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A RIGOROUS TREATMENT OF MOIST CONVECTION IN A
SINGLE COLUMN

BIN CHENG, JINGRUI CHENG, MICHAEL CULLEN, JOHN NORBURY,
AND MATTHEW TURNER

ABSTRACT. We study a single column model of moist convection in the atmosphere.
We state the conditions for it to represent a stable steady state. We then evolve
the column by subjecting it to an upward displacement which can release instability,
leading to a time dependent sequence of stable steady states. We propose a definition
of measure valued solution to describe the time dependence and prove its existence.
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1. INTRODUCTION

This paper studies a simple mathematical model of moist convection in the atmosphere
set out in Bokhove eta. [2]. Moist convection is responsible for much of the severe
weather in the extratropics, and is the main driver of the tropical circulation which is a
fundamental part of the climate system. While convective storms have a very complicated
structure, in which the physics of water in various phases is critical, the essential process
can be captured by a one-dimensional model which only takes into account the saturation
of air parcels with the associated release of latent heat. Such a model is used routinely
by practising weather forecasters in interpreting the likely weather that will result from
a given vertical profile of temperature and moisture, see [0], chapter 4. It also forms a
key component of many theoretical studies of moist convection in the atmosphere; for
instance Holt [4], Lock and Norbury [5] and Shutts [7].

The model expresses conservation of heat and moisture, together with the change
of phase of moisture from vapour to and from liquid and the associated release or ab-
sorption of latent heat. This takes place at a moisture concentration which depends on
temperature and pressure, and introduces a strong nonlinearity into the problem. Moist
convection results from an instability of the vertical profile, which can be triggered by the
upward bulk motion of the vertical profile generated by extratropical weather systems.
In our model we represent the effect of this by making the saturation moisture content a
monotonically decreasing function of time. This allows the model to be solved in a fixed
vertical domain, which simplifies the presentation.

The conservation properties are expressed in Lagrangian form, so that a discrete ver-
sion of the problem can be solved by rearranging fluid parcels as in Bokhove eta. [2],
Holt [4] and Lock and Norbury [5]. These conservation properties have been shown to
be quite accurate even in more complicated models, e.g. by Shutts and Gray [8]. The
rearrangement procedure is designed to reflect the underlying physics of the problem.
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The first attempt to rigorously study this model was made by Dorian Goldman in his
Master’s thesis [3], where he considered a particular choice of moisture content and initial
data and proved the existence of weak solutions in Lagrangian variables. However, there
seems be certain gaps in the proofs and the solution was not completely characterized.
Besides, his proof does not generalize to more general choice of moisture content and
initial data, which can be physically interesting.

The aim of this paper is to show that the discrete problem converges to a limit solution
as the number of parcels is increased and to interpret the resulting solution as a weak
Lagrangian solution of the governing equations. We take a probabilistic approach in this
paper, which is completely different from [3] and allows us to deal with more general
choice of moisture content function and initial data, which is physically meaningful.

The plan of the paper is as follows. In section 2 we present the problem to be solved
and write it as a set of Lagrangian evolution equations. We note that we can only expect
a probabilistic solution for general choices of initial data. In section 3, we describe the
procedure to construct approximate(discrete) solutions given some deterministic discrete
initial data, and show they satisfy the physical constraints. In section 4, we establish
necessary estimates about these discrete solutions. In section 5, we come up with the
notion of measure valued solutions, and show this coincides with a natural definition of
the solution when the initial data and evolution is deterministic. In section 6, we take
the limit of the discrete solutions as time/space step size tends to zero and obtain the
existence of measure valued solutions.

2. DEFINITION OF THE PROBLEM

The problem to be studied, Bokhove et al. (2016), is
(2.1)  Dy0+q)=01in (1) € [0,1] x (0,T).

3 sat
(22) D= { (EDt(Qsat(e,z,t))]— igigatgzjg in (1) € 0,1] x (0,7).
ou

5 = 0in (2,t) € [0,1] x (0,T).
(2.4)  q(z,t) < Q% (0(z,t),2,1).

As usual, we denote Dy = 9y + u - 9,. The equation (2.3) above should be interpreted
as the divergence free condition with respect to the space variable z, namely its flow is
measure preserving. The unknown functions are the potential temperature 6(z,t) and
the moisture content ¢(z,t). Equation 2.4] expresses the physical constraint that the
moisture content is limited by the known saturation value Q** which is time dependent.
The interesting case, which we study, is where Q** is monotonically decreasing in time.
However, this not needed in the subsequent argument. In the above, Q** : R? - R is a
smooth function in its variables, and the following strict monotonicity conditions hold:

(2.5) 2pQ*" >0, 0,Q°" < 0, for any (0, z,t) € R>.
Physical solutions to (21))-(2.4]) should also satisfy the following constraint:

(2.6) z +— 0(z,t) is monotone increasing in z for any t € (0,7).
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The reason for imposing such a constraint is that physical solutions should minimize the
energy functional

E) =— /[071} 20(z)dz,

where 6(z) is a bounded Borel function on [0, 1], among all the possible rearrangements
of the particles. It is easy to see that a function #(z) achieves the minimum of E among
all the functions @ with the same distribution as 6 iff §(z) is monotone increasing. Rear-
ranging the parcels is a measure preserving map which does not change the distribution.

It is not hard to see that, in general, the solution does not have good regularity.
Indeed, if everything is smooth, then let F : [0,7") x [0, 1] — [0, 1] be the flow map. From
23), we get for each fixed ¢t € [0,T), Fi(-) preserves 5[1071}. If F were continuous, then
we can obtain that F'(z) = z or F(z) =1 — z. But Fy = id, hence by continuity in ¢, we
would be getting F'(t,z) = z for all ¢. This is not compatible with (24 and (2.6]) except
in trivial cases. Hence F' cannot be continuous. Therefore, the velocity w is defined only
as a measure. It is not clear how to define weak solutions to (2I))-(24]) in a standard
way since the set {q = Q*¥(0, z,t)} is only a general Borel set and may not have nice
regularity.

We next define the solution in Lagrangian variables. Let Fi(z) be the flow map, we
then get a reformulation of (2.1I)-(24):

(2.7)

8,0+ q) =01n (z,t) €[0,1] x (0,7).
(2.8)

j_ [0 if g <Q(0,Fi(2)t)

9= @ B - it g By 0 01X 0.1
(2.9)

Ft#ﬁ[loﬂ = ﬁ[lo’l], for any t € [0, 7).
(2.10)

G(z,t) < Q*™*(A(z,1), Fy(2),t).

In the above, ¢ and 6 denote the corresponding variables in Lagrangian coordinates,
namely §(t, z) = q(t, Fy(2)), and 0(t, z) = 0(t, Fi(z)). Here we remark that the equations
can be interpreted in a natural way. Indeed, (2.7) means 0 + ¢ is conserved along flow
lines. As for equation (2.8]), notice that the right hand side of (2.8)) is nonnegative, hence
8,0 will be a nonnegative measure. If we can show t — Fy(z) has bounded variation,
then 9, (Q (0, Fy(z),t)) is a well-defined finite signed measure and its negative part can
be defined. Therefore, (2.8) can be naturally defined as an equality of measures.

It will be convenient to consider the function ©(w, z,t) as the solution 6 to the equa-
tion:

(2.11) 04 Q% (0, 2,t) = w

This function is well defined thanks to the assumed strict monotonicity of Q** about 6.
Also we know that © is smooth and satisfies the strict monotonicity

(2.12) 0,0 >0, 0,0 > 0.

This is clear from (2.5]). First we make a simple observation whose proof is elementary.
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Lemma 2.1. Define 0M(t,z) = 0(t,z) + q(t,z). Then q(t,z) < Q**(0(t,z),z,t) is
equivalent to O(t,z) > ©(0M(t,z2),2,t). Equivalence holds true also if we replace the
above by a strict inequality.

We assume the inital data satisfies the physical constraint. Namely, we are given
00(2),q0(z) € L*([0,1]), such that z — 6y(z) is monotone increasing, and ¢o(z) <
Q**(0y(z), 2,0) for a.e-z. Inspired by the previous discussions, we propose the following
definition of weak Lagrangian solutions.

Definition 2.2. Let 04(2), ¢:(z) € L>=([0,T) x [0,1]) N C([0,T), L'([0,1])), and F, F* :
[0,T) x [0,1] — [0,1] be Borel measure preserving maps such that Fi(-),Ff(-) €
C([0,T7); L'([0,1])), and F.(z) € L>([0,1]; BV([0,T)). Let 6o(2),q0(2) be as in previ-

ous paragraph. Denote 0,(z) = 04(Fy(2)) and ¢(z) = q(Fi(z)). Then we say (q, 0, Fy)

is a weak Lagrangian solution to initial data 0g,qq if the following holds:

()0, — 0o, ¢ — qo in L*([0,1)), F, — id in L*([0,1]) as t — 0.

(ii)z — 04(z) is monotone increasing for each t € [0,T).

(iii)For any t € [0,T), Fy o Ff(2) = z, Ff o Fy(2) = z for L'-a.e z € [0,1].

(iv)For L'—a.e z € [0,1], 0,(2) + Gi(2) = 0(2) + qo(2), for LY —a.e t € (0,T)

(v)For L' —a.e z € [0,1], t — 0,(2) < Op(2) for L2 —a.e — (£, 1) with t < ¢’

(m)até('7 z) = [at(Qsat(é('v z), Fi(2), )]_ I_EZJ where B, = {t €(0,T): (jf(z) = Qsat(é;:(z)v Ft(z)v t)},
and G (2), 0} (2) is the monotone, left continuous version of G,(z), 04(z). chosen according to

Remark [27).

Remark 2.3. Let f : (0,T) — R be Borel measurable, such that f = f for L' — a.e
t€(0,T), with f € BV(0,T), then O.f is a finite signed measure, defined by

T T
/0 FOOC(E)dt = /0 CO)@uf)(dt), ¥ € C((0,T)).

If we choose f such that it is left continuous, then:

atf([a7 b)) = f(b) - f(a)7 Jor any [av b) - (OvT)
Remark 2.4. Let f : (0,T) — R be Borel measurable such that for L? — a.e (t,t') €
(0,7)% with t < t', we have f(t) < f(t), then there exists a unique function f*: (0,T) —
R, monotone increasing, continuous from the left, such that f = f* for L'—a.et € (0,T).

It turns out that above definition of weak Lagrangian solutions is still too strong, and
one cannot expect the existence of solutions in the sense defined above except for some
special choice of the function Q** and the initial data.

One difficulty with the system (21)-(24) is that we do not have much regularity in
space. The only regularity in space comes from the monotonicity of #, and in general,
no regularity in space for g, as well as the flow maps F;, F;*. This means we lack the
necessary compactness to get a function ¢;(z), or a measure preserving flow map F, F*
in the limit.

The evolution of # and ¢ is highly unstable under small perturbations of the initial
data, which can be seen from the construction of the discrete problem. This suggests
the use of probabilistic description of the solution. Under this description, heuristially
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for each time ¢, we have a certain probability distribution for {6, q(2)}.cp,1), and we
make a random choice of 8, which is a monotone increasing function on [0, 1), also make
a random choice for ¢(z) for each z, according to this probability distribution and then
evolve. This determines the probability distribution for {6, ¢(2)}.cjo,1) at later times. In
this spirit, we need to prescribe some probability distribution as initial data.

On the other hand we need the correct equation to be satisfied (point (vi) of Definition
2.2)), this suggests considering some ”path-spaces” which describes all the possible paths
of some parcel. Inspired by the probabilistic approach of transport equation, we wish
to obtain the solution as a measure in some path space, and the correct probability
distribution is obtained by projecting to each t.

We will make the above heuristic discussions rigorous in section 5.

3. SOLUTION OF THE DISCRETE PROBLEM

In this section, we construct discrete solutions following the method of Bokhove et a.
[2] and do estimates about them.

The discrete procedure is designed to reflect the underlying physics of the problem,
as expressed in Met Office [6], chapter 4. It is based on a representation of the fluid as
discrete parcels, so that 6 and q are piecewise constant. The initial values satisfy the
physical constraints (ZI0) and (6] at ¢t = 0. We define Q** to be a monotonically
decreasing function of time and discretise the time variation. Thus after some time
interval the constraint (2.10) will be violated.

The Lagrangian form of the equations (2.7)-(2I0]) is solved by representing the flow
map F; as a rearrangement of the fluid parcels. The evolution of 6 and q on each parcel
is computed using 21) and (Z8). If (210) is violated for any parcel, then (28] is used
to update 0 and set g equal to Q**. The update to 0 may result in the constraint (2.6])
being violated, in which case the parcels have to be rearranged to restore the constraint.
oM = § + G is conserved for each parcel under the rearrangement as required by (2.7]),
and 6 > @(éM ,z,t) at the final positions beacuse of Lemma [2.1]

As found by Bokhove et a.[2], finding this rearrangement is non-trivial because of the
dependence of Q** on # and z, and because (Z.I0) may be violated on several parcels
simultaneously. We call these 'wet’ parcels. In this case there may be many ways to
satisfy the constraints. The physics of the problem requires that the final position of the
wet parcel with the largest 6M is determined first. This is done by moving it upwards,
thus increasing 6, until it encounters a larger value of 6 at some z = z,. We refer to this
as the parcel ”beatmg all other parcels with z < z;. All overtaken parcels have to move
down to compensate for the upward displacement. Extreme care is required in showing
that this procedure has a well defined limit as the timestep tends to zero.

