = Tr((At)−1M1(AN1)
t) = Tr((At)−1M1Nt

1At) = Tr(M1Nt
1) = 0,

where the last equality follows from the fact thatM1 ∈ C⊥ andN1 ∈ C . This proves(⊇). It suffices to show
that the codesΠ(C ,A,u)⊥ and Σ(C⊥,(At)−1,u) have the same dimension overFq. Denote by{e1, ...,ek} the
canonical basis ofFk

q, and letU := 〈e1, ...,eu〉. One has

dim(Π(C ,A,u)⊥) = m(k−u)−dim(Π(C ,A,u)) = m(k−u)− (dim(C )−dim((AC )(U))), (1)
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where the last equality follows from theFq-isomorphismΠ(C ,A,u)∼= C /(AC )(U). By [18, Lemma 28] we have

dim((AC )(U))) = dim(AC )−m(k−u)+dim((AC )⊥(U⊥)). (2)

Observe that dim(AC ) = dim(C ) and (AC )⊥ = (At)−1C⊥. Moreover, sinceU⊥ = 〈eu+1, ...,ek〉, by defini-
tion of shortening we haveπu(((At)−1C⊥)(U⊥)) = Σ(C⊥,(At)−1,u). In particular, dim(Σ(C ⊥,(At)−1,u)) =
dim(((At)−1C⊥)(U⊥)). Thus Equation (2) can be written as

dim((AC )(U))) = dim(C )−m(k−u)+dim(Σ(C ⊥,(At)−1,u)). (3)

Combining equations (1) and (3) we obtain

dim(Π(C ,A,u)⊥) = dim(Σ(C⊥,(At)−1,u)).

This concludes the proof.

The following two propositions show how puncturing, shortening, cardinality, minimum distance and covering
radius of rank-metric codes relate to each other.

Proposition 13. Let C ⊆ Fk×m
q be a code with|C | ≥ 2. LetA∈ GLk(Fq) and 1≤ u≤ k−1.

1. d(Π(C ,A,u))≥ d(C )−1, if |Π(C ,A,u)| ≥ 2.

2. d(Σ(C ,A,u))≥ d(C ), if 0 ∈ C and|Σ(C ,A,u)| ≥ 2.

3. Assumeu≤ d(C )−1. Then|Π(C ,A,u)|= |C |. If C is linear, then|Σ(C⊥,A,u)|= qm(k−u)/|C |.

4. Assumeu> d(C )−1. Then|Π(C ,A,u)| ≥ |C |/qm(u−d(C )+1). If 0∈C , then|Σ(C ,A,k−u)| ≤ qm(u−d(C )+1).

Proof. Properties 1, 2 are simple and left to the reader. The first part of Property 3 follows from the definition
of minimum distance, and the second part is a consequence of Theorem 12. Let us show Property 4. Write
u= d(C )−1+v with 1≤ v≤ k−d(C )+1, and define the codeE := Π(C ,A,d(C )−1). By Property 3 we have
|C |= |Π(C ,A,d(C )−1|= |E |. It follows from the definitions thatΠ(C ,A,u) = πv(E ), where

πv : F(k−d(C )+1)×m
q → F

(k−u)×m
q

denotes the projection on the lastk− u rows. For anyN ∈ πv(E ) let [N] := {M ∈ E : πv(M) = N}. Clearly,
[N]∩ [N′] = /0 wheneverN,N′ ∈ πv(E ) andN 6= N′. Moreover, it is easy to see that|[N]| ≤ qmv for all N ∈ πv(E ).
Therefore

|E | =

∣

∣

∣

∣

∣

∣

⋃

N∈πv(E )

[N]

∣

∣

∣

∣

∣

∣

= ∑
N∈πv(E )

|[N]| ≤ |πv(E )| ·qmv,

and so|Π(C ,A,u)| = |πv(E )| ≥ |E |/qmv. Let us prove the last part of Property 4. If|Σ(C ,A,k− u)| = 1 then
there is nothing to prove. Assume|Σ(C ,A,k− u)| ≥ 2. ThenΣ(C ,A,k− u) has minimum distance at least
d(AC ) = d(C ). Therefore by the Singleton-like bound [9] we have

|Σ(C ,A,k−u)| ≤ qm(u−d(C )+1),

as claimed.

Proposition 14. Let C ⊆ Fk×m
q be a code. For allA∈ GLk(Fq) and 1≤ u≤ k−1 we have

ρ(C )≥ ρ(Π(C ,A,u))≥ ρ(C )−u.
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Proof. Let D := AC . ThenΠ(C ,A,u) = πu(D). Let X ∈ Fk×m
q be an arbitrary matrix. By definition of cov-

ering radius and punctured code there existsM ∈ D with d(πu(M),πu(X)) ≤ ρ(πu(D). Therefored(M,X) ≤
d(πu(M),πu(X))+u≤ ρ(πu(D))+u. SinceX is arbitrary, this showsρ(D) ≤ ρ(πu(D))+u, i.e., ρ(πu(D)) ≥
ρ(D)−u= ρ(C )−u.

