
TWO DOUBLE POSET POLYTOPES

THOMAS CHAPPELL, TOBIAS FRIEDL, AND RAMAN SANYAL

Abstract. To every poset P , Stanley (1986) associated two polytopes, the order polytope
and the chain polytope, whose geometric properties reflect the combinatorial qualities of
P . This construction allows for deep insights into combinatorics by way of geometry and
vice versa. Malvenuto and Reutenauer (2011) introduced double posets, that is, (finite)
sets equipped with two partial orders, as a generalization of Stanley’s labelled posets. Many
combinatorial constructions can be naturally phrased in terms of double posets. We introduce
the double order polytope and the double chain polytope and we amply demonstrate that they
geometrically capture double posets, i.e., the interaction between the two partial orders. We
describe the facial structures, Ehrhart polynomials, and volumes of these polytopes in terms
of the combinatorics of double posets. We also describe a curious connection to Geissinger’s
valuation polytopes and we characterize 2-level polytopes among our double poset polytopes.

Fulkerson’s anti-blocking polytopes from combinatorial optimization subsume stable set
polytopes of graphs and chain polytopes of posets. We determine the geometry of Minkowski-
and Cayley sums of anti-blocking polytopes. In particular, we describe a canonical subdivi-
sion of Minkowski sums of anti-blocking polytopes that facilitates the computation of Ehrhart
(quasi-)polynomials and volumes. This also yields canonical triangulations of double poset
polytopes.

Finally, we investigate the affine semigroup rings associated to double poset polytopes.
We show that they have quadratic Gröbner bases, which gives an algebraic description of the
unimodular flag triangulations described in the first part.

1. Introduction

A (finite) partially ordered set (or poset, for short) is a finite set P together with a
reflexive, transitive, and anti-symmetric relation �. The notion of partial order pervades all
of mathematics and the enumerative and algebraic combinatorics of posets is underlying in
computations in virtually all areas. In 1986, Stanley [34] defined two convex polytopes for
every poset P that, in quite different ways, geometrically capture combinatorial properties of
P . The order polytope O(P ) is set of all order preserving functions into the interval [0, 1].
That is, all functions f : P → R such that

0 ≤ f(a) ≤ f(b) ≤ 1

for all a, b ∈ P with a � b. Hence, O(P ) parametrizes functions on P and many properties
of P are encoded in the boundary structure of O(P ): faces of O(P ) are in correspondence
with quotients of P . In particular, the vertices of O(P ) are in bijection to filters of P . But
also metric and arithmetic properties of O(P ) can be determined from P . The order polytope
naturally has vertices in the lattice ZP and its Ehrhart polynomial EhrO(P )(n) = |nO(P )∩ZP |,
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up to a shift, coincides with the order polynomial ΩP (n); see Section 4.2 for details. A full-
dimensional simplex with vertices in a lattice Λ ⊂ Rn is unimodular with respect to Λ if it
has minimal volume. The normalized volume relative to Λ is the Euclidean volume scaled
such that the volume of a unimodular simplex is 1. If the lattice is clear from the context,
we denote the normalized volume by Vol(P). By describing a canonical triangulation of O(P )
into unimodular simplices, Stanley showed that Vol(O(P )) is exactly the number of linear
extensions of P , that is, the number e(P ) of refinements of � to a total order. We will review
these results in more detail in Section 4.2. This bridge between geometry and combinatorics
can, for example, be used to show that computing volume is hard (cf. [4]) and, conversely,
geometric inequalities can be used on partially ordered sets; see [26, 34].

The chain polytope C(P ) is the collection of functions g : P → R≥0 such that

(1) g(a1) + g(a2) + · · ·+ g(ak) ≤ 1

for all chains a1 ≺ a2 ≺ · · · ≺ ak in P . In contrast to the order polytope, C(P ) does not
determine P . In fact, C(P ) is defined by the comparability graph of P and bears strong relations
to so-called stable set polytopes of perfect graphs; see Section 3.2. Surprisingly, it is shown
in [34] that the chain polytope and the order polytope have the same Ehrhart polynomial and
hence Vol(C(P )) = Vol(O(P )) = e(P ), which shows that the number of linear extensions only
depends on the comparability relation. Stanley’s poset polytopes are very natural objects that
appear in a variety of contexts in combinatorics and beyond; see [1, 25, 32, 11].

Inspired by Stanley’s labelled posets, Malvenuto and Reutenauer [28] introduced double poset
in the context of combinatorial Hopf algebras. A double poset P is a triple consisting
of a finite ground set P and two partial order relations �+ and �− on P . We will write
P+ = (P,�+) and P− = (P,�−) to refer to the two underlying posets. If �− is a total
order, then this corresponds to labelled poset in the sense of Stanley [33], which is the basis
for the rich theory of P -partitions. The combinatorial study of general double posets gained
momentum in recent years with a focus on algebraic aspects; see, for example, [9, 10]. The
goal of this paper is to build a bridge to geometry by introducing two double poset polytopes
that, like the chain- and the order polytope, geometrically reflect the combinatorial properties
of double posets and, in particular, the interaction between the two partial orders.

1.1. Double order polytopes. For a double poset P = (P,�±), we define the double order
polytope as

O(P) = O(P,�+,�−) := conv
{

(2O(P+)× {1}) ∪ (−2O(P−)× {−1})
}
.

This is a (|P | + 1)-dimensional polytope in RP × R. Its vertices are trivially in bijection to
filters of P+ and P−. This is a lattice polytope with respect to ZP × Z but we will mostly
view O(P) as a lattice polytope with respect to the affine lattice A = 2ZP × (2Z+ 1). That
is, up to a translation by (0, 1), O(P) is the polytope

2 · conv
{

(O(P+)× {1}) ∪ (−O(P−)× {0})
}
,

which is a lattice polytope with respect to 2ZP × 2Z. In Section 2.2, we describe the facets
of O(P) in terms of chains and cycles alternating between P+ and P− and, for the important
case of compatible double posets, we completely determine the facial structure in Section 2.3
in terms of double Birkhoff lattices J (P) := J (P+) ] J (P−). The double order polytope
automatically has 2O(P+) and −2O(P−) as facets. The non-trivial combinatorial structure is
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captured by the reduced double order polytope

O(P) := O(P) ∩ {(f, t) : t = 0} = O(P+)−O(P−),

which is a lattice polytope with respect to ZP by our choice of embedding.

By placing 2O(P+) and −2O(P−) at heights +1 and −1, respectively, we made sure that O(P)
always contains the origin. Every poset (P,�) trivially induces a double poset P◦ = (P,�,�)
and for an induced double poset, O(P◦) is centrally-symmetric and, up to a (lattice-preserving)
shear, is the polytope

O(P◦) ∼= conv
{

(2O(P )× {1}) ∪ (2O(P op)× {−1})
}
,

where P op is the poset with the opposite order. Geissinger [13] introduced a polytope asso-
ciated to valuations on distributive lattices with values in [0, 1]. In Section 2.4, we show a
surprising connection between Geissinger’s valuation polytopes and polars of the (reduced)
double order polytopes of P◦. We will review notions from the theory of double posets and
emphasize their geometric counterparts.

1.2. Double chain-, Hansen-, and anti-blocking polytopes. The double chain poly-
tope associated to a double poset P is the polytope

C(P) = C(P,�+,�−) := conv
{

(2C(P+)× {1}) ∪ (−2C(P−)× {−1})
}
.

The reduced version C(P) := C(P+) − C(P−) is studied in Section 3 in the context of anti-
blocking polytopes. According to Fulkerson [12], a full-dimensional polytope P ⊆ Rn≥0 is
anti-blocking if for any q ∈ P, it contains all points p ∈ Rn with 0 ≤ pi ≤ qi for i = 1, . . . , n.
It is obvious from (1) that chain polytopes are anti-blocking. Anti-blocking polytopes are
important in combinatorial optimization and, for example, contain stable set polytopes of
graphs. For two polytopes P1,P2 ⊂ Rn, we define the Cayley sum as the polytope

P1 � P2 := conv(P1 × {1} ∪ P2 × {−1})

and we abbreviate P1 � P2 := P1 �−P2. Thus,

O(P) = 2O(P+) � 2O(P−) and C(P) = 2C(P+) � 2C(P−).

Section 3 is dedicated to a detailed study of the polytopes P1 � P2 as well as their sections P1−
P2 for anti-blocking polytopes P1,P2 ⊂ Rn≥0. We completely determine the facets of P1 � P2
in terms of P1,P2 in Section 3.1, which yields the combinatorics of C(P). In Section 3.3, we
describe a canonical subdivision of P1 � P2 and P1 −P2 for anti-blocking blocking polytopes
P1,P2. Moreover, if P1,P2 have regular, unimodular, or flag triangulations, then so has
P1 � P2 (for an appropriately chosen affine lattice). The canonical subdivision enables us to
give explicit formulas for the volume and the Ehrhart (quasi-)polynomials of these classes of
polytopes.

The chain polytope C(P ) only depends on the comparability graph G(P ) of P and, more
precisely, is the stable set polytope of G(P ). Thus, C(P) only depends on the double graph
(G(P+), G(P−)). For a graph G, let PG be its stable set polytope; see Section 3.1 for precise
definitions. Lovász [27] characterized perfect graphs in terms of PG and Hansen [17] studied
the polytopes H(G) := 2PG � 2PG. If G is perfect, then Hansen showed that the polar H(G)4

is linearly isomorphic to H(G) where G is the complement graph of G. In Section 3.2, we
generalize this result to all Cayley sums of anti-blocking polytopes.
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1.3. 2-level polytopes and volume. A full-dimensional polytope P ⊂ Rn is called 2-level
if for any facet-defining hyperplane H there is t ∈ Rn such that H ∪ (t + H) contains all
vertices of P . The class of 2-level polytopes plays an important role in, for example, the study
of centrally-symmetric polytopes [30, 17], polynomial optimization [14, 15], statistics [37],
and combinatorial optimization [31]. For example, Lovász [27] characterizes perfect graphs
by the 2-levelness of their stable set polytopes and Hansen showed that H(G) is 2-level if
G is perfect. In fact, we extend this to yet another characterization of perfect graphs in
Corollary 3.11. This result implies that C(P◦) is 2-level for double posets induced by posets.
However, it is in general not true that P1 � P2 is 2-level if P1 and P2 are. A counterexample
is the polytope ∆6,2 � ∆6,4, where ∆n,k is the (n, k)-hypersimplex. The starting point for
this paper was the question for which double posets P the polytopes O(P) and C(P) are
2-level. Answers are given in Corollary 2.9, Proposition 2.10, and Corollary 3.11. A new
class of 2-level polytopes comes from valuation polytopes; see Corollary 2.19. Sullivant [37,
Thm. 2.4] showed that 2-level lattice polytopes P have the interesting property that any
pulling triangulation that uses all lattice points in P is unimodular. Hence, for 2-level lattice
polytopes, the normalized volume is the number of simplices. In particular, O(P ) is 2-level and
Stanley’s canonical triangulation is a pulling triangulation. Stanley defined a piecewise linear
homeomorphism between O(P ) and C(P ) whose domains of linearity are exactly the simplices
of the canonical triangulation. Since this transfer map is lattice preserving, it follows that
EhrO(P )(n) = EhrC(P )(n), which also implies the volume result. In Section 4, we generalize
this transfer map to a lattice preserving PL homeomorphism ΨP : RP ×R→ RP ×R for any
compatible double poset P. In particular, C(P) is mapped to O(P). This also transfers the
canonical flag triangulation of C(P) to a canonical flag triangulation of O(P). Abstractly, the
triangulation can be described in terms of a suitable subcomplex of the order complex of the
double Birkhoff lattice J (P) = J (P+) ] J (P−). In Section 4.2, we give explicit formulas for
the Ehrhart polynomial and the volume of O(P) if P is compatible and for C(P) in general.

1.4. Double Hibi rings. Hibi [19] studied rings associated to finite posets that give posets
an algebraic incarnation and that are called Hibi rings. In modern language, the Hibi ring
C[O(P )] associated to a poset P is the semigroup ring associated to O(P ). Many properties of
P posses an algebraic counterpart and, in particular, Hibi exhibited a quadratic Gröbner basis
for the associated toric ideal. In Section 5, we introduce the double Hibi rings C[O(P)]
as suitable analogs for double posets, which are the semigroup rings associated to O(P). We
construct a quadratic Gröbner basis for the cases of compatible double posets. Using a result
by Sturmfels [36, Thm. 8.3], this shows the existence of a unimodular and flag triangulation
of O(P) which coincides with the triangulation in Section 4. We also construct a quadratic
Gröbner basis for the rings C[C(P)] for arbitrary double posets and we remark on the algebraic
implications for double posets.
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would also like to thank the referees for valuable suggestions. T. Chappell was supported
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supported by the DFG-Collaborative Research Center, TRR 109 “Discretization in Geometry
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Freie Universität Berlin.
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2. Double order polytopes

2.1. Order polytopes. Let (P,�) be a poset. We write P̂ for the poset obtained from P

by adjoining a minimum 0̂ and a maximum 1̂. For an order relation a ≺ b, we define a linear
form `a,b : RP → R by

`a,b(f) := f(a)− f(b)

for any f ∈ RP . Moreover, for a ∈ P , we define `a,1̂(f) := f(a) and `0̂,a(f) := −f(a). With
this notation, f ∈ RP is contained in O(P ) if and only if

(2)

`a,b(f) ≤ 0 for all a ≺ b,
`0̂,b(f) ≤ 0 for all b ∈ P, and
`a,1̂(f) ≤ 1 for all a ∈ P.