We now define this procedure precisely. Denote z; = :w Ji = [an, TZL) for any in-
teger 1 < i < n. Let {07}]_y, and {q¢]}}_; be given, such that 67 < 07 ,, and

< Qsat(ﬁg‘,zj,O), for any 1 < j < n. Thls means that a discrete version of (2.6])
and (2.10) is satisfied. It follows from Lemma 211 that 07 > ©(67 + ¢}, 2;,0). Let
ot = & for some large constant C > 0 to be determined later on. This will be chosen
so that it depends only on the function Q**, T, and the initial data. Define the wet set
at time step 0 to be W,, = {1 < j < n: 0} <O(0] + q},z;,0t)}. We will also denote
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oM —

’ 0;-‘ + ¢ First we decide which parcels move to z,. Define

W,, ={jo € W, : for any j > jo with j ¢ W, 6} < @(9%[’",%,(515), and if j € W,,,
Mn Mn
0" >0}

Here we make the convention that n € W), if and only if n € W,,. The set W is exactly
the set of parcels which are "wet” and can beat all other parcels above up to n. We will
sometimes call them ”eligible”. First assume W, # (). Let jo € W/ be the parcel with
the largest HJM’" among W/ (if there are more than one such parcels, simply choose jy to
be largest possible), define the first rearrangement

k if 1 <k < jo;
on(k)=2 n if k= jo;
k—1 ifjo<k<n.
To explain this in English, a parcel can jump to z, only if it is wet and has the largest

6™ among all ”eligible” parcels.
We also update 07 after the first rearrangement in the following way:

gl _ 9:;1%) if j #n;
J (0", 2, 0t) if j=n.
That is, we update the 6 of parcels which jumped according to its final position, and leave

the 6 of other parcels unchanged. In Lagrangian coordinates, define 9;“"_1 = :sz_)l,

A;.L’”_l =07 +qj — é?’"_l. This is consistent with (Z7]). Define the new wet set

(3.1)

Woo={1<j<n:0;""" < @(eﬁ{’?(j),zj,at)},

W/ 1 ={jo € Wy_1 :for any jo < j <mn—1with j & W,,_q, 9;-“"_1 < @(9£’f(jo),zj,5t).

e . Mn Mn
or if j € Wy, 90;100) > 90;1(3‘)'}‘
Notice that W,,—y C {1,2,--- ,n—1}.
If W = (), then simply take o,, = id, and take 6;.“"_1 =07, q;.""_l = ¢}. Then we
have W,,_1 = W,,.

Next we repeat the above procedure to {9;1’"_1 b g1 and the new wet

LA "
set defined by [B.1). Let 0,,—1 be the resulting rearrjangemejnt of ‘ghe first n — 1 parcels.
Let 0,,—1(n) = n, so that it becomes the rearrangement for n parcels.

In general, let o, be the rearrangement when we decide which parcel moves to z; with
oi(l) = I for I > k. Denote f, = op41 0 -+ 0 o, With S, = id. Let {075y {g7*}7_,
be the updated 0 and q after ox1. We also denote 0;-‘ = 9;’", and q = q;m The wet
set at this stage is given by

. n,k Mmn
— < < . hd ) .
Wy={1<j<n:0;" < @(05;1(”,2],&)}
(3.2) W, = {jo € Wy : for any jo < j < k with j ¢ Wy, Hy’k < @(92/:,’? , 25, 0t),

(jo)
pMn >eg{v? b
k

orif j € Wi, 6,7 ;) G
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As before, we make the convention that if jo > k&, then jo € W} if and only if jo € Wj.
The sets W}, W/ determines the evolution when we decide which parcel moves to zj_.

The following inductive formula holds when W;_ , # 0. Let j. € W], be such that
HM,? > HM,? . for any j € W/, then we move this parcel to zj41, namely,
/Bk+1(]*) Bk:Jrl(]) +
j if j<jeorj>k+1;
(3.3) op+1(j) =q k+1 if j=js
j—1 ifj.<j<k+1

We update 67 accordingly:

n,k+1 or - .
(3.4) gk — 00@15\9) Ik
J @(965?(“1), 2pe1,0t) if j=k+ 1.

If Wli+1 = (), then simply put o041 = id and H;L’k = 9?’k+1.

.k ank nk _ nk+1 nk+1 ank sk nk
Let Hj = eﬁk(j)' Define a4 = qffklll(j) + 90_&11(],) 9]- S 47 = gy We observe
some useful properties of above rearrangement algorithm:

Lemma 3.1. For each index j € {1,2,--- ,n}, one of the following must hold:

(i) There exists a unique ki € {1,2,--- ,n}, such that By, —1(j) = ok, (Br, (J)) = k1 >
Br, (7). Besides, for any k > ki, Br(j) < Br+1(4), and any k < ki — 1, Bi(j) = k1.
(i1)Br(j) < Brt1(j) for any 0 <k <n—1.

Morover, if for some ka, B, (j) < ka2 and ¢ Wy,, then the second alternative must hold.
On the other hand, if for some ji, j2, and some ks, it holds Pi,(j1) < Brs(j2), but
Brs—1(j1) > Brs—1(j2), then the first alternative above holds for ji1 with ki = ks.

This lemma says that for any given parcel, either it experiences no lifts at all among
the oy‘s, or there is a unique o; which lifts this parcel and it stays there in the latter
rearrangements of the same time step. If a parcel becomes dry in a certain time step,
then it will stay dry in the latter arrangement. The only way the order of two parcels
can change is that the lower parcel experience a jump.

Proof. Fix an index j. Suppose there exists some 0 < k; < n — 1, for which £, _1(j) >
Br, (7). From the definition of the oy given in [B3)), we see that if 0% (j) > j for some
J, k, it must hold that oy(j) = k. Hence from B, —1(j) = ok, (Br, (4)) > Br, (J), we see
0k, (Bry (7)) = k1. If for some k > ki, Br(j) > Brt1(j), then the same argument shows
Br() = ok1(Br+1(j)) = k + 1. Now for any k' < k, we have oy (Bk(j)) = Bi(j), a
contradiction. This proves for k > k1, Sk(7) < Br+1(j). The case for k < k; — 1 follows
directly from definition of oy.

To see the moreover part, observe that for any k£ > ko, we must have S (j) < Br+1(4)-
If not, by the argument given in the first part, we can then conclude Sy/(j) = k + 1,
for any k' < k. In particular, this means f,(j) = k + 1 > ko, a contradiction. Since

By (7) & Wi, from B3), we see Sr,—1(7) = 0ky (Bry (7)) < Biy(j). This means that

nka—1 _ pn.k Mn Mn
651@2271(]) o Hﬁk;&j) Z @(ej ’ngz(j)’at) Z @(ej ’Zﬁszl(j)’ét)'

It follows that Bi,—1(j) ¢ Wky—1. Hence one conclude Bi,—2(j) = 0xy—1(Bry—1(7)) <

Bry—1(j). Same argument as above applies and shows Sj,—2(j) ¢ Wg,—2. One can apply

the same argument and shows fi(j) is monotone decreasing in k. The ”on the other

hand” part follows directly from the definirtion of o) given in (B.3]). O
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We want to show above define algorithm preserves a discrete version of the physical
constraint:

Lemma 3.2. (i) H;L’k < H;TI foranyl1<j<n-—1;
.y an,k an.k
(zz)qg’ + 9;5’ = q? + 9?.
(i) > g7
(z’v)q?’k < Qs“t(e;?’k,zj,O), for1 <j <k, and q?’k < Qs“t(eﬁ’k,zj,5t), fork+1<j<n.

Proof. First we prove the point (ii). From our definition, we know that q?’k + 9;“k =
q:}’;}?j) + 6:;2(1)) From this it immediately follows éyk + Lj;-“k = éy’kﬂ + Lj;b’kﬂ.

We prove the other three statements by induction on n. First observe that statements
(i)-(iv) are true for k = n.(point (iii) is empty when k = n.) Now assume these are true
for kK 4+ 1 and above with 1 < k4 1 < n, wish to prove these for k.

Now we prove point (iii) for &, assuming W;__; # (). One can see point (iii) is equivalent

to 9:};1(].) > Hy’kﬂ, by our definition of éyk If o;11(J) # k+1, then one has HZk]i Gy =

9;“’“1 from [B4]). Now if 0x11(js) = k + 1, then

nk Mn

Okr = Q(eﬁgjl(j*)

The first inequality above used the fact that j, € W}, 41, hence it must "beat” the parcel

originally at zx11. The second inequality used the induction hypothesis that point (i)

holds with &k + 1. If W} ., = ), then we simply have o1 = id, and 9}1,14 = 9?"”1, SO
there is nothing to prove.

Then we prove point (i). We only consider the case when W) aF (), otherwise nothing

is changed by o1 and the proof is trivial. Let j. < k+1 be such that oxy1(j.) = k+ 1.

The only nontrivial cases to check is when j = k and j = k + 1, the rest of the cases

will follow from (B3]), (B.4]) and the induction hypothesis that (i) holds for k + 1. So it

boils down to prove

(3.5) Hforl <OOMT | zher,0t) < lelf;l'
Bk+1(]*)

The first part of the inequality follows from that j, € W}, that is, it needs to "beat”
the parcel originally at zp11 in order to rise to zxy1. To be precise, suppose that k+1 ¢
Wiy, then we know from j, € W, and the formula for W] in (32) that HZE <

o0

n,k+1 n,k+1
s Rk+15 5t) 2 9k+1 2 9]* .

g{? Ga)? Zk+1,0t). This is exactly what we want. Now if k + 1 € Wy, then again
k41\J*
from j, € W}41 one concludes that Hgéﬁ () > Hgéﬁ (b))’ Hence

@(eg”;ﬁ oy P1s 0) > @(eg”;ﬁ o1y 241 01) > e
The first inequality used the monotonicity of © with respect to 8, the second inequality
used that k + 1 € Wjq. This proves the first part of (3.5).

The reason why the second part of the inequality holds is that if it were not true,
then j, would have risen to zpyo instead of zpy1 in the rearrangement oy1o. To make
this precise, let op12(jix) = Jx, then we must have j.. > j.. If not, we will have
0k+2(jex) = k 4+ 2 = ji, not possible. Since j. € W1, we have

n,k+2 n,k+1 Mmn Mmn
7 = ) . < ) . .
9]** 9]* < @(052i1(j*)’ 2j,,0t) < @(96@120**)’ Zj,.,O0t)
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This implies j.. € Wiio. Now we claim that for any j with j.. < j < k+ 1 and j ¢

Wisa, then 07F72 < ©(@7
Bity(Gen)

ok+2(J) & Wi, and H;L k2 HZ::(IJ) If the claim is not true, then

zj,6t). Indeed, since j ¢ Wi o, we have op42(j) < J,

oM ),0t) < 0

k42 Jk+1
Bk+1(]*)7 C"k+2(] Zj, 5t) § H;L = Hn

Bkﬂ( )’ Tri2(5)"

Notice op12(7) < k+ 1, also og42(J) > ort2(Jex) = Js, this contradicts j, € W,;H

Let j; be the maximal j such that j > ju, j € Wgie, and HM" < oM From
Bk+2(]**) Bk+2( )

the induction hypothesis with k£ + 2 and point (iv), we know j; < k 4 2. Consider 2
cases:

If j; ¢ Wk+2 First observe for any j > j; and j € Wyi9, we must have 95 )
k+2

oM™ Otherwise it will contradict the maximality of j;. Also for any j with j;

Brtalin)
j<k+1,and j ¢ Wiio, we conclude from the claim 9" A2 @(924"( "
k2

@(02/{"( Wy ,2j,0t). The only possibility remains is that k& + 2 ¢ W9, and 0:f;2
@(9

( 1y ) 0t). That is, k 4+ 2 is a dry parcel and cannot be beaten by j;. Hence

IN A A

) %55 ot)

v

Bit

gl > R > @(0M a0, 0t) > O(0MT

ot).
k+2 k42 Bk+2( ) Bk+2(,**) y Zk+15 )

This is what we want.

If j1 € Wi, let j2 < k‘ + 2 be such that o;12(j2) = k + 2. From the definition of the
Mmn

BHZ( 2) T Bpia(in)
have the largest #* among all ”eligible” parcels. From the inductive formula (3.4)), we
see

procedure, we have oM since the parcel that actually jumps up should

 Zhp2, 0t) > O(6M

n,k+1 N
ol =" s )’  Ziso, 6t) > OO J» 2kt 1, 01).

Bk+2( ) Bk+2( Jxx

So far we finished the proof of point (i).
It only remains to show the point (iv). This is equivalent to showing H;L’k > @(Hy’k +

q]ﬂ’k 2j,0) for 1 < j <k, and Hﬂ’k > 6(9n’k +Qf’k zj,0t), for k+1 < j < n. To see
the first part, we know for 1 < j <k, 6 ¥ e k+(1)
Tk+1\

nk n,k+1 nk 1. .
G =0 1) i, o1 ()’ Also o, 1(j) < k + 1, since the

rearrangement o4 never moves down a parcel by 2. Apply the induction hypothesis
that (iv) holds for k + 1 we see

n,k n,k+1 n,k+1 n,k+1 n,k n,k
= > ’ _ ) > e h : .
05" = Oor iy 2 O ) T 9y Tty 0) 2 O + 457 25,0)

and we also know from point (ii)

already proved that 9j’

To see the second part, consider first when W/, a7 0, and if j = k 4+ 1, then we know

from (B.4])

Hz_lfl = 6(9 (k-i—l) y Rk+15 5t) = @(Q]H_l + 9k+17 Rk+15 5t)

In the second equality above, we used the point (ii) already proved, and also the definition
of QJM’" given in the beginning of this section. If instead W], , = ), then we know in
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particular k + 1 ¢ Wi, hence
k 1
0]?_1_1 - 0]?_1_1 > @(0 (k 1)’ y k415 5t) > 6(0k+1 + Qk+17 Zk+175t)
If k+2 < j <mn, note ox11(j) = j we use the induction hypothesis and (B3] to conclude

9;1,16 _ 9;.““’1 > @(e;wf—i-l + q?’k+1,zj,5t) — @(H;L,k + q?’k,zj,ét).

