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Abstract. This paper focuses on the numerical analysis for three-dimensional Bean’s
critical-state model in type-II superconductivity. We derive hyperbolic mixed variational inequalities
of the second kind for the evolution Maxwell equations with Bean’s constitutive law between the elec-
tric field and the current density. On the basis of the variational inequality in the magnetic induction
formulation, a semidiscrete Ritz–Galerkin approximation problem is rigorously analyzed, and a strong
convergence result is proven. Thereafter, we propose a concrete realization of the Ritz–Galerkin ap-
proximation through a mixed finite element method based on edge elements of Nédélec’s first family,
Raviart–Thomas face elements, divergence-free Raviart–Thomas face elements, and piecewise con-
stant elements. As a final result, we prove error estimates for the proposed mixed finite element
method.
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1. Introduction. The physical nature of superconductivity was discovered a
century ago by Heike Kamerlingh Onnes (1853–1926). He observed that the electrical
resistance in mercury drops completely to zero if the temperature is cooled down
below the critical temperature (4.15 K for mercury). This is the first fundamental
property of superconductors, which in particular allows electric currents to flow in
a superconductor without energy dissipation. The second fundamental nature of
superconductivity was discovered by Fritz Walther Meissner (1882–1974). He found
out that, being in the superconducting state at an extremely cold temperature, a
superconductor does not allow any penetration of a weak magnetic field (Meissner
effect). Today, superconductivity makes many new applications and key technologies
possible. They include applications in magnetic resonance imaging (MRI), magnetic
confinement fusion technologies, high-energy particle accelerators, magnetic levitation
technologies, magnetic energy storage, and many more.

Superconductors are classified into two different types (cf. Figure 1). In type-I
superconductors, the Meissner effect occurs under the condition that the temperature
is below the critical one Tc and the applied magnetic field is below some critical level
Hc. Above this threshold, the Meissner effect instantly breaks down (sharp transition
to normal state). Typical examples for type-I superconductors are pure metals such
as aluminium, mercury, and gallium. Type-II superconductors behave completely dif-
ferently from those of the first type. More precisely, they admit two different critical
levels Hc1 < Hc2. If the applied magnetic field is below the lower critical value Hc1,
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Fig. 1. Sharp transition to the normal state in type-I superconductors (left plot) and the mixed
state in type-II superconductors (right plot).

then the Meissner effect occurs. If the magnetic field is stronger than Hc1 but weaker
than Hc2 , then the magnetic field partially enters the material, but the supercon-
ducting state is not completely destroyed. This kind of physical state is called the
Shubnikov phase or mixed state. Finally, the superconducting state completely breaks
down if the applied magnetic field is stronger than Hc2. Type-II superconductors ad-
mit greater critical temperatures and critical values of magnetic field than those of
the first kind. These properties enable them to preserve their superconducting effects
in the presence of a strong magnetic field at higher temperatures. Examples of type-II
superconductors are alloys and oxide ceramic materials.

Being in the mixed state, a type-II superconductor allows partial penetration
of the applied magnetic field in the form of flux tubes. Every tube carries exactly
one single magnetic flux quantum and is surrounded by a supercurrent vortex. If we
modify the applied magnetic field, then the density of the flux tubes and the supercur-
rents will change. This dynamic magnetization process is not reversible and exhibits
hysteresis. A well-known critical-state model describing such a complex irreversible
magnetization process was proposed by Bean [7, 8]. His model postulates a nonsmooth
constitutive relation between the electric field and the current density as follows:

(A1) the current density strength cannot exceed some critical value jc ∈ R+;
(A2) the electric field vanishes if the current density strength is strictly less

than jc;
(A3) the electric field is parallel to the current density.

We note that Bean made a simplifying assumption of a constant critical current den-
sity jc ∈ R+, which is physically reasonable in the case of a not so strong magnetic
field. According to experiments, however, the critical current density can depend
on the magnetic field jc = jc(|H|) in the case of strong external fields. This phys-
ical phenomenon was observed by Kim, Hempstead, and Strnad [21]. We refer the
reader to [10] for a comprehensive review on the derivation of the Bean critical-state
constitutive relation from different mathematical models, including Ginzburg–Landau
and London equations. See also [11, 12] for mathematical and numerical results on
Ginzburg–Landau equations.

Let Ω ⊂ R3 be a bounded Lipschitz domain and let Ωsc be an open set satisfying
Ωsc ⊂ Ω. Here, the subset Ωsc represents a type-II superconductor. Assuming that
the temperature of the superconductor Ωsc is below the critical one, the evolution of
the electromagnetic waves in Ω is described by the Maxwell equations
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εEt − curlH + J = f in Ω× (0, T ),
µHt + curlE = 0 in Ω× (0, T ),
E × n = 0 on ∂Ω× (0, T ),
E(·, 0) = E0 in Ω,
H(·, 0) = H0 in Ω,

(1.1a)

along with the Bean constitutive law (A1)–(A3) for the electric field and the current
density: {

J(x, t) ·E(x, t) = g(x)|E(x, t)| a.e. in Ω× (0, T ),
|J(x, t)| ≤ g(x) a.e. in Ω× (0, T ).

(1.1b)

In the setting of (1.1a), E : Ω×(0, T )→ R3 denotes the electric field, H : Ω×(0, T )→
R3 the magnetic field, J : Ω×(0, T )→ R3 the current density, f : Ω×(0, T )→ R3 the
applied current source, and E0,H0 : Ω→ R3 the initial electric and magnetic fields.
Furthermore, the scalar functions ε, µ : Ω→ R stand for the electric permittivity and
the magnetic permeability, respectively. They are of class L∞(Ω) and satisfy

ε ≤ ε(x) ≤ ε a.e. in Ω and µ ≤ µ(x) ≤ µ a.e. in Ω,

for some constants 0 < ε < ε and 0 < µ < µ. Moreover, the scalar function g : Ω→ R
is assumed to be of class L∞(Ω) and nonnegative. In the context of Bean’s critical-
state model, it is given by

g(x) = jcχΩsc
(x),

where jc ∈ R+ is the critical current density of the type-II superconductor Ωsc, and
χΩsc

denotes the characteristic function of Ωsc.
If the displacement current εEt is significantly smaller in comparison with

−curlH + J , then Maxwell’s equations (1.1a) can be approximated by neglecting
εEt. This approximation is called eddy current approximation (see [1]), which leads
to a magnetic field formulation in the form of a parabolic variational inequality of
the first kind. Prigozhin [26, 25] was the first to introduce and analyze this formula-
tion. The finite element analysis in a 2D setting was investigated in [14]. Some years
later, Elliott and Kashima [13] investigated the numerical analysis of the associated
3D parabolic variational inequality, where the finite element approximations of the
extended Bean model by Bossavit [9] and the E-J power law were analyzed. In the
case of a nonlinear critical current density jc = jc(|H|), the eddy current approxima-
tion of (1.1) leads to a parabolic quasi-variational inequality. Barrett and Prigozhin
[4] analyzed the associated parabolic quasi-variational inequality problem in a scalar
2D setting and its dual formulation. Recently, they [6] introduced a nonconforming
finite element method. They proved the convergence of their nonconforming method
and illustrated its efficiency numerically. See also [5] concerning the mathematical
and numerical analysis for a mixed formulation of a thin film magnetization problem
in type-II superconductivity.