6 THOMAS CHAPPELL, TOBIAS FRIEDL, AND RAMAN SANYAL

Every nonempty face F of O(P ) is of the form

F = O(P )` := {f ∈ O(P ) : `(f) ≥ `(f ′) for all f ′ ∈ O(P )}
for some linear function ` ∈ (RP )∗. Later, we want to identify ` with its vector of coefficients
and thus we write

`(f) =
∑
a∈P

`af(a).

Combinatorially, faces can be described using face partitions: To every face F is an associ-
ated collection B1, . . . , Bm ⊆ P̂ of nonempty and pairwise disjoint subsets that partition P̂ .
According to Stanley [34, Thm 1.2], a partition of P̂ is a (closed) face partition if and only
if each (Bi,�) is a connected poset and Bi �′ Bj :⇔ pi � pj for some pi ∈ Bi, pj ∈ Bj is a
partial order on {B1, . . . , Bm}. Of course, it is sufficient to remember the non-singleton parts
and we define the reduced face partition of F as B(F ) := {Bi : |Bi| > 1}. The normal cone
of a nonempty face F ⊆ O(P ) is the polyhedral cone

NP (F ) := {` ∈ (RP )∗ : F ⊆ O(P )`}.
The following description of NP (F ) follows directly from (2).

Proposition 2.1. Let P be a finite poset and F ⊆ O(P ) a nonempty face with reduced face
partition B = {B1, . . . , Bk}. Then

NP (F ) = cone{`a,b : [a, b] ⊆ Bi for some i = 1, . . . , k}.

We note the following simple but very useful consequence of this description.

Corollary 2.2. Let F ⊆ O(P ) be a nonempty face with reduced face partition B = {B1, . . . , Bk}.
Then for every ` ∈ relintNP (F ) and p ∈ P the following hold:

(i) if p ∈ min(Bi) for some i, then `p > 0;
(ii) if p ∈ max(Bi) for some i, then `p < 0;
(iii) if p 6∈

⋃
iBi, then `p = 0.

The vertices of O(P ) are exactly the indicator functions 1J : P → {0, 1} where J ⊆ P is a
filter. For a filter J ⊆ P , we write Ĵ := J ∪ {1̂} for the filter induced in P̂ .

Proposition 2.3. Let F ⊆ O(P ) be a face with (reduced) face partition B = {B1, . . . , Bk}
and let J ⊆ P be a filter. Then 1J ∈ F if and only if

Ĵ ∩Bi = ∅ or Ĵ ∩Bi = Bi

for all i = 1, . . . , k.

That is, 1J belongs to F if and only if Ĵ does not separate any two comparable elements in
Bi, for all i.

2.2. Facets of double order polytopes. Let P = (P,�±) be a double poset. The double
order polytope O(P) is a (|P |+ 1)-dimensional polytope in RP ×R with coordinates (f, t). It
is obvious that the vertices of O(P) are exactly (21J+ , 1), (−21J− ,−1) for filters J+ ⊆ P+ and
J− ⊆ P−, respectively. To get the most out of our notational convention, for σ ∈ {−,+} we
define

−σ :=

{
− if σ = +

+ if σ = −.
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By construction, 2O(P+) × {1} and −2O(P−) × {−1} are facets that are obtained by maxi-
mizing the linear function ±L∅(f, t) := ±t over O(P). We call the remaining facets vertical,
as they are of the form F+ � F−, where Fσ ⊂ O(Pσ) are certain nonempty proper faces for
σ = ±. The vertical facets are in bijection with the facets of the reduced double order polytope
O(P) = O(P+)−O(P−).

More precisely, if F ⊂ O(P) is a facet, then there is a linear function ` ∈ (RP )∗ such that
F = F+ � F− where F+ = O(P+)` and F− = O(P−)−`. This linear function is necessarily
unique up to scaling and hence the faces F+, F− are characterized by the property

(3) relintNP+(F+) ∩ relint−NP−(F−) = R>0 · ` .
We will call a linear function ` rigid if it satisfies (3) for a pair of faces (F+, F−). Our next
goal is to give an explicit description of all rigid linear functions for O(P) which then yields a
characterization of vertical facets.

An alternating chain C of a double poset P = (P,�±) is a finite sequence of distinct
elements

(4) 0̂ = p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺±σ pk = 1̂,

where σ ∈ {±}. For an alternating chain C, we define a linear function `C by

`C(f) := σ

k−1∑
i=1

(−1)if(pi).

Here, we severely abuse notation and interpret σ as ±1. Note that `C ≡ 0 if k = 1 and we call
C a proper alternating chain if k > 1. An alternating cycle C of P is a sequence of length
2k of the form

p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺−σ p2k = p0,

where σ ∈ {±} and pi 6= pj for 0 ≤ i < j < 2k. We similarly define a linear function associated
to C by

`C(f) := σ

2k−1∑
i=0

(−1)if(pi).

Note that it is possible that a sequence of elements p1, p2, . . . , pk gives rise to two alternating
chains, one starting with ≺+ and one starting with ≺−. On the other hand, every alternating
cycle of length 2k yields k alternating cycles starting with ≺+ and k alternating starting with
≺−.

Proposition 2.4. Let P = (P,�±) be a double poset. If ` is a rigid linear function for O(P),
then ` = µ`C for some alternating chain or alternating cycle C and µ > 0.

Proof. Let F+ = O(P+)` and F− = O(P−)−` be the two faces for which (3) holds and let
B± = {B±1, B±2, . . . } be the corresponding reduced face partitions. We define a directed
bipartite graph G = (V+ ∪ V−, E) with nodes V+ = {p ∈ P : `p > 0} and V− accordingly. If
1̂ is contained in some part of B+, then we add a corresponding node 1̂+ to V− Consistently,
we add a node 1̂− to V+ if 1̂ it occurs in a part of B−. Note that 0̂− and 0̂+ are distinct
nodes. Similarly we add 0̂+ to V+ and 0̂− to V− if they appear in B+ and B−, respectively.
By Corollary 2.2, we have ensured that max(B+i) ⊆ V− and max(B−i) ⊆ V+ for all i.

For u ∈ V+ and v ∈ V−, we add the directed edge uv ∈ E if u ≺+ v and [u, v]P+ ⊆ B+i for
some i. Similarly, we add the directed edge vu ∈ E if v ≺− u and [v, u]P− ⊆ B−i for some
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i. We claim that every node u except for maybe the special nodes 0̂±, 1̂± has an incoming
and an outgoing edge. For example, if u ∈ V+, then `u > 0. By Corollary 2.2(iii), there is
an i such that u ∈ B+i and by (ii), u is not a maximal element in B+i. Thus, there is some
v ∈ max(B+i) with u ≺+ v and uv is an edge. It follows that every longest path either yields
an alternating cycle or a proper alternating chain.

For an alternating cycle C = (p0 ≺+ · · · ≺− p2l), we observe that

`C = `p0,p1 + `p2,p3 + · · ·+ `p2l−2,p2l−1
and

−`C = `p1,p2 + `p3,p4 + · · ·+ `p2l−1,p2l .

Since for every j, [p2j , p2j+1]P+ is contained in some part of B+, we conclude that `C ∈
NP+(F+). Similarly, for all j, [p2j−1, p2j ]P− is contained in some part of B−, and hence
−`C ∈ NP−(F−). Assuming that ` is rigid then shows that ` = µ`C for some µ > 0.

If G does not contain a cycle, then let C = (p0, p1, . . . , pk) be a longest path in G. In particular
p0 = 0̂± and pk = 1̂±. The same reasoning applies and shows that `C ∈ NP+(F+)∩−NP−(F−)
and hence ` = µ`C for some µ > 0. �

In general, not every alternating chain or cycle gives rise to a rigid linear function. Let (P,�)
be a poset that is not the antichain and define the double poset P = (P,�,�op), where �op

is the opposite order. In this case O(P) is, up to a shear, the ordinary prism over O(P,�).
Hence, the vertical facets of O(P) are prisms over the facets of O(P ). It follows from (2) that
these facets correspond to cover relations in P . Hence, every rigid ` is of the form ` = µ`p,q
for cycles p ≺+ q ≺− p where p ≺ q is a cover relation in P .

We call a double poset P = (P,�+,�−) compatible if P+ = (P,�+) and P− = (P,�−)
have a common linear extension. Note that a double poset is compatible if and only if it
does not contain alternating cycles. Following [28], we call a double poset P special if �−
is a total order. At the other extreme, we call P anti-special if (P,�−) is an anti-chain. A
plane poset, as defined in [9] is a double poset P = (P,�+,�−) such that distinct a, b ∈ P
are ≺+-comparable if and only if they are not ≺−-comparable. For two posets (P1,�1) and
(P2,�2) one classically defines the disjoint union �] and the ordinal sum �⊕ as the posets
on P1 ] P2 as follows. For a, b ∈ P1 ] P2 set a �] b if a, b ∈ Pi and a �i b for some i ∈ {1, 2}.
For the ordinal sum, �⊕ restricts to �1 and �2 on P1 and P2 respectively and p1 ≺⊕ p2 for
all p1 ∈ P1 and p2 ∈ P2. The effect on order polytopes is O(P1 ] P2) = O(P1) × O(P2) and
O(P1 ⊕ P2) is a subdirect sum in the sense of McMullen [29]. Malvenuto and Reutenauer [28]
define the composition of two double posets (P1,≺1

±) and (P ′2,≺2
±) as the double poset

(P,�±) such that (P,�+) = (P1,≺1
+) ] (P2,≺2

+) and (P,�−) = (P1,≺1
−)⊕ (P2,≺2

−).

The following is easily seen; for plane posets with the help of [9, Prop. 11].

Proposition 2.5. Anti-special and plane posets are compatible. Moreover, the composition of
two compatible double posets is a compatible double poset.

This defining property of compatible double posets assures us that in an alternating chain
pi ≺σ pj implies i < j for any σ ∈ {±}. In particular, a compatible double poset does not
have alternating cycles. This also shows the following.

Lemma 2.6. Let P = (P,�±) be a compatible double poset. If ai ≺σ ai+1 ≺−σ · · · ≺−τ aj ≺τ
aj+1 is part of an alternating chain with σ, τ ∈ {±} and i < j, then there is no b ∈ P such
that ai ≺σ b ≺σ ai+1 and aj ≺τ b ≺τ aj+1.
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For compatible double posets, we can give complete characterization of facets.

Theorem 2.7. Let P a compatible double poset. A linear function ` is rigid if and only if
` ∈ R>0`C for some alternating chain C. In particular, the facets of O(P) are in bijection
with alternating chains.

Proof. We already observed that 2O(P+) × {1} and −2O(P−) × {−1} correspond to the
improper alternating chains 0̂ ≺σ 1̂ for σ = ±. By Proposition 2.4 it remains to show that for
any proper alternating chain C the function `C is rigid. We only consider the case that C is
an alternating chain of the form

0̂ = p0 ≺+ p1 ≺− p2 ≺+ · · · ≺+ p2k−1 ≺− p2k ≺+ p2k+1 = 1̂.

The other cases can be treated analogously. Let F+ = O(P+)`C and and F− = O(P−)−`C be
the corresponding faces with reduced face partitions B±. Define O = {p1, p3, . . . , p2k−1} and
E = {p2, p4, . . . , p2k}. Then for any set A ⊆ P , we observe that `C(1A) = |E ∩ A| − |O ∩ A|.
If J is a filter of P+, then p2i ∈ J implies p2i+1 ∈ J and hence `C(1J) ≤ 1 and thus 1J ∈ F+

if and only if J does not separate p2j and p2j+1 for 1 ≤ j ≤ k. Likewise, a filter J ⊆ P− is
contained in F− if and only if J does not separate p2j−1 and p2j for 1 ≤ j ≤ k. Lemma 2.6
implies that

B+ = {[p0, p1]P+ , [p2, p3]P+ , . . . , [p2k, p2k+1]P+} and
B− = {[p1, p2]P− , [p3, p4]P− , . . . , [p2k−1, p2k]P−}.

To show that `C is rigid pick a linear function `(φ) =
∑

p∈P `pφ(p) with F+ = O(P+)` and
F− = O(P−)−`. Since the elements in E and O are exactly the minimal and maximal elements
of the parts in B+, it follows from Corollary 2.2 that `p > 0 if p ∈ E, `p < 0 for p ∈ O. By
Lemma 2.6, it follows that if q ∈ (pi, pi+1)P+ , then q is not contained in a part of the reduced
face partition B− and vice versa. By Corollary 2.2(iii), it follows that `p = 0 for p 6∈ E ∪ O.
Finally, `pi + `pi+1 = 0 for all 1 ≤ i ≤ 2k by Proposition 2.1 and therefore ` = µ`C for some
µ > 0 finishes the proof. �

Example 1. Let P = (P,�±) be a compatible double poset with |P | = n.