This finishes the proof. O

Denote 07 (dt) = 9;“0, q7(0t) = q;l’o. Then we have ¢ (dt) < Q**(07(t), 2, dt), for
any 1 < j < n, and j —> 0;-‘(575) is monotone increasing by Lemma Define the
flow map at first time step Fy; : [0,1) — [0,1) be such that it shifts J; to Jg,; by
translation, that is ﬁ'ﬁ( ) =z — 2zi + 28,03y for z € J;. Then F&#E 01 = 5[1071}' Apply
the previous procedure to {07(0t)}7_y, {q}(6t)}7_;, but with Qsat evaluated at dt to
get {07(20t)}7_;, {qj(20t)}7_;, and the corresponding flow map Ep, 2 [0,1) — [0,1).
Repeatlng the procedure, we get a sequence of solutions at discrete times {9"(1«515) i1
qj (két)}i_;, and a sequence of flow maps Fkét connecting kot and (k + 1)ot. Denote
HM"(k‘(St) = 07(kdt) + ¢ (két). Here k is an integer with 0 < k < T + 1. Define
Fyst = Frse 0 -+ Fs;. We will also denote Qst, Qrse be the corresponding rearrangement
map on the discrete indices {1,2,---,n}. Denote 0"(t,2) = 07 (kdt), ¢"(t,2) = ¢} (kdt)
if z € J; and két <t < (k+1)0t. Also F"(t,z) = Fys if kot <t < (k+ 1)0t. Define
05 (2) =07, q5(2) = ¢}, and 9(])\/[’"(2) =03 (2)+qg(2), for z € J;. We deduce a immediate
corollary of Lemma,

Corollary 3.3. (i)z — 0"(t, z) is monotone increasing for any t € [0,T).

(ii)Denote 0" (t, z) = 0™(t, F™(t, 2)), §"(t, z) = ¢"(t, F™(t, 2)), then we have 0"(t, z) +
q"(t,z) = 65 (2) + g5 (2)-

(1ii)t — 0" (t, z) is monotone increasing for any z € [0,1).

(iv)q™(t, z) < Q5% (0™ (¢, 2), 2, kdt), where k is the integer such that kot <t < (k+1)6t.

Now we can have a more precise description of the motion of a single particle.

Lemma 3.4. Suppose that ndt < Siung%t%', where both sup and inf are taken on the set

{(w, z,t) : |w| < max; |0]M"| ,z €0, 1], t € [0,T)}, then one of the following must hold:
(i) There exists a unique ky € {1,2,--- ,n}, such that By, —1(j) = ok, (Br, (J)) = k1 >
B (j). Besides, for any k > ky, Bi(j ) Br+1(d), and any k < ky — 1, Bi(j) = k.
(1)Br(j) < Brt1(j) for any 0 <k <n —1.

This lemma says that if ndt is small enough, then for any parcel experiencing a jump,
the rearrangements before and after the jump will fix this parcel. In particular, if a
parcel gets pushed down(Br_1(j) < Bk(j) for some k), then we must be in the second
alternative, and by Lemma [B.1] it cannot overtake any other parcel.

Proof. The only difference between this lemma and Lemma B is that in the first al-
ternative, we can now conclude Bi(j) = Br+1(j) for any k > k. Suppose we are in
the first alternative of Lemma B.I] and Sk (j) < Sr+1(j) for some k > k;, we will show
that Bi(j) ¢ Wg. Clearly we have Sry1(j) < k + 1, since oy fix all index strictly

bigger than k£ + 1. From Lemma B.2] we know 607’ k+(1j) > @(Hy’",zﬁkﬂ(j),O). Since
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ok+1 moves B 1(j) down, it does not change the value of 6, hence ng;]:rgj) = 9;};’2].

Brs1(j) > Br(4) + 1. Tt follows that:

nk _ on,k+1 Mn
Osni) = Vi) 2 ©00" 28,,,), 0)

> 001", 25, (), 0t) + (inf 0.0)n~" — sup 9,05t > O(0]"", 25, ;). 51).

The last step used the smallness of ndt. Hence Bi(j) ¢ Wi. It follows that Sr_1(j) =
or(Bk(7)) < Br(j). Repeat the argument shown in the proof of ”Moreover” part of
Lemma [B.1] we see [k(j) will keep decreasing starting from k, and then no jump up is
possible. 0

) and

To conclude this section, we make a simple observation which will be useful in the
next section.

Lemma 3.5. Suppose for some pair of index j1,j2 € {1,2,--- ,n}, and for some k,
. . . . M M

we have agst(j1) < as(j2), and agqnsi(j1) > a@rnyse(je), then 6;7" > 0", In

particular, aise(j1) > oysi(j2) for all 1 > k.

In plain English, this lemma says if the index j; is initially below jo, then a necessary
condition for j; to overtake j, is to have strictly larger 6. This means, in particular,
that jo cannot overtake j; again since #M is invariant along parcels.

Proof. Here we write q(j41)5t = 010+ 00y and Sy = opq1 0+ 00y, Let mo be the
maximal integer m for which Bp,—1 (st (1)) > Bm—1(arst(j2)). Then B, (arst(j1)) <
Bimo (akst(32)), and B, (akst(41)) € W) I By (st (J2)) € Wiy, then we immediately
have 9;‘14’" > 9]]\24" Otherwise,

Mn ,m
@(911 2 ZBrmg (st (72)) (k +1)ot) > Hﬁmo?akét(jZ))(

The first inequality used the definition of W), the second used definition of W,,. O

kot) > 9(9}5’”,2@%(%&(@))7 (k +1)dt).

4. ESTIMATES ON THE DISCRETE SOLUTION

Next we do some estimates on the discrete solutions. Denote M’ = [|0f|[1o(0,1) +
[1g5 | o< (0,1)- In the following, we say a constant is universal, if it only depends on M’, T,
and Q**. We will derive the following estimates for the discrete solutions in this section.
They are collected in the following theorem.

Theorem 4.1. (7)[|0"|| o ((0,1)x(0,1)) T 14" | oo ((0,1)x (0,7)) < C1, for some universal con-
stant C1.

(ii) There exists a universal constant Cy > 0, such that for any ¢ > %, and any
t € [0,7), if 07(t,2) > OOM™(t,2), Fl'(2),t) + &, then we have 0y(z) = 6,(2), and
Fy(2) < Fi(2) holds for any t' —t < &.

(i4i)For any z € [0,1], TVigjo,r)(F{*(2)) < Cs.

If nét < C%i for some universal constant C) > 0, then the following hold:

(iv)For any ¢ > 0, and any [t — e,t +¢] C [0,T), we have |é{’+€(z) — 07 _(2) —
(Q(HMW(Z)? Fty—Li-a(z)7t + 6) - Q(HMW(Z)? Ftn—a(z)7t - 6))—i_| < 204(‘%_‘_ 5t) R

(v)For any s <t € [0,T), we have ||0"™(t,-)—0"(s, -)HL1([071}) = [|0"(¢t,-)—6"(s, ‘)HLI([OJ]) <
Csv/Ef— s+ 0ot
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(vi)For any s <t € [0,T), we have |[F"(t,-) — F"(s,")|[z1(0,1)) < C6Vt — s+ 3t for
some universal constant C.

Thoughout this section, we make the following conventions: when we write expressions
like sup |9;0| and so on, they are assumed to be taken over the set {(w, z,t) € R? : |w| <
M', z €10,1], t € [0,T]} unless otherwise stated.

We start with point (i) of above theorem.

Lemma 4.1. There exists a universal constant C; > 0, such that

0™ oo ((0,1)x (0,7)) + 1@ Lo (0,1)x (0,1)) < C1-

Proof. We need to go back to the construction of the discrete solution. First we know
from Corollary B3] point (ii) that for any z € [0, 1]

0" (t,2)+q"(t, 2) = 6" (t, (")~ () +" (¢, (F7") ' (2)) = 65 (F") " (2)) +a5 (F) ' (=2)).

Therefore ||0™ 4 ¢"||p < M'.

On the other hand, from the construction of 0] (két), we know either 67 (kdt) = 07 ((k—
1)dt) for some 1 < j < n, or §]'(kdt) = @(Hy’",zl,két). In the former case, we have
|0 (két)| < max; |07 ((k—1)dt). In the latter case, we have [0]'(kdt)| < sup|©|. Here sup
is taken over the set {(w,z,t) : |[w| < M’', z € [0,1], t € [0,7T]}. But O is determined via
(ZI1) in terms of Q**, hence sup |O)| satisfies a universal bound. In any case, we have
max; |07 (kdt)| < max(max; |07 ((k — 1)dt)|,sup [©]). It then follows easily by induction
that ||6™]| e < max(M’,sup |O|). The bound for ¢ then follows automatically. O

Next we prove the point (ii). Roughly speaking, point (ii) says if a parcel is ”strictly”
dry, then it will remain dry and go down for a while, the length of time this state lasts
depends in a universal way how dry this parcel is.

Lemma 4.2. There is a universal constant Cy > 0, such that for any € >0, if for some
interger k, j, it holds 07 (kdt) > (9(9;‘4’", Zas: (j)» KOt) + €, we have 07 (16t) = 07 (két), and
ast(7) < agse(j) for any I with 0 < (I — k)ot < (,%

Proof. Actually we will see one can take Cy = 2sup |0;©|. We prove this by induction on
l. First observe that the statement is trivial if [ = k. Assume this is true for some ! with
(I4+1-Fk)it < m. Need to show this is true also for [ + 1. Using the induction

hypothesis, we can calculate
07 (15t) = 07 (kot) > ©(0;"", 20y, kOt) + &

> Q01" 2oy () (L + 1)3t) + & — sup|9O|(1 + 1 — k)dt

> 001" 250, (1 1)51).

The first equality is the induction hypothesis. In the second inequality, we used the
induction hypothesis that a5:(j) < agse(J)-

Above calculation shows that at time [0t, the parcel s (j) is still dry” by taking
one more time step forward. Hence we know a1y = Qgq1yse(ause () < cust(f), and

07 ((1 + 1)dt) = 67(l6t), from the procedure. O

Now we can deduce point (ii) as a corollary of previous lemma.
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Corollary 4.3. Let ¢ > 0, not < 1. Then there exists a universal constant Co > 0,
such that if ¢ > 2 and 0"(t,z) > ©(0M"(2), F(2),t) + ¢ for some t € [0,T), we have
éﬁ(z) = 07(2), and Fj}(2) < Fj*(2) holds for any t' —t < .
Proof. First we can find integers k, j, such that két <t < (k+1)dt, and z € J;. It then
follows from the definition of 6" that
0" (t,z) = éﬂ(kat) > O0M"(t,2), FM(2),t) + ¢
> (9(6 ), kdt) + e —sup 10.0|n~! — sup |9,0|6t.

Zoust (j

Since 6t < n~!, we will have ¢ — sup |0.0|n"! — sup|0,0|6t > §, if ¢ > % for some
universal constant n. With such a choice of €, we then have

0r (kst) > © (01", 2 kot) + g

Now we can conclude from Lemma that 9?(1&) = é?(k:&t), and a5:(j) < agse(J)
for any integer [ with 0 < (I — k)dt < &7 for some universal constant C%. This means
2

precisely that 67(¢, z) = 0"(t, z) and Fj}(z) < F'(2) for any t' —t < &. O
2

Zoust(5)

Next we wish to prove point (iii). For this, we need to establish a lemma which gives
control over the total variation of ¢t — F/*(z) in terms of the absolute bound of 6.

Lemma 4.4. There exists a universal constant C4 > 0, such that for any indices j €

(1,2 ,n},

1 . . i
E E(O‘(k—l—l)&t(]) — st (7))T < 310" | oo ((0,1)%(0,1))
0<k<Z

1 . . .
> Slegns () — ars ()] < 2C5(116™ [ oo (0,7 x (0,1)) + 2-
0<k<Z

Proof. First we observe that the second estimate follows from the first. Indeed, we just
need to notice

1 . .
> o (7) — arst (7)]

0<k<ZL
2 . Ay 1 . .
= Z E(O‘(k+1)5t(]) — agst(5))" — E(O‘(k—l—l)&t(]) — a6t (7))
0<k<ZI 0<k<

< 2G40 oo (0.7 % (0,1)) + 2-
Now we only need to focus on the first estimate. Fix some k such that o 1)s (j) >
agst(7). Then we know O[(k_l,_l)ét(j) = Q(p+1)5t (st () > apst(j). This means the parcel
akse(f) is "wet” at kdt, or 9"(/<;5t) < @(HM" Zags (), (K +1)0t). After the time step, we
know H;L((k +1)dt) = @(HM" k 4 1)dt). Therefore
(4.1)
07 ((k + 1)6t) =07 (kdt) > ©(07"", 2oy, 1 5 (5)s (k + 1)6

a(k+1)6t( ) (

(GM" Zagse(G) (k+1)(5t)

> (inf 9.0)( (inf 0,0) (o(t1)6t () — arer(4)) "

t) —
1
= z Rogyyse(d) — Zakét(j)) T
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Now we sum (1)) over k, the first estimate follows. 0
Then we can deduce point (iii) as a corollary
Lemma 4.5. For any z € [0,1)
PVieor)(F7'(2)) < C3110" || o= (0, (0,1))-
TViepor)(FH(2)) < 2C510™| oo (0.7) % (0,1)) + 2-

Here PV denotes the positve variation, and TV denotes the total variation. C% is the
same constant as in previous lemma.

Proof. Find indices j € {1,2--- ,n} such that z € J;, then

n 1 ‘ ‘
PVicor)(FP(2) = Y Cagans) = Zams) = D ~ (k1o (7) — s (4))"

0<k<% 0<k<Z
1 ) .
TVier)(F(2) = > |20 1y50() — Zarse()| = > ;|O‘(k+1)6t(]) — st (4)]-
0<k<I 0<k<L

0

It only remains to prove the point (iv) and (v). For this we need the following key
lemma, which concludes that any given parcel can only be overtaken at a finite rate.

Lemma 4.6. Fiz jo € {1,2,--- ,n}. Let 0 < k<l < %. Define the set
Jea=1{7 €{1,2,--- ,n} st (j) < (o), cuse(5) > cuse (o)}

Then there exists a universal constant Cj > 0, such that if ndt < %, we have
4

£ <201 k).