All the previously mentioned contributions are devoted to the eddy current ap-
proximation, which simplifies the Maxwell equations (1.1a) by eliminating the dis-
placement current εEt. However, in many important physical phenomena such as
high-frequency physics, including radio frequency and microwave physics, the displace-
ment current εEt is of significance and in general cannot be neglected. Jochmann [18,
19] was the first to introduce (1.1) and prove its existence and uniqueness of solutions.
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In [20], he extended the existence and uniqueness result to the nonlinear case jc =
jc(|H|). The optimization of (1.1) was also recently analyzed in [29] (see also [27, 28]).

This paper focuses on the numerical analysis for (1.1). To the best of the author’s
knowledge, there is no earlier contribution to the numerical analysis of (1.1). In this
paper, we introduce a hyperbolic mixed variational inequality of the second kind and
prove the equivalence between the proposed variational inequality and the nonsmooth
Maxwell system (1.1). In particular, we derive a hyperbolic mixed variational inequal-
ity in the magnetic induction formulation, which serves as the key tool for our numeri-
cal analysis. Based on this formulation, a semidiscrete Ritz–Galerkin approximation is
proposed and rigorously analyzed. We prove a strong convergence result through the
use of a discrete mixed variational problem and the Hilbert projection theorem applied
to the range of the rotation operator acting on a curl-conforming finite-dimensional
subspace. Hereafter, we discuss a concrete realization of the Ritz–Galerkin approxima-
tion through mixed finite elements, including edge elements of Nédélec’s first family,
Raviart–Thomas face elements, divergence-free Raviart–Thomas face elements, and
piecewise constant elements. For the proposed mixed finite element method, we are
able to prove error estimates yielding a convergence rate of the method.

2. Preliminaries. Throughout this paper, c denotes a generic positive constant
that can take different values on different occasions. For a given Hilbert space V , we
use the notation ‖ · ‖V and (·, ·)V for the norm and the scalar product in V . Further-
more, a bold typeface is employed to indicate a three-dimensional vector function or
a Hilbert space of three-dimensional vector functions. Our main Hilbert spaces are

H(curl):=
{
q∈L2(Ω)

∣∣ curl q∈L2(Ω)
}

and H(div):=
{
q∈L2(Ω)

∣∣ div q∈L2(Ω)
}
,

where the curl - and div-operators are understood in the sense of distributions. As
usual, C∞0 (Ω) stands for the space of all infinitely differentiable vector functions with
compact support contained in Ω. We denote the closure of C∞0 (Ω) with respect
to the H(curl)-topology and the H(div)-topology, respectively, by H0(curl) :=

C∞0 (Ω)
‖·‖H(curl)

and H0(div) := C∞0 (Ω)
‖·‖H(div)

. Furthermore,

H0(div=0) :=
{
q ∈ L2(Ω)

∣∣ (q,∇φ)L2(Ω) = 0 ∀φ ∈ H1(Ω)
}
.

Finally, for every positive function α ∈ L∞(Ω), we use the notation L2
α(Ω) for the

weighted L2(Ω)-space endowed with the weighted scalar product (α·, ·)L2(Ω).
The existence of unique mild and strong solutions to the hyperbolic system (1.1)

has been proved by Jochmann in [18, Theorem 1] and [19, Lemma 4.3]. We summarize
the existence and uniqueness result for the strong solution in the following lemma.

Lemma 2.1. Let f ∈W 1,∞((0, T ),L2(Ω)) and (E0,H0) ∈H0(curl)×H(curl).
Then, there exist a unique pair (E,H) ∈ L∞((0, T ),H0(curl) ×H(curl)) ∩W 1,∞

((0, T ),L2
ε(Ω)×L2

µ(Ω)) and a unique J ∈ L∞((0, T ),L∞(Ω)) satisfying (1.1b) and
ε
d

dt
E(t)− curlH(t) + J(t) = f(t) for a.e. t ∈ (0, T ),

µ
d

dt
H(t) + curlE(t) = 0 for a.e. t ∈ (0, T ),

(E,H)(0) = (E0,H0).

(2.1)

In other words, (E,H,J) is the strong solution of (1.1).
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3. Hyperbolic variational inequalitites. We start by introducing the
functional

ϕ : L1(Ω)→ R, ϕ(v) =
∫

Ω
g(x)|v(x)| dx.

Since g ∈ L∞(Ω) is nonnegative, ϕ defines a seminorm on L1(Ω). Taking the func-
tional ϕ into account, we introduce a hyperbolic mixed variational inequality of the
second kind and prove the equivalence between (1.1) and the proposed variational
inequality.

Theorem 3.1. Let f ∈W 1,∞((0, T ),L2(Ω)) and (E0,H0)∈H0(curl)×H(curl).
Then, the hyperbolic mixed variational inequality

∫
Ω
ε
d

dt
E(t) · (v −E(t)) + µ

d

dt
H(t) · (w −H(t)) dx

+
∫

Ω
curlE(t) · (w −H(t))−H(t) · curl (v −E(t)) dx

+ ϕ(v)− ϕ(E(t)) ≥
∫

Ω
f(t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×L2(Ω),
(E,H)(0) = (E0,H0)

(3.1)

admits a unique solution (E,H) ∈ L∞((0, T ),H0(curl) ×H(curl)) ∩W 1,∞((0, T ),
L2
ε(Ω)×L2

µ(Ω)). The unique solution of (3.1) is exactly the strong solution of (1.1).

Proof. Uniqueness. Inserting (v,w) = 0 and (v,w) = (2E(t), 2H(t)) into (3.1), it
follows that every solution (E,H) ∈ L∞((0, T ),H0(curl)×H(curl))∩W 1,∞((0, T ),
L2
ε(Ω)×L2

µ(Ω)) of (3.1) satisfies∫
Ω
ε
d

dt
E(t) ·E(t) + µ

d

dt
H(t) ·H(t) dx+ ϕ(E(t))

=
∫

Ω
f(t) ·E(t) dx for a.e. t ∈ (0, T ),

such that every solution of (3.1) satisfies∫
Ω
ε
d

dt
E(t) · v + µ

d

dt
H(t) ·w dx+

∫
Ω

curlE(t) ·w −H(t) · curlv dx+ ϕ(v)

≥
∫

Ω
f(t) · v dx for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×L2(Ω).

Suppose now that (E1,H1), (E2,H2) ∈ L∞((0, T ),H0(curl) × H(curl)) ∩ W 1,∞

((0, T ),L2
ε(Ω) × L2

µ(Ω)) are solutions to (3.1). Then, the difference (e,h) := (E1 −
E2,H1 −H2) fulfils∫

Ω
ε
d

dt
e(t) · v + µ

d

dt
h(t) ·w dx+

∫
Ω

curl e(t) ·w − h(t) · curlv dx ≥ 0

for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×L2(Ω).
(3.2)

Setting (v,w) = −(e(t),h(t)) in (3.2) results in

0 ≥
∫

Ω
ε
d

dt
e(t) · e(t) + µ

d

dt
h(t) · h(t) dx

=
1
2
d

dt
‖e(t)‖2L2

ε(Ω) +
1
2
d

dt
‖h(t)‖2L2

µ(Ω) for a.e. t ∈ (0, T ).
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In view of this inequality and e(0) = h(0) = 0, it follows that (3.1) has at most only
one solution.