Now let X ∈ F
(k−u)×m
q be an arbitrary matrix. CompleteX to ak×mmatrix, sayX′, by addingu zero rows to

the top. There existsM ∈ D with d(X′,M)≤ ρ(D). Thus

d(X,πu(M)) = d(πu(X
′),πu(M))≤ d(X′,M)≤ ρ(D) = ρ(C ).

This showsρ(πu(D)) ≤ ρ(C ), and concludes the proof.

4 Translates of a rank-metric code

In this section we study the weight distribution of the translates of a code. As an application, we obtain two upper
bound on the covering radius of a rank-metric code. Recall that thetranslate of a codeC ⊆ Fk×m

q by a matrix
X ∈ Fk×m

q is the code

C +X := {M+X : M ∈ C } ⊆ Fk×m
q .

Clearly, full knowledge of the weight distribution of the translates ofC tells us the covering radius, which is
the maximum of the minimum weight of each translate ofC . Even partial information may yield a bound on the
covering radius. More precisely, ifX ∈ Fk×m

q andWi(C +X) 6= 0, thend(X,C ) := min{d(X,M) : M ∈ C } ≤ i.
So if there existsr such that for eachX ∈ Fk×m

q , Wi(C +X) 6= 0 for somei ≤ r then, in particular,ρ(C ) ≤ r. If
such a valuer can be determined, then we get an upper bound on the covering radius ofC .

The goal of this section is twofold. We first show that the weight distributionW0(C +X), ...,Wk(C +X) of the
translateC +X of a linear codeC ( Fk×m

q is determined by the values ofW0(C +X), ...,Wk−d⊥(C +X), where
d⊥ = d(C⊥). Moreover, we provide explicit formulas forWk−d⊥+1(C +X), ...,Wk(C +X) as linear functions
of W0(C +X), ...,Wk−d⊥(C +X). As a simple application, we obtain an upper bound on the covering radius of
a linear code in terms of the minimum distance of its dual code. Our proof uses combinatorial methods partly
inspired by the theory of regular support functions on groups developed in [17].

In a second part, following work of Delsarte for the Hamming distance [7], we apply Fourier transform
methods to obtain further results on the weight distributions of the translates of a (not necessarily linear) code
C ⊆ Fk×m

q . In particular, we obtain an upper bound for the covering radius of a general rank-metric code in terms
of its external distance (defined below).

Throughout this section we follow Notation 10. We start witha preliminary lemma that describes some
combinatorial properties of the translates of a linear code.

Lemma 15. Let C ⊆ Fk×m
q be a linear code, and letU ⊆ Fk

q be anFq-linear subspace of dimensionu. Assume

that |C (U)|= |C |/qm(k−u). Then for all matricesX ∈ Fk×m
q we have

|(C +X)(U)|= |C |/qm(k−u).

Proof. Let f : Fk
q → Fk

q be a linear isomorphism such thatf (U) =V := {(x1, ...,xk) ∈ F
k
q : xi = 0 for all i > u}.

Let A be the matrix associated tof with respect to the canonical basis ofFk
q. Define the linear codeD := AC .

The left-multiplication byA induces bijections

C (U)→ D(V), (C +X)(U)→ (D +AX)(V).

In particular, we have|D(V)|= |C (U)|, and it suffices to prove that

|(D +AX)(V)|= |D(V)|. (4)

6



Let π := πu : Fk×m
q → F

(k−u)×m
q denote the projection on the lastk−u rows. Throughout the proof we denote by

π1 andπ2 the restriction ofπ to D and toD +AX, respectively. Clearly,π1 is linear.
By definition ofV we have ker(π1) = D(V). Therefore

|π1(D(V))|= |D |/|D(V)|= |C |/|C (U)|= qm(k−u).

In particular,π1 is surjective. Again by definition ofV, we have(D +AX)(V) = π−1
2 (0). Moreover, one can

check that|π−1
2 (0)| = |π−1

1 (−π(AX))|. Thus

|(D +AX)(V)|= |π−1
2 (0)|= |π−1

1 (−π(AX))|. (5)

Sinceπ1 is surjective, there existsN∈D such thatπ1(N)=−π(AX). One can easily check that the map ker(π1)→
π−1

1 (−π(AX)) defined byM 7→ M+N is a bijection. Thus using Equation (5) and the fact thatD(V) = ker(π1)
we find

|D(V)|= |ker(π1)|= |π−1
1 (−π(AX))|= |(D +AX)(V)|.

This shows Equation (4), as desired.

A second preliminary result which will be needed later is thefollowing.

Lemma 16. Let C ( Fk×m
q be a linear code. Then for all matricesX ∈ Fk×m

q and for any subspaceU ⊆ Fq with
u := dim(U)≥ k−d(C⊥)+1 we have

(C +X)(U) = |C |/qm(k−u).

Proof. By Lemma 15 it suffices to prove the result forX = 0. By [18, Lemma 28], for any subspaceU ⊆ Fk
q of

dimensionu we have

|C (U)|=
|C |

qm(k−u)
|C⊥(U⊥)|, (6)

whereU⊥ denotes the orthogonal ofU with respect to the standard inner product ofFk
q. By definition of minimum

distance we haveC⊥(U⊥) = {0} for all U ⊆ Fk
q with dim(U⊥)≤ d(C ⊥)−1. Therefore the lemma immediately

follows from Equation (6) and the fact that dim(U⊥) = k−dim(U).