(1) Let �+=�−=� and (P,�) be the n-antichain. Then the only alternating chains are
of the form 0̂ ≺σ a ≺−σ 1̂ for a ∈ P . The double order polytope O(P) is the (n+ 1)-
dimensional cube with vertices {0, 2}n × {+1} and {0,−2}n × {−1}.

(2) If �+=�−=� and (P,�) is the n-chain [n], then any alternating chain can be identified
with an element in {−,+}n+1. More precisely, O(P) is linearly isomorphic to the
(n+ 1)-dimensional crosspolytope C4n+1 = conv{±e1, . . . ,±ed+1}.

(3) Let (P,�+) be the n-chain and (P,�−) be the n-antichain. Then any alternating chain
is of the form 0̂ ≺σ a ≺−σ 1̂ for σ = ± and any relation a ≺+ b be can be completed
to a unique alternating chain. Thus, O(P) is a (n + 1)-dimensional polytope with
2n + n+ 1 vertices and

(
n
2

)
+ 2n+ 2 facets.

(4) The comb (see Figure 2) is the poset Cn on elements {a1, . . . , an, b1, . . . , bn} such that
ai � aj if i ≤ j and bi ≺ ai for all i, j ∈ [n]. The n-comb has 2n+1 − 1 filters and
3 · 2n − 2 chains. Hence O(Cn,�,�) has 2n+2 − 2 vertices and 3 · 2n+1 − 4 facets.

(5) Generally, let P1, P2 be two posets and denote by fi and ci the number of filters and
chains of Pi for i = 1, 2. Let P◦ be the trivial double poset induced by P1 ] P2. Then
O(P◦) has 2f1f2 vertices and 2(c1 + c2)− 2 facets.
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Example 2. Consider the compatible ’XW’-double poset PXW on five elements, whose Hasse
diagrams are given in Figure 1. The polytope O(PXW ) is six-dimensional with face vector

f(O(PXW )) = (21, 112, 247, 263, 135, 28).

The facets correspond to the 28 alternating chains in P̂XW , which are shown in Figure 3.

Figure 1. The ’XW’-double
poset PXW . The red and blue
lines are the Hasse diagram
of P+ and P−, respectively.
Striped lines are edges in both
Hasse diagrams.

Figure 2. The comb Cn.

For two particular types of posets, we wish to determine the combinatorics of O(P) in more
detail.

Example 3 (Dimension-2 posets). For n ≥ 1, let π = (π1, π2, . . . , πn) be an ordered sequence
of distinct numbers. We may define a partial order �π on [n] by i ≺π j if i < j and πi < πj .
Following Dushnik and Miller [8], these are, up to isomorphism, exactly the posets of order
dimension 2. A chain in Pπ := ([n],�π) is a sequence i1 < i2 < · · · < ik with πi1 < πi2 < · · · <
πik . Thus, chains in Pπ are in bijection to increasing subsequences of π. Conversely, one
checks that filters (via their minimal elements) are in bijection to decreasing subsequences. It
follows from Theorem 2.7 that facets and vertices ofO([n],�π,�π) are in 2-to-1 correspondence
with increasing and decreasing sequences, respectively.

Example 4 (Plane posets). Let P = (P,�+,�−) be a compatible double poset. We may
assume that P = {p1, . . . , pn} are labelled such that pi ≺σ pj for σ = + or = − implies i < j.
By [10, Prop. 15], P is a plane poset, if and only if there is a sequence of distinct numbers
π = (π1, π2, . . . , πn) such that for pi, pj ∈ P

pi ≺+ pj ⇐⇒ i < j and πi < πj and
pi ≺− pj ⇐⇒ i < j and πi > πj .

This is to say, P+ is canonically isomorphic to ([n],�π) and P− is canonically isomorphic to
([n],�−π). It follows that alternating chains in P are in bijection to alternating sequences.
That is, sequences i1 < i2 < i3 < · · · < ik such that πi1 < πi2 > πi3 < · · · . Hence, by
Theorem 2.7, the facets of O(P) are in bijection to alternating sequences of π whereas the
vertices are in bijection to increasing and decreasing sequences of π.
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Figure 3. The 28 alternating chains in P̂XW .

As a consequence of the proof of Theorem 2.7 we can determine a facet-defining inequality
description of double order polytopes. For an alternating chain C as in (4), let us write
sgn(C) = τ ∈ {−,+} if the last relation in C is pk−1 ≺τ pk = 1̂.

Corollary 2.8. Let P = (P,�±) be a compatible double poset. Then O(P) is the set of points
(f, t) ∈ RP × R such that

LC(f, t) := `C(f)− sgn(C) t ≤ 1

for all alternating chains C of P.

Proof. Note that 0 is in the interior of O(P). Hence by Theorem 2.7 every facet-defining
halfspace of O(P) is of the form {(φ, t) : L(φ, t) = µ`C + βt ≤ 1} for some alternating chain
C and µ, β ∈ R with µ > 0. If C is an alternating chain with sgn(C) = +, then the maximal
value of `C over 2O(P+) is 2 and 0 over −2O(P−). The values are exchanged for sgn(C) = −.
It then follows that µ = 1 and β = − sgn(C). �

With this, we can characterize the 2-level polytopes among compatible double order polytopes.

Corollary 2.9. Let P = (P,�±) be a compatible double poset. Then O(P) is 2-level if and
only if �+=�−. In this case, the number of facets of O(P◦) is twice the number of chains in
(P,�).
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Proof. If �+=�−=�, then every alternating chain is a chain in P and conversely, every chain
in (P,�) gives rise to exactly two distinct alternating chains in (P,�±). In this case, it is
straightforward to verify that the minimum of `C over 2O(P ) is −2 if sgn(C) = + and 0
otherwise. The claim now follows from Corollary 2.8 and together with Theorem 2.7 also
yields the number of facets.

The converse follows from Proposition 2.10 by noting that if both (P,�+,�−) and (P,�−,�+)
are compatible and tertispecial then �+=�−. �

In [16] a double poset (P,�+,�−) is called tertispecial if a and b are ≺−-comparable when-
ever a ≺+ b is a cover relation for a, b ∈ P .

Proposition 2.10. Let P = (P,�±) be a double poset. If O(P) is 2-level, then P as well as
(P,�−,�+) are tertispecial.

Proof. Let σ = ± and let a ≺σ b be a cover relation. The linear function `a,b is facet defining
for O(Pσ) and hence yields a facet for O(P). If a, b are not comparable in P−σ, then the filters
∅, {c ∈ P : c �− a} and {c ∈ P : c �− b} take three distinct values on `a,b. �

Let us remark that the number of facets of a given double poset P = (P,�+,�−) can be
computed by the transfer-matrix method. Let us define the matrices η+, η− ∈ RP̂×P̂ by

ησa,b :=

{
1 if a ≺σ b
0 otherwise

for a, b ∈ P̂ and σ = ±. Then (η+η−)k
0̂,1̂

is the number of alternating chains of P of length k
starting with ≺+ and ending with ≺−. This shows the following.

Corollary 2.11. Let P = (P,�+,�−) be a compatible double poset. Then the number of
facets of O(P) is given by[

(Id− η+η−)−1(Id + η+) + (Id− η−η+)−1(Id + η−)
]
0̂,1̂
.

2.3. Faces and embedded sublattices. The Birkhoff lattice J (P ) of a finite poset P is
the distributive lattice given by the collection of filters of P ordered by inclusion. A subposet
L ⊆ J (P ) is called an embedded sublattice if for any two filters J, J′ ∈ J (P )

J ∪ J′, J ∩ J′ ∈ L if and only if J, J′ ∈ L.

For a subset L ⊆ J (P ) of filters we write F (L) := conv(1J : J ∈ L). Embedded sublattices
give an alternative way to characterize faces of O(P ).

Theorem 2.12 ([38, Thm 1.1(f)]). Let P be a poset and L ⊆ J (P ) a collection of filters.
Then F (L) is a face of O(P ) if and only if L is an embedded sublattice.

We will generalize this description to the case of double order polytopes. Throughout this
section, let P = (P,�+,�−) be a double poset. We define J (P) := J (P+) ] J (P−). For
any subset L ⊆ J (P) we will denote by L+ the set L ∩ J (P+) and we define L− accordingly.
Moreover, we shall write

(5) F (L) := conv
(
{(21J+ ,+1) : J+ ∈ L+} ∪ {(21J− ,−1) : J− ∈ L−}

)
⊆ O(P).

Thus, F (L) = 2F (L+) � 2F (L−).



TWO DOUBLE POSET POLYTOPES 13

Theorem 2.13. Let P = (P,�+,�−) be a compatible double poset and L ⊆ J (P). Then
F (L) is a face of O(P) if and only if

(i) L+ ⊆ J (P+) and L− ⊆ J (P−) are embedded sublattices and
(ii) for all filters Jσ ⊆ J′σ ∈ J (Pσ) for σ = ± such that

J′+ \ J+ = J′− \ J−
it holds that {J+, J−} ⊆ L if and only if {J′+, J′−} ⊆ L.

We call a pair L = L+ ] L− ⊆ J (P) of embedded sublattice cooperating if they satisfy
condition (ii) of Theorem 2.13 above. We may also rephrase condition (ii) as follows.

Lemma 2.14. Let Lσ ⊂ J (Pσ) be an embedded sublattice for σ = ±. Then L+,L− are
cooperating if and only if only if for any two filters J− ∈ L−, J+ ∈ L+ the following holds:

(a) For A ⊆ min(J+) ∩min(J−) we have J− \A ∈ L− and J+ \A ∈ L+, and
(b) for B ⊆ max(P+ \ J+) ∩max(P− \ J−) we have J− ∪B ∈ L− and J+ ∪B ∈ L+.

Proof. It follows from the definition that for sets as stated, condition (ii) implies Jσ\A, Jσ∪B ∈
Lσ for σ = ±. For the converse direction, let Jσ ⊆ J′σ such that J′σ ∈ Lσ for σ = ±. Assume
that D := J′+ \J+ = J′− \J−. Then A := min(D) ⊆ min(J′+)∩min(J′−) and by (a), J′σ \A ∈ Lσ
for σ = ± and induction on |D| yields the claim. �

Theorem 2.13 can be deduced from the description of facets in Theorem 2.7. We will give an
alternative proof using Gröbner bases in Section 5. In conjunction with Theorem 5.2, we can
read the dimension of F (L) from the cooperating pair L. In the case of order polytopes, the
canonical triangulation (see Section 4) of O(P ) yields the following.

Corollary 2.15. Let F ⊆ O(P ) be a face with corresponding embedded sublattice L ⊆ J (P ).
Then dimF = l(L)− 1 where l(L) is the length of a longest chain in L.

Let P = (P,�+,�−) be a double poset and let Cσ ⊆ J (Pσ) be a chain of filters in (P,�σ)
for σ = ±. The pair of chains C = C+ ] C− is non-interfering if min(J+) ∩min(J−) = ∅
for any J+ ∈ C+ and J− ∈ C−. For L ⊆ J (P), we denote by cl(L) the maximum over
|C| = |C+|+ |C−| where C ⊆ L is a pair of non-interfering chains.

J+0

J+3

J+2

J+1

J-2

J-1

J-0

Figure 4. A maximal non-interfering set of filters in PXW . A red or blue
curve denotes the filter consisting of all elements above the curve.

Corollary 2.16. Let P be a compatible double poset and let L ⊆ J (P) be a cooperating pair
of embedded sublattices. Then dimF (L) = cl(L)− 1.
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As a consequence of Theorem 2.12, [1J,1J′ ] ⊆ O(P ) is an edge if and only if J ⊆ J′ are filters of
P such that J′ \ J is a connected poset. Of course, this description captures all the horizontal
edges of O(P). The upcoming characterization of vertical edges follows from Theorem 2.7 but
we supply a direct proof.

Corollary 2.17. Let P be a compatible double poset and let J+ ⊆ P+ and J− ⊆ P− be filters.
Then (21J+ ,+1) and (−21J− ,−1) are the endpoints of a vertical edge of O(P) if and only if
1J+ − 1J− is a vertex of O(P) if and only if

min(J+) ∩min(J−) = ∅ and max(P+ \ J+) ∩max(P− \ J−) = ∅.

Proof. The first equivalence follows from the fact that

O(P) ∩ {(φ, t) : t = 0} = (O(P+)−O(P−))× {0}
and 1J+ − 1J− is the midpoint between (21J+ ,+1) and (−21J− ,−1).

Before we come to the second claim, let us note that the face partition of a vertex 1J for a
poset (P,�) is given by {J, P \J}. Thus, if 1J+−1J− is a vertex of O(P), then there is a linear
function `(f) =

∑
a∈P `af(a) such that O(P+)` = {1J+} and O(P−)−` = {1J−}. Corollary 2.2

then yields that `a > 0 for each a ∈ min(J+) and `a < 0 for a ∈ min(J−). The same reasoning
applies to max(P+ \ J+) and max(P− \ J−) and shows necessity.