Existence. Lemma 2.1 implies the existence of a unique (E,H) ∈ L∞((0, T ),
H0(curl) ×H(curl)) ∩W 1,∞((0, T ),L2

ε(Ω) × L2
µ(Ω)) and a unique J ∈ L∞((0, T ),

L∞(Ω)) satisfying (1.1b) and (2.1). Multiplying the first equality in (2.1) by v−E(t),
with v ∈ H0(curl), and the second equality in (2.1) by w −H(t), with w ∈ L2(Ω),
and then integrating the resulting equalities over Ω, we obtain∫

Ω
ε
d

dt
E(t) · (v −E(t)) dx−

∫
Ω

curlH(t) · (v −E(t)) dx(3.3)

+
∫

Ω
J(t) · (v −E(t)) dx =

∫
Ω

f(t) · (v −E(t)) dx,∫
Ω
µ
d

dt
H(t) · (w −H(t)) dx+

∫
Ω

curlE(t) · (w −H(t)) dx = 0

for a.e. t ∈ (0, T ). Then, applying∫
Ω

curl z · v dx =
∫

Ω
z · curlv dx ∀(v, z) ∈H0(curl)×H(curl)(3.4)

to the first equality in (3.3), and adding the resulting equality to the second equality
in (3.3), it follows that

∫
Ω
ε
d

dt
E(t) · (v −E(t)) + µ

d

dt
H(t) · (w −H(t)) dx+

∫
Ω

curlE(t) · (w −H(t))

(3.5)

−H(t) · curl (v −E(t)) dx+
∫

Ω
J(t) · (v −E(t)) dx =

∫
Ω

f(t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×L2(Ω).

On the other hand, in view of (1.1b), we have that∫
Ω
J(t) · (v −E(t)) dx =

∫
Ω
J(t) · v dx−

∫
Ω
g|E(t)| dx

≤
∫

Ω
g|v| dx−

∫
Ω
g|E(t)| dx = ϕ(v)− ϕ(E(t)).

Applying this inequality to (3.5), we conclude that (E,H) ∈ L∞((0, T ),H0(curl)×
H(curl)) ∩ W 1,∞((0, T ),L2

ε(Ω) × L2
µ(Ω)) satisfies (3.1). This completes the

proof.

Corollary 3.2. Let f ∈ W 1,∞((0, T ),L2(Ω)) and (E0,H0) ∈ H0(curl)×
H(curl) satisfying µH0∈H0(div=0). Then, the unique solution (E,H)∈L∞((0, T ),
H0(curl)×H(curl))∩W 1,∞((0, T ),L2

ε(Ω)×L2
µ(Ω)) of the variational inequality (3.1)

satisfies

µ
d

dt
H(t)∈H0(div=0) for a.e. t∈(0, T ) and µH(t)∈H0(div=0) for all t ∈ [0, T ].
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Proof. Setting (v,w) = (E(t),H(t)±∇φ) in (3.1) with φ ∈ H1(Ω) yields that

∫
Ω
µ
d

dt
H(t) · ∇φdx+

∫
Ω

curlE(t) · ∇φdx︸ ︷︷ ︸
=0

=0 for a.e. t ∈ (0, T ) and all φ ∈ H1(Ω),

(3.6)

where we have also used (3.4) and curl∇ ≡ 0 to deduce that
∫

Ω curlE(t) ·∇φdx = 0
for a.e. t ∈ (0, T ). Consequently, µ d

dtH(t) ∈ H0(div=0) holds for a.e. t ∈ (0, T ).
Furthermore, integrating (3.6) over the time interval [0, τ ], with τ ∈ [0, T ], implies
that

0 =
∫

Ω
µH(τ) · ∇φdx−

∫
Ω
µH0 · ∇φdx

=
∫

Ω
µH(τ) · ∇φdx ∀φ ∈ H1(Ω), ∀τ ∈ [0, T ],

since µH0 ∈H0(div=0). In conclusion, µH(τ) ∈H0(div=0) holds for all τ ∈ [0, T ].
This completes the proof.

We close this section by presenting a variational inequality for (1.1) in the mag-
netic induction formulation, which is the key basis for our numerical analysis. For the
upcoming result, we shall make use of the space

R(Ω) := µH(curl) ∩H0(div=0).

Theorem 3.3. Let f ∈ W 1,∞((0, T ),L2(Ω)) and (E0,B0) ∈ H0(curl) ×R(Ω).
Then, the hyperbolic mixed variational inequality

∫
Ω
ε
d

dt
E(t)·(v−E(t)) + µ−1 d

dt
B(t)·(w−B(t)) dx

+
∫

Ω
µ−1 (curlE(t)·(w−B(t)) − B(t) · curl (v −E(t))) dx

+ ϕ(v)− ϕ(E(t)) ≥
∫

Ω
f(t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×L2(Ω),
(E,B)(0) = (E0,B0)

(VI)

admits a unique solution (E,B) ∈ L∞((0, T ),H0(curl) × R(Ω)) ∩ W 1,∞((0, T ),
L2
ε(Ω)×H0(div=0)). The unique solution E of (VI) with H := µ−1B is exactly the

unique solution of (3.1).

Proof. By assumption, we have thatH0 := µ−1B0 ∈H(curl), and so (E0,H0) ∈
H0(curl) ×H(curl) such that, according to Theorem 3.1, the variational inequal-
ity (3.1) admits a unique solution (E,H) ∈ L∞((0, T ),H0(curl) × H(curl)) ∩
W 1,∞((0, T ),L2

ε(Ω) × L2
µ(Ω)). We set B := µH. Since µH0 = B0 ∈ H0(div=0),

Corollary 3.2 implies that

B = µH ∈ L∞((0, T ),R(Ω)) ∩W 1,∞((0, T ),H0(div=0)).
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On the other hand, by virtue of (3.1), (E,B) = (E, µH) satisfies

∫
Ω
ε
d

dt
E(t) · (v−E(t)) +

d

dt
B(t) ·

(
ŵ−µ−1B(t)

)
dx+

∫
Ω

curlE(t) ·
(
ŵ−µ−1B(t)

)
− µ−1B(t) · curl (v −E(t)) dx+ ϕ(v)− ϕ(E(t)) ≥

∫
Ω

f(t) · (v −E(t)) dx

(3.7)

for a.e. t ∈ (0, T ) and all (v, ŵ) ∈H0(curl)×L2(Ω). Therefore, setting ŵ = µ−1w,
with w ∈ L2(Ω), in (3.7) implies that (E,B) is a solution of (VI). On the other
hand, by a similar transformation, every solution of (VI) satisfies (3.1) with H = µB.
Therefore, the assertion follows.

4. Semidiscrete Ritz–Galerkin approximation. Let V h ⊂ H0(curl) and
W h ⊂ L2(Ω) be two families of finite-dimensional subspaces, depending on parame-
ters h > 0. They are assumed to satisfy the following two conditions:

(B1) The family V h ⊂H0(curl) is dense:

∀v ∈H0(curl) ∀δ > 0 ∃h > 0 ∀h ∈ (0, h) ∃vh ∈ V h : ‖vh − v‖H(curl) ≤ δ.

(B2) The inclusion curlV h ⊂W h is satisfied for all h > 0.
Let us underline that, in contrast to (B1), the family W h ⊂ L2(Ω) is not necessarily
dense. From now on, let (E0,B0) ∈H0(curl)×R(Ω) and f ∈W 1,∞((0, T ),L2(Ω)).
Then, we formulate the semidiscrete Ritz–Galerkin approximation for (VI) as follows:
Given a proper approximation (E0h,B0h) ∈ V h ×W h of (E0,B0), find (Eh,Bh) ∈
H1((0, T ),V h ×W h) such that

∫
Ω
ε
d

dt
Eh(t) · (vh −Eh(t)) + µ−1 d

dt
Bh(t) · (wh −Bh(t)) dx

+
∫

Ω
µ−1
(
curl Eh(t) ·

(
wh −Bh(t)

)
−Bh(t) · curl (vh −Eh(t))

)
dx

+ϕ(vh)− ϕ(Eh(t)) ≥
∫

Ω
f(t) · (vh −Eh(t)) dx

for a.e. t ∈ (0, T ) and all (v,w) ∈ V h ×W h,

(E,B)(0) = (E0h,B0h).