We can now state our main result on the weight distribution ofthe translates of a linear rank-metric code.

Theorem 17. Let C ( Fk×m
q be a linear code, and letX ∈ Fk×m

q be any matrix. Writed⊥ := d(C⊥). Then for all
i ∈ {k−d⊥+1, ...,k} we have

Wi(C +X) =
k−d⊥

∑
u=0

(−1)i−uq(
i−u
2 )
[

k−u
i −u

]

q

u

∑
j=0

Wj(C +X)

[

k− j
u− j

]

q

+
i

∑
u=k−d⊥+1

[

k
u

]

q

|C |

qm(k−u)
.

In particular, the distance distribution of the translateC +X is completely determined byk, m, |C | and the weights
W0(C +X), ...,Wk−d⊥(C +X).

Proof. Recall from [20] that the set of subspaces ofFk
q is a graded lattice with respect to the partial order given by

the inclusion. The rank function of this lattice is the dimension of vector spaces, and its Möbius function is given
by

µ(S,T) = (−1)t−sq(
t−s
2 )

for all subspacesS⊆ T ⊆ Fk
q with dim(T) = t and dim(S) = s. More details can be found on page 317 of [20].

Throughout the proof a sum over an empty set of indices is zeroby definition. For any subspaceV ⊆ Fk
q define

f (V) := |{M ∈ C +X : columnspace(M) =V}| and g(V) := ∑
U⊆V

f (V) = |(C +X)(V)|.

7



By the Möbius inversion formula ([20], Proposition 3.7.1), for any subspaceV ⊆ Fk
q we have

f (V) = ∑
U⊆V

|(C +X)(U)| µ(U,V). (7)

Fix any integeri with k−d⊥+1≤ i ≤ k. By definition of weight distribution we have

Wi(C +X) = ∑
V⊆Fk

q

dim(V)=i

f (V).

Therefore by Equation (7) the numberWi(C +X) can be expressed as

Wi(C +X) = ∑
V⊆Fn

q
dim(V)=i

∑
U⊆V

|(C +X)(U)| µ(U,V)

= ∑
U⊆Fk

q

∑
V⊇U

dim(V)=i

|(C +X)(U)| µ(U,V)

= ∑
U⊆Fk

q

|(C +X)(U)| ∑
V⊇U

dim(V)=i

µ(U,V)

=
i

∑
u=0

∑
U⊆Fk

q
dim(U)=u

|(C +X)(U)| ∑
V⊇U

dim(V)=i

µ(U,V)

=
i

∑
u=0

∑
U⊆Fk

q
dim(U)=u

|(C +X)(U)| ∑
V⊇U

dim(V)=i

(−1)i−uq(
i−u
2 )

=
i

∑
u=0

(−1)i−uq(
i−u
2 )
[

k−u
i −u

]

q
∑

U⊆Fk
q

dim(U)=u

|(C +X)(U)| (8)

We now re-write the quantity

∑
U⊆Fk

q
dim(U)=u

|(C +X)(U)|

in a more convenient form. By Lemma 16, foru≥ k−d⊥+1 we have

∑
U⊆Fk

q

dim(U)=u

|(C +X)(U)|=

[

k
u

]

q

|C |/qm(k−u). (9)

On the other hand, foru≤ k−d⊥ we have

∑
U⊆Fk

q
dim(U)=u

|(C +X)(U)| = |{(U,M) : U ⊆ Fk
q, dim(U) = u, M ∈ C +X, columnspace(M)⊆U}|

= ∑
M∈C+X

|{U ⊆ Fk
q : dim(U) = u, U ⊇ columnspace(M)}|

=
u

∑
j=0

∑
M∈C+X
rk(M)= j

|{U ⊆ Fk
q : dim(U) = u, U ⊇ columnspace(M)}|

8



=
u

∑
j=0

Wj(C +X)

[

k− j
u− j

]

q

. (10)

Combining equations (8), (9) and (10) one obtains the desired formula.

As a simple consequence of Theorem 17 we can obtain an upper bound on the covering radius of a linear code
C ( Fk×m

q in terms of its dual distance, as we now show. LetX ∈ Fk×m
q /∈ C . ThenW0(C +X) = 0. Theorem 17

with i := k−d⊥+1 gives

Wk+d⊥+1(C +X) =
k−d⊥

∑
u=1

(−1)i−uq(
i−u
2 )
[

k−u
i −u

]

q

u

∑
j=1

Wj(C +X)

[

k− j
u− j

]

q

+

[

k
k−d⊥+1

]

q

|C |/qm(d⊥−1).

In particular,W1(C +X), ...,Wk−d⊥+1(C +X) cannot be all zero. This implies the following.

Corollary 18 (dual distance bound). For any linear codeC ( Fk×m
q we haveρ(C )≤ k−d(C⊥)+1.