Proof. We will prove this statement with the choice of constant C) = %&8‘. Here sup,

inf is taken over the set {(w,z,t) : |lw| < M,z € [0,1],¢t € [0,7]}. With this choice,
Lemma [3.4] applies. For k < s <[ — 1, we may define

Ag={je{1,2, - ,n}:ags(j) < ags(jo), for any s’ with k < s’ < s, and
(s11)6t () > a(synyse (o)}

Then we have Ji; = Uings. That J,; C Uls_:lkAs is clear and the reverse inclusion
follows from Lemma Therefore it suffices to show #A; < 2 for each s, when ndt is
small. Here we use the notation of section 2 and write & (s41)5 = 010---00y,. Here oy is
the rearrangement map of the indices when we decide which parcel moves to z;. Denote
Bx = 0410 --- 00y, Without loss of generality, we may assume that between time step
sdt and (s + 1)dt, the second alternative of Lemma B.4 holds for ags:(jo). Indeed, if the
first alternative holds, we will have A; = (), and there is nothing to prove in this case.
If #A, < 2 fails, then let ky > ko > k3 be the 3 biggest integers for which there
exists some index j such that ags(j) < asse(jo) and Br—1(asst (7)) > Br—1(asst(Jo))-
Let j1, jo, js be the index corresponding to ki, ko, k3. Namely assi(7i) < asse(Jo),
but Br,—1(sst (i) > Br,—1(sst(jo)), i = 1,2,3. It is clear that B, (asse(fi)) <
Br; (asse(asse(Jo)), 1 < ¢ < 3. It is also clear that such index j; must be unique
since each oy lifts at most one index. From Lemma B4, we can see it must hold
asst(43) < asst(J2) < asst(j1) < asse(jo). The last inequality is clear, since asgs:(jo)
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will not jump. If, say ast(j2) > asse(d1), then agsi(j1) overtakes ags:(j2) since ags (1)
jumps first(under oy, ) and ends up above ags5:(jo). Thus ags(j2) will get pushed down
by of,. But then according to Lemma [3.4] it cannot jump later on and cannot overtake
any other parcel.

The plan is to show 9?4’" < 9Mm < 9" and also show this implies Sy, (a5 (j3)) ¢
W,gg. This will be a contradiction since we will have S, (ass¢(j3)) cannot jump under
Olg -

First we observe that for any & with ke < k < ki, and any index j with S, (asst(41)) <
By (asse (7)) < k1, it holds Br_1(sst(7)) = Bry (asse(7)) — 1, while for index j with
By (s5t(7)) < Bry (st (51)), it must hold Sr_1(asst(7)) = Br, (asse(f)). Observe it is
clear with k = k1. For k < ki, and j satisfying Bk, (asst(J1)) < Bry (avsst(3)) < ki, they
cannot jump under oy since they are already overtaken by ags:(j1). For j satisfying
By (s5t(7)) < By (asse(j1)), they cannot jump up because once they jump up under oy,
they will jump to zi, hence overtake ass:(jo), contradicting our choice of ko. They also
cannot be pushed down since if this happens, some parcel below needs to jump, again
contradicting the choice of k5.

Now we wish to prove 9;‘2/[’" < 9%’"
W,gl. This will give us a contradiction since the parcel Sy, (ass:(j1)) does not have the

. If not, we will show below that S, (asst(j2)) €

largest 8™ among the parcels in the set W,gl, hence cannot jump up under oy,. First

it is clear from the "moreover” part of Lemma [B.1] that Bk, (asst(j2)) € Wi,. For any

index j with B, (asst(J2)) < Bry (asse(f)) < By (()és(st(jl)), and any k Wi‘lh ky < k < ki,
n,k1

we conclude from last paragraph that o = id, and Gﬁk 1(10556t( N = Hﬁkl(am L Since

B, (st (42)) € sz, and no changes happen for these j‘s under o, with ko < k <
k1, we see Bk, (asst(j2)) will beat them under rearrangement o,. Since we assumed

pMn 6’%’", we know agsi(j2) beats ags(j1) as well. Now consider index j satisfying

jo
Bry (aser (1)) < 5k1(%6t( )) < Ky, if 5k1 (Oését( )) € W, it can be beaten by B, (asst (1)),
which means 9]- < 0]-1 . Since 9]-2 > 93‘1 , it can also be beaten by a5 (j2). If

Brey (st (7)) &€ Wiy, we know from Lemma Bl that Sy, (assi(7)) ¢ Wik, Hence from

Bry (sst(j2)) € Wi, we see 05k22( ) < @(0;‘2/‘[’ ) 261, (aase (7)) (8 T 1)0¢). Since they
nk‘z n,kl

are "dry” parcels, we know their § does not change, namely Gﬁkz( et () = Hﬁkl(am (7))’

also we know from the observation made in previous paragraph with k& = ko + 1 that
By (s5t(7)) = By (asse(j)—1. Hence they will be beaten by asst(j2) in the rearrangement
Ok, - This shows By, (ass:(j2)) € Wy, -

By the same argument as above, one can also conclude HJJ»‘;I’" < 6?;\2/[’", following the
same logic that if HJJ»‘;I’" > 05‘2/‘[’", we will then conclude By, (asst(j3)) € Wi, thus ags:(j2)
will not jump under oy,. So we have shown HJJ»‘;I’" < 6?;\24’" < 0]]\14"

Next we show S, (csst(j3)) ¢ W,%. Let j4 be the index such that S, (assi(ja)) =

B, (asse(j1)) + 1. Since it is overtaken by j; under oy, it will remain ”dry” for all later
rearrangements, that is, By, (asse(ja)) & Wi, for any 1 < m < k1. If Bi,(ass(d3)) €

W,gg, in particular, one should have @(Hg’n,zﬁks(asét(ﬂ)), (s + 1)dt) > 92:63(06 i) =
5 (@

9;)’:“(& 51" On the other hand, using Corollary B3], point (i), (iv), we see
1 S

n,k1 n,k1 Mmn
(4'2) eﬁlﬂ (asst(a)) = Hﬁkl(asét(jl)) =z @(Hﬁ ? 2Bry (sst (1)) 8575).
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Observe that By, (asst(fa)) < Br, (sse(Ja)) —2 = B, (st (1)) — 1, since there are at least
2 parcels(j; and j2) overtaking j4. Therefore

(4.3)
n,k Mmn Mmn
O (s i) < O " 281, (s Ga))» (8 T 1)08) < O(03,77, 2, (0450 (1)) -1 (8 + 1)02)

<00, 25, (aup(n))» 1) — (inf 0-0)n~" + (sup[;0])dt.
In the second inequality above, we used above observation, and in the third inequality we
used that 9;‘;[’" < 9;‘;[’" < 9;‘;[" Now combining ([4.2]) and (43]) gives a contradiction. [
From above discrete estimate, we can get the lemma of ”finite speed of penetration”.

Lemma 4.7. Let z;, € [0,1). Choose n, dt such that nét = ﬁ, where C} is the constant

given by previous lemma. Let ty € [0,T), € > 0, define the set
J = {Z S [07 1) : Eﬁo(z) < Fy (Zio)tho-i-E(Z) > Eﬁo-l—a(zio)}'
Then LY(J) < C(e + dt), for some universal constant C.

Proof. Choose jo € {1,2,--- ,n}, such that z;, € Jj,. Choose integers k,[ such that
kot <to < (k+1)dt, I6t <tg+e < (I +1)dt. Then we know that J = Ujey, ,J;. Here
Ji,1 is defined as in previous lemma. Hence

2(0—Fk) 2(l—k)ot

1 — —1 < — < / )
L) =n""#pg < = —— <ACi(e +0t)

As an application of this lemma, we can prove point (iv) of Theorem [4.1]

Proposition 4.8. Let n, 6t be chosen as in Lemmal{.7. There exists a universal constant
C > 0, such that for any € >0, and t € [0,T), with [t —e,t +¢] C [0,T), we have

(4.4)

|9?+E(z) - etn—a(z) - (6(9M7n(z)7 F’tr—Li-a(Z)v t+€) - @(eMm(z)’ F’tn—a(z)v t—€)) +| S C(€+5t)
Proof. Let k be the quantity in the absolute value above. First we show k < C(e + dt).
Without loss of generality, we can then assume x > 0. Then we know that 67, () —
0 _(z) > k. It follows from Corollary B3| that

(4.5) 0 () < OOM"(2), ' (2),t —€) + Ce.
On the other hand
th-i—a(z) - th—a(z) = @(HMW(Z)?F’;LI—&(Z)J + E) - @(HMW(Z)?En—a(Z)vt - E) t K

> O(0M"(2), Flio(2), t +¢) — 07 .(2) — sup 906t + k.
In the first inequality, we only used the definition of k, and in the second inequality,
we used Corollary B3] point (iv). If we let t' € [t — e,t + €] be such that F}(z) =
max,¢p_c 4e Fy'(2), we have é{ﬁre(z) < O(OMn(2), F}(2),t + €) + sup |0;0|e. Hence it
follows from (4.6]) that
(4.7) ©(OM"(2), Fj}(2),t+¢) +sup |9;0]e > O(0M"(2), F{'..(2),t +¢) —sup |9,0|t + k.

Noticing ét < e, we obtain

(4.6)

mn mn 1
t (Z) - F’t-I—&(z) 2 lnfaz@ (/{ - 2sup |at@|€)
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Now consider the set E' = {z' € [0,1] : FJ}(2') < FJ(2),F{{ (') > F'..(2)}. Then
we know LY(E') > m(/{ — 2sup |0;©le). But it follows from Corollary 7] that
LY(E") < C(e+ dt). Hence k < C’(e + dt), for some universal constant C'.

Next we derive a lower bound. We consider two cases. First if 8}, .(z) > 0} _(z), then
as has been observed in (45, we know that

(4.8) 07 .(2) = 07 (2) = ©(OM"(2), Fl\(2),t + &) — O(OM"(2), F/' (2),t — ) — Ce.
If 00" (2), F/'  (2),t +¢) — O(0M"(2), F/' (2),t — &) > 0, then we can immediately
conclude k > —Ce. If it is negative, then we can calculate:

@(HM’”(Z), Fl (2),t+¢)— @(HM’”(Z), F' _(2),t —¢)

(4.9) . . _
> —sup|0:0[(Fii.(2) — FL.(2))” —sup|9;0)2e.

Define E = {2/ € [0,1) : F (') < F'.(2), F/'.(?') > F.(2)}. Then Lemma L7
shows L!(E) < C(e + 6t). But this means F}" _(z) — F/* _(2) > —C(e + 6t). Thus from
#3), (E9), we know é,'fﬁra(z) — 07 _(2) > —C(e 4 dt). The conclusion follows as well.

If é{ﬁre(z) = 07" _(2), this means no jumps happen during [t — ¢,¢ + ¢]. Therefore
Fl{ (z) < F' (). In this case

OOM"(2), Fl' . (2),t +¢) < OOM™(2), F" .(2),t —€) + Ce.

Therefore, we also have the quantity > —Ce as well. O

As a second application of Lemma A7 we finally prove point (v) of the Theorem.

First we derive an obvious corollary of above lemma.
Fix some tg € [0,T), take € > dt, k > 0, and define

B={zel0): swp Fz) - FA() > k),
tE(to,to+e]

K
J2 = {Z c [0,1) . Ft%_,_e(z) — E%(Z) 2 5}
First we observe the following lemma:

Lemma 4.9. Letn, 6t be chosen as in Lemmal[4.7. Then there exists a universal constant
C > 0, such that if € + 6t < &, then J; C Ja.

Proof. Suppose there exists zp € Ji — Jo. Let ¢’ € [to,to + €] be such that F}}(z) =
maXye(sy to+e] F1 (20). Then we know Fj}(z0) — F{!(2) > k. It follows that F}}(z0) —
F{', (20) > 5. Consider the set

jzo,s,n ={2€[0,1] : F/(2) < F{/(20); F{y4-(2) > F{y+(20) }-

Then we know that £'(J,,c..) > 5. On the other hand, it follows from Lemma A7 that
LY(J.y ) < C(e + 6t) with a universal constant C. Hence we have 5 <C(e+adt). O

The next lemma estimates £!(.J3).

Lemma 4.10. Let ¢, n, 6t be chosen as in previous lemma. Let k > Ce, where C is
the constant given by previous lemma, then for some universal constant C’, we have
LM Jp) < &=
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Proof. Let 6 = L£L1(J3). Since F™ measure preserving, we know
/ FP'(2) — P (2)dz = 0.
[0,1)
On the other hand from the definition of .Js,
n n 0K
| B - Ryoiz= 5
Ja 2

Therefore, there exists z1 € [0, 1], such that F{?, (21) — 2 (21) < — 2% Now consider
Joe ={z € 0,1]: Fji(2) < Fit(=1), Fipyo(2) > F i o(21)}.

Then we have £1(J,, .) > %“. But by Lemma T, we know £1(J,, o) < C(e +6t) < 3Ce.

Hence %"‘ < 3Ce. This completes the proof.

d
With above preparation, we can obtain the following continuity estimate

Lemma 4.11. Let n, §t be chosen as in Lemma[{.7 Let e > %. Then there exists a
universal constant C such that if € < %, we have

1054 — O |1210,1) = 11054 — Ol L101) < C'Ve
for some universal contant C'.
Proof. From the discrete procedure, we know if é{g Le(2) > ég) (2),

Op1o(2) < max  O(0)""(2), FiH(2), to + &) + sup [9,O)e.
t'€[to,to+e]

Since ég) (z) > ©(0M"(2), F{(2),t9) — sup |9,0|dt, by Corollary B3 point (iv), we know

01 ,o(2) — 07 (2) <supd,© - max (Fy'(2) — Ff'(2)) +sup |90 - (¢ + dt).
tE(to,to+e]

Let k > Ce, where C is the universal constant given by Lemma A9 Combining Lemma
AAET0, we conclude £1(J1) < LY(Jp) < CT/E Hence

Oroe(2) = 1y (2)dz = / Oroe(2) — b1 (2)dz +/ Oroe(2) — b1 (2)dz
[0,1] J1 Ji
/

- C's
< ||10|| = - — + sup |0,0|k + 3sup |9,0)] - .

Now we take ¢ small enough such that v/ < &, where C'is given by Lemma .9 and let
Kk = /e, we obtain the continuity estimates:

/[ 10042(2) = 00 ()]d= = | Brsel) — 21z < C'VE,
0,1

[0,1]
O

Next we derive the continuity estimate for the flow maps, which follows from the
continuity estimate for 6

Lemma 4.12. Let s, t € [0,T), then for some universal constant C'

(4.10) (F™(t,2) — F"'(s,2))T < C(O™(t,z) — 0™(s, 2)).
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Proof. As before, this follows from the Qiscrete estimate. For any k,l integers with
0<k<l<ZL (F}(2)— F(2)F < CO5,(2) — 07%,(2)). This follows from sum (&)
from k to [ — 1. O

Corollary 4.13. Let s, t € [0,T), then for the same constant as in previous lemma, we
have

/[0 , |F™(t, 2) — F™(s, 2)|dz < 2C (07(t, 2) — 0" (s, 2))d=.