Let b ∈ min(J+). If b 6∈ J−, then the linear function `(f) := f(b) is maximized over O(P+) at
every filter that contains b and over −O(P−) at every filter that does not contain b. If b ∈ J−,
then, by assumption, b 6∈ min(J−) and there is some p2 ∈ min(J−) with p2 ≺− b. Now, if
p2 ∈ J+, then there is p3 ∈ min(J+) with p3 ≺+ p2 and so on. Compatibility now assures us
that we get a descending alternating chain of the form

1̂ �+ b =: p1 �− p2 �+ p3 �− · · · �σ pk �−σ a �σ 0̂

where p2, p4, p6, . . . ∈ min(J−) ∩ J+ and p1, p3, p5, . . . ∈ min(J+) ∩ J− and a ∈ min(J−σ) \ Jσ.
Consider the associated linear function

`(f) = f(p0)− f(p1) + f(p2)− · · ·+ (−1)kf(pk) + (−1)k+1f(a)

for f ∈ RP . We claim that `(1J′+) ≤ 1 for each filter J′+ ⊆ P+ and with equality if b ∈ J′+.
Indeed, if p2i+1 ∈ J′+, then p2i ∈ J′+ for all i ≥ 1. Conversely, `(−1J′−) ≤ 0 = `(−1J−) for each
filter J′− ⊆ P−. This follows from the fact that p2i ∈ J′− implies p2i−1 ∈ J′− for each i ≥ 1.

For a ∈ max(P+ \ J+) the situation is similar and we search for b ∈ max(P− \ J−) with a ≺− b
in the case that a 6∈ J−. This yields a linear function ` ∈ −NP−(1J−) that is maximized
over O(P+) at filters 1J′+ with a 6∈ J′+. Summing these linear functions for b ∈ min(J+) and

a ∈ max(P+ \ J+) yields a linear function `+ with O(P+)`
+

= {1J+} and 1J− ∈ O(P−)−`
+ .

Of course, the same reasoning applies to J− instead of J+ and it follows that `+−`− is uniquely
maximized at 1J+ − 1J− over O(P) = O(P+)−O(P−). �

2.4. Polars and valuation polytopes. A real-valued valuation on a finite distributive
lattice (J ,∨,∧) is a function h : J → R such that for any a, b ∈ J ,
(6) h(a ∨ b) = h(a) + h(b)− h(a ∧ b)

and h(0̂) = 0. Geissinger [13] studied the valuation polytope

Val(J ) := {h : J → [0, 1] : h valuation}
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and conjectured that its vertices are exactly the valuations with values in {0, 1}. This was
shown by Dobbertin [7]. Not much is known about the valuation polytope and Stanley’s ‘5-
’ -Exercise [35, Ex. 4.61(h)] challenges the reader to find interesting combinatorial properties
of Val(J ). In this section, we prove a curious relation between valuation polytopes and order
polytopes.

It follows from Birkhoff’s fundamental theorem (cf. [35, Sect. 3.4]) that any finite distributive
lattice J is of the form J = J (P ), that is, it is the lattice of filters of some poset P . In
particular, for every valuation h : J (P )→ R there is a unique h0 : P → R such that

h(J) =
∑
a∈J

h0(a),

for every filter J ⊆ P . Hence, Val(J ) is linearly isomorphic to the |P |-dimensional polytope

Val0(P ) := {h0 : P → R : 0 ≤ h(J) ≤ 1 for all filters J ⊆ P}.

We denote by
S4 = {` ∈ (Rn)∗ : `(s) ≤ 1 for all s ∈ S}

the polar of a set S ⊂ Rd. For a polytope P ⊂ Rd we write tprism(P) := P � P ⊂ Rd+1 for
the twisted prism of P.

Theorem 2.18. For any finite poset P

O(P◦)
4 = O(P,�,�)4 = tprism(−Val0(P )).

Proof. For a chain C = {a0 ≺ a1 ≺ · · · ≺ ak} in P , we define

`′C(f) :=
k∑
i=0

(−1)k−if(ai)

and L′C(f, t) := `′C(f)− t. It follows from Corollary 2.8 and Corollary 2.9 that

O(P◦)
4 = conv(±L′C(f, t) : C ⊆ P chain).

It is shown in Dobbertin [7, Theorem B] that

Val0(P ) = conv
(
`′C : C ⊆ P chain

)
,

from which the claim follows. �

As a direct consequence, we note the following.

Corollary 2.19. Let P be a finite poset. Then tprism(Val(P )) is 2-level.

Proof. Since O(P◦) is centrally-symmetric and, by Corollary 2.9, 2-level, it follows that every
vertex of O(P◦) takes the values +1 or −1 on every facet-defining linear function. The vertices
correspond to facet normals under polarity, which shows that O(P◦)

4 is 2-level. Theorem 2.18
now yields the claim. �

We can make the connection to valuations more transparent by considering valuations with
values in [−1, 1]. Let Val±(J (P )) denote the corresponding polytope, then

(7) Val±0 (P ) = {h0 : P → R : −1 ≤ h(J) ≤ 1 for all filters J ⊆ P} = (O(P ) ∪ −O(P ))4.
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Now, the convex hull of O(P ) ∪ −O(P ) is exactly the image of O(P◦) under the projection
π : RP × R→ RP with π(f, t) = 1

2f . Hence,

Val±0 (P ) ∼= π(O(P◦))
4 ∼= O(P◦)

4 ∩ im(π∗) ∼= tprism(−2Val0(P )) ∩ (RP × {0}),
by Theorem 2.18. If we now view tprism(−Val0(P )) as a Cayley sum, we obtain

Corollary 2.20. For any poset P

Val±0 (P ) = Val0(P )−Val0(P ).

A polytope P with vertices in a lattice Λ ⊂ Rn is reflexive if P4 is a lattice polytope with
respect to the dual lattice Λ∨ := {` ∈ (Rn)∗ : `(x) ∈ Z for all x ∈ Λ}. For two polytopes
P,Q ⊂ Rn, write Γ(P,Q) := conv(P ∪ −Q). Thus, Γ(P,Q) is the projection of P �Q onto
the first n coordinates. The polytopes Γ(O(P ),O(P )) where studied by Hibi, Matsuda, and
Tsuchiya [22, 21] in the context of Gorenstein polytopes, i.e. lattice polytopes P such that
rP is reflexive for some r ∈ Z>0. By taking polars, we obtain the following from (7) and
Corollary 2.20.

Corollary 2.21. For any poset P ,

Γ(O(P ),O(P )) = (Val0(P )−Val0(P ))4.

In particular, Γ(O(P ),O(P )) is reflexive.

An explicit description of the face lattices of Val(P ), Val±(P ) as well as Γ(O(P ),O(P )) can
be obtained from Theorem 2.13.

This theorem also yields information about the polars of O(P,�+,�−) for compatible double
posets. For a poset that is not compatible, the next result shows that the origin is not contained
in the interior of O(P) and hence the polar is not bounded.

Proposition 2.22. Let P be a double poset. Then O(P) contains the origin in its interior if
and only if P is compatible.

Proof. If P is compatible, then Corollary 2.8 shows that 0 strictly satisfies all facet-defining
inequalities. If P is not compatible, then it contains an alternating cycle C. It follows easily
that `C ≤ 0 on O(P+) and −O(P−) and hence O(P) is contained in the negative halfspace of
H = {(f, t) : `C(f) ≤ 0}. Moreover, 0 ∈ H ∩ O(P), which shows that 0 6∈ relintO(P). �

3. Anti-blocking polytopes

3.1. Anti-blocking polytopes and Minkowski sums. A polytope P ⊂ Rn≥0 is called anti-
blocking if

(8) q ∈ P and 0 ≤ p ≤ q =⇒ p ∈ P,
where p ≤ q refers to componentwise order in Rn. The notion of anti-blocking polyhedra was
introduced by Fulkerson [12] in connection with min-max-relations in combinatorial optimiza-
tion; our main reference for anti-blocking polytopes is Schrijver [31, Sect. 9.3]. In this section,
we consider the Cayley sums

P �Q = conv(P × {1} ∪ (−Q)× {−1}),
where P and Q are anti-blocking polytopes. As before, we write tprism(P) for P � P. Our
main source of examples will be the class of stable set polytopes: For a graph G = (V,E),
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a stable set is a subset S ⊆ V such that
(
S
2

)
∩ E = ∅. For simplicity, we will assume that

V = [n] and we write 1S ∈ {0, 1}n for the characteristic vector of a stable set S. The stable
set polytope of G is the anti-blocking polytope

PG := conv(1S : S ⊆ V stable set) ⊆ Rn.
The class of perfect graphs is particularly interesting in this respect. Lovász [27] characterized
perfect graphs in terms of their stable set polytopes and we use his characterization as a
definition of perfect graphs. A clique of a graph G = (V,E) is a subset C ⊆ V such that(
C
2

)
⊆ E. For a vector x ∈ Rn and a subset J ⊆ [n], we write x(J) =

∑
j∈J xj .

Theorem 3.1 ([27]). A graph G = ([n], E) is perfect if and only if

PG = {x ∈ Rn : x ≥ 0, x(C) ≤ 1 for all cliques C ⊆ [n]}.

In this language, we can express the chain polytope of a poset P as a stable set polytope: The
comparability graph G(P ) of a poset (P,�) is the undirected graph with vertex set P and
edge set {xy : x ≺ y or y ≺ x}. Note that cliques in G(P ) are exactly the chains of P . For a
poset P = ([n],�) the comparability graph G(P ) is perfect and hence

C(P ) = {x ∈ Rn : x ≥ 0, x(C) ≤ 1 for all chains C ⊆ [n]} = PG(P ).

If P ⊂ Rn is an anti-blocking polytope, then there are c1, . . . , cr ∈ Rn≥0 such that

(9) P = {c1, . . . , cr}↓ := Rn≥0 ∩ (conv(c1, . . . , cr)− Rn≥0).

The unique minimal such set, denoted by V ↓(P ), is given by the minimal elements of the vertex
set of P with respect to the partial order ≤. It also follows from (8) and the Minkowski–Weyl
theorem that there is a minimal collection d1, . . . ,ds ∈ Rn≥0 such that

P = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for all i = 1, . . . , s}

For a polytope Q ⊆ Rn≥0, its associated anti-blocking polytope is the set

A(Q) := {d ∈ Rn≥0 : 〈d,x〉 ≤ 1 for all x ∈ Q}.
The following is the structure theorem for anti-blocking polytopes akin to the bipolar theorem
for convex bodies.

Theorem 3.2 ([31, Thm. 9.4]). Let P ⊂ Rn be a full-dimensional anti-blocking polytope with

P = {c1, . . . , cr}↓ = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for all i = 1, . . . , s}

for some c1, . . . , cr,d1, . . . ,ds ∈ Rn≥0. Then

A(P) = {d1, . . . ,ds}↓ = {x ∈ Rn : x ≥ 0, 〈ci,x〉 ≤ 1 for all i = 1, . . . , r}.
In particular, A(A(P)) = P.

Before we come to our first result regarding Cayley- and Minkowski-sums of anti-blocking
polytopes, we note the following fact. We write V (P) for the vertex set of a polytope P.

Proposition 3.3. Let P1,P2 be two full-dimensional anti-blocking polytopes. Then the vertices
of conv(P1 ∪ −P2) are exactly (V (P1) ∪ V (−P2)) \ {0}.

For a polytope P ⊂ Rn and a vector c ∈ Rn, we denote by Pc the face of P that maximizes
the linear function x 7→ 〈c,x〉.
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Proof. It suffices to show that every v ∈ V (P1)\{0} is a vertex of conv(P1∪−P2). Let c ∈ Rn
such that Pc

1 = {v}. Since v 6= 0, there is some d ∈ Rn≥0 such that 〈d,u1〉 ≤ 1 for all u1 ∈ P1
and 〈d,v〉 = 1. Hence, for any µ ≥ 0, Pc+µd

1 = {v}. Now, 〈d,−u2〉 ≤ 0 for all u2 ∈ P2. In
particular, for µ > 0 sufficiently large,

〈c + µd,u2〉 ≤ 〈c,u2〉 < µ+ 〈c,v〉 = 〈c + µd,v〉,
which shows that v uniquely maximizes 〈c + µd,u〉 over conv(P1 ∪ −P2). �

For d ∈ Rn≥0 and I ⊆ [n], we write d[I] for the vector with

(d[I])j =

{
dj for j ∈ I
0 otherwise.

Theorem 3.4. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then

(P1 − P2)4 = conv(A(P1) ∪ −A(P2)).
Moreover,

(2P1 � 2P2)4 = −A(P2) �−A(P1).

Proof. Let us denote the right-hand side of the first equation by Q. Note that 〈u1,−v2〉 ≤ 0
for u1 ∈ A(P1) and v2 ∈ P2. This shows that 〈u1,v〉 ≤ 1 for all v ∈ P1 − P2. By symmetry,
this yields Q ⊆ (P1 − P2)4.