We now relate the covering radius of a code with its external distance. In particular, we derive another upper
bound on the covering radius of a linear code in terms of the rank distribution of the dual code. This is the rank
distance analogue of Delsarte’s external Hamming distancebound (c.f. [15, 7, 4]), and improves the dual distance
bound of Corollary 18.

The approach usesq-Krawtchouk polynomials and Fourier transforms to obtain relations on the weight dis-
tribution of the translates of a code inFk×m

q . The properties ofq-Krawtchouk polynomials were described in
[7, 8]. The Fourier transform arguments used are independent of the choice of metric used and so extend from the
Hamming metric case. The principle novelty is the introduction of aq-annihilator polynomial, used in the proof
of Lemma 23.

Throughout the reminder of this sectionC ⊆ Fk×m
q denotes a (possibly non-linear) code, andχ is a fixed

non-trivial character of(Fq,+).

Definition 19. LetY ∈ Fk×m
q . Define thecharacter map on (Fk×m

q ,+) associated toY by

φY : Fk×m
q −→ C× : X 7→ χ(Tr(YXT)).

ClearlyφX(Y) = φY(X) for all X,Y ∈ Fk×m
q . We denote byΦ thekm×kmsymmetric matrix with values inC×

defined as having entryφY(X) in the column indexed byX and in the row indexed byY. Define theQ-module of
lengthkm: C :=

{

(AX : X ∈ Fk×m
q ) : AX ∈Q

}

. For eachY, extendφY to a character ofC as follows:

φY : C−→ C× : A = (AX : X ∈ Fk×m
q ) 7→ ∑

X

AXφY(X).

ThenΦA = (φY(A ) : Y ∈ Fk×m
q ) ∈ C. The rows ofΦ are pairwise orthogonal, as can be seen from:

∑
X

φY(X)φZ(X) = ∑
X

φX(Y)φX(Z) =∑
X

φX(Y−Z) = ∑
X

φY−Z(X) =

{

qkm if Y = Z,
0 otherwise.

ThereforeΦ2A = ΦTΦA = qkmA and soA is determined completely by its transform

A
∗ := ΦA = (φY(A ) : Y ∈ Fk×m

q ).

Any subsetU ⊆ Fk×m
q can be identified with the 0-1 vectorU = (UZ : Z ∈ Fk×m

q ) ∈ C, where

UZ =

{

1 if Z ∈ U ,
0 otherwise.

9



For anyX ∈ Fk×m
q , the translate codeC +X ⊆ Fk×m

q is then identified withC +X = (CZ−X : Z ∈ Fk×m
q ). It is

straightforward to show thatφY(C +X) = φY(C )φY(X). This immediately yields the inversion formula

CX =
1

qkm ∑
Y

φY(C +X) =
1

qkm ∑
Y

φY(C )φY(X).

For eachi ∈ [k] we letΩi be the set of matrices inFk×m
q of rank i.

Lemma 20 (see [9]). Let Y ∈ Fk×m
q . ThenφY(Ωi) depends only on the rank ofY. If Y has rankj, then this is

given by

Pi( j) :=
k

∑
ℓ=0

(−1)i−ℓqℓm+(i−ℓ
2 )
[

k− ℓ
k− i

]

q

[

k− j
ℓ

]

q

.

In terms of the transform ofΩi this gives

ΦΩi = (Pi(rk(Y)) : Y ∈ Fk×m
q ).

It is known [8, 9] that thePi( j) are orthogonal polynomials of degreei in the variableq− j . Therefore, any rational
polynomial γ of degree at mostk in q− j can be expressed as aQ-linear combination of theq-Krawtchouck
polynomials:γ(x) = ∑k

j=0γ jPj(x). Again, the orthogonality relations mean that the coefficients can be ofγ can
be retrieved as

γ j =
1

qkm

k

∑
i=0

γ(i)Pi( j).

We letP= (Pi( j)) denote the(k+1)×(k+1) matrix with( j, i)-th component equal toPi( j). Then thetransform
of B(C ) = (Bi(C ) : 0≤ i ≤ k) is defined asB∗(C ) := |C |−1B(C )P. The coefficents ofB∗(C ) are non-negative
[9, Theorem 3.2].

Let D := (DZ : Z ∈ Fk×m
q ) whereDZ = |{(X,Y) : X,Y ∈ C ,X+Y = Z}|. It can be checked that

φY(D) = φY(C )φY(C ) = φY(C )2.

Then

∑
Y∈Ωi

φY(D) =∑
Z

DZ ∑
Y∈Ωi

φY(Z) = ∑
Z

DZφZ(Ωi) = ∑
Z

DZPi(rk(Z)) = |C |
k

∑
j=0

B j(C )Pi( j) = |C |(B(C )P)i ,

and in particular we have

|C |B∗(C ) = ( ∑
Y∈Ωi

φY(D) : 0≤ i ≤ k) = ( ∑
Y∈Ωi

φY(C )2 : 0≤ i ≤ k).

ClearlyB∗
i (C ) = 0 implies thatφY(C ) = 0 for eachY ∈ Ωi .

Definition 21. Theexternal distanceof a codeC ⊆ Fk×m
q is the integer

σ ∗(C ) := |{i ∈ [k] : B∗
i (C )> 0}|,

the number of non-zero coefficents ofB∗(C ), excludingB∗
0(C ) .