(VIh)

Let {ψjh}
Nh
j=1 ⊂ V h and {ηjh}

Mh
j=1 ⊂ W h denote bases for V h and W h, respectively.

Then, for every (vh,wh) ∈ V h×W h, there exists a unique vector y =
(
v
w

)
∈ RNh+Mh

such that

vh =
Nh∑
j=1

vjψ
j
h and wh =

Mh∑
j=1

wjη
j
h.(4.1)

Making use of the bases, we introduce the matrices

M(ε)
h :=

(∫
Ω
εψih ·ψ

j
h dx

)
ij

∈ RNh×Nh , M(µ)
h :=

(∫
Ω
µ−1ηih · η

j
h dx

)
ij

∈ RMh×Mh ,

K(µ)
h :=

(∫
Ω
µ−1ηih · curlψjh dx

)
ij

∈ RMh×Nh ,
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and

Kh :=

(
0 −K(µ)

h

T

K(µ)
h 0

)
∈ RNh+Mh×Nh+Mh , Mh :=

(
M(ε)
h 0
0 M(µ)

h

)
∈ RNh+Mh×Nh+Mh ,

(4.2)

as well as the following function:

ϕh : RNh+Mh → R, ϕh(v) = ϕ

Nh∑
j=1

vjψ
j
h

 =
∫

Ω
g(x)

∣∣∣∣∣
Nh∑
j=1

vjψ
j
h(x)

∣∣∣∣∣ dx.(4.3)

Now, by the representation through the bases (4.1) and making use of the matrices
(4.2) and the function (4.3), we see that (VIh) is equivalent to the following evolution
variational inequality on RNh+Mh : Find y ∈ H1((0, T ),RNh+Mh) such that

(
v−y(t),Mh

d

dt
y(t) + Khy(t)

)
RNh+Mh

+ ϕh(v)−ϕh(y(t))

≥ (v−y(t), z(t))RNh+Mh ∀v ∈ RNh+Mh and a.e. t ∈ (0, T ),
y(0) = y0,

(4.4)

where y0 =
(
E0
B0

)
∈ RNh+Mh is the unique vector satisfying E0h =

∑Nh
j=1E0jψ

j
h and

B0h =
∑Mh

j=1B0jη
j
h. Moreover, the function z ∈W 1,∞((0, T ),RNh+Mh) is defined by

zj(t):=
∫

Ω
f(t) ·ψjh dx ∀j∈{1, . . . , Nh}, zj(t) := 0, ∀j ∈ {Nh + 1, . . . , Nh +Mh}.

By a classical result (see, e.g., [3, Theorem 4.1, p. 124]), (4.4) admits a unique solution
y ∈ W 1,∞((0, T ),RNh+Mh). In all of what follows, for every h > 0, let (Eh,Bh) ∈
W 1,∞((0, T ),V h ×W h) denote the unique solution of the Ritz–Galerkin approxima-
tion (VIh), and let (E,B) ∈ L∞((0, T ),H0(curl) × R(Ω)) ∩W 1,∞((0, T ),L2

ε(Ω) ×
H0(div=0)) denote the unique solution of (VI). Note that, possibly after a modifica-
tion on a set of [0, T ] with measure zero, they also satisfy

(E,B) ∈ C([0, T ],L2
ε(Ω)×H0(div=0)) and (Eh,Bh) ∈ C([0, T ],V h ×W h).

In the upcoming lemmas, we analyze the structural property of the solution to
(VIh) and its stability. These results will be important for the convergence and error
analysis of (VIh).

Lemma 4.1. For a.e. t ∈ (0, T ) and all h > 0, it holds that

d

dt
Bh(t) = −curlEh(t),

d

dt
B(t) = −curlE(t),(4.5) ∫

Ω
ε

(
d

dt
E(t)− d

dt
Eh(t)

)
· vh dx(4.6)

=
∫

Ω
µ−1 (B(t)−Bh(t)) · curlvh dx ∀vh ∈ V h.

Proof. Let h > 0. Setting (vh,wh) = 0 and (vh,wh) = (2Eh(t), 2Bh(t)) in (VIh)
implies ∫

Ω
ε
d

dt
Eh(t) ·Eh(t) + µ−1 d

dt
Bh(t) ·Bh(t) dx+ ϕ(Eh(t))(4.7)

=
∫

Ω
f(t) ·Eh(t) dx for a.e. t ∈ (0, T ).
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Then, applying (4.7) to (VIh), we see that (Eh,Bh) satisfies∫
Ω
ε
d

dt
Eh(t) · vh + µ−1 d

dt
Bh(t) ·wh dx(4.8)

+
∫

Ω
µ−1 (curlEh(t) ·wh−Bh(t) · curlvh) dx+ ϕ(vh)

≥
∫

Ω
f(t) · vh dx for a.e. t ∈ (0, T ) and all (vh,wh) ∈ V h ×W h.

As curlV h ⊂ W h, we may now set vh = 0 and wh = −( ddtBh(t) + curlEh(t)) in
(4.8) to get∫

Ω
µ−1

∣∣∣∣ ddtBh(t) + curlEh(t)
∣∣∣∣2dx ≤ 0 =⇒ d

dt
Bh(t) = − curlEh(t) for a.e. t∈(0, T ).

Using the above identity in (4.8), we obtain∫
Ω
ε
d

dt
Eh(t) · vh −

∫
Ω
µ−1Bh(t) · curlvh dx+ ϕ(vh) ≥

∫
Ω

f(t) · vh dx(4.9)

for a.e. t ∈ (0, T ) and all vh ∈ V h.
Analogously, by setting (v,w) = 0 and (v,w) = (2E(t), 2B(t)) in (VI), we infer

that the solution (E,B) of (VI) satisfies

∫
Ω
ε
d

dt
E(t) · v + µ−1 d

dt
B(t) ·w dx+

∫
Ω
µ−1 (curlE(t) ·w −B(t) · curlv) dx

(4.10)

+ ϕ(v) ≥
∫

Ω
f(t) · v dx for a.e. t ∈ (0, T ) and all (v,w) ∈H0(curl)×L2(Ω).

Setting v = 0 and w = −
(
d
dtB(t) + curlE(t)

)
in (4.10), we get

d

dt
B(t) = −curlE(t) for a.e. t ∈ (0, T ).

Applying this identity to (4.10), we obtain∫
Ω
ε
d

dt
E(t) · v −

∫
Ω
µ−1B(t) · curlv dx+ ϕ(v) ≥

∫
Ω

f(t) · v dx(4.11)

for a.e. t ∈ (0, T ) and all v ∈ H0(curl). Finally, subtracting (4.9) from (4.11) with
v = vh ∈ V h implies for a.e. t ∈ (0, T ) and all h > 0 that∫

Ω
ε

(
d

dt
E(t)− d

dt
Eh(t)

)
· vh dx =

∫
Ω
µ−1(B(t)−Bh(t)) · curlvh dx ∀vh ∈ V h.

This completes the proof.

Lemma 4.2. For every h>0, the solution (Eh,Bh) of (VIh) satisfies the estimate

‖(Eh,Bh)‖C([0,T ],L2
ε(Ω)×L2

1/µ(Ω)) ≤ ‖(E0h,B0h)‖L2
ε(Ω)×L2

1/µ(Ω)

+ 2ε−1/2(‖f‖L1((0,T ),L2(Ω)) + T‖g‖L2(Ω)).