For the converse, observe that every vertex of Q is of the form d[I] with d ∈ V ↓(A(P1)) ∪
−V ↓(A(P2)). It follows that z ∈ Q4 if and only if 〈d[I], z〉 ≤ 1 for all d ∈ V ↓(A(P1)) ∪
−V ↓(A(P2)) and all I ⊆ [n]. For z ∈ Q4 write z = z1 − z2 with z1, z2 ≥ 0 and supp(z1) ∩
supp(z2) = ∅, where for any z = (z1, . . . , zn) ∈ Rn we set supp(z) := {i : zi 6= 0}. We claim
that zi ∈ Pi for i = 1, 2. Indeed, let I = supp(z1). Then for any d ∈ V ↓(P1) we have

〈d, z1〉 = 〈d[I], z〉 ≤ 1

and hence z1 ∈ P1. Applying the same argument to z2 shows that z ∈ P1 − P2 and hence
(P1 − P2)4 ⊆ Q.
For the second claim, note that any linear function on Rn×R that maximizes on a vertical facet
of 2P1 � 2P2 is of the form αd〈d,x〉+δdt for d a vertex of (P1−P2)4 and some αd, δd ∈ R with
αd > 0. By the first claim and Proposition 3.3, it follows that d ∈ (V (A(P1))∪V (−A(P2))) \
{0}.
If d ∈ V (A(P1)) \ {0}, then 〈d,u1〉 ≤ 1 is tight for u1 ∈ P1 whereas 〈d,−u2〉 ≤ 0 is tight for
−u2 ∈ −P2. Hence,

〈d,x〉 − t ≤ 1

is the corresponding facet-defining halfspace. Similarly, if −d ∈ −V (A(P1)) \ {0}, then
〈−d, x〉+ t ≤ 1

is facet-defining. Together with the two horizontal facets 〈0,x〉±t ≤ 1 this yields an inequality
description of (−A(P2) �−A(P1))4, which proves the second claim. �

Theorem 3.4 together with Theorem 3.2 has a nice implication that was used in [30] in con-
nection with Hansen polytopes.

Corollary 3.5. For any full-dimensional anti-blocking polytope P ⊂ Rn, the polytope P �A(P)
is linearly isomorphic to its polar (P �A(P))4. In particular, P �A(P) is self-dual.
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3.2. Stable set polytopes of double graphs and double chain polytopes. A double
graph is a triple G = (V,E+, E−) consisting of a node set V with two sets of edges E+, E− ⊆(
V
2

)
. Again, we write G+ = (V,E+) and G− = (V,E−) to denote the two underlying ordinary

graphs. The results of the preceding sections prompt the definition of stable set polytope
of a double graph

PG := 2PG+ � 2PG− .
For a double graphG, define the complement graph asG = (V,Ec−, E

c
+). Then Theorem 3.4

implies the following relation.

Corollary 3.6. Let G be a perfect double graph. Then P4G is linearly isomorphic to PG.

Proof. We have

P4G = (2PG+ � 2PG−)4 = −A(PG−) �−A(PG+) = −PG− �−PG+

∼= PG. �

In particular, a double poset P = (P,�±) gives rise to a double graphG(P) = (G(P+), G(P−))
and the double chain polytope of P is simply C(P) = PG(P), the double chain polytope
of P. Theorem 3.4 directly gives a facet description of the double chain polytope. Note that
compatibility is not required.

Theorem 3.7. Let P be a double poset and C(P) its double chain polytope. Then (g, t) ∈
RP × R is contained in C(P) if and only if∑

a∈C+

g(a)− t ≤ 1 and
∑
a∈C−

−g(a) + t ≤ 1,

where C+ ⊆ P+ and C− ⊆ P− ranges of all chains.

For the usual order- and chain polytope, Hibi and Li [20] showed that O(P ) has at most as
many facets as C(P ) and equality holds if and only if P does not contain the 5-element poset
with Hasse diagram ’X’. This is different in the case of double poset polytopes.

Corollary 3.8. Let (P,�) be a poset. Then O(P◦) and C(P◦) have the same number of facets.

Proof. Alternating chains in P◦ are in bijection to twice the number of chains in P . �

However, it is not true that O(P◦) is always combinatorially isomorphic to C(P◦).

Example 5. Let P be the 5-element poset with Hasse diagram ’X’. Then the face vectors of
O(P◦) and C(P◦) are

f(O(P◦)) = (16, 88, 204, 240, 144, 36)

f(C(P◦)) = (16, 88, 222, 276, 162, 36).

Hibi and Li [20] conjectured that f(O(P )) ≤ f(C(P )) componentwise. Computations suggest
that the same relation should hold for the double poset polytopes of induced double posets.

Conjecture 1. Let P = (P,�,�) be a double poset induced by a poset (P,�). Then

fi(O(P)) ≤ fi(C(P))

for 0 ≤ i ≤ |P |.

An extension of the conjecture to general compatible double posets fails, as the following
example shows.
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Example 6. Let An be an alternating chain of length n, that is, P is a double poset on
elements a1, a2, . . . , an+1 with cover relations

a1 ≺+ a2 ≺− a3 ≺+ · · ·
It follows from Theorem 3.7 that the number of facets of C(An) is 3n + 4. Since An is com-
patible, then by Theorem 2.7 the number of facets of O(An) equals the number of alternating
chains which is easily computed to be

(
n+3
2

)
+ 1. Thus, for n ≥ 3, the alternating chains An

fail Conjecture 1 for the number of facets. For n = 3, we explicitly compute

f(O(A3)) = (21, 70, 95, 60, 16) and
f(C(A3)) = (21, 67, 86, 51, 13).

Every graph G = (V,E) trivially gives rise to a double graph G◦ = (V,E,E). Thus, the
Hansen polytope of a graph G is the polytope H(G) = PG◦ . Theorem 3.4 then yields
a strengthening of the main result of Hansen [17]. Note that for the complement graph
G = (V,Ec), it follows that a subset S ⊆ V is a stable set of G if and only if S is a clique of
G and vice versa.

Corollary 3.9 ([17, Thm. 4(c)]). Let G be a perfect graph. Then H(G) is 2-level and H(G)4

is affinely isomorphic to H(G).

Proof. By Theorem 3.4 and Theorem 3.1

H(G)4 = −A(PG) �−A(PG) = −PG �−PG ∼= H(G),

which proves the second claim. A vertex of H(G)4 is of the form d = ±(−1C , 1) for some
clique C of G. Thus, for any vertex v = ±(21S , 1) ∈ H(G), where S is a stable set of G, we
compute 〈d,v〉 = ±(1− 2|S ∩ C|) = ±1. �

Example 7 (Double chain polytopes of dimension-two posets). Following Example 3, let
π+, π− ∈ Zn be two integer sequences with associated posets Pπ+ and Pπ− of order dimension
two. Consider the double posets P = (Pπ+ , Pπ−) and −P = (P−π− , P−π+). We have

G(P) = (G(Pπ−), G(Pπ+)) = (G(P−π−), G(P−π+)) = G(−P)

and hence
C(P)4 ∼= C(−P)

by Corollary 3.6. However, it is not necessarily true that O(P)4 ∼= O(−P), as can be checked
for the double poset induced by the X-poset; cf. Example 5.

Example 8 (Double chain polytopes of plane posets). Let P be a plane double poset. By the
last example, the double chain polytope C(P) is linearly equivalent to its polar C(P)4.

Among the 2-level polytopes, independence polytopes of perfect graphs play a distinguished
role. The following observation, due to Samuel Fiorini (personal communication), characterizes
2-level anti-blocking polytopes.

Proposition 3.10. Let P be a full-dimensional anti-blocking polytope. Then P is 2-level if
and only if P is linearly isomorphic to PG for some perfect graph G.

Proof. The origin is a vertex of P and, since P is full-dimensional and anti-blocking, its
neighbors are α1e1, . . . , α1en are for some αi > 0. After a linear transformation, we can assume
that α1 = · · · = αn = 1. Since P is 2-level, P = {x ∈ Rn≥0 : 〈di,x〉 ≤ 1 for i = 1, . . . , s} where
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di ∈ {0, 1}n for all i = 1, . . . , s. Let G = ([n], E) be the minimal graph with cliques supp(di)

for all i = 1, . . . , s. That is, E =
⋃
i

(
supp(di)

2

)
. We have PG ⊆ P. Conversely, any vertex of P

is of the form 1S for some S ⊆ [n] and 〈di,1S〉 = | supp(di)∩ S| ≤ 1 shows that P ⊆ PG. �

This implies a characterization of the 2-level polytopes among Cayley sums of anti-blocking
polytopes.

Corollary 3.11. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then P =
P1 � P2 is 2-level if and only if P is affinely isomorphic to H(G) for some perfect graph G.

Proof. Sufficiency is Hansen’s result (Corollary 3.9). For necessity, observe that P1 and P2
are faces and hence have to be 2-level. By the proof of Proposition 3.10, we may assume that
P1 = PG1 for some perfect graph G1 and P2 = APG2 for some perfect G2 and a diagonal
matrix A ∈ Rn×n with diagonal entries ai > 0 for i ∈ [n]. We will proceed in two steps: We
first prove that A must be the identity matrix and then show that G1 = G2.

For every i ∈ [n] the inequality xi ≥ 0 is facet-defining for P1. Hence it induces a facet-defining
inequality for P, which must be of the form

`i := −bixi + t ≤ 1

for some bi > 0, where t denotes the last coordinate in Rn+1. Observe that `i takes the
values 1 and 1− bi on the vertices {0, ei} × {1} of the face P1 × {1}. On the other hand, on
{0,−aiei} × {−1} ⊂ −P2 × {−1}, the values are −1 and −1 + aibi. Now 2-levelness implies
ai = 1 and bi = 2.

It now follows from Theorem 3.4 that the facet-defining inequalities for P are

21C1(x)− t ≤ 1 and
−21C2(x) + t ≤ 1,

where C1 and C2 are cliques in G1 and G2, respectively. By 2-levelness each of these linear
functions takes the values −1 and 1 on the vertices of P . This easily implies that every clique
in G1 must be a clique in G2 and conversely. Hence G1 = G2. �

3.3. Canonical Subdivisions. We now turn to the canonical subdivisions of P1 − P2 and
P1 � P2 for anti-blocking polytopes P1,P2. A subdivision of P = P1 − P2 is a collection
of polytopes Q1, . . . ,Qm ⊆ P each of dimension dimP such that P = Q1 ∪ · · · ∪ Qm and
Qi ∩ Qj is a face of both for all i 6= j. We call the subdivision mixed if each Qi is of the
form Qi1 −Qi2 where Qij is a vertex-induced subpolytope of Pj for j = 1, 2. Finally, a mixed
subdivision is exact if dimQi = dimQi1 + dimQi2. That is, Qi is linearly isomorphic to the
Cartesian product Qi1 × Qi2. For a full-dimensional anti-blocking polytope P ⊂ Rn, every
index set J ⊆ [n] defines a distinct face P|J := {x ∈ P : xj = 0 for j 6∈ J}. This is an
anti-blocking polytope of dimension |J |. For disjoint I, J ⊆ [n], the polytopes P1|I ,P2|J lie in
orthogonal subspaces and P1|I −P2|J is in fact a Cartesian product. In this case, the Cayley
sum P1|I � P2|J is called a join and denoted by P1|I ∗ P2|J . As with the Cartesian product,
the combinatorics of P1|I ∗ P2|J is completely determined by the combinatorics of P1|I and
P2|J .

Lemma 3.12. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then P1−P2 has
a regular exact mixed subdivision with cells P1|J−P2|Jc for all J ⊆ [n]. In particular, P1 � P2
has a regular subdivision into joins P1|J ∗ P2|Jc for all J ⊆ [n].
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We call the subdivisions of Lemma 3.12 the canonical subdivisions of P1−P2 and P1 � P2,
respectively.

Proof. By the Cayley trick [6, Thm 9.2.18], it is suffices to prove only the first claim. The
subdivision of P1−P2 is very easy to describe: Let us first note that the polytopes P1|J−P2|Jc
for J ⊆ [n] only meet in faces. Hence, we only need to verify that they cover P1 − P2. It
suffices to show that for any point x ∈ P1 − P2 with xi 6= 0 for all i, there is a J ⊆ [n] with
x ∈ P1|J − P2|Jc . Let x1,x2 ∈ Rn≥0 with x = x1 − x2 and supp(x1) ∩ supp(x2) = ∅. We
claim that xi ∈ Pi for i = 1, 2. Indeed, if x = y1 − y2 for some yi ∈ Pi, then 0 ≤ xi ≤ yi and
xi ∈ Pi by (8). In particular, x1 ∈ P1|J and x2 ∈ P2|Jc and therefore x ∈ P1|J − P2|Jc .
To show regularity, let ω : Rn×Rn → R be the linear function such that ω(ei, 0) = −ω(0, ej) =
1 for all i, j = 1, . . . , n. Then ω induces a mixed subdivision by picking for every point
x ∈ P1 − P2, the unique cell F1 − F2 such that x = x1 − x2 with xi ∈ relintFi and (x1,x2)
minimizes ω over the set

{(y1,y2) ∈ P1 × P2 : x = y1 − y2};
see Section 9.2.2 of de Loera et al. [6] for more details. If ω is not generic, one has to be careful
as the minimizer is not necessarily unique but in our case, we observe that for any yi ∈ Pi
with x = y1−y2 we have ω(y1,y2) > ω(x1,x2) for all (yi,y2) 6= (x1,x2) with (x1,x2) defined
above. �

Figure 5. The canonical subdivision of P1−P2 for two (random) anti-blocking
polytopes P1,P2 ⊂ R3

≥0.