For ease of notation in the sequel we writeσ ∗ := σ ∗(C ). Let 0< b1 < ... < bσ∗ ≤ k denote the indicesi of
non-zeroB∗

i (C ) for i > 0.

Definition 22. Theannihilator polynomial of degreeσ ∗ in the variableq−x of C is

α(x) :=
qmn

|C |

σ∗

∏
j=1

1−qbj−x

1−qbj
=

σ∗

∑
j=0

α jPj(x).

10



This is theq-analogue of the Hamming metric annihilator polynomial [15, pg. 168]. Notice that theb j are the
zeroes ofα andα(0) = qmn

|C | .

Lemma 23. Let X ∈ Fk×m
q be an arbitrary matrix. Then

σ∗

∑
j=1

α jWj(C +X) = 1.

In particular, there exists somej ∈ [σ ∗] such thatWj(C +X)> 0.

Proof. We must show that∑σ∗

j=1 α j(Wj(C +X) : X ∈ Fk×m
q ) = (1 : X ∈ Fk×m

q ). SinceΦ is invertible, this holds if
and only if for allY,

φY

(

σ∗

∑
j=1

α jWj(C +X) : X ∈ Fk×
q

)

= φY(1 : X ∈ Fk×m
q ) =

{

0 if Y 6= 0
qkm if Y = 0.

This was the approach taken, for example, in [15, Chapter 6, Lemma 18]. LetY ∈ Fk×m
q . Then

φY

(

σ∗

∑
j=1

α jWj(C +X) : X ∈ Fk×m
q

)

=
σ∗

∑
j=1

α j ∑
X

Wj(C +X)φY(X)

=
σ∗

∑
j=1

α j ∑
X∈Ω j

φY(C +X)

=
σ∗

∑
j=1

α j ∑
X∈Ω j

φY(C )φY(X)

=
σ∗

∑
j=1

α jφY(C ) ∑
X∈Ω j

φY(X)

=
σ∗

∑
j=1

α jφY(C )φY(Ω j)

=
σ∗

∑
j=1

α jφY(C )Pj(rk(Y))

= φY(C )
σ∗

∑
j=1

α jPj(rk(Y))

= φY(C )α(ℓ),

whereY has rankℓ.
Now α(0) = qmn

|C | andφ0(C ) = |C |, soφ0(C )α(0) = qkm. Suppose thatY has rankℓ > 0. The roots ofα are

precisely thosej ≥ 1 such thatB∗
j (C ) is non-zero. On the other hand, ifB∗

j (C ) = 0 thenφY(C ) = 0. It follows

that the productφY(C )α(ℓ) = 0 and so

Φ(
σ∗

∑
j=1

α jWj(C +X) : X ∈ Fk×m
q ) = Φ(1 : X ∈ Fk×m

q ),

as claimed.

We can now upper-bound the covering radius of a general rank-metric code in terms of its external distance
as follows.

11



Theorem 24(external distance bound). For any codeC ⊆ Fm×n
q we haveρ(C) ≤ σ ∗(C ). Furthermore, ifC is

Fq-linear thenρ(C ) is no greater than the number of non-zero weights ofC⊥, excludingW0(C
⊥).

Proof. The first part of the theorem is an immediate consequence of Lemma 23. The second part follows from
the fact thatB∗

i (C ) = Bi(C
⊥) =Wi(C

⊥), provided thatC is linear. This can be easily seen from the definition of
B∗(C ) on page 10 and the MacWilliams identities for the rank metric[9].

Example 25. Let m= rs and letC = {∑r−1
i=0 fixqsi

: fi ∈ Fqm}. ThenC is the set of allFqs-linear maps fromFqm

to itself. ThereforeC has elements ofFqs-ranks 0,1,2, ..., r. Let f have ranki overFqs. Let Im f ⊆ Fqm have
Fqs-basis{v1, ...,vi} and let{u1, ...,us} be anFq-basis ofFqs. Then{uiv j : 1≤ i ≤ s, 1≤ j ≤ i} is anFq-basis of
Im f in Fqm, and so has dimensionis. ThenC has non-zero rank weights{s,2s, ..., rs} overFq, so thatρ(C⊥)≤ r.

5 Initial set bound

In this section we propose a definition of initial set of a linear rank-metric code inspired by [16]. Moreover we
exploit the combinatorial structure of such set to derive anupper bound for the covering radius of the underlying
code. Our technique relies on the specific “matrix structure” of rank-metric codes.

Notation 26. Given positive integersa,b and a setS⊆ [a]× [b], we denote byI(S) ∈ Fa×b
2 be the binary matrix

defined byI(S)i j := 1 if (i, j) ∈ S, andI(S) := 0 if (i, j) /∈ S. Moreover, we denote byλ (S) the minimum number
of lines (rows or columns) required to cover all the ones inI(S).

The initial set of a linear code is defined as follows.

Definition 27. Let� denote the lexicographic order on[k]× [m]. Theinitial entry of a non-zero matrixM ∈Fk×m
q

is in(M) := min�{(i, j) : Mi j 6= 0}. Theinitial set of a non-zero linear codeC ⊆ Fk×m
q is

in(C ) := {in(M) : M ∈ C , M 6= 0}.