In particular, if {(E0h,B0h)}h>0 ⊂ L2
ε(Ω)×L2

1/µ(Ω) is bounded, then {(Eh,Bh)}h>0

is bounded in C([0, T ],L2
ε(Ω)×L2

1/µ(Ω)).
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Proof. Let h > 0. Integrating (4.7) over the time interval [0, τ ] with τ ∈ [0, T ]
yields

1
2
‖(Eh,Bh)(τ)‖2L2

ε(Ω)×L2
1/µ(Ω)

=
1
2
‖(Eh,Bh)(0)‖2L2

ε(Ω)×L2
1/µ(Ω) +

∫ τ

0

∫
Ω

f(t) ·Eh(t) dx dt+
∫ τ

0

∫
Ω
g|Eh(t)| dt

≤ 1
2
‖(E0h,B0h)‖2L2

ε(Ω)×L2
1/µ(Ω) + ‖Eh‖C([0,T ],L2(Ω))(‖f‖L1((0,T ),L2(Ω)) +T‖g‖L2(Ω))

≤ ‖(Eh,Bh)‖C([0,T ],L2
ε(Ω)×L2

1/µ(Ω))

×
(

1
2
‖(E0h,B0h)‖L2

ε(Ω)×L2
1/µ(Ω) + ε−1/2(‖f‖L1((0,T ),L2(Ω)) +T‖g‖L2(Ω))

)
.

Since the above inequality holds for all τ ∈ [0, T ], we come to the conclusion that

1
2
‖(Eh,Bh)‖C([0,T ],L2

ε(Ω)×L2
1/µ(Ω)) ≤

1
2
‖(E0h,B0h)‖L2

ε(Ω)×L2
1/µ(Ω)

+ ε−1/2(‖f‖L1((0,T ),L2(Ω)) + T‖g‖L2(Ω)).

This completes the proof.

4.1. Convergence analysis. Our goal now is to prove the convergence of the
solution of (VIh) toward the one of (VI) as h → 0. In all of what follows, we endow
the Hilbert space H0(div=0) with the weighted scalar product (µ−1·, ·)L2(Ω), and we
define the following subspace:

(curlV h)⊥ := {ŷ ∈H0(div=0) | (µ−1ŷ, curlvh)L2(Ω) = 0 ∀vh ∈ V h}.

As curlV h is a closed subspace of H0(div=0), the Hilbert projection theorem implies
that

H0(div=0) = curlV h ⊕ (curlV h)⊥ .(4.12)

In other words, for every y ∈ H0(div=0), there exists a unique pair (vh, ŷ) ∈ V h ×
(curlV h)⊥ such that y = curlvh + ŷ. We denote the Hilbert projection operator
associated with (4.12) by

Πh : H0(div=0)→ curlV h.

Accordingly, the Hilbert projection operator Πh : H0(div=0)→ curlV h satisfies

(µ−1(Πhy − y), curlvh)L2(Ω) = 0 ∀y ∈H0(div=0), ∀vh ∈ V h.(4.13)

Lemma 4.3. Assume that the domain Ω is additionally simply connected. Then,
the Hilbert projection operator Πh : H0(div=0)→ curlV h satisfies

lim
h→0
‖Πhy − y‖L2

1/µ(Ω) = 0 ∀y ∈H0(div=0).

Proof. Let y ∈H0(div=0). According to definition and (4.13), it holds that

‖y‖2L2
1/µ(Ω) = ‖Πhy‖2L2

1/µ(Ω) + ‖y −Πhy‖2L2
1/µ(Ω) ∀h > 0,
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from which it follows that ‖Πhy‖L2
1/µ(Ω) ≤ ‖y‖L2

1/µ(Ω) for all h > 0. Therefore, we
can find a ỹ ∈H0(div=0) and a null sequence {hn}∞n=1 of positive real numbers such
that

Πhny ⇀ ỹ weakly in H0(div=0) as n→∞.(4.14)

Since Ω is simply connected, it holds that

H0(div=0) = curl (H0(curl) ∩H(div=0)) .

See, e.g., [15, Theorem 36(2), p. 48]. Therefore, there exist v, ṽ ∈ H0(curl) ∩
H(div=0) such that

curlv = y and curl ṽ = ỹ.(4.15)

Since the family V h ⊂ H0(curl) is dense (see (B1)), we can find a subsequence of
the null sequence {hn}∞n=1, which we denote again by {hn}∞n=1, so that there exists
{vhn}∞n=1 satisfying vhn ∈ V hn for all n ∈ N, and

vhn → ṽ − v strongly in H0(curl) as n→∞.(4.16)

Next, by virtue of (4.13), it holds for all n ∈ N that (µ−1(Πhny−y), curlvhn)L2(Ω) =
0. Then, passing to the limit n→∞, (4.14) and (4.16) yield

(µ−1(ỹ − y), curl ṽ − curlv)L2(Ω) = 0 =⇒︸︷︷︸
(4.15)

ỹ = y.

Since the weak limit ỹ = y is independent of the sequence {hn}∞n=1, a classical
argument implies that (4.14) is satisfied for the whole sequence, i.e,

Πhy ⇀ y weakly in H0(div=0) as h→ 0.(4.17)

On the other hand, we have

‖Πhy‖2L2
1/µ(Ω)=(µ−1Πhy,Πhy)L2(Ω) =︸︷︷︸

(4.13)

(µ−1y,Πhy)L2(Ω) → (µ−1y,y)L2(Ω)=‖y‖
2
L2

1/µ(Ω),

(4.18)

as h→ 0. Now, the assertion follows from (4.17)–(4.18).

Assumption 4.4. For every h > 0, there exists a linear bounded operator Φh :
H0(curl)→ V h satisfying

(µ−1curl Φhy, curlvh)L2(Ω)(4.19)

= (µ−1curly, curlvh)L2(Ω) ∀vh ∈ V h, ∀y ∈H0(curl),

and

lim
h→0
‖Φhy − y‖L2

ε(Ω) = 0 ∀y ∈H0(curl).(4.20)

Furthermore, there exists a constant ĉ > 0, independent of h and y, such that

‖Φhy‖L2
ε(Ω) ≤ ĉ‖y‖H(curl) ∀h > 0, ∀y ∈H0(curl).(4.21)
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Remark 4.5. Assumption 4.4 can be realized through the solution operator of a
mixed discrete variational problem, which we will discuss in section 5.

Lemma 4.6. Under Assumption 4.4, it holds that

Πh
d

dt
B(t) = −curl (ΦhE(t))(4.22)

for a.e. t ∈ (0, T ) and all h > 0.

Proof. Since the solution of (VI) satisfies B(t) ∈H0(div=0) for all t ∈ [0, T ] and
d
dtB(t) ∈H0(div=0) for a.e. t ∈ (0, T ), the property (4.13) implies

(µ−1(ΠhB(t)−B(t)), curlvh)L2(Ω) = 0 ∀t ∈ [0, T ] and all vh ∈ V h,(4.23)

(
µ−1

(
Πh

d

dt
B(t)− d

dt
B(t)

)
, curlvh

)
L2(Ω)

= 0 for a.e. t ∈ (0, T ) and all vh ∈ V h.

(4.24)

On the other hand, Lemma 4.1 implies

0 =
(
µ−1

(
d

dt
B(t) + curlE(t)

)
, curlvh

)
L2(Ω)

=︸︷︷︸
(4.19)&(4.24)

(
µ−1

(
Πh

d

dt
B(t) + curl (ΦhE(t))

)
, curlvh

)
L2(Ω)

for a.e. t ∈ (0, T ) and all vh ∈ V h.