We define a triangulation of a polytope to be a subdivision into simplices without new
vertices. For a polytope with vertices in an affine lattice A, a triangulation is unimodular
if each simplex is unimodular or, equivalently, has normalized volume = 1. A triangulation
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is flag if any minimal non-face is of dimension 1. This property implies that the underlying
simplicial complex is completely determined by its graph.

Theorem 3.13. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes with subdivisions
S1 and S2, respectively. For J ⊆ [n], let Si|J := {S ∩ Pi|J : S ∈ Si} be the restriction of Si to
Pi|J for i = 1, 2. Then

S :=
⋃
J⊆[n]

S1|J ∗ S2|Jc

is a subdivision of P1 � P2. In particular,

(i) If S1 and S2 are regular, then S is regular.
(ii) If S1 and S2 are unimodular triangulations with respect to Λ, then S is a unimodular

triangulation with respect to the affine lattice Λ× (2Z + 1).
(iii) If S1 and S2 are flag, then S is flag.

Note that (iii) also holds if the triangulations use more lattice points than just the vertices.

Proof. For the first claim, observe that Si|J is a subdivision of the face Pi|J . By [6, Thm 4.2.7],
S1|J ∗S2|Jc is a subdivision of P1|J ∗P2|Jc . Hence, S is a refinement of the canonical subdivision
of Lemma 3.12.

If Si is a regular subdivision of Pi, then there are weights ωi : V (Pi) → R for i = 1, 2. By
adding a constant weight to every vertex if necessary, we can assume that ω1(v1) > 0 and
ω2(v2) < 0 for all v1 ∈ V (P1) and v2 ∈ V (P2). Again using the Cayley trick, it is easily seen
that ω : V (P1 � P2)→ R given by ω(v1,+1) := ω1(v1) and ω(v2,−1) := ω2(v2) induces S.
Claim (ii) simply follows from the fact that the join of two unimodular simplices is unimodular.

For claim (iii), let σ = σ1 ] σ2 ⊆ V (P1 � P2) be a minimal non-face. Since S1 and S2 are
flag, it follows that σ1 ∈ S1 and σ2 ∈ S2. Thus, there vertices vi ∈ σi for i = 1, 2 such that
supp(v1)∩ supp(v2) 6= ∅ but σ \{vi} is a face for i = 1 and i = 2. But then {v1, v2} is already
a non-face and the claim follows. �

The theorem has some immediate consequences.

Corollary 3.14. Let P1,P2 ⊂ Rn be two full-dimensional anti-blocking polytopes with vertices
in a given lattice. If P1,P2 have unimodular triangulations, then P1 − P2 and Γ(P1,P2) =
conv(P1 ∪ −P2) also have unimodular triangulations.

Proof. By Theorem 3.13 and the Cayley trick, P1−P2 has a mixed subdivision into Cartesian
products of unimodular simplices. Products of unimodular simplices are 2-level and, for exam-
ple by [37, Thm. 2.4], have unimodular triangulations. The polytope conv(P1 ∪−P2) inherits
a triangulation from the upper or lower hull of P1 � P2, which has a unimodular triangulation
by Theorem 3.13. �

Corollary 3.15. Let G be a perfect double graph. Then PG, PG+ − PG−, and Γ(PG+ ,PG−)
have regular unimodular triangulations.

Proof. By Theorem 3.1, both polytopes PG+ and PG− are 2-level and by [37, Thm. 2.4] have
unimodular triangulations. The result now follows from the previous corollary. �
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3.4. Lattice points and volume. Lemma 3.12 directly implies a formula for the (normal-
ized) volume of P1 � P2 in terms of the volumes of the anti-blocking polytopes P1,P2.

Corollary 3.16. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then

vol(P1 − P2) =
∑
J⊆[n]

vol(P1|J) vol(P2|Jc).

If P1 and P2 have unimodular triangulations with respect to a lattice Λ, then the normalized
volume of P1 � P2 with respect to the affine lattice Λ× (2Z + 1) is

Vol(P1 � P2) =
∑
J⊆[n]

Vol(P1|J) Vol(P2|Jc).

Proof. Both claims follow from Lemma 3.12. For the second statement, note that Theorem 3.13
yields that P1 � P2 has a unimodular triangulation and hence its normalized volume is the
number of simplices of maximal dimension, which is the number in the right-hand side. �

If P1,P2 ⊂ Rn are rational anti-blocking polytopes, then so are 2P1 � 2P2 and P1 −P2. Our
next goal is to determine their Ehrhart quasi-polynomials for a particular interesting case.
We briefly recall the basics of Ehrhart theory; for more see, for example, [2, 3]. If P ⊂ Rn
is a d-dimensional polytope with rational vertex coordinates, then the function EhrP(k) :=
|kP ∩ Zn| agrees with a quasi-polynomial of degree d. We will identify EhrP(k) with this
quasi-polynomial, called the Ehrhart quasi-polynomial. If P has its vertices in Zn, then
EhrP(k) is a polynomial of degree d. If P is full-dimensional, then the leading coefficient of
EhrP(k) is vol(P). We will need the following fundamental result of Ehrhart theory.

Theorem 3.17 (Ehrhart–Macdonald theorem). Let P ⊂ Rn be a rational polytope of dimen-
sion d, then

(−1)dEhrP(−k) = | relint(kP) ∩ Zn|.

We call an anti-blocking polytope P ⊂ Rn dual integral if A(P) has all vertices in Zn. By
Theorem 3.2, this means that there are d1, . . . ,ds ∈ Zn≥0 such that

P = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for i = 1, . . . , s}.

Corollary 3.18. Let P1,P2 ⊂ Rn be two full-dimensional rational anti-blocking polytopes. If
P1 is dual integral, then

EhrP1−P2(k) =
∑
J⊆[n]

(−1)|J |EhrP1|J (−k − 1)EhrP2|Jc (k).

The Corollary is simply deduced from Theorem 3.17 and the following stronger assertion. For
a set S ⊂ Rn, let us write E(S) := |S ∩ Zn|.

Theorem 3.19. Let P1,P2 ⊂ Rn be two full-dimensional rational anti-blocking polytopes and
assume that P1 is dual integral. For any a, b ∈ Z>0

E(aP1 − bP2) = |(aP1 − bP2) ∩ Zn| =
∑
J⊆[n]

E(relint((a+ 1)P1)) · E(bP2).

Proof. It follows from Lemma 3.12 that for any a, b ∈ Z>0,

aP1 − bP2 =
⋃
J⊆[n]

(aP1|J − bP2|Jc).
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For J ⊆ [n], the cell aP1|J − bP2|Jc is contained in the orthant RJ≥0 × RJc≤0. It is easy to see
that

Zn =
⊎
J⊆[n]

ZJ>0 × ZJ
c

≤0

is a partition and for each J ⊆ [n]

(aP1−bP2)∩(ZJ>0×ZJ
c

≤0) = (aP1|J−bP2|Jc)∩(ZJ>0×ZJ
c

≤0) = (aP1|J ∩ZJ>0)−(bP2|Jc∩ZJ
c
).

If P1 is dual integral, then P1|J is dual integral. Thus, for a fixed J , there are d1, . . . ,ds ∈ ZJ≥0
such that

(aP1|J ∩ ZJ>0) = {x ∈ ZJ : x > 0, 〈di,x〉 ≤ a}
= {x ∈ ZJ : x > 0, 〈di,x〉 < a+ 1} = relint((a+ 1)P1|J) ∩ ZJ .

This proves the result. �

Clearly, it would be desirable to apply Corollary 3.18 to the case that P1 is a lattice polytope
as well as dual integral.

Proposition 3.20. Let P ⊂ Rn be a full-dimensional dual-integral anti-blocking polytope with
vertices in Zn. Then P = PG for some perfect graph G.

Proof. Let P be given by

P = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for i = 1, . . . , s}

for some d1, . . . ,ds ∈ Zn≥0. Since P is full-dimensional and a lattice polytope, it follows that
e1, . . . , en ∈ P and for any 1 ≤ j ≤ s we compute

0 ≤ 〈dj , ei〉 ≤ 1

for all i and since the dj are integer vectors, it follows that dj = 1Cj for some Cj ⊂ [n].
Consequently, the vertices of P are in {0, 1}n and P is 2-level. By Proposition 3.10, P = PG
for some perfect graph G. �

This severely limits the applicability of Corollary 3.18 to lattice anti-blocking polytopes. On
the other hand, we do not know of many results regarding the Ehrhart polynomials or even
volumes of stable set polytopes of perfect graphs; see also the next section.

Theorem 3.21. Let P1,P2 ⊂ Rn be two full-dimensional rational anti-blocking polytopes such
that P1 is dual integral. Then for P := 2P1 � 2P2

EhrP(k) = |kP ∩ Zn+1| =
∑
J⊆[n]

(−1)|J |
k∑

s=−k
EhrP1|J (s− k − 1) · EhrP2|Jc (k + s).

Proof. For k > 0,
kP = conv(2kP1 × {k} ∪ −2kP2 × {−k}).

In particular, if (p, t) is a lattice point in kP, then −k ≤ t ≤ k. For fixed t,

{p ∈ Zn : (p, t) ∈ kP} = ((k − t)P1 − (k + t)P2) ∩ Zn.

Theorems 3.19 and 3.17 then complete the proof. �
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4. Triangulations and transfers

If P = P◦ = (P,�,�) is induced by a single poset, then Corollaries 2.9 and 3.11 assure us that
O(P◦) and C(P◦) are 2-level and [37, Thm. 2.4] implies that both polytopes have unimodular
triangulations with respect to the affine lattice A = 2ZP × (2Z + 1). In this section we
give explicit triangulations of the double chain polytope C(P) and, in the compatible case,
of the double order polytope O(P). These triangulations will be regular, unimodular, and
flag. To that end, we will generalize Stanley’s approach [34] from poset polytopes to double
poset polytopes. We put the triangulation to good use and explicitly compute the Ehrhart
polynomial and the volume of C(P) and, in case that P is compatible, of O(P).

4.1. Triangulations of double poset polytopes. Recall from the introduction that for a
poset (P,�), the order polytope O(P ) parametrizes all order preserving maps f : P → [0, 1].
Any f ∈ O(P ) induces a partial order Pf = (P,�f ) by a ≺f b if a ≺ b or, when a, b are
incomparable, if f(a) < f(b). Clearly, �f refines � and hence O(Pf ) ⊆ O(P ). Since filters
in Pf are filters in P , O(Pf ) is a vertex-induced subpolytope of O(P ). If f is generic, that
is, f(a) 6= f(b) for all a 6= b, then �f is a total order and O(Pf ) is a unimodular simplex of
dimension |P |. Stanley showed that the collection of all these simplices constitute a unimodular
triangulation of O(P ). More precisely, this canonical triangulation of O(P ) is given by the
order complex ∆(J (P )) of J (P ), i.e., the collection of chains in the Birkhoff lattice of P
ordered by inclusion. Since a collection of filters J0, . . . , Jk is not a chain if and only if Ji 6⊆ Jj
and Jj 6⊆ Ji for some 0 ≤ i, j ≤ k, the canonical triangulation is flag.

Stanley [34] elegantly transferred the canonical triangulation of O(P ) to C(P ) in the following
sense. Define the transfer map φP : O(P )→ C(P ) by

(10) (φP f)(b) := min{f(b)− f(a) : a ≺ b},
for f ∈ O(P ) and b ∈ P . This is a piecewise linear map and the domains of linearity are
exactly the full-dimensional simplices O(Pf ) for generic f . In particular, φP (1J) = 1min(J)

for any filter J ⊆ P , which shows that φP maps O(P ) into C(P ). To show that φP is a PL
homeomorphism of the two polytopes, Stanley gives an explicit inverse ψP : C(P )→ O(P ) by

(11) (ψP g)(b) := max{g(a0) + · · ·+ g(ak−1) + g(ak) : a0 ≺ · · · ≺ ak−1 ≺ ak � b},
for any g ∈ C(P ). Note that our definition of ψP differs from that in [34] in that we do not
require that the chain has to end in b. This will be important later. It can be easily checked
that ψP is an inverse to φP . Hence, the simplices

conv(1min(J0), . . . ,1min(Jk)) for {J0 ⊆ · · · ⊆ Jk} ∈ ∆(J (P ))

constitute a flag triangulation of C(P ).

We will follow the same approach as Stanley but, curiously, it will be simpler to start with
a triangulation of C(P). Recall from Section 2.3 that a pair of chains C = C+ ] C− with
Cσ ⊆ J (Pσ) is non-interfering if min(J+) ∩min(J−) = ∅ for any Jσ ∈ Cσ for σ = ±.

Corollary 4.1. Let P = (P,�+,�−) be a double poset. Then a regular triangulation of C(P)
is given as follows: The (k− 1)-dimensional simplices are in bijection to non-interfering pairs
of chains C = C+ ] C+ ⊆ J (P) with |C| = |C+| + |C−| = k. Moreover, the triangulation is
regular, unimodular (with respect to A), and flag.