We start with a preliminary lemma.

Lemma 28. Let C ⊆ Fk×m
q be a non-zero code. The following hold.

1. dim(C ) = |in(C )|,

2. in(C )⊆ [k−d(C )+1]× [m].

Proof. Let t := dim(C ), and let{M1, ...,Mt} be a basis ofC . Without loss of generality we may assume(1,1) �
in(M1) ≺ ·· · ≺ in(Mt). If M ∈ C \{0}, then there exist elementsa1, ...,at ∈ Fq such thatM = ∑t

i=1 aiMi, hence
in(M) ∈ {in(M1), ..., in(Mt)}. This shows in(C ) = {in(M1), ..., in(Mt)}. In particular, |in(C )| = t = dim(C ).
Notice moreover that if in(Mt) ≻ (k−d(C )+1,m), then clearly rk(Mt) ≤ d(C )−1, a contradiction. Therefore
we have

(1,1) � in(M1)≺ ·· · ≺ in(Mt)� (k−d(C )+1,m).

This shows in(C )⊆ [k−d(C )+1]× [m].

Remark 29. Let a,b be positive integers and letS⊆ [a]× [b] be a set. Assume thatM ∈ Fa×b
q is a matrix with

Mi j = 0 whenever(i, j) /∈ S. Then rk(M)≤ λ (S). This can be proved by induction onλ (S).

We can now state the main result of this section, which provides an upper bound on the covering radius of a
linear rank-metric codeC in terms of the combinatorial structure of its initial set.

Theorem 30(initial set bound). Let C ⊆ Fk×m
q be a non-zero linear code. We haveρ(C ) ≤ d(C )− 1+ λ (S),

whereS:= [k−d(C )+1]× [m]\ in(C ).
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Proof. Let X ∈ Fk×m
q be any matrix. It is easy to see that there exists a unique matrix M ∈ C such thatXi j = Mi j

for all (i, j) ∈ in(C ). Such matrix satisfies(X−M)i j = 0 for all (i, j) ∈ in(C ). Let X−M be the matrix obtained
from X−M deleting the lastd(C )−1 rows. We have

d(X,M) = rk(X−M)≤ d(C )−1+ rk(X−M)≤ d(C )−1+λ (S),

whereSdenotes the complement of in(C ) in [k−d(C )+1]× [m], and the last inequality follows from Remark
29. SinceX is an arbitrary matrix, this showsρ(C )≤ d(C )−1+λ (S).

Remark 31. The initial set of a linear codeC ⊆ Fk×m
q can be efficiently computed from any basis ofC as follows.

Denote byw : Fk×m
q → Fmk

q the map that sends a matrixM to themk-vector obtained concatenating the rows ofM.
Given a basis{M1, ...,Mt} of C , construct the vectorsv1 :=w(M1), ...,vt :=w(Mt). Perform Gaussian elimination
on {v1, ...,vt} and obtain vectorsv1, ...,vt . Clearly, {w−1(v1), ...,w−1(vt)} is a basis ofC , and one can easily
check that

in(C ) = {in(w−1(v1)), ..., in(w
−1(vt))}.

The following example shows that Theorem 30 gives in some cases a better bound than Corollary 24 for the
covering radius of a linear code.

Example 32. Let q= 2 andk= m= 3. Denote byC the linear code generated overF2 by the four matrices





1 0 0
0 0 1
0 0 0



 ,





0 1 0
0 0 0
1 0 0



 ,





0 0 0
1 0 0
0 1 0



 ,





0 0 0
0 1 1
1 0 0



 .

We haved(C ) = 2. Moreover, since





0 0 1
0 0 0
0 0 0



 ,





0 0 0
1 0 0
0 1 0



 ,





0 0 1
1 0 0
0 1 0



 ∈ C
⊥,

we haveσ(C⊥) = 3, and so Corollary 24 givesρ(C ) ≤ 3. On the other hand, one can easily check that the
initial set of C is in(C ) = {(1,1),(1,2),(2,1),(2,2)}. Thus following the notation of Theorem 30 we have
S= {(1,3),(2,3)} andλ (S) = 1. It follows ρ(C ) ≤ d(C )−1+λ (S) = 2. Therefore Theorem 30 gives a better
bound onρ(C ) than Corollary 24. In fact, one can check thatρ(C ) = 2.

6 Covering radius of MRD and dually QMRD codes

It is well known [9] that if C ⊆ Fk×m
q is a code with|C | ≥ 2, then logq |C | ≤ m(k− d(C )+ 1). A codeC ⊆

Fk×m
q is MRD if |C | = 1 or |C | ≥ 2 and logq |C | = m(k− d(C ) + 1). MRD codes have the largest possible

cardinality for their minimum distance. In particular, they are maximal. Therefore combining Proposition 5 and
7 we immediately obtain the following result.

Corollary 33. Let C ⊆ Fk×m
q be an MRD code with|C | ≥ 2. Thenρ(C )≤ d(C )−1. Moreover, equality holds

if and only if the maximality degree ofC is precisely 1.