Consequently, as Πh
d
dtB(t) and curl (ΦhE(t)) belong to curlV h for a.e. t ∈ (0, T ),

it follows that Πh
d
dtB(t) = −curl (ΦhE(t)) for a.e. t ∈ (0, T ).

Theorem 4.7. Let Assumption 4.4 be satisfied. Then, the identity

‖Eh(τ)−E(τ)‖2L2
ε(Ω) + ‖ΠhB(τ)−Bh(τ)‖2L2

1/µ(Ω) = ‖E0h −E0‖2L2
ε(Ω)

(4.25)

+ ‖ΠhB0 −B0h‖2L2
1/µ(Ω) + 2

∫ τ

0

∫
Ω
ε

(
d

dt
E(t)− d

dt
Eh(t)

)
(E(t)−ΦhE(t)) dx dt

holds for all τ ∈ [0, T ] and all h > 0. Furthermore, if E ∈ W 1,1((0, T ),H0(curl)),
then

‖ΦhE(τ)−Eh(τ)‖2L2
ε(Ω) + ‖ΠhB(τ)−Bh(τ)‖2L2

1/µ(Ω) = ‖ΦhE0 −E0h‖2L2
ε(Ω)

(4.26)

+ ‖ΠhB0−B0h‖2L2
1/µ(Ω) + 2

∫ τ

0

∫
Ω
ε

(
d

dt
E(t)−Φh

d

dt
E(t)

)
(Eh(t)−ΦhE(t)) dx dt

holds for all τ ∈ [0, T ] and all h > 0. Note that the assumption E ∈ W 1,1((0, T ),
H0(curl)) ↪→ C([0, T ],H0(curl)) implies possibly after a modification on a subset of
[0, T ] with zero measure that E ∈ C([0, T ],H0(curl)) such that ΦhE ∈ C([0, T ],V h).
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Proof. By virtue of Lemmas 4.1 and 4.6, it holds for a.e. t ∈ (0, T ) and every
h > 0 that

1
2
d

dt
‖ΠhB(t)−Bh(t)‖2L2

1/µ(Ω)(4.27)

=
∫

Ω
µ−1

(
Πh

d

dt
B(t)− d

dt
Bh(t)

)
· (ΠhB(t)−Bh(t)) dx

=︸︷︷︸
(4.5)&(4.22)

∫
Ω
µ−1curl (Eh(t)−ΦhE(t)) · (ΠhB(t)−Bh(t)) dx

=︸︷︷︸
(4.13)

∫
Ω
µ−1curl (Eh(t)−ΦhE(t)) · (B(t)−Bh(t)) dx

=︸︷︷︸
(4.6)

∫
Ω
ε

(
d

dt
E(t)− d

dt
Eh(t)

)
· (Eh(t)−ΦhE(t)) dx,

from which it follows that

1
2
d

dt
‖Eh(t)−E(t)‖2L2

ε(Ω) +
1
2
d

dt
‖ΠhB(t)−Bh(t)‖2L2

1/µ(Ω)

=
∫

Ω
ε

(
d

dt
E(t)− d

dt
Eh(t)

)
· (E(t)−ΦhE(t)) dx.

Integrating the above identity over the time interval [0, τ ] with τ ∈ [0, T ] gives (4.25).
Now, suppose that E ∈ W 1,1((0, T ),H0(curl)), which implies for every h > 0

that

ΦhE ∈W 1,1((0, T ),L2
ε(Ω)) with

d

dt
ΦhE = Φh

d

dt
E.(4.28)

Then, in view of (4.28), we obtain from (4.27) that

1
2
d

dt
‖ΠhB(t)−Bh(t)‖2L2

1/µ(Ω) =
∫

Ω
ε

(
d

dt
ΦhE(t)− d

dt
Eh(t)

)
· (Eh(t)−ΦhE(t)) dx

+
∫

Ω
ε

(
d

dt
E(t)−Φh

d

dt
E(t)

)
· (Eh(t)−ΦhE(t)) dx

= −1
2
d

dt
‖ΦhE(t)−Eh(t)‖2L2

ε(Ω) +
∫

Ω
ε

(
d

dt
E(t)−Φh

d

dt
E(t)

)
· (Eh(t)−ΦhE(t)) dx

(4.29)

for a.e. t ∈ (0, T ), where for the last equality we have used the following result (see
Appendix A): For every u ∈ W 1,1((0, T ),L2

ε(Ω)), the mapping t 7→ ‖u(t)‖2
L2
ε(Ω) is of

class W 1,1(0, T ) and

d

dt
‖u(t)‖2L2

ε(Ω) = 2
∫

Ω
εu′(t) · u(t) dx for a.e. t ∈ (0, T ).

Integrating (4.29) over the time interval [0, τ ] with τ ∈ [0, T ] yields finally (4.26).

With Lemmas 4.2 and 4.3 and Theorem 4.7 at hand, we are able to prove a strong
convergence result for the Ritz–Galerkin approximation (VIh).
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Theorem 4.8. Assume that Ω is additionally simply connected and let Assump-
tion 4.4 be satisfied. Furthermore, suppose that

lim
h→0
‖E0h −E0‖L2

ε(Ω) = 0 and lim
h→0
‖B0h −B0‖L2

1/µ(Ω) = 0.(4.30)

If E ∈W 1,1((0, T ),H0(curl)) holds or { ddtEh}h>0 is bounded in L1+θ((0, T ),L2
ε(Ω))

for some θ > 0, then

lim
h→0
‖Eh(t)−E(t)‖L2

ε(Ω) = 0 and lim
h→0
‖Bh(t)−B(t)‖L2

1/µ(Ω) = 0

hold for all t ∈ [0, T ].

Proof. Case 1. Suppose that E ∈W 1,1((0, T ),H0(curl)) ↪→ C([0, T ],H0(curl)).
Then, the convergence property (4.20) implies the following pointwise almost every-
where convergence:

Φh
d

dt
E(t)→ d

dt
E(t) strongly in L2

ε(Ω) as h→ 0 for a.e. t ∈ (0, T ).

Moreover, (4.21) yields that∥∥∥∥Φh
d

dt
E(t)

∥∥∥∥
L2
ε(Ω)
≤ ĉ

∥∥∥∥ ddtE(t)
∥∥∥∥
H(curl)

for a.e. t ∈ (0, T ) and all h > 0.

Consequently, as d
dtE ∈ L

1((0, T ),H0(curl)), Lebesgue’s dominated convergence the-
orem implies

lim
h→0

∥∥∥∥Φh
d

dt
E − d

dt
E

∥∥∥∥
L1((0,T ),L2

ε(Ω))
= 0.