Proof. The canonical triangulation of C(Pσ) is regular, unimodular, and flag for σ = ±. As
described above, its (lσ−1)-simplices are in bijection to chains Cσ ⊆ J (Pσ) of length |Cσ| = lσ.
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More precisely, the simplex corresponding to Cσ is given by

F (Cσ) = conv(1min(Jσ) : Jσ ∈ Cσ).

By Theorem 3.13 applied to C(P) = 2C(P+) � 2C(P−), it follows that a unimodular and flag
triangulation is given by the joins 2F (C+) ∗ 2F (C−) for all chains Cσ ⊆ J (Pσ) such that
F (C+) and F (C−) lie in complementary coordinate subspaces. This, however, is exactly the
case when min(J+) ∩min(J−) = ∅ for all Jσ ∈ Cσ for σ = ±. �

Corollary 4.1 gives a canonical triangulation that combinatorially can be described as a sub-
complex of ∆(J (P)) = ∆(J (P+)) ∗∆(J (P−)), called the non-interfering complex

∆ni(P) := {C : C = C+ ] C− ∈ ∆(J (P)), C non-interfering}.
Associating ∆(J (P )) to a poset P is very natural and can be motivated, for example, from
an algebraic-combinatorial approach to the order polynomial (cf. [3]). It would be very inter-
esting to know if the association P to ∆ni(P) is equally natural from a purely combinatorial
perspective.

Given a double poset P = (P,�+,�−), we define a piecewise linear map ΨP : RP → RP by

(12) ΨP(g) := ψP+(g) − ψP−(−g),

for any g ∈ RP . Here, we use that ψ, as given in (11), is defined on all of RP with the following
important property: For g ∈ RP , let us write g = g+ − g−, where g+, g− ∈ RP≥0 with disjoint
supports. Then ψPσ(g) = ψPσ(g+) for σ = ±. Thus,

ΨP(g) = ψP+(g+)− ψP−(g−),

for any g ∈ RP . In particular, ΨP takes λC(P+) − µC(P−) into λO(P+) − µO(P−) for any
λ, µ ≥ 0. Indeed, for any pair of antichains Aσ ⊆ Pσ, first observe that 1A+ − 1A− =
1A+\A− − 1A−\A+

. Hence, it suffices to assume that A+ ∩A− = ∅. We compute

ΨP(1A+ − 1A−) = 1J+ − 1J− ,

where for σ = ±, Jσ ⊆ Pσ is the filter generated by Aσ. If P is a compatible double poset,
then Corollary 2.17 implies that ΨP is a surjection on vertex sets.

Lemma 4.2. Let P = (P,�+,�−) be a compatible double poset. Then ΨP : RP → RP is a
lattice-preserving piecewise linear isomorphism.

Proof. It follows directly from (12) that ΨP is piecewise linear. To show that ΨP is an
isomorphism, we explicitly construct for f ∈ RP a g ∈ RP such that ΨP(g) = f . Since P
is compatible, we can assume that P = {a1, . . . , an} such that ai ≺+ aj or ai ≺− aj implies
i < j.

It follows from (12) that ΨP(g′)(a1) = g′(a1) for any g′ ∈ RP and hence, we can set g(a1) :=
f(a1). Now assume that g is already defined on Dk := {a1, . . . , ak} for some k. For g′ ∈ RP
observe that

ψP+(g′)(ak+1) = max(g′(ak+1), 0) + r

where r = 0 or r = ψP+(g′)(ai) for some i ≤ k. Analogously,

ψP−(−g′)(ak+1) = max(−g′(ak+1), 0) + s

where s = 0 or s = ψP−(−g′)(aj) for some j ≤ k. Thus, we set

g(ak+1) := f(ak+1)− r + s
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This uniquely determines g by induction on k. To prove that ΨP is lattice-preserving, observe
that by (12) we have ΨP(ZP ) ⊆ ZP . Moreover, if f = ΨP(g) with f ∈ ZP and the above
construction shows that g ∈ ZP . Hence, ΨP(ZP ) ⊆ ZP , which finishes the proof. �

Using the notation from (5) in Section 2.3, the lemma shows that

(13) {F (C) : C ∈ ∆ni(P)}

is a realization of the flag simplicial complex ∆ni(P) by unimodular simplices inside O(P).
Using Gröbner bases in Section 5, we will show the following result.

Theorem 4.3. Let P = (P,�+,�−) be a compatible double poset. Then the map

(g, t) 7→ (ΨP(g), t)

is a piecewise linear homeomorphism from RP × R to itself that preserves the lattice ZP × Z.
In particular, it maps C(P) to O(P) and hence ∆ni(P) is a regular, unimodular, and flag
triangulation of O(P).

Proof. By the previous lemma, (13) is a realization of ∆ni(P) in O(P) without new vertices.
Moreover, every maximal simplex contains the edge e = conv{(0, 1), (0,−1)}. Hence, it suffices
to show that for every maximal simplex in ∆ni(P), the supporting hyperplane of every facet
not containing e is supporting for O(P).

Let C = {J+0 ⊂ · · · ⊂ J+k, J−0 ⊂ · · · ⊂ J−l} be two maximal non-interfering chains. Set
A+i := min(J+i) for 1 ≤ i ≤ k and A−0, . . . , A−l likewise. It follows that P1 =

⋃
A+i

and P2 =
⋃
A−j give a partition of P . In particular, since C was maximal, we have that

{a+k−i−1} = A+i \A+(i−1) and P1 = {a+1 , . . . , a
+
k }. In particular, if a+s ≺+ a+t , then s < t. The

same argument yields P2 = {a−1 , . . . , a
−
l } and the labelling is a linear extension of (P2,�−).

We focus on P1; the argument for P2 is analogous. Pick the maximal chain D in (P1,�+)
starting in a+k . Then A+i ∩ D 6= ∅ for all i > 0 and hence {(g, t) ∈ RP1 : 〈1D, g〉 = 1} is
the hyperplane for the maximal simplex in the triangulation of C(P1,�+) corresponding to
A+0, . . . , A+k and not containing the origin. Thus, one of the two hyperplanes supporting a
facet of the simplex in C(P) corresponding to C is given by H := {(g, t) ∈ RP ×R : `(g, t) = 1}
where `(g, t) = 〈1D, g〉 − t.
Now, ΨP is linear on the simplex C in C(P) and can be easily inverted. Since P is compatible,
we can find a linear extension σ : P → {1, . . . , |P |} that respects the constructed linear
extensions on P1 and P2. On the image of C under ΨP, the inverse is given by the linear
transformation T : RP × R → RP × R with T (f, t) = (f ′, t) and f ′ : P → R is defined as
follows. If b ∈ P1, then by f ′(b) = f(b)−f(b̄), b̄ ≺+ b is a cover relation and σ(b̄) is maximal. If
b ∈ P2, we choose b̄ covered by b in with respect to �−. It can now be checked that `◦T = LC
for some alternating chain C. Thus H is supporting for O(P) and the map ΨP maps C(P)
onto O(P). �

Theorem 4.3 does not extend to the non-compatible case as the following example shows.

Example 9. Consider the double poset P = ([2],≤,≥), that is, P+ is the 2-chain {1, 2} and
P− is the opposite poset. Then C(P+) = C(P−) = T := {x ∈ R2 : x ≥ 0, x1+x2 ≤ 1} and C(P)
is a three-dimensional octahedron with volume 16

3 . Any triangulation of the octahedron has at
least four simplices. In contrast, O(P−) = 1−O(P+) and hence O(P) is linearly isomorphic to
a prism over a triangle with volume 4. Any triangulation of the prism has exactly 3 tetrahedra.
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4.2. Volumes and Ehrhart polynomials. The canonical subdivision of O(P ) makes it
easy to compute its volume. For a generic f ∈ O(P ), there is a unique linear extension
σ : P → {1, 2, . . . , d} where d := |P | such that

O(Pf ) = {h ∈ RP : 0 ≤ h(σ−1(1)) ≤ · · · ≤ h(σ−1(d)) ≤ 1}.

In particular, the full-dimensional simplex O(Pf ) is unimodular relative to ZP ⊆ RP and has
volume vol(O(Pf )) = 1

|P |! . If we denote by e(P ) the number of linear extensions of P , then
Stanley [34] showed the following.

Corollary 4.4. Vol(O(P )) = |P |! · vol(O(P )) = e(P ).

For the Ehrhart polynomial EhrO(P )(n) of O(P ) it suffices to interpret the lattice points
in nO(P ) for n > 0. Every point in nO(P ) ∩ ZP corresponds to an order preserving map
φ : P → [n + 1]. Counting order preserving maps is classical [35, Sect. 3.15]: the order
polynomial ΩP (n) of P counts the number of order preserving maps into n-chains. The strict
order polynomial Ω◦P (n) counts the number of strictly order preserving maps f : P → [n], that
is, f(a) < f(b) for a ≺ b. The transfer map φP as well as its inverse ψP (given in (10) and (11),
respectively) both take lattice points to lattice points and hence, together with Theorem 3.17,
yield the following result.

Corollary 4.5. Let P be a finite poset. Then for every n > 0

ΩP (n+ 1) = EhrO(P )(n) = EhrC(P )(n)

and

(−1)|P |Ω◦P (n− 1) = EhrO(P )(−n) = EhrC(P )(−n).

In particular, vol(O(P )) = vol(C(P )).

This is an interesting result as it implies that the number of linear extensions of a poset P
only depends on the comparability graph G(P ).

Theorem 4.6. Let P = (P,�+,�−) be a double poset. Then C(P) is a lattice polytope with
respect to ZP and

EhrC(P)(n− 1) =
∑

P=P1]P2

Ω◦(P1,�+)(n− 1) · Ω(P2,�−)(n) and

Vol(C(P)) =
∑

P=P1]P2

(
|P |
|P1|

)
e(P1,�+) · e(P2,�−).

Proof. Since C(P ) = PG(P ) is a dual integral anti-blocking polytope, the first identity follows
from Corollary 3.18 and Corollary 4.5. The second identity follows from Corollary 3.16 and
Corollary 4.4. �

Notice from Theorem 3.21 we can also deduce a closed formula for the Ehrhart polynomial
of C(P) with respect to the lattice ZP × Z and, by substituting 1

2k for k, also with respect
to the affine lattice A. These formulas are not very enlightening and instead we record the
normalized volume. Note that the minimal Euclidean volume of a full-dimensional simplex
with vertices in A = ZP × (2Z + 1) is 2|P |+1

(|P |+1)! .
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Corollary 4.7. Let P = (P,�+,�−) be a double poset. Then the normalized volume with
respect to the affine lattice A = 2ZP × (2Z + 1) is

Vol(C(P)) =
∑

P=P1]P2

e(P1,�+) · e(P2,�−).

We leave it to the reader to give direct combinatorial interpretations of the volume and the
Ehrhart polynomials for double posets.

It follows directly from (12) that ΨP± : RP → RP maps lattice points to lattice points. If P is
compatible, then the proof of Lemma 4.2 asserts that ΨP± is in fact lattice preserving. Hence,
we record an analog to Corollary 4.5.

Corollary 4.8. If P is a compatible double poset, then O(P) and C(P) have the same Ehrhart
polynomials and hence the same volumes.

The formulas of Theorem 4.6 are particularly simple when P is special or anti-special. We
illustrate these cases at some simple examples.

Example 10. For the ’XW’-double poset we have

Vol(O(PXW )) = Vol(C(PXW )) = 6!
26

vol(C(PXW )) = 128

and Vol(O(PXW )) = Vol(C(PXW )) = 6! vol(C(PXW )) = 880.

Example 11. As the following examples are all compatible, the given values also give the
normalized volumes of the respective (reduced) double order polytopes.

(1) Let P = ([d],≤,≤) be the double chain on d elements. Then C(P) is a crosspolytope
and Vol(C(P)) = 2d and it follows from Vandermonde’s identity that

Vol(C(P)) = d! vol(C(P)) =
d∑
i=0

(
d

i

)2

=

(
2d

d

)
.

(2) If P is the double anti-chain on d elements, then C(P) is isomorphic to [0, 2]d× [−1, 1]
and its normalized volume is

Vol(C(P)) = (d+1)!
2d+1 vol(C(P)) =

d∑
i=0

(
d

i

)
i!(d− i)! = (d+ 1)!.

Likewise, C(P) is isomorphic to [−1, 1]d, which can be decomposed into 2d unit cubes.
Consequently, its normalized volume is

Vol(C(P)) =
d∑
i=0

(
d

i

)2

i!(d− i)! = 2dd!.

(3) Let P be the double poset such that P+ is the d-chain and P− is the d-antichain. Then

Vol(C(P)) =

d∑
i=0

d!

i!

is the number of choices of ordered subsets of a d-set. Moreover

Vol(C(P)) =

d∑
i=0

(
d

i

)2

i!
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is the number of partial permutation matrices, i.e. 0/1-matrices of size d with at most
one nonzero entry per row and column. Indeed, such a matrix is uniquely identified
by an i-by-i permutation matrix and a choice of i rows and i columns in which it is
embedded.

(4) For the comb Cn, the number of linear extensions is e(Cn) = (2n− 1)!!. Let P be the
double poset induced by the comb Cn. Then an induction argument shows that

Vol(C(P)) = 4n n!.