The upper bound of Corollary 33 is not sharp in general, as we show in the following example. This proves
in particular that not all MRD codesC  Fk×m

q with |C | ≥ 2 can be nested into an MRD codeD ! C with
d(D) = d(C )−1.
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Example 34. Takeq = 2 andk = m= 4. Let C be the linear code generated overF2 by the following four
matrices:









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









,









0 1 0 0
0 0 1 1
0 0 0 1
1 1 0 0









,









0 0 1 0
0 1 1 1
1 0 1 0
1 0 0 1









,









0 0 0 1
1 1 1 0
0 1 0 1
0 1 1 1









.

We have dim(C ) = 4 andd(C ) = 4. In particular,C is a linear MRD codes. On the other hand, one can check
thatρ(C ) = 2 6= d(C )−1= 3, and thatµ(C ) = 2.

We conclude observing that combining properties 1, 2 and 4 ofProposition 13 one can easily obtain the
following general result on the puncturing of an MRD code.

Corollary 35. LetC ⊆Fk×m
q be an MRD code. Then for anyA∈GLk(Fq) and for any 1≤ u≤ k−1 the punctured

codeΠ(C ,A,u) is MRD as well.

Dually QMRD codes were proposed in [6] as the best alternative to linear MRD codes for dimensions that are
not multiples ofm. A linear rank-metric codeC ⊆ Fk×m

q is dually QMRD if dim(C ) ∤m and the following two
conditions hold:

d(C ) = k−⌈dim(C )/m⌉+1, d(C⊥) = k−⌈dim(C⊥)/m⌉+1.

Clearly, a code is dually QMRD if and only if its dual code is dually QMRD. The following proposition
summarizes the most important properties of dually QMRD codes.

Lemma 36(see Proposition 20 of [6]). Let C ⊆ Fk×m
q be a linear code. The following are equivalent.

1. C is dually QMRD,

2. C⊥ is dually QMRD,

3. dim(C ) ∤mandd(C )+d(C⊥) = k+1.

Moreover, the weight distribution of a dually QMRD codeC is determined byk, mand dim(C ).

We now apply the external distance bound to derive an upper bound on the covering radius of dually QMRD
codes. We start by computing the external distance,σ ∗(C ), of a dually QMRD codeC of given parameters. Since
C is linear by definition, as in the proof of Corollary 24 we haveσ ∗(C ) = |{i ∈ [k] : Wi(C

⊥) 6= 0}|. We will need
the following preliminary lemma.

Lemma 37. Let 1≤ t ≤ km− 1 be any integer. There exist linear codesC ( D ⊆ Fk×m
q such thatC is dually

QMRD,D is MRD, dim(C ) = t andd(C ) = d(D).

Proof. Let α := ⌊t/m⌋. It is well known (see e.g. the construction of [9, Section 6]or [19]) that there exist linear
MRD codesE ⊆D with dim(E ) =mα and dim(D) =m(α +1). LetE  C  D be a subspace with dim(C ) = t.
SinceE is MRD, it is maximal. Therefored(C ) = d(D). Now consider the nested codesD⊥  C⊥  E ⊥. Since
D andE are MRD, their dual codesD⊥ andE ⊥ are MRD as well (see [9, Theorem 5.5] or [18, Corollary 41]
for a simpler proof). In particular,D⊥ is maximal, and sod(C⊥) = d(E ⊥). SinceD andE ⊥ are MRD, we have
d(D) = k− (α +1)+1 andd(E ⊥) = k− (k−α)+1. Therefore

d(C )+d(C⊥) = d(D)+d(E ⊥) = k− (α +1)+1+k− (k−α)+1= k+1,

and the result easily follows from Lemma 36.

We can now compute the external distance of a dually QMRD code.

Theorem 38. Let C ⊆ Fk×m
q be a dually QMRD code. Thenσ ∗(C ) = d(C ).
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Proof. SinceC is linear, as in the proof of Corollary 24 we haveσ ∗(C ) = |{i ∈ [k] : Wi(C
⊥) > 0}|. By Lemma

37 there exist a dually QMRD codeC1 and a linear MRD codeD such thatC1 ( D , dim(C ) = dim(C1) and
d(C1) = d(D). SinceC andC1 have the same dimension and are both dually QMRD, by Lemma 36 the dual
codesC⊥ andC⊥

1 have the same weight distribution. In particular,σ ∗(C ) = σ ∗(C1). Therefore it suffices to
prove the theorem for the codeC1. By Lemma 36 we haved(C⊥

1 ) = k+1−d(C1). This clearly implies

σ ∗(C1)≤ k− (k+1−d(C1))+1= d(C1). (11)

On the other hand, by Corollary 24 we haveσ ∗(C1)≥ ρ(C1), and by Lemma 4 we haveρ(C1)≥ d(D). Therefore

σ ∗(C1)≥ ρ(C1)≥ d(D) = d(C1). (12)

The theorem can now be easily obtained combining inequalities (11) and (12).

Corollary 39. The covering radius of a dually QMRD codeC satisfiesρ(C )≤ d(C ). Moreover, equality holds
if and only if C is not maximal.