Moreover, Lemma 4.2 along with (4.21) and E ∈ C([0, T ],H0(curl)) implies that
{Eh −ΦhE}h>0 is bounded in C([0, T ],L2

ε(Ω)). For this reason, we obtain from the
above convergence that

lim
h→0

∫ τ

0

∫
Ω
ε

(
d

dt
E(t)−Φh

d

dt
E(t)

)
· (Eh(t)−ΦhE(t)) dx dt = 0 ∀τ ∈ [0, T ].(4.31)

Applying Lemma 4.3, (4.20), (4.30), and (4.31) to (4.26), we obtain the convergence

lim
h→0
‖ΦhE(t)−Eh(t)‖L2

ε(Ω) = lim
h→0
‖ΠhB(t)−Bh(t)‖L2

1/µ(Ω) = 0 ∀t ∈ [0, T ].
(4.32)

On the other hand, as B ∈ C([0, T ],H0(div=0)) and E ∈ C([0, T ],H0(curl)), Lemma
4.3 and (4.20) yield

lim
h→0
‖ΦhE(t)−E(t)‖L2

ε(Ω) = lim
h→0
‖ΠhB(t)−B(t)‖L2

1/µ(Ω) = 0 ∀t ∈ [0, T ].(4.33)

Thus, (4.32) and (4.33) imply the desired convergence.
Case 2. Suppose that { ddtEh}h>0 is bounded in L1+θ((0, T ),L2

ε(Ω)) for some
θ > 0. Thanks to (4.20)–(4.21) and E ∈ L∞((0, T ),H0(curl)), Lebesgue’s dominated
convergence theorem implies

lim
h→0
‖ΦhE −E‖Lp((0,T ),L2

ε(Ω)) = 0 ∀p ∈ [1,∞).(4.34)
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Then, since { ddtEh}h>0 is bounded in L1+θ((0, T ),L2
ε(Ω)), applying Lemma 4.3,

(4.30), and (4.34) to (4.25) yields the convergence

lim
h→0
‖Eh(t)−E(t)‖L2

ε(Ω) = lim
h→0
‖ΠhB(t)−Bh(t)‖L2

1/µ(Ω) = 0 ∀t ∈ [0, T ].(4.35)

On the other hand, since B ∈ C([0, T ],H0(div=0)), Lemma 4.3 also implies that

lim
h→0
‖ΠhB(t)−B(t)‖L2

1/µ(Ω) = 0 ∀t ∈ [0, T ].(4.36)

Concluding from (4.35) and (4.36), we obtain the desired convergence.

5. Mixed finite element method. Throughout this section, Ω is assumed to
be a simply connected Lipschitz polyhedral domain with a connected boundary ∂Ω.
We consider a family {Th}h>0 of simplicial triangulations Th = {T} consisting of
tetrahedra T such that

Ω =
⋃
T∈Th

T.

For each element T ∈ Th, hT denotes the diameter of T , and ρT stands for the
diameter of the largest ball contained in T . The maximal diameter of all elements is
denoted by h, i.e., h := max{hT | T ∈ Th}. Finally, we suppose that there exist two
positive constants % and ϑ such that

hT
ρT
≤ % and

h

hT
≤ ϑ

hold for all elements T ∈ Th and all h > 0. We choose the space of lowest order
edge elements of Nédélec’s first family [24] for the finite-dimensional subspace V h ⊂
H0(curl); i.e., we set

V h =
{
vh ∈H0(curl)

∣∣ vh|T = aT + bT × x with aT , bT ∈ R3, ∀T ∈ Th
}
.(5.1)

On the other hand, there are three possibilities for the choice of the subspace W h:

W h =
{
wh ∈ L2(Ω)

∣∣ wh|T = aT with aT ∈ R3, ∀T ∈ Th
}
,(5.2a)

W h =
{
wh ∈H0(div)

∣∣ wh|T = aT + bT · x with aT , bT ∈ R3, ∀T ∈ Th
}
,(5.2b)

W h = curlV h.(5.2c)

We remark that (5.2a) is the space of piecewise constant elements. Equation (5.2b) is
the space of Raviart–Thomas face elements (cf. [15]), whereas (5.2c) is the divergence-
free Raviart–Thomas finite element space. Note that curlV h contains all piecewise
constant divergence-free elements, which is a closed subspace of the Raviart–Thomas
finite element space (see [23, p. 150]). For this reason, the choices for W h and V h

satisfy the assumptions (B1)–(B2) (see p. 2451). We note that, in the context of
linear time-domain Maxwell’s equations, the use of the finite element spaces V h and
(5.2b) for W h was proposed in [22]. Let us now construct Φh : H0(curl)→ V h from
Assumption 4.4 (see p. 2455). To this aim, we introduce the bilinear forms

a : H0(curl)×H0(curl)→ R, a(y,v) := (µ−1curly, curlv)L2(Ω),

b : H0(curl)×H1
0 (Ω)→ R, b(y, ψ) := (y,∇ψ)L2(Ω),
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and let Θh denote the space of piecewise linear elements with vanishing traces:

Θh :=
{
φh ∈ H1

0 (Ω)
∣∣ φh|T = aT · x+ bT with aT ∈ R3, bT ∈ R, ∀T ∈ Th

}
.

We define the linear and bounded operator Φh : H0(curl)→ V h as follows: For every
y ∈ H0(curl), let Φhy := yh denote the unique solution of the discrete variational
mixed problem {

a(yh,vh) = a(y,vh) ∀vh ∈ V h,

b(yh, ψh) = b(y, ψh) ∀ψh ∈ Θh.
(5.3)

Note that the theory of mixed problems (see [23, Theorem 2.45]; cf. [17]) implies that
(5.3) admits a unique solution yh = Φhy ∈ V h satisfying

‖Φhy − y‖H(curl) ≤ c
(

inf
χh∈V h

‖y − χh‖H(curl)

)
∀h > 0,(5.4)

with a constant c > 0, independent of h and y. In particular, (5.4) yields

lim
h→0
‖Φhy − y‖H(curl) = 0 ∀y ∈H0(curl)

‖Φhy‖H(curl) ≤ (c+ 1)‖y‖H(curl) ∀h > 0, ∀y ∈H0(curl).

In conclusion, Assumption 4.4 is satisfied for Φh : H0(curl) → V h, and so our
convergence result (Theorem 4.8) is applicable for (5.1)–(5.2).

5.1. Error estimates. We close this paper by proving error estimates for the
proposed mixed finite element method. First, we recall classical error estimates for
the curl-conforming Nédélec interpolant N h and the divergence-conforming Raviart–
Thomas interpolant πh (see [23, section 5]).

Lemma 5.1 (Theorem 5.25, Theorem 5.41, and Remark 5.42 in [23]). Let s ∈
(1/2, 1]. There exists a constant c > 0, independent of h and y, such that

‖y −N hy‖H(curl) ≤ chs‖y‖Hs
0(curl) ∀y ∈Hs

0(curl), ∀h > 0,(5.5)
‖y − πhy‖L2(Ω) ≤ chs‖y‖Hs(Ω) ∀y ∈Hs(Ω), ∀h > 0,(5.6)

where Hs
0(curl) := {y ∈Hs(Ω) ∩H0(curl) | curly ∈Hs(Ω)}.

The following auxiliary result is also well known and follows from the above lemma
and the embedding result H0(curl) ∩H(div=0) ↪→ Hξ(Ω) for some ξ > 1

2 (see [2,
Proposition 3.7]).

Lemma 5.2. Let s ∈ (1/2, 1]. There exists a constant c > 0, independent of h
and y, such that

‖y −Πhy‖L2
1/µ(Ω) ≤ chs‖y‖Hs(Ω)

for all y ∈H0(div=0) ∩Hs(Ω) and all h > 0.

Now, we have all the ingredients at hand to prove an a priori error estimate for
(5.1)–(5.2).

Assumption 5.3. There exists an s ∈ (1/2, 1] such that

E0 ∈Hs
0(curl), B0 ∈ R(Ω) ∩Hs(Ω),
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and the solution (E,B) of (VI) satisfies the following additional regularity property:{
E ∈ H1((0, T ),Hs

0(curl)),
B(t) ∈Hs(Ω) ∀t ∈ [0, T ].