It would be nice to have a bijective proof of this equality.

Let P◦ = (P,�,�) be a compatible double poset induced by a poset (P,�). By Corollary 4.8,
the polytopes O(P◦) and C(P◦) have the same normalized volume. Since both polytopes
are 2-level, this means that the number of maximal simplices in any pulling triangulation of
O(P◦) and C(P◦) coincides. From Theorem 2.18, we know that O(P◦)

4 is the twisted prism
over the valuation polytope associated to P . On the other hand, we know from Corollary 3.9
that C(P◦)4 is linearly isomorphic to the Hansen polytope H(G(P )). Moreover, O(P◦)

4 and
C(P◦)4 are both 2-level and it is enticing to conjecture that their normalized volumes also
agree. Unfortunately, this is not the case. For the poset P on 5 elements whose Hasse diagram
is the letter ’X’, any pulling triangulation of C(P◦)4 has 324 simplices whereas for O(P◦)

4

pulling triangulations have 320 simplices.

5. Gröbner bases and triangulations

5.1. Double Hibi rings. Hibi [19] associated to any finite poset (P,�) a ring C[O(P )],
nowadays called Hibi ring, that algebraically reflects many of the order-theoretic properties
of P . The ring C[O(P )] is defined as the graded subring of the polynomial ring S = C[t, sa :
a ∈ P ] generated by the elements t · sJ, where

sJ :=
∏
a∈J

sa,

ranges over all filters J ⊆ P . For example, Hibi showed that C[O(P )] is a normal Cohen–
Macaulay domain of dimension |P | + 1 and that C[O(P )] is Gorenstein if and only if P is a
graded poset. By definition, Hibi rings are toric and hence they have the following quotient
description. Let R = C[xJ : J ∈ J (P )] be the polynomial ring with variables indexed by filters
and define the homogeneous ring map φ : R → S by φ(xJ) = t sJ. Then C[O(P )] ∼= R/IO(P )

where IO(P ) = kerφ is a toric ideal.

Hibi elegantly described a reduced Gröbner basis of IO(P ) in terms of J (P ). Fix a total order
≤ on the variables of R such that xJ ≤ xJ′ whenever J ⊆ J′ and let ≤rev denote the induced
reverse lexicographic order on R. For f ∈ R, we write in≤rev(f) for its leading term with
respect to ≤rev and we will underline leading terms in what follows.

Theorem 5.1 ([18, Thm. 10.1.3]). Let (P,�) be a finite poset. Then the collection

(14) xJ xJ′ − xJ∩J′ xJ∪J′ with J, J′ ∈ J (P ) incomparable

is a reduced Gröbner basis of IO(P ).

The binomials (14) are called Hibi relations.

In light of the previous sections, the natural question that we will address now is regarding
an algebraic counterpart of the Hibi rings for double posets. For a double poset P = (P,�+
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,�−), we define the double Hibi ring C[O(P)] as the subalgebra of the Laurent ring Ŝ :=
C[t−, t+, sa, s

−1
a : a ∈ P ] spanned by the elements t+ · sJ for filters J ∈ J (P+) and t− · (sJ)−1

for filters J ∈ J (P−). This is the affine semigroup ring associated to O(P) with respect to the
affine lattice A = 2ZP × (2Z + 1). Up to a translation by (0, 1) and the lattice isomorphism
2ZP × 2Z ∼= ZP × Z, the double Hibi ring C[O(P)] is the affine semigroup ring of

conv
{

(O(P+)× {1}) ∪ (−O(P−)× {0})
}
,

with respect to the usual lattice ZP ×Z. In particular, the double Hibi ring C[O(P)] is graded
of Krull dimension |P | + 1. Moreover, since the double order polytope O(P) is reflexive by
Corollary 2.8, it follows that C[O(P)] is a Gorenstein domain for any compatible double poset
P. The rings C[O(P)] as well as affine semigroup rings associated to the double chain polytopes
C(P) as treated at the end of Section 5.2 were also considered by Hibi and Tsuchiya [24].

Set R̂ := C[xJ+ , xJ− : J+ ∈ J (P+), J+ ∈ J (P+)] and define the monomial map φ̂ : R̂→ Ŝ by

φ̂(xJ+) = t+ s
J+ and φ̂(xJ−) = t− (sJ−)−1.

The corresponding toric ideal IO(P) = ker φ̂ is then generated by the binomials

(15) xJ+1xJ+2 . . . xJ+k+ · xJ−1xJ−2 . . . xJ−k− − xJ′+1
xJ′+2

. . . xJ′+k+
· xJ′−1

xJ′−2
. . . xJ′−k−

,

for filters J+1, . . . , J+k+ , J
′
+1, . . . , J

′
+k+
∈ J (P+) and J−1, . . . , J−k− , J

′
−1, . . . , J

′
−k− ∈ J (P−).

Again, fix a total order ≤ on the variables of R̂ such that for σ = ±
• xJσ < xJ′σ for any filters Jσ, J′σ ∈ J (Pσ) with Jσ ⊂ J′σ, and
• xJ+ < xJ− for any filters J+ ∈ J (P+) and J− ∈ J (P−),

and denote by ≤rev the reverse lexicographic term order on R̂ induced by this order on the
variables.

Theorem 5.2. Let P = (P,�+,�−) be a compatible double poset. Then a Gröbner basis for
IO(P) is given by the binomials

xJσ xJ′σ − xJσ∪J′σ xJσ∩J′σ(16)

for incomparable filters Jσ, J
′
σ ∈ J (Pσ) and σ = ±, and

xJ+ xJ− − xJ+\A xJ−\A(17)

for filters J+ ∈ J (P+), J− ∈ J (P−) such that A := min(J+) ∩min(J−) 6= ∅.

It is clear that binomials of the form (16) and (17) are contained in IO(P) and hence it suffices
to show that their leading terms generate in≤rev(IO(P)). For this, let us take a closer look at
the combinatorics of φ̂. Let G be the collection of binomial given in (16) and (17) and let
f = m1 −m2 be an element of the form (15). By reducing f by the binomial of (16), we can
view f as a quadruple

(18)
J+1 ⊂ J+2 ⊂ · · · ⊂ J+k+ J−1 ⊂ J+2 ⊂ · · · ⊂ J−k−

J′+1 ⊂ J′+2 ⊂ · · · ⊂ J′+k+ J′−1 ⊂ J′+2 ⊂ · · · ⊂ J′−k− .

From the definition of φ̂ it follows that such a quadruple defines a binomial in IO(P) if and
only if for any q ∈ P
(19) max{r : q /∈ J+r} −max{s : q /∈ J−s} = max{r : q /∈ J′+r} −max{s : q /∈ J′−s}.
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and we note the following implication.

Lemma 5.3. Let the collection of filters in (15) correspond to a binomial f ∈ IO(P) and let
q ∈ P . Then there is some 1 ≤ i ≤ k+ such that q ∈ J+i \ J′+i if and only if there is some
1 ≤ j ≤ k− such that q ∈ J−j \ J′−j.

Proof. If q ∈ J+i \ J′+i, then max{r : q /∈ J+r} < i and max{r : q /∈ J′+r} ≥ i and (19) implies
that q ∈ J−j \ J′−j for some j. The other direction is identical. �

We call q ∈ P moving if it satisfies one of the two equivalent conditions of Lemma 5.3.

Proof of Theorem 5.2. Let f = m1 −m2 ∈ IO(P) be a binomial represented by a collection of
filters given by (18). If k− = 0 or k+ = 0, then the Hibi relations (16) for P− or P+ together
with Theorem 5.1 yields the result. Thus, we assume that k−, k+ > 0 and we need to show
that there are filters J+i and J−j such that min(J+i) ∩min(J−j) 6= ∅.

Observe that there is at least one moving element. Indeed, J+1 * J′+1 and hence J+1\J′+1 6= ∅.
Otherwise, xJ+1 < xJ′+1

and the reverse lexicographic term order ≤rev would not select m1 as
the lead term of f . Among all moving elements, choose q to be minimal with respect to �+

and �−. Since P is a compatible double poset, such a q exists. But then, if q ∈ J+i \ J′+i, then
q ∈ min(J+i). The same holds true for J−j and shows that m1 is divisible by the leading term
of a binomial of type (17). �

5.2. Gröbner bases, faces, and triangulations. In light of the regular and unimodular
triangulation of O(P ) given in [34] (and recalled in Section 4.1), the Hibi ring C[O(P )] is
exactly the affine semigroup ring associated to O(P ). That is, C[O(P )] is the standard graded
C-algebra associated to the normal affine semigroup

{(f, k) ∈ ZP × Z : k ≥ 0, f ∈ kO(P )}.

For a lattice polytope P ⊂ Rn, Sturmfels [36, Thm. 8.3] described a beautiful relationship
between regular triangulations of P and radicals of initial ideals of the toric ideal IP . It follows
from Theorem 5.2 that in≤rev(IO(P)) is a squarefree ideal generated by quadratic monomials.
Appealing to [36, Thm. 8.3], this yields the following refinement of Theorem 4.3.

Corollary 5.4. Let P be a compatible double poset. Then O(P) has a regular triangulation
whose underlying simplicial complex is exactly ∆ni(P).

Proof. The initial ideal in≤rev(IO(P)) is already radical and Theorem 8.3 of [36] yields that
in≤rev(IO(P)) is the Stanley-Reisner ideal of a regular triangulation ofO(P). Hence, a collection
C = C1 ] C2 ⊆ J (P) forms a simplex in the triangulation of O(P) if and only if∏

J+∈C+

xJ+
∏

J−∈C−

xJ− 6∈ in≤rev(IO(P)).

Translating the conditions given in Theorem 5.2, this is the case if and only if Cσ = C∩J (Pσ)
is a chain of filters for σ = ± and C+, C− are non-interfering chains. This is exactly the
definition of the flag complex ∆ni(P). �

Using the orbit-cone correspondence for affine toric varieties (see, for example, [5, Sect. 3.2]),
we can give an algebraic perspective on Theorem 2.13. We are in a particularly nice situation
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as the polytopes we consider have unimodular triangulations and hence the affine semigroup
rings are generated in degree 1 by the vertices of the underlying polytope.

Lemma 5.5. Let V ⊂ Λ be a finite set of lattice points and P = conv(V ) the corresponding
lattice polytope. If I ⊆ C[xv : v ∈ V ] is the toric ideal of the homogenization {(v, 1) : v ∈ V } ⊆
Λ×Z, then for any subset U ⊆ V , we have that conv(U) is a face of P with conv(U)∩V = U
if and only if

f(1U ) = 0 for all f ∈ I.

Proof of Theorem 2.13. Let L ⊆ J (P). Then for σ = ± and Jσ, J
′
σ ∈ J (Pσ) Lemma 5.5

and (16) of Theorem 5.2 states that

Jσ, J
′
σ ∈ Lσ ⇐⇒ Jσ ∪ J′σ, Jσ ∩ J′σ ∈ Lσ.

That is, if and only if Lσ is an embedded Thus, Lσ is an embedded sublattice of J (Pσ).
The same reasoning shows that the conditions imposed by (17) are equivalent to those of
Lemma 2.14. �

We can also use Sturmfels’ result in the other direction to find Gröbner bases. For a double
poset P = (P,�+,�−) we may define the subring C[C(P)] ⊆ R̂ generated by the monomials
t+s

min(J+) and t+(smin(J−))−1 for filters J+ ⊆ P+ and J− ⊆ P−. The corresponding toric ideal
IC(P) is contained in the ring T = C[xA+ , xA− ], where Aσ ranges over all anti-chains in Pσ for
σ = ±. Since O(P) is the stable set polytope of the perfect double graph G(P), it follows
from Corollary 4.1 that C[C(P)] is the normal affine semigroup ring associated to the lattice
polytope C(P). To describe a Gröbner basis for, we introduce the following notation. For
σ = ± and two antichains A,A′ ⊆ Pσ define A tA′ := min(A ∪A′) and

A uA′ := (A ∩A′) ∪ (max(A ∪A′) \min(A ∪A′)).

For a subset S ⊆ P and σ = ±, we write 〈S〉σ := {a ∈ P : a �σ s for some s ∈ S} for the
filter in Pσ generated by S.

Theorem 5.6. Let P be a double poset. Then a Gröbner basis for IC(P) is given by the
binomials

xA xA′ − xAtA′ xAuA′ 〈A〉σ, 〈A〉σ ∈ J (Pσ) incomparable

for antichains A,A′ ⊂ Pσ for σ = ± and

xA+ xA− − xA+\A−xA−\A+
for antichains Aσ ⊆ Pσ.

Proof. It is easy to verify that the given binomials are contained in IC(P). Moreover, the leading
monomials are exactly the minimal non-faces of the unimodular triangulation of Corollary 4.1.
The result now follows from Theorem 8.3 in [36]. �

Remark 1. Reformulated in the language of double posets, Hibi, Matsuda, and Tsuchiya [22,
21, 23] computed related Gröbner bases of the toric ideals associated with the polytopes
Γ(O(P+),O(P−)) (in the compatible case), Γ(C(P+), C(P−)), and Γ(O(P+), C(P−)) for a dou-
ble poset P. See the paragraph before Corollary 2.21 for notation.
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