Proof. Combine Corollary 24, Theorem 38, Proposition 7 and the factthat C is not maximal if and only if
µ(C ) = 0, by definition of maximality degree.

The upper bound of Corollary 39 is not sharp in general, as we show in the following example. This proves
in particular that there exist dually QMRD codes that are maximal. In particular, there exist dually QMRD codes
that are not contained into an MRD code with the same minimum distance.

Example 40. Takeq = 2 andk = m= 4. Let C be the linear code generated overF2 by the following three
matrices:









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









,









0 1 0 0
1 0 1 1
0 0 0 1
1 1 0 0









,









0 0 1 0
0 1 1 1
1 0 1 0
1 0 0 1









.

We have dim(C ) = 3 andd(C ) = 4. Hence dim(C⊥) = 13 andd(C⊥) = 1. Therefored(C )+d(C⊥) = 5, and
C is dually QMRD by Lemma 36. One can check thatρ(C ) = 3 6= d(C ) = 4, and thatµ(C ) = 1.

References

[1] D. Bartoli, M. Giulietti, I. Platoni,On the Covering Radius of MDS Codes, IEEE Transactions on Information
Theory,61, No. 2, 801–812, 2015.

[2] K. Chen, On the Non-Existence of Perfect Codes with Rank Distance, Mathematische Nachrichten,182,
89–98, 1996

[3] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein,Covering Codes. North-Holland Mathematical Library,54,
1997.

[4] G. D. Cohen, M. G. Karpovsky, H. F. Mattson Jr., J. R. Schatz, Covering Radius – Survey and Recent Results.
IEEE Transactions on Information Theory,31, No. 3, 328–343, 1985.

[5] G.D. Cohen, S.N. Litsyn, A.C. Lobstein, H.F. Mattson Jr., Covering radius 1985-1994, Applicable Algebra
in Engineering, Communications and Computing, Vol. 8, No. 3, 173–239, 1997.

[6] J. de la Cruz, E. Gorla, H. Lopez, A. Ravagnani,Rank distribution of Delsarte codes. Submitted, online
preprint:https://arxiv.org/abs/1510.01008.

15

https://arxiv.org/abs/1510.01008


[7] P. Delsarte,Four Fundamental Parameters of a Code and Their Combinatorial Significance. Information
and Control,23, 407–438, 1973.

[8] P. Delsarte,Association Schemes and t-Designs in Regular Semilattices. Journal of Combinatorial Theory,
Series A,20, 230–243, 1976.

[9] P. Delsarte,Bilinear Forms over a Finite Field with Applications to Coding Theory. Journal of Combinatorial
Theory, Series A,25, 226–241, 1978.

[10] E. GabidulinTheory of codes with maximum rank distance. Problems of Information Transmission, 1 (1985),
2, pp. 1 – 12.

[11] M. Gadouleau, Z. Yan,Packing and Covering Properties of Rank Metric Codes. IEEE Transactions on
Information Theory54, No. 9, 3873–3883, 2008.

[12] M. Gadouleau, Z. Yan,Bounds on Covering Codes with the Rank Metric, IEEE Communications Letters,
13, No. 9, 691–693, 2009.

[13] V. Guruswami, D. Micciancio, O. Regev,The complexity of the covering radius problem, Computational
Complexity, Vol. 14, No. 2, 90–121, 2005.

[14] P. Loidreau,A Welch-Berlekamp Like Algorithm for Decoding Gabidulin Codes, Lect. Notes in Comp. Sc.,
pp. 36-45, 2006.

[15] F.J. MacWilliams, N.J.A. Sloane,The Theory of Error Correcting Codes. North-Holland Mathematical Li-
brary,16, 1978.

[16] R. Meshulam,On the maximal rank in a subspace of matrices. Quarterly Journal of Mathematics, 36 (1985),
pp. 225 – 229.

[17] A. Ravagnani,Duality of codes supported on regular lattices, with an application to enumerative combina-
torics. Submitted, online preprint:https://arxiv.org/abs/1510.02383.

[18] A. Ravagnani,Rank-metric codes and their duality theory. Designs, Codes and Cryptography,80, No. 1,
197–216, 2016.

[19] J. Sheekey, A new family of linear maximum rank distance codes. Submitted, online preprint:
https://arxiv.org/abs/1504.01581.

[20] P. Stanley,Enumerative Combinatorics, vol. 1, second edition. Cambridge University Press, 2012.

[21] A. Wachter-Zeh,Bounds on List Decoding of Rank-Metric Codes, IEEE Trans. Inf. Theory, 59 (11) pp.
7268-7278, 2013.

[22] A. Wachter-Zeh, V. Afanassiev, V. Sidorenko,Fast decoding of Gabidulin Codes, Designs, Codes and Cryp-
tography, Vol. 66, No. 1, 57–73, 2013.

16

https://arxiv.org/abs/1510.02383
https://arxiv.org/abs/1504.01581

	1 Preliminaries
	2 Maximality
	3 Puncturing and shortening rank-metric codes
	4 Translates of a rank-metric code
	5 Initial set bound
	6 Covering radius of MRD and dually QMRD codes