[0.1]
Proof. SInce F™ measure preserving, we know f[o 3 (F (8 2)—F" (s, 2))Tdz = f[o  (F (t 2)—
F™(s,z))"dz. Then the result follows by integrating (£I0) in . O

The point (vi) follows from previous corollary and the continuity estimate for 6.

5. DEFINITION OF MEASURE VALUED SOLUTION

In this section, we wish to define the measure valued solutions. As suggested in the
discussion in the first section, we need to consider ”path-spaces” which represents all the
possible trajectories of an arbitrary parcel. Thanks to the point (iii) of 4.1}, such paths
take value in [0, 1], and should have bounded variation, with uniform bound on BV

Let By > 0 and Xp, be the set of functions f : (0,7") — [0, 1] which is left continuous
and has total variation no bigger than By, that is to say, for any partition of the interval
[0,7], denoted as 0 < tg < t] < tg < -+ <t < T, we have

m
Z |f(ti) = f(ti-1)| < Bu.
i=1

Let d be the L? distance for functions in Xp,, that is

T 1
af.0) = ([ 1) = glo)a)’.

It is not hard to see that d is indeed a distance, since we required continuity from left.
Also one can check (Xp,,d) is a complete separable metric space, by Helly‘s selection
principle. The physical meaning of such a space Xp, is the space of all possible paths of
the parcels. The reason why such paths have bounded variation is due to point (iii) of
Theorem 4.1.

Let By > 0 and Yp, be the space of monotone increasing function on [0, 1], right
continuous on [0,1), and with absolute bound < By, equipped with L?— distance. That
is, given h,k € Yp,, define their distance to be d'(h, k) = [|h — k|2(0,1). The physical
meaning of this space is all the possible profiles of potential temperature . We have
incorporated the physical constraint that they must be monotone increasing.

Let Bs > 0, put Y = C([0,7);Yp,), that is, Y is the space of continuous maps from
[0,T) to Yp,. Here B3 will be determined later on. We can define a metric on the space
Y: given h,k : [0,T) — Yp,, define d(h,k) = max,cor)d'(h(t),g(t)). The physical
meaning of the space is the possible evolutions of the potential temperature profile.

To avoid confusion, we will denote a generic element from the space Yp to be 6, while
a generic element from the space Y will be denoted by 6. It is easy to check both Yz
and Y are complete separable metric spaces, for any fixed B > 0.

First we specify the class of initial data we will be considering. Since we will be consid-
ering solutions in some ” probabilistic” sense, our initial data will also be ”probabilistic”,
namely some probability distributions. Let By > 0 be an arbitrary positive constant.
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Definition 5.1. Let (o € P(Yp, x R x [0,1]). We say (o is an admissible data if the
following holds:

(1)m13#C0 = po X 5[10’1] for some py € P(Yp,), and ma#(y has compact support;
(14)Q** (0(2), 2,0) > 5 — 0(2) for (o— a.e (0,s,2).

Remark 5.2. Heuristically, (o can be thought of prescribing the probability distribution
of {0, HM(Z)}ZE[OJ], where M = 0 + q. Indeed, using that T3#Cy = o X 5[10’1] and also
the disintegration theorem, we can write (y = fYBzx[O,l} d(po % E[l()’l})(ﬁ,z) Jz dCo,-(s).
Here (0,2z) — dCp .(s) is a Borel family of probability measures on R.. This describes

the probability distribution of 6™, hence q, given 0 and z. The second point simply says
the physical constraint is satisfied with probability 1.

We can define the following evaluation maps for the space Xp, and Y. Fix any
t € (0,7), define e, : X — [0,1] by v —— ~(t). Similarly define ¢; : ¥ — Yp, by
0 — 0(t). We will frequently write e;(y) = 4 and €}(f) = 6; to simplify the notation.
We see from the definition of the space Y that e is a continuous map. Also we can
observe e; is Borel, even if it is not continuous in general. Here we observe:

Lemma 5.3. The set {(0,s,2) € Yg, x Rx [0,1] : Q**(0(2),2,0) > s —0(2)} is a Borel
subset of Yp, x R x [0,1]. Also the map e; defined in previous paragraph is Borel map.

Proof. We just need to show the evaluation map A : (0, z2) — 60(z) is Borel. Fix ¢ > 0,
let Ac(6,2) =71 fzz+€ 0(w)dw. Here we extended §(w) = C for w > 1. Then for each
fixed e > 0, A.(6, z) is continuous, and for any fixed (0, z), A-(6,z) — A(6, z), since 0 is
right continuous after extension. This proves A is Borel measurable.

That e, is Borel is proved in a similar way. First we can define f(¢) = f(0) for ¢t <0.
With this extension, f(t) is define on (—o0,T") and is left continuous. Hence the map
ft) — et ftt_e f(s)ds will converge to f(t) as € tends to 0. O

A ”deterministic” initial data takes the form (o = dgo x ((6° +¢%) x id)#ﬁ[lo,l]. In this
case, there is only one possible choice §°, and for each fixed z, 6™ takes a deterministic
value 0°(2) + ¢%(2).

Here we can make a definite choice of the constant B; and B3 which are involved
in defining the spaces Xp, and Y. By point (i) in the Definition 5.1, we can assume
mo#Cy C [-M + 1, M — 1] for some M > 0. We will determine By and Bj such that they
depend only on By, M, T and also the function Q**. Now take B; to be the constant Cs
given by point (iii) of Theorem [.I]if we have the bound ||67||r~ + ||¢f||Le < M + 2Bs.
Let Bs be the constant C; given by point (i) of Theorem £l if we have the bound
6001 Lo + [|ag || < M + 2B3. Without loss of generality we can assume Bs > Bs so
that Yp, C Yp,.

With such a choice of constants in place, we propose the following defintion of measure-
valued solutions.

Definition 5.4. Let A € P(Y xR x [0,1] x Xp,), and denote n; = (e} X id X id X e;)#N,
G = moa#Hn € P(Ypy, x R x [0,1]). Then we say \ is a measure valued solution to
admissible initial data (o if the following are satisfied:

(1)Ct — Co, T3a#M: € F(E[1071},£[10’1]) — (id x id)#ﬁ[lo’l] ast — 0, and t — ny narrowly
continuous.
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(ii)For any t € (0,T), mis#(G = e X E%O 1 mo#(; has compact support. Besides
Q% (0(2), 2, 1) > s —0(z) for Gi—a.e (0,s,2).

(iii)For A—a.e (0,s,2,7), we have O(y) < Oy (ve) for L2 —a.e (t,t') € (0,T)? andt < t.
(iv)For A—a.e (0,s, z,7), we have the equality of measures:

3t(§t(’}’t)) = [@(Qsat(ét(%)a%at))]_LE@},S,«,’

where Ej  is the wet set given by Ej = {t € (0,T) : (B()*(t) = s —

Q™ ((B())* (1), 7. )}

In the above, (é(’y))* is the monotone increasing, left continuous version of ét(%)
chosen according to Remark 2.4l This is possible due to point (iii) in the above definition.
The notation F(ﬁ[lo’l], £[10,1]) in point (i) denotes the set of Radon probability measures
o1

Point (i) simply specifies in what sense the initial data is satisfied. (; gives the prob-
ability distribution of {0, 0 (2)}2€(0,1) at time ¢, and narrowly converge to (o as t — 0.
The second convergence simply means the ”"flow map” converges to identity as ¢t — 0.

That 734¢; € 5[10 1 is a reformulation of the measure preserving property of the flow

on [0, 1]? whose projections on both components are equal to £

map, namely the incompressibility.

Point (ii) shows that (; obtained satisfies the same conditions as required by the
”admissibility” of the data. Therefore, one can take any (; as initial data and evolves
the solution forward. .

Point (iii) shows that for all the possible choice of evolution of # and the fluid path =,
t— ét(’yt) is always monotone increasing in ¢(up to some set of Lebesgue measure 0).

Point (iv) shows that for possible choice of evolution of 6 and the fluid path v, the
correct equation is satisfied.

Next we show if the random evolution of the solution happens to be deterministic,
then Definition and Definition [5.4] are consistent.

Lemma 5.5. Let A\ be a measure valued solution to admissble initial data (y. Assume
Co = dp, X ((90+qo) X id) #.C[loﬂ. Assume also that A = dg(4) % ((90+qo) X id X @F)#E[loﬂ,
for some Borel map F : [0,T) x [0,1] — [0,1]. Let ®r(z) associates each z to its
path t — Fi(z). We also assume that there exists inverse map F* : [0,T) x [0,1] —
[0,1] with F} o F; = id and Fy o F} = id for £[10’1] —a.ez and any t € (0,T). Then
(0(t,2),00(Ff(2) + qo(F(2)) — 0(t, 2), F) is a weak Lagrangian solution in the sense of
Definition 2.2

Proof. From the definition of admissible data, we know that for £!'— a.e z € [0, 1], it holds
Q%% (0y(2),2,0) > qo(z) for L' —a.e z € [0,1]. Since suppma#ly = (Ao + qo)#ﬁz[loﬂ C
[— M, M], this means ||0y + qo||z~ < M.

That 6, € L>([0,T) x [0,1])NC(]0,T), L' ([0, 1])) follows from that 6; € C([0,T]; Yp,)-
Let qi(2) = 00(F (2)) + qo(Fi (=) — 6(t, z). From the boundedness of 6y + go, we imme-
diately get ¢, € L*°([0,T) x [0, 1]).

That Fi(-) € C([0,T); L*([0,1])) follows from that m3s#n; = (id x Ft)#ﬁ[lo’l] is nar-
rowly continuous. From w3 #n; € F(ﬁ[lovl},ﬁz[lm}), we see Ft#ﬁ[lo’l] = £[10’1], namely
F; is measure preserving. Combined with the assumption F; o F} = id shows that
(id x Ft)#ﬁ[l(m = (Fy x z'd)#ﬁ[lm}, hence F} is also measure preserving. As before,
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the narrow continuity of ¢ — m34#n; implies F;*(-) € C([0,T); L'([0,1])). This in turn
implies g € C((0,T); L1([0, 1])).

From the definition of the space Xp,, we see F.(z) € L*([0,1]; BV (0,T)), with total
variation < C. Next we will check through the points (i)-(vi) in the Definition

To see point (i), we observe that the measure m#(; — m#(o narrowly. In other
words, we have dy, — g, narrowly in P(Xp). This implies §; — 6y in L?([0,1]). That
F; — id follows from that wsy#n, = (id X Ft)#ﬁ[lo’l] — (id x id)#ﬁ[lo,l].

Point (ii) immediately follows from the definition of the space Y and Yg,.

Point (iii) follows from the assumption of F' made in this lemma.

To see point (iv), Recall g;(2) = 0o (F; (2))+qo(F;*(2))—0(t, z). Hence for any t € (0,7)
G:(2) = q:(Fi(2)) = Oo(Fy o Fy(2)) + qo(F} o Fi(2)) — 0(t, Fi(2)) = 0o(2) + qo(2) — 0:(2),
for £1— a.e 2.

Point (v) of Definition follows from point (iii) of Definition 5.4l Indeed, from
point (i), we know that for m4#\ — a.e (0,7), it holds ,(v;) < Oy () for L2—a.e
(t,t') € (0,T)* with t < t'. But m4#X = dy(p) X (I)F#ﬁ[lm]- Hence for £ — a.e z, it holds
0;(Fi(2)) < 0y(Fu(2)) for L2-a.e (t,t') € (0,T)% with ¢ < t'.

To see the last point, we know from our assumption on A that for A — a.e (é, $,2,7),
it holds s = 6g(2) 4 qo(z), and 4; = Fi(2). For (8, s,z,v) such that this holds, we know

EG,sp/ = E@,Go(z)-i-qo(Z),F(z) = {t € (OvT) : (G(F))z{('z)
= 00(2) + qo(2) — Q" ((0(F)); (2), F1(2),1)}-

We have seen in the above proof that for £! — a.ez, we have §;(2) = 6y(2) + qo(2) —
0.(F;(z)). Hence if we choose the monotone and left continuous representative, we have
G; (2) = 00(2) + qo(2) — (O(F));(2). Hence for A —a.e (0,s,2,7), Eps~ = E, where E, is
given in point (vi) of Definition Finally the measure theoretic equation holds A —a.e.
Since mo#A = £[10,1]7 we see the point (vi) of Definition holds. O

The main existence theorem we will prove will be the following:

Theorem 5.1. Let (y be an admissible initial data, then there exists a measure valued
solution to (2.1)-(2-4) with initial data (o.

6. EXISTENCE OF MEASURE VALUED SOLUTIONS

In this section, we will show the existence of measure valued solutions to any admissible
data defined in previous section.

The plan is the following: Let {3 be an admissible initial data, then we approximate
(o by convex combinations of discrete and ”deterministic” initial data. For each measure
appearing in the convex combination, we can run the discrete procedure described in
section 3. The question is to show one can take the limit of this approximation and the
properties given in Definition [5.4] hold in the limit.

6.1. Discretizing the initial data. We assume m#(y C [-M + 1, M — 1] for some
M > 0. Write K = M — 1. As a preliminary step, we note the following:

Lemma 6.1. Let y be an admissible data. Then there exists a Borel family of probability
measures {ag}tocy, C P(R x [0,1]), such that for po —a.e 0, supp m#ap C [-K, K],
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Mooy = E[l(m, 0(z) > O(s,2,0) for ag — a.e (s,z) and for any bounded Borel function
f0,s,2):Yp, x Rx [0,1] = R, it holds:

. 0 déo (0 = duo (0 0 d .
(6.1) /3/32xRx[o,1}f(’s’Z) (6,5, 2) /Y Mo()[ / oy T8 205,

2

Proof. The existence of this family of probability measures satisfying the integral identity
(61) is the standard disintegration theorem, see Theorem 5.3.1 of [I]. We just need to
check that supp m#ay C [—K, K|, mo#ay = E[l(m, 0(z) > O(s, 2,0) for ag — a.e (s, 2).