Theorem 5.4. Let V h be as in (5.1) and W h be given by either (5.2a), (5.2b),
or (5.2c). Suppose that Assumption 5.3 is satisfied with s ∈ (1/2, 1], and there is a
constant c > 0, independent of h, such that

‖E0h −E0‖L2
ε(Ω) + ‖B0h −B0‖L2

1/µ(Ω) ≤ chs ∀h > 0.(5.7)

Then, there exists a constant c > 0, independent of h and t, such that

‖Eh(t)−E(t)‖L2
ε(Ω) + ‖Bh(t)−B(t)‖L2

1/µ(Ω)

≤ chs(‖E(t)‖Hs
0(curl) + ‖B(t)‖Hs(Ω) + 1)

for all h > 0 and all t ∈ [0, T ].

Proof. First, Lemma 5.2, along with B0 ∈Hs(Ω) and (5.7), implies

‖ΠhB0 −B0h‖L2
1/µ(Ω) ≤ ‖ΠhB0 −B0‖L2

1/µ(Ω) + ‖B0 −B0h‖L2
1/µ(Ω) ≤ chs,(5.8)

with a constant c > 0, independent of h > 0. Furthermore, (5.4)–(5.5), along with
E0 ∈Hs

0(curl) and (5.7), yield that

‖ΦhE0 −E0h‖L2
ε(Ω) ≤ ‖ΦhE0 −E0‖L2

ε(Ω) + ‖E0 −E0h‖L2
ε(Ω) ≤ chs,(5.9)

with a constant c > 0, independent of h > 0. Applying now (5.8)–(5.9) and (5.4)–(5.5)
to (4.26), we infer that

‖ΦhE(t)−Eh(t)‖2L2
ε(Ω) + ‖ΠhB(t)−Bh(t)‖2L2

1/µ(Ω)

≤ ch2s + 2
∫ t

0

∥∥∥∥Φh
d

dt
E(σ)− d

dt
E(σ)

∥∥∥∥
L2
ε(Ω)
‖ΦhE(σ)−Eh(σ)‖L2

ε(Ω) dσ

≤ ch2s + 2
∫ t

0
chs

∥∥∥∥ ddtE(σ)
∥∥∥∥
Hs

0(curl)
‖ΦhE(σ)−Eh(σ)‖L2

ε(Ω) dσ

≤ ch2s

(
1 +

∥∥∥∥ ddtE(σ)
∥∥∥∥2

L2((0,t),Hs
0(curl))

)

+
∫ t

0
‖ΦhE(σ)−Eh(σ)‖2L2

ε(Ω) dσ ∀t ∈ [0, T ],

with a constant c > 0, independent of h and t. Then, employing the Gronwall lemma,
we find a constant c > 0, independent of h and t, such that

‖ΦhE(t)−Eh(t)‖L2
ε(Ω) + ‖ΠhB(t)−Bh(t)‖L2

1/µ(Ω)(5.10)

≤ chs ∀h > 0 and all t ∈ [0, T ].

On the other hand, by Assumption 5.3, Lemma 5.2, and (5.4)–(5.5), there is a constant
c > 0, independent of h and t, such that

{
‖ΦhE(t)−E(t)‖L2

ε(Ω) ≤ chs‖E(t)‖Hs
0(curl) ∀h > 0 and all t ∈ [0, T ],

‖ΠhB(t)−B(t)‖L2
1/µ(Ω) ≤ chs‖B(t)‖Hs(Ω) ∀h > 0 and all t ∈ [0, T ].

(5.11)

The assertion follows now from (5.10) and (5.11).
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Remark 5.5. A fully discrete approximation of (VI) is obtained, for instance, by
employing the implicit Euler method in (VIh). More precisely, introducing the time
step ∆t = T

N , with N ∈ N, we consider an equidistant partition of the interval [0, T ]
as 0 = t1 < t2 < · · · < tN = T, where tn = n∆t for all n = 0, . . . , N . Then, applying
the implicit backward Euler method to the semidiscrete Ritz–Galerkin approximation
(VIh), we arrive at the following fully discrete scheme:

∫
Ω
ε
En
h −En−1

h

∆t
· (vh −En

h) + µ−1 Bn
h −Bn−1

h

∆t
· (wh −Bn

h) dx

+
∫

Ω
µ−1(curl En

h ·
(
wh −Bn

h

)
−Bn

h · curl (vh −En
h)
)
dx

+ ϕ(vh)− ϕ(En
h) ≥

∫
Ω

f(n∆t) · (vh −En
h) dx ∀(v,w) ∈ V h ×W h,

n = 1, . . . , N, (E0
h,B

0
h) = (E0h,B0h).

(VIh,∆t)

Our future goal is to examine the fully discrete finite element approximations of
(VI) such as (VIh,∆t). While various implicit and explicit fully discrete schemata are
available for parabolic H1(Ω)-type variational inequalities (see, e.g., [16]), we are only
aware of the work by Elliott and Kashima [13] on the fully discrete numerical analysis
for a parabolic Maxwell variational inequality of the first kind. Their results and [22]
serve as an important basis for our future investigation.

Appendix A.

Lemma A.1. Let u ∈ W 1,1((0, T ),L2
ε(Ω)). Then, the mapping t 7→ ‖u(t)‖2

L2
ε(Ω)

is of class W 1,1(0, T ) and

d

dt
‖u(t)‖2L2

ε(Ω) = 2
∫

Ω
εu′(t) · u(t) dx for a.e. t ∈ (0, T ).

Proof. Since C∞([0, T ],L2
ε(Ω)) is dense in W 1,1((0, T ),L2

ε(Ω)), there is a sequence
{un}∞n=1 ⊂ C∞([0, T ],L2

ε(Ω)) such that

lim
n→∞

‖un − u‖W 1,1((0,T ),L2
ε(Ω)) = 0.(A.1)

As {un}∞n=1 ⊂ C∞([0, T ],L2
ε(Ω)), it holds that

‖un(t)‖2L2
ε(Ω) − ‖un(0)‖2L2

ε(Ω) = 2
∫ t

0

∫
Ω
εu′n(s) · un(s) dx ds ∀t ∈ [0, T ], ∀n ∈ N.

(A.2)

On the other hand, the embedding W 1,1((0, T ),L2
ε(Ω)) ↪→ C([0, T ],L2

ε(Ω)) implies
(possibly after a modification on a subset of [0, T ] with zero measure) that u ∈
C([0, T ],L2

ε(Ω)), and there is a constant c > 0, independent of n, such that

‖un − u‖C([0,T ],L2
ε(Ω)) ≤ c‖un − u‖W 1,1((0,T ),L2

ε(Ω)) ∀n ∈ N.

Consequently, (A.1) implies that

lim
n→∞

‖un − u‖C([0,T ],L2
ε(Ω)) = 0.(A.3)
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Now, in view of (A.1) and (A.3), passing to the limit n→∞ in (A.2) yields that

‖u(t)‖2L2
ε(Ω) − ‖u(0)‖2L2

ε(Ω) = 2
∫ t

0

∫
Ω
εu′(s) · u(s) dx ds =

∫ t

0
g(s) ds ∀t ∈ [0, T ],

(A.4)

with g ∈ L1(0, T ), g(s) := 2(u′(s),u(s))L2
ε(Ω). By a classical result, it follows from

(A.4) that the mapping t 7→ ‖u(t)‖2
L2
ε(Ω) is of class W 1,1(0, T ) and

d

dt
‖u(t)‖2L2

ε(Ω) = g(t) = 2
∫

Ω
εu′(t) · u(t) dx for a.e. t ∈ (0, T ).
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