To see supp m#ay C [-K, K], take f(0,s,2) = fi1(0)x[-k,K)c(s), and f1 : Yp, = R
bounded and Borel measurable. Then we see

\/fl s (8)ACo 6, 5, 2)| <sup!f!/>q i1 (8)dCo 0, 5,2) = 0.

From (6.1I), we know for any choice of bounded Borel function fi, one has

[ 1@ [ - scaedasts. )] =0,

This implies [ X[-K,K]e(8)dag(s, z) = 0 for pp—a.e 6. For such 6, we have supp m1#ay C
_K,K].
| To se]ve Totay = E[loﬂ, one can similarly take f(0,s,z) = f1(0)f2(2), using that
m13#C0 = po X E%O 1> one concludes for any choice of f2(z) bounded and Borel on [0, 1]
it holds fo[Ql} fa(z)dag(s,z) = [ fa(z)dz for po — a.e 8. One just needs to choose
a countable dense subset {f3'},>1 of C([0,1]), apply this argument with f, = f3' and
concludes for ug — a.e 0, mo#ag = 5[1071}.

To see that 0(z) > O(s, 2,0) for ay — a.e (s, z), we integrate x{(s,s,2):0(z)>0(s,2,0)}, and
use (61)). By Lemma[5.3] such a function is bounded and Borel, hence its integral is well
defined. O

Due to Lemma [6.I, we can write (y = fYB dp X (s, z)dup(8), and for py — a.e 0,
2

ap(s, z) satisfy the ”correct” condition mentioned in Lemma [6.1] Next we will construct
discretization of «y for each fixed such 6. '

Recall we have shown supp oy C [—K, K] x [0,1], Define K; = [-K + %, —K+
%] for 1 <j<n,call wj =—-K + % Suppose ag(K; x J;) > 0, since we assumed
0(z) > O(s,z,0) for ap—a.e (s,z), we have, for some (&;j,2;) € K; x J;, we have
0(zij) > ©(dj, 2i5,0). Therefore, for some universal constant C' > 2K + %ﬁfg', if we
define a;; = w; — %, we have

sup |0, 0| C

9(2’7,) Z 9(2’7;]') Z @(dij,zij,O) Z @(di]—,zi,O) — > @(w] — Z,Zi,O).

n

There is no loss of generality to assume n is chosen sufficiently large so that £ — < 1. Now
we can define a measure o which is an approximation to ay, by putting:

Z Z XJ; (2)dz - nag(Kj x J;)0a,;(s).

1= 1]€H91
Here we denote
(6.2) Hg’i = {j 11 <5 <n, ag(Kj X JZ) > 0}
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Lemma 6.2. o — ag narrowly in P(R x [0, 1]).

Proof. Let f € Cy(R x [0,1]) with Lipschitz constant 1, and we denote H; = Hy; for
simplicity.

/fszdagsz ZZ/ f(z,8)dag(s, 2)
C
_ZZ/ — f(zi,w; — =))day(s, 2) —l—ZZfZ“w] )ag(K x J;)

i=1jeH; KjxJi i=1jeH;

:ZZ/ fzw]——)dz nag(J; x Kj) +ZZ/ f(zi,wj—%))dozg(z,s)

i=1 jEH; MKJ

+Z Z / fzi,wj — E) — f(z,w; — %)dz-nozg(,]i x Kj).

1=1 jeH;

The first term above is exactly the integral of f with respect to ag. The last two terms
will go to zero, because in each term of the sum, the integrand is controlled by % O

For any B > 0 and each 6 € Yp, we can define D" : Yp — Yp by putting D"(0) =
> 1 0(z)xs- Then for each fixed 6, it holds D"(6) — 6 in Y. Now with choice
B = Bj. By putting (§ = fYB2 dpn(g) X ag (s, z)duo(0), we then have ¢§ — (o narrowly
in P(Yp, x R x [0,1]) as n — oo. Besides, ({ satisfies the following properties:

()mis G = (D™ H110) Ly 11, supp maGh © [~K — 1,K +1] = [—M, M];

(ii)0(z;) > O(w; — %, 2;,0), whenever j € Hp ;, or 0(z) > O(s, 2,0) for ¢ —a.e (0, s, z).

For simplicity of notation, we will write
(6.3)

n
) C
= g E nxJ, (%) - u%&aij (s), with ,ufj = ap(K; x J;), and a5 = w; — o
i=1 jeHy ;

6.2. Construction of approximate solutions and passage to limit. The measures
¢y determines a sequence of discrete probability distributions. For each choice of 8, ag
prescribes the probability distribution of #(z) for each fixed z. More precisely, when
z € J;, the possible values of #M are given by «;, with probability 1u;;.

In order to apply the discrete procedure, we will make a random choice of o;; on each
J;, and this gives us a ”deterministic” and discrete initial #. Then we run the discrete
procedure, with this 6™ as initial data and it gives us a evolution, with probability
determined by the choice of a;;.

First we make a random choice of the «;;, allowed by the physical constraint. Denote
Sp to be the set of functions o : {1,2,--- ., n} — {1,2,--- n}, such that for each i,

o(i) € Hp ;. Determine a discrete initial 9(])\/[ "™ from o by prescribing:

= Z Qig(i)XJ; (%), or 90 o = Qio(i)-

The probability of such a choice is given by n"p5(1)20(2) - * * no(n)- Notice here that

6 -n

> jHij = %, hence ) u?a(l) gy = It is straightforward to check that ag
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given by (6.3)) is equal to
og€Sy

After we make such a choice, we apply the discrete procedure described in section 3
to {0(z)}1, and {HMn — 0(zi)}1,, with time step size 6t = , here C} is given
by Theorem (1] in order for all the estimates in that theorem to hold Notice that
0(2) < 0(zi1), and 6(z;) > O(OM:

beginning of section 2. Denote {ea,j(két)}lgjgn,0§k§%7 {G%n(két)}lgjgnpg%% to be

i " 2:,0), hence it satisfies the assumptions made in the

the discrete solutions contructed according to section 2 and we adopt similar notations
as there, but here with dependence on o. Define

(6.5) 05 (2) = Z 0(2:)X.1,-

(6.6) 0n(t, z) = On (k6t),
(6.7) 03" (t, 2) = 05" (kot),
(6.8) At 2) = %9(’,‘4%&) 5’*”"”9" ((k +1)5t),

for kot <t < (k+1)dt and z € Jj.

Denote F(t, z) be the discrete flow map constructed in section 3. Since we know 6 €
YB,, wesee ||07|| > < Ba, and ||0 "l < M. Hence ||08||Loe+]||q8 || Lo < M+2Bs. We
know from point (iii) of Theoremm as well as the choice of the constant B; made in the
paragraph before Definition (.4l that F, (-, 2) € Xp,, namely TVico 1) (F; (L, 2)) < Bi.
Similarly we have ||0}||r~ < Bs, according to the point (i) of Theorem 1] as well as
the choice of Bs made before Definition 5.4l In particular, for each fixed ¢t € [0,7T), it
holds 07(t,-) € Yg,. Hence 67 € C([0,T);Yp,) =Y.

Let ®7 : [0,1] — Xp, be defined by ®7(z) = F(-,z). From the discussion in the
previous paragraph, we know ®” indeed maps [0, 1] into the space Xp, and is easily seen
to be a Borel map.

Now we form the probability measure:

(6.9) A" = /Y dpo(0) > 0"y Mgy (Ogn X (007 X id x PWVHLY, 1))
B

2 o€Sy

Then we see \* € P(Y x R x [0,1] x Xp,), by our previous condtruction, and this
will be our approximate solutions. Following the notations in Definition 5.4 define
Ny = (ep X id X id X e})#\", we have

(6.10) = /Y dpio(0) S 1y 1y (S * (BB id x F 4L ).

og€Sy

In order to take limit, we need to show that A" is tight. For this, we just need to
show mp#A" is tight, for £ = 1,2,3,4, where 7 is the projection map onto the k-th
component. Indeed, we have

AN = / Apio(0) 3 1" lsy By B0

o€Sy
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Because of point (v) in Theorem [l we see that for any o € Sy, and s,t € [0,7), with
t—s> % we have

105 (s,-) = 05 (¢, )|l < Cs/3(t = 5).

The constant Cs is given by point (v) of Theorem [L.Ilwhen we have the bound |[0f|| e +
llg0]|ree < M + 2B5. Recalling (6.8)), it follows that 7 satisfies the same estimate, but
without the restriction ¢t —s > %. Therefore, w1 # A" is concentrated on the compact set:

F={feY:||ft,)) = f(s,")|lrz < C5+/3(t — s) for any s < t}.

That this is a compact set follows from the Arzela-Ascoli theorem and the compactness
of the space Yp,. Note that the functions in ¥ has bound in L°°, so convergence in LP
are equivalent for any p < oo.

As for mo# A", since for all o € Sy, we know from the construction of discrete solutions
that Heé\/f&nHLm < M. Hence supp mo# A" C [—M, M], hence is tight.

There is nothing to prove for m3# A" and m#\", as [0, 1] and X p, are compact spaces.

So up to extracting a subsequence, we can pass to limit for the measure defined in
(69), and we denote a limit measure to be A € P(Y x R x [0,1] x Xp,). It only remains
to show A is a solution. Finally we record a lemma which will be useful in the next
subsection.

Lemma 6.3. Define 0 = (e} X id X id x e;)#A", then 0 — n for any t € (0,T) as
n — 00.

Proof. First we remind the reader that this is not completely obvious as the evaluation
map e; in the last component is not continuous. Instead, we will use the continuity
estimates in point (vi) of Theorem (.11

For v € Xp,, extend v(t) = v(0+) for ¢ < 0, and define the operator: A. : Xp, — Xp,,
given by v — 7! ftt_e v(s)ds. Then it is straightforward to check A is a continuous
map for each fixed e, and A.(y) — v for each fixed v as € — 0.

Let f € Cy(Yp, x R x [0,1] x [0,1]) and is 1-Lipschitz, then we can compute

(6.11)
/f(@,s,z,z')dnf(@,s,z,z') = /f(§t787z77t)d)\n(§787z77)

= /(f(éty S, Z,’Yt) - f(éty S, 2, (A‘/s(ly))t)dAn(év S, Z,’}/) + / f(ét, 8, %, (A€(7))t)d>‘n(év S, Z,’}/).

Now observe that for each fixed ¢ > 0, the map (6,s,2,7) — (6y,5,2, (AL(7))) is
continuous. Hence for each fixed ¢ > 0, the following convergence holds as n — oo.

(6.12) / F@0 5,2 (AN (B, 5, 2,7) — / F@0 5,2 (Ac())) NG, 5, 2, 7).



RIGOROUS TREATMENT OF MOIST CONVECTION 27
To estimate the first term of (6.11]), observe

613
| / Brr 5. 2.70) — F(Br, 5, 22 (Ac (7)) AN (B, 5, 2,7)| < / e — (Ac()eldA" (@, 5, 2, )

< / dno(®) S m ) bl /m EE) = (B G0

oESy
t
dpp(0 Z n"uf coud et |EY(2) — FY o(2)|dzds < CgvVe + ot.
= 1o(1) ° no(n) t—e Jio] ) )
gEDY )

In the last inequality, we used point (vi) of Theorem [£.1]
Combining (€.I1)-(@I3)), it follows that

lim sup | [ £(85,2 )@ — )| < Cov/e + / e — (Ae(1))e|dA@, 5, 2,7).

n—oo

Now using the bounded convergence theorem, we can conclude the integral on the right
hand side tends to zero as e — 0 since (A-(7))r — Y as € — 0 and + is left continuous. [

6.3. The limit is a solution. In this section, we will show the limit A obtained in
previous subsection is a measure valued solution. Some preparations are needed before
we proceed.

For any B > 0, we may define the ”averaging” operator: A, : Y — Yp, given by
A (0)(z) = et fZZJrE O(w)dw. Here we extended the definition of 6 so that 6(z) = B for
z > 1. It is clear that for any 61, 62 € Yp, one has ||A-(01) — A(02)||12 < ||01 — O2]| 2.
Hence A. is a continuous map for each fixed € > 0. Also it is clear that for any 6 € Yp,
we have A, — 0 in Yp as ¢ — 0. We can define a map A. : Y — Y by the same
formula, namely A.(0)(t,z) = ¢! fz+€ (w t)dw Also one can check A Y -5 Yisa
continuous map for each ¢ — 0, and A.() = 0 in Y as ¢ — 0.

Now choose B = Bs, we prove the following estimate about A..

Lemma 6.4. Let ¢ > 0. For anyn > 1, and any t € (0,T), it holds

[ 1) — (A 0ldmadi(6.0) < B
Y><XB1

Proof. From the definition of the measure \", we can calculate:
[ 100 — (Ao ldmapn @t
YXXBl

= [ dpo®) S ey 1l /[0 R AER ) = (AL (P (o))

YB2 o€Sy

— [ dul0) 3 oty gy [ 188~ (ABN ()
YB [071]

2 o€Sy
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In the last equality, we used the measure preserving property of F;. For each fixed 0,
o, we can estimate

| 18e) — (Al = < /d/ (e ) — B ()i
01 0,1]

€ 1+s
= 5_1/ ds[/ O +(2 / o, dz ds < e~ / 2B3sds < Bse.
0 1 0

In the first equality above, we used the monotonicity of 67 in z. O
Next we will check the properties listed in Definition [5.4] one by one.

Lemma 6.5. Following the notation of Definition we have t — n € P(Y33 X
R x [0,1] x [0,1]) is narrowly contivous, and ¢; — (o, Taa#ne € F(/J[O 1 £[0 1])

(id x id)#Ljy ,y ast — 0.

Proof. First we check the continuity. Let f € Cp(Yp, x R x [0,1] x [0,1]) be 1-Lipschitz.
We compute

/f(9737z7 Z/)dn?(evzvswz/) = / d#o |:
YB,

Now choose t,t', with ¢ > t, one has for each fixed 6 € Yp,, and each o € Sy,
/|f (O2(t). 005" (2), 2, Fyy(2)) — FOR(), 0007 (2), 2, Fty (2)dz
<186) ~ 8 Olagoy + [ IF3e) = Fiu(2)lds < (CoBa -+ CoVT— T4 0.

Z n" lulcr(l luncr(n /f en ,n( ) Fo.nt(Z))dZ .

gESy

Here the constants C5 and Cg are given by the points (v) and (vi) of Theorem Il Now
since Y g N 1(1) " Hno(n) = 1, we obtain for any ¢ < t':

6.14) | / F(0, 5,2, YA — ) (6,5, 2, 2')| < (CsBs + Co)WF —E+ 5.

The continuity now follows from sending n — oo in (6.14]) and use Lemma To show
that ¢; — (o, we show that for each f € Cp(Yp, x R x [0,1]), and 1-Lipschitz, one has
sup,, | [ fd¢ — [ f¢@| < CV/t, with C universal. Indeed we calculate

/f@szd{tﬁsz /d,uo Zn,ulo_ ,umn/fH" (2), Fpi(2))dz.
o€Sp
On the other hand, from (6.4]), we know that
/f (0,s,2)dC (0, s,2)) /d,uo Z n" :“10— ’wa(n) /f(%‘,@é‘i;n(z),z)dz.
og€Sy

Using point (v) and (vi) in Theorem F1] once more, we see that for any choice of 6 € Yp,
, s € R, and o € Sy, we have

/[0 F085.2) = S0, () <1105~ T2 + / 2 — E7y(2)dz]

,1

< (0533 + 06)\/ t+ ot.
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Then we can proceed in a similar way as before. That mss#n} € F(E[O 1] E[O 1}) follows
readily from (6I0). The convergence for w3 #n;" is similar. g

Next we check the point (ii) of Definition 5.4l

Lemma 6.6. For any t € (0,T), ms#(G = pu X £[10’1], mo#(s has compact support.
Besides, 0(z) > O(s, z,t) for ( —a.e (0,s,z).

Proof. From (6.10) we conclude:

n M,TL n
(6.15) G = /y dpo(0) D 0" iy - o0y X (Bg" X Fat)#Ljo )

og€Sy
Hence we conclude
(6.16) mis#¢; Z/ duo(8) D 0" o) Hio(ySap X (Fai#Lion) = 18 % Ll
Yp, gESy
In the above, we used the measure preserving property of the map F', and here py' =
fYBg dpo(0) Y pes, /‘?0(1) e Nza(n)é@(t) € P(Ye,). Lemma [6.3] implies (* — (;. On the
other hand, we may assume py — g Passing to limit in (€16, we see mis#( =

Mt X £[1071}.

Now from (6.15]), one also calculate

To#( _/ dpo(60) Y 0" i1y oo #L 00,1

€Sy
From the construction given in the last subsection, we have HH "||z < M, hence supp
mo#() C [—M, M]. Passing to the limit, the same will hold for 7r2#§t

It remains to check that 0(z) > @(s,z,t) for (; — a.e (0,s,2). It suffices to show
[(0(2) — O(s, z,t))~d( (0, s, z) = 0. Now we calculate

/ (0(z) — O(s, z,t))d¢] (0, s, 2)
Y5, xRx[0,1]

= [ duo(®) 3 oy / (B2t 24 (2)) — (027 (2), F2y(2),6) " d=

Yp, 0cSy [0,1]
< / dMO Z n'" Mlo‘(l :u‘fm(n) / ‘ég(t7 Fan,t(z)) - Hg(ta Foy'ft(z)’dz + sup ‘8t®‘5t
Vb, €Sy (0,1]

< (Cs5 + sup |9,0)V5t

In the first inequality above, we used that 07 (t, [;(2)) > 02" (2), F}(2), két), where
t < kdt < (k4 1)ot. This follows from point (iv) of Corollary B3 In the last inequality,
we used the point (v) of Theorem [4.]] and the measure preserving property of the map
F7,. Passing to the limit as n — oo, the conclusion follows. O

Now we check the point (iii) of Definition [5.41
Lemma 6.7. Fiz ¢ > 0, define the function I, : Y x Xp, — R, given by

(97 7) L 0.1y ((Aaé)tl (’Ym) - (Aaé)tz (’Ytz))+xt1<t2 dtydis
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1S continuous.

Proof. Let (8%, 4%) — (8,~) in Y x Xp,, we need to show I(8% +*¥) — I(6,~). We prove
this by showing for £'—a.e t € (0,T), we have pointwise convergence:(A.0%),(7*) —
(A.0):(7;), and then the desired convergence follows from dominated convergence theo-
rem.

By Helly‘s selection principle, we know that ¥ — 7 except for a countable set
of t. Since |Ac(0%),(z) — Ac(0)(2)] < e V2||0F — 6|2, we know that A.(6%), —
A.(6); uniformly for each t € (0,T). Hence for any t with v*(t) — ~(t), it
holds (A-0F),(vf) — (Ac0)¢(v). Tt follows that ((Ac(0%))y, (V) — (A0F), (vE))T —

((Ac(0))e, (vey) = (AcB)s, (72,)) T for L2—av.e (t1,t2). Then the result follows from bounded
convergence theorem.
O

Lemma 6.8. For any n, the following estimate holds:
/ / (éh (71‘/1) - étg (7t2 ))+Xt1 <tg dﬁz (tly t2)d7714#)\n(07 ’7) < 2C5T2\/E
07)2 JYxXp,

Here Cj is the universal constant given in point (v) of Theorem [{.1].

Proof. According to the definition of A", we find

/ / (O, (V) — Oty (12)) T X0y <, AL2 (H1, o) dm1a#N" (6, )
0792 Jy xXp,

/ 0) S nmul / / m(FR (2)) — B (F2 (2)) X ctadtrdiadz,
Yp 0,7)2 J[0,1]

2 gESy
For each fixed o and @, it holds:

/ / m L (ER (2)) = 07 (2 (20)) e <tpdtydiads
0,12 J[0,1]
<2T// 82 (F2(2)) — 60 (2 (2))|dedz
[0,1]
/ / m o (ER (2)) — 68 (FP (20)) Xt <tndiydtod
0,T)2 [01]
_or / / 87, (2) — 6, (=) |dtd= < 2T°C5 /.
0 J[o,]

In the above calculation, we used point (iii) of Corollary B3] hence for any o € Sp,

0 (Fly) < 02, (F2y,), for any t; < t. When estimating 0} — 6, we used (6.8) and
point (v) of Theorem [£11 O

Lemma 6.9. For A—a.e (0,5,2,7) € Y x R x [0,1] x Xp,, we have
01, (1) < 01, (715, for L2 — ace (t1,t2) € (0,T)? with t; < to.
Proof. 1t suffices to show that

(6.17) / / (B (0) — Oy (1)) xtrcta L2 (b1 t2) ey 4 #A(B,7) = 0.
0,72 JY x Xp,
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For any € > 0, we can write

/ / (o, (1) — oy () s cta L2 (1 )y 4 (0, )
0,72 JY xXp,
T
<or / / (Br(e) — (Ac)s(y0))* dtdrmri#A(6, )
YXXBl

+ / / (A} () — (AB)ea (1)) Xt ctnd L2 (11, £2) 14BN (B, ).
0,72 JYxXp,

For the first term, it goes to zero as € — 0, since the integrant tends to 0 for each fixed
(t,0,7) and is clearly bounded. For the second term, we estimate:

/ / By () — (AeB)1s (1)) s cen L2t t2)dmra N (B, )
0,7)2 YxXﬁ

<oT / / 10:(v¢) — (AcB)(70)|dtdmia#N" (0, 7) + 2C5TV6t < 2B3T?e + 2C5T%V/6t.
YXXBl

The last inequality follows from the Lemma [6.4] while the first inequality used Lemma
6.8l Now send n — oo, Lemma [6.7] allows us to conclude:

/ / ((A0)e, (1) — (AcO)ty (2)) T X1 <t L2 (E1, o) dm1a#N (0, ) < 2B3T7%.
012 JYyxXp,

The proof is completed by sending £ — 0. O

Up to now, we have checked points (i)-(iii) in Definition [5.4l It only remains to check
point (iv). Our first goal will be to show the measure 9;(6;(7:)) is concentrated on the
”wet” set. As preparation, we prove the following:

Lemma 6.10. For any e, €1, €2 > 0, define the function K; : Y xRxXp, = R,i=1,2,
given by

K (é, $,7) = /(0 Ty X{o<to— t1<al}|( )t1 () — (Aeé)tz (%2)|X{(A6é)t1 (e1)>O(s,7e, 7t1)+€2}dt1dt2,

_ +
Ky(0,s,v) = /(0 Ty X{0<t2—t1<51}('7t2 - %1) X{(Asé)t1(7t1)>®(87%1 t1)+ea}
Then K; is lower semi-continuous, i = 1, 2.

Proof. Let (6%, s% %) — (6, s,7), need to show K;(0, s,~) < lim infj_, K;(0F, ¥ +F).
As explained in the proof of Lemma [6.7] for any ¢ such that 7E(t) — ~(t), we have
(A0%);(vF) — (A.0)4(v¢). Hence for such ¢

X{(Acl): (ve)>O(s et +eat = 0 I X0 G0y, 8y 505,98 ) bea )
The integrand is lower semi-continuous with respect to (é, s,7) if we fix (t1,t2) such that

’yfi — Y4, © = 1,2. Then the lower semi-continuity of J; follows from applying Fatou‘s
lemma. ([l
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Lemma 6.11. Let Cy be the universal constant given by Theorem [J.1], point (ii). Then
we have for any e >0
(6.18)

0.17? X{0<tz—t1<ciz}dt1dt2 / 10t (25) — 61, (’Ytl)’X{étl (%1)>@(57%17t1)+25}d)\(97 $,2,7) = 0.

and

(6.19) /[0 - X{o<tr—tr <&y dbrdt /(%2—%1)+X{gt1(%1)>@(s,ytl,t1)+2a}d>\(9,S,Zﬁ) = 0.

)

Proof. We only prove (6.18]). The proof of (6.19]) follows similar lines and is simpler. Fix
0 < 6 < e. Denote x5. = X{(As)e, (1) > (570, 1)) From the lower semi-continuity
proved in previous lemma, we conclude:

(6.20)

/[0 P X{o<to —t1<ci2}dt1dt2 / |(A59~)t2 (/7152) - (A(Sé)tl (/7151 ) |X6,2€d)‘(07 5, %, /7)

< hmnigi;o/[oﬂz X{o<tz—t1<gz}dt1dt2/|(A69)t2(7t2) — (As0)i, ()| X5,2:AN™ (0, 5, 2, 7).

We know the left hand side of (6.20]) will tend to the left hand side of (6.I8]) as 6 — 0.
Next we estimate the right hand side of (G.20]).

(6.21)

/[0 g Xostamn< gyt / [(As0)e, () — (As0)e, (2, [x5.2:dN" (8, 5, 2,7)
) T ) ) ~
< 2T/ / |(A50)t(7t) - 0t(’7t)|d71’14#)\n(0,f7)
0 Jyxxp,
! /[0 )2 X{0<t2_t1<0%}dt1dt2 / 102, () = O, (7)) [x5.2:AN" (0, 5, 2,7)

< 233T25 + /[0 " X{0<t2—t1<ci?}dt1dt2 / ’étz (Ve,) — ém ('Ym))‘X{étl(%1))>@(s7%1,t1)+1,5€}d)\n

T
+ B3T/0 dtl /(X&,QE - X{étl ('ytl))>@(577t1,t1)+1_5€})+d)\n,

In the second inequality, we used Lemma For the second term of the right hand side
above, we calculate:

(6.22)

/[O,T]2 X{0<t2_t1<ci2}dt1dt2 / |0t2 (71‘/2) - 0t1 (7t1 ))|X{§t1 (’Ytl))>@(87'yﬁ1,t1)+1_55}d)‘n

1
_ E n, 0 6 nn n on n
- /YB dlu()(e) n 'ulo'(l) . /.Lng(n) /(O,T)2 /0 X{0<t2—t1<ciz}|90',t2 (FU,tz (Z)) - Ha,tl (F0'7t1 (Z))|

2 o€Sy

X, (F2, (:)>00M," (2),Fr, (o)1) +1.5e} H10E2d2.
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Now define:
XL= Xon, (Fr, )>0(005" (2), 2y, (2)t1)+1.5¢}
X2 = Xqon, (Fr, )>0(0057 (2).F2, (2).)+e}

We now estimate the right hand side of ([6.22]). For any 6 € Yp, and o € Sy,

1
/OT / Xiotrti g s (Fin(2)) — B, (Fy (2D aditadtad

<2T/ / i, 6, (P (2))|dtdz

+ / / X0t < 5 030 (Fy () — B3, (Fiy (2)) [a dtaditad
0,72 Jo
0 1
<2r C5V5t+/(OT)2/O X{0<tz—t1<ciz}|93,tz(th2( 2)) = 054, (Fzy, (2))[x2dtidtadz

1
+ 231/ / (Xl — X2)+dt1dt2d2’.
0,7)2 J0

In the last inequality, we used the point (v) of Theorem Il The second term of right
hand side above is 0, due to point (iv) of Theorem [l To estimate the last term, we
notice

+
/OT / X1 —xz) dtldt2dz</0T / X0, (Firy (2))=0% . (F2, (2))>0.5¢}
< T [ 0o — 03, gz < 2LV
€ Jo Jo ’ ’ €

For the last term of (6.21]), we have

~ + n
/ /X&za X{th(fytl))>@(577t17t1)+5}) dA

S/o dtl/ X{1(Asf)e ()~ otl(m>>|>a}dv<€_l/ dtl/ (459 0) = )N
< _1BgT(5.

In the last inequality, we use Lemma [6.4] again. Combining the calculations above, we
obtain the left hand side of (6.20) < e~ B3T'6 +2B3T25. The proof follows from sending
0 —0. O

By Remark 2.4] and Lemma [6.9] we know for w14#A — a.e (6,7), one can determine a
unique monotone increasing, and left continuous function (6(-y))*, which equals 6;(~y;) for
L' —a.et € (0,T). We will simply denote this function by «(t) in the following lemma.

Lemma 6.12. Let € > 0, then for A—a.e (é,s,z,’y) €Y x Xp,, the following property
holds:

For any t € (0,T) such that a(t) > O(s,y,t) + ¢, it holds a(t') = a(t), and vy < v,
forany 0 <t —t < ﬁ Here Cy is the constant given by point (i), Theorem [{.1].
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Proof. Let (6,7) be chosen so that the statement of Lemma holds true, so that we
can define «a(t). Let (6, s, z,7) also satisfy that

(6.23) /[O’T]2 X{o<ta—t <55 100 (V) = 00 (V1)) X3, (74,0505, 11 )+e} F1dE2 = 0,
and

(6.24) /[0 P X{O<t2—t1<%}dt1dt2 /(%2 - 7t1)+X{§t1 (e,))>O(5,7e1 t1)+e} — 0.

We know from Lemma that (6.23) and ([.24) holds for A—a.e (6, s, z,7), for A —
a.e (0,s,2,7). Choose some (6,s,2,7) so that {.23) and (624) hold, then we have
ét2 (’Wz) = étl (/7151)) and Vto < Vt1s for £? —a.e (t17t2) with étl (/7151)) > 6(877t17t1) +e€
and 0 <ty —t1 < %

Fix any (f1,t2) with 0 <t2 —t1 < 55 and a(t1) > O(s, v, t1) +e. By left continuity,
there exists § > 0, such that a(t}) > O(s, vy ,t]) +¢ for any t} € (t1 —4,t1). By Fubini's
theorem, we know for L£'—a.e t| € (t; — 6,t1), we have a(th) = ét’z (vy,) = ét’l () and
Ve, < vy for LY —aethe ), th+ 36;)- By left contiuity of a(t) and y(t), we conclude
a(th) = ét’l (ve) and 7y, < vy for any ty € (],1) + 55;). This is true for L' —ae
t1 € (f1 — d,t1). Hence we can find a sequence {t{}72; C (t1 — d,#1) such that this is
true for ¢f and t7 — t; as n — oo. We can assume 0 (y4p) = (t]) holds. Define
ty =t} +t2 — t1, then t§ — t3, and we have a(ty) = a(t}) and vy < ym. Let n — oo,
and use left continuity of o and v one more time, we can conclude a(t;) = «a(t;) and
Vo < Vir- O

Lemma 6.13. For any C > 0, € > 0, define the function H. : Y xR x Xp, = R, given
by

H.(0,5,7) =/

<\<A55>t2 (1) — (Al (20) — (5700 12)
(0,T)2

+
~ 05, )| - Clta = 1) iy <tpdiadra
Then H. is continuous.

Proof. The proof of this lemma is quite similar to Lemma We already noted that
(0%, 4%) = (6,~) implies (A.0%),(vF) — (A-0)¢(7;) for any t such that pointwise conver-
gence of 4F happens. The proof follows then from dominated convergence since every-
thing is bounded. ([l

Lemma 6.14. Let Cy be the constant given in point (), Theorem [{.]], then we have:
(6.25

)
+
o ] (100 000 ~(O06 212005 30,00 -Catta 1)) vt ctttzdh =0

Proof. Write the left hand side of ([6.25) to be [ H(6,s,v)d), with the definition of H
similar to H. in the last lemma(without A.). Then we can estimate
H(B,s,7)d\0,s,z,7) = /(H — H.)(0,s,7)d\+ lim [ H.(0,s,~)d\".

n—o0

/Y><R><[0,1]><XB1
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The first term will tend to zero as € — 0. For the second term, we have

/Hg(é,s,v)d)\" < /|H€ — H|d\" +/H(§,s,7)d)\”

T ~ ~ ~

<or / / B (10) — (A ()|dA" + / H(G, 5,7)dA"
0

< 2T2B35+/H(0~,s,7)d)\".

In the last inequality above, we used Lemma [6.4l To deal with the remaining term, first
we can write:

[ s = [ ) 3wyl [ G0 F )i
YB, gESy

Fix some 0 € Yp,, and o € Sy, we can calculate:

/H (@7, 0M(2), P (2))ds < 2T/ /01 87, (F2(2)) — 00 (2 (2)) | dbdz

/H (07,027 (2), F7'(2))dz < 2T%CsV/5t + T2 Cyét.

In the second inequality above, we used the point (iv) and (v) of Theorem [£.1] and that
FZ4 is measure preserving.
Now the proof is finished by first letting n — oo and then let € — 0. O

As a corollary, we deduce that
Corollary 6.15. For A —a.e (0,s,z,7), it holds:

|a(t2) = a(tr) = (O(s, Yz, t2) — O(s, 710, t1) 7| < Calta — t),
for any 0 < t; <te <T. Here Cy is the constant given in point (iv) of Theorem [{.1]

With above preparation, we can check the point (iv) of Theorem [5.4]

Proposition 6.16. For A\—a.e (é, $,2,7), we have the equality of measures:

(6.26) 0 (0:(n)) = [0:(Q° (0 (1), %, 1))] ™~ [ Eo,5,1-

where Eyg s  1s the wet set given by

Epsy = {t € (0,T) : (0(7))"(t) = s = Q" ((6(7))" (1), 7, 1)}

Proof. We choose (6, s, z,7) such that the statement of Lemma .9} 612, and Corollary
hold. The plan is to apply Lemma [7I] to the functions: f(¢) = «a(t), and g(t) =
s — Q%% (a(t),y(t),t). Here a(t) is the monotone increasing and left continuous version
of 0;(+;) chosen according to Remark 2.4l This is possible since Lemma [6.9] holds.

First we verify that for A — a.e (6, s,z ), it holds a(t) > s — Q*%*(a(t),~(t),t), for
any ¢ € (0,7). This is the same as a(t) > O(s,y(t),t). This follows from Lemma
Indeed, we have shown there that for any ¢t € (0,7), 6(z') > O(s,2,t) for {; — a.e
(0,s,2'). Recall the definition of (;, this is the same as saying for any fixed ¢ € (0,7),
0:(v:) > O(s, v, t) for X\ — a.e (6,s,2,7). Now choose a countable dense subset D of
the set {t € (0,7) : a(t) = 0(y)}. Then D C (0,T) is also dense. Then for A — a.e
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(8,s,2,7), it holds a(t;) > O(s,y,,t;), for any t; € D. Since D is dense and both a(t),
~(t ) contmuous from left, we see it is true for all t € (0,7).

Next we verify points (i ( )-(iii) in Lemma [T.T]

The point (i) follows from Lemma Indeed, if a(t) > s — Q*™(a(t),y(t),t) + &,
then we know a(t) > ©(s,(t),t) + & for some universal constant C7. Now Lemma [6.12]
implies that a(t') = a(t), y(t') < 7(¢), for any 0 < ¢’ —t < &. Hence a(t') = a(t) >
s — Q% a(t'),y(t'),t') — sup |0,Q*¥|(t' —t) + . If we still have € > 2sup |0,Q*¥|(¢' — ),
then we have f(t') > g(t'). Hence f(t') = f(t) and f(¢') > g(t') aslong as 0 <t/ — ¢ <
m. This verifies point (i).

Next we verify point (ii). This follows from Corollary[6.15l Indeed, from that corollary,
we can deduce a(t) — a(t) = (O(s,y(t1),t) — O(s,7(t),t))", by fixing any t; = ¢, and
to \(t. If a(tt) = a(t), we conclude O(s,~v(t1),t) < O(s, (1), t). Therefore y(t) < (t)
by strict monotonicity of © in z variable. Then Q% (a(t1), y(t1),t) > Q% (a(t),y(t),1).
If a(tt) > a(t), we must have a(t) = O(s,v(t),t), or a(t) = s — Q% (a(t),y(t),t),
otherwise it contradicts Lemma But then a(t*) = O(s,y(t), ) Hence a(tT) =
s — Q% (a(tT),y(t1),t). In any case, we have f(t*) — f(t) = (g(tT) — g(t))". This
verifies point (ii).

Point (iii) again follows from Lemma Indeed, from the monotonicity of Q%%,
we just need to show for any [a,b) C {f > g}, it holds a(t2) = a(t1), and (t2) <
v(t1), for any t1 < to, t1, t2 € [a,b). Let t* = sup{t € [t1,t2] : a(t’) = a(tr), (') <
v(t1), for any ¢ <t¢}. Then we must have t* = to. Otherwise, since f(t*) > g(t*),
Lemma allows us to push beyond t,, giving a contradiction.

g

7. APPENDIX

Lemma 7.1. Let f : (0,7) — R be monotone increasing, and g : (0,7) — R €
BV((0,T)), both continuous from left and bounded, with f(t) > g(t), Yt € (0,T). Sup-
pose that for some constant C' > 0

@) fE)=f@), ft') > gt') for any t € (0,T) with f(t) > g(t) + & and any t' with t' —t < <.

(@) f(t) = f(t) = [g(t™) — g()]*, for any t € (0,T).
(191)g(ta) — g(t1) < C(ta —t1) for any t1 < to € [a,b) with [a,b) C {f > g}.

Then O.f is concentrated on the set {f = g} and for any Borel set E C {f = g}, one
has Ouf (E) = (0eg)™ (E).

Before we prove this result, we prove the following lemma as a preparation.

Lemma 7.2. Under the assumptions of previous lemma, we have for any [a,b) C (0,T)

(7.1) (0:9)* (la,b)) < f(b) = f(a) + CL (la,b) N {f > g}).
Proof. First recall

(19)" ([a,b)) = sup { Z(g(tz‘) —g(ti1))T ra=ty <ty <--- <t,=b}.

C
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We fix a partition appearing in the right hand side above. For each i, define

tioy =sup{t € [ti-1,t;) : [ti1,t) N {f = g} = 0},

t;=inf{t € [t;_1,1;) : [t,t:) N {f = g} = 0}.
Let D be the set of i for which [t;_1,t;)N{f = g} # 0. Then for i € D one can calculate:

If t; > t}, choose e < t; —t}, since [t +&,t;) C {f > g}, we see from point (iii):
g(t:) = g(ti1) = g(t:) — g(t; + ) + g(t; + ) — g(ti_1)
< C(ti—ti—e) +g(t; +¢) — g(ti)-

Let € — 0, we see

g(ti) — g(ti 1) < Cti —15) + 9((t)) ) — g(ti_1)-
On the other hand, since [t;_1,t,_;) C {f > g}, we can conclude

gti1) — glti1) < Cltica — i ).

Combining above calculations, we get:

n

S (0(t) — gt ) = S alt) — ol )T + S 0lt) — glti 1)
i—1 i€D i¢D
< > Clti—t)+ > Cltiy—ti)+ > Cti —ti1)
1€D, >t i€D i¢D
+ > (g =gt )T D (glt) —gltio)?
i€Dt; >t i€Dt;=t,
<CL(a,b)n{f>gh+ Y @) —gtio))™+ D (glt:) —gtio)™
i€D,t; >t ieD,t;=t

In the first inequality above, we used condition (iii). If i € D and t; > t, we will have

g((t)") = g(tiy) < f(t:) — f(tioa)-

Similarly for i € C and t; = t}, we see

g(t;) — g(ti_y) < f(ts) — f(ti_y)-

Hence
n

Z(g(tz‘) —g(tic))" < CLY[a,b) N {f > g}) + Z(f(ti) — f(tic1)

i=1 i€D
< CLY([a,b) N{f > g}) + f(b) — f(a)

So the desired result follows.

O
Corollary 7.3. For any (a,b) C (0,T),
(7.2) (919)* ((a,)) < F(B) — f(a®) + CL ((a,) N {f > g}).
Proof. Apply previous lemma to [a + &,b), and send £ — 0. O

Now we can prove Lemma [T with the help of previous lemma.
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Proof. Here 0, f is the Radon measure defined on [0, T") such that 9 f([a,b)) = f(b)— f(a)
for any [a,b) C [0,T).

First we show that 0y f is concentrated on the set { f = g}. We show that 0;({f > g}) =
0. Indeed, if tg € {f > g}, let By, = sup{t’ > to: f(t') = f(t)}. From the assumption,
we know By, > to. Also we know {f > g} = Upy)sg[t; Bt). Each component of the
set {f > g} contains a non-degenerate interval, hence there are only countably many
components. Therefore, {f > g} = U;C;, where C; are connected components, and has
form [a;, b;) or (a;,b;). It is not hard to see that f remains a constant on C;. Otherwise,
by continuity from the left, and also the point(i), one can conclude f(t) = g(t) for some
t € Cj, contradiction. So 0,f(C;) = f(b;) — f(a;) =0, or & f(C;) = f(b;) — f(a}) = 0.

Next let E C {f = g} be a Borel set, we want to show 9,f(E) = (9:g)*(FE). First
we show (9;9)"(E) < 0,f(E). Fix € > 0, then from the outer regularity of the Radon
measure J;f and L', we can find an open set U, with E C U, 8;f(U — E) < ¢, and
LYU - E) < e. Write U = U;(a;, b;), with (a;,b;) pairwise disjoint. Then we know
Zi 8tf((a,~, bz)) < E?tE + ¢, and Zz ﬁl((ai, bz) — E) < €.

Then from previous corollary, we know

(Dg)* <Z&g ((ai, bi)) Z +ZC£ ((ai, bi) N{f > g})
<O f(E)+e+C> LY(aib) — E) < 0 f(E) + 2.

Since ¢ is arbitrary, it follows that (9;g)T(F) < O.f(FE).
Now to prove the reverse inequality, Again we choose a cover E C U, with U =
Ui(ai, bi), (ai, b;) pairwise disjoint, such that (9,9)" (E) = >2,(0i9)™ ((ai, bi)) — &
We can assume (a;,b;) N E # () for each i. Denote
CL; = Sup{t € (aiabi) : (ai7t) n {f = g} = 0}7
b; = inf{t S (CLZ', bz) : [t, bl) N {f = g} = (Z)}
For those i with b, < b;, we can decrease b;, so that f(b;) — f((0))")+|g(bi) — g((b)) )] <
£27%. From the left continuity of f and g, one has f(b;) = g(b;). Now if b; = b}, then

(8:9) " ((ai, b:)) = g(bi) — gla;) > f(bs) — f(a;).

If b; > b}, then

(9r9) " ((ai, b:)) = (9((b)") — g(bi) ™ + (9(b)) — g(a;")
> F0)7) = ) + F(b)) = flai) = f(bi) = flai) —e27".

)-i—

So sum up, we get

Z(atg az, z >Z )_€>8tf( )

7

So the proof is complete. O
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