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A RIGOROUS TREATMENT OF MOIST CONVECTION IN A

SINGLE COLUMN

BIN CHENG, JINGRUI CHENG, MICHAEL CULLEN, JOHN NORBURY,
AND MATTHEW TURNER

Abstract. We study a single column model of moist convection in the atmosphere.
We state the conditions for it to represent a stable steady state. We then evolve
the column by subjecting it to an upward displacement which can release instability,
leading to a time dependent sequence of stable steady states. We propose a definition
of measure valued solution to describe the time dependence and prove its existence.

Keywords: Rearrangement, measure-valued solutions, Lagrangian equations.
AMS subject Classifications: 35B45, 35D30, 35Q86.

1. Introduction

This paper studies a simple mathematical model of moist convection in the atmosphere
set out in Bokhove et a. [2]. Moist convection is responsible for much of the severe
weather in the extratropics, and is the main driver of the tropical circulation which is a
fundamental part of the climate system. While convective storms have a very complicated
structure, in which the physics of water in various phases is critical, the essential process
can be captured by a one-dimensional model which only takes into account the saturation
of air parcels with the associated release of latent heat. Such a model is used routinely
by practising weather forecasters in interpreting the likely weather that will result from
a given vertical profile of temperature and moisture, see [6], chapter 4. It also forms a
key component of many theoretical studies of moist convection in the atmosphere; for
instance Holt [4], Lock and Norbury [5] and Shutts [7].

The model expresses conservation of heat and moisture, together with the change
of phase of moisture from vapour to and from liquid and the associated release or ab-
sorption of latent heat. This takes place at a moisture concentration which depends on
temperature and pressure, and introduces a strong nonlinearity into the problem. Moist
convection results from an instability of the vertical profile, which can be triggered by the
upward bulk motion of the vertical profile generated by extratropical weather systems.
In our model we represent the effect of this by making the saturation moisture content a
monotonically decreasing function of time. This allows the model to be solved in a fixed
vertical domain, which simplifies the presentation.

The conservation properties are expressed in Lagrangian form, so that a discrete ver-
sion of the problem can be solved by rearranging fluid parcels as in Bokhove et a. [2],
Holt [4] and Lock and Norbury [5]. These conservation properties have been shown to
be quite accurate even in more complicated models, e.g. by Shutts and Gray [8]. The
rearrangement procedure is designed to reflect the underlying physics of the problem.
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The first attempt to rigorously study this model was made by Dorian Goldman in his
Master’s thesis [3], where he considered a particular choice of moisture content and initial
data and proved the existence of weak solutions in Lagrangian variables. However, there
seems be certain gaps in the proofs and the solution was not completely characterized.
Besides, his proof does not generalize to more general choice of moisture content and
initial data, which can be physically interesting.

The aim of this paper is to show that the discrete problem converges to a limit solution
as the number of parcels is increased and to interpret the resulting solution as a weak
Lagrangian solution of the governing equations. We take a probabilistic approach in this
paper, which is completely different from [3] and allows us to deal with more general
choice of moisture content function and initial data, which is physically meaningful.

The plan of the paper is as follows. In section 2 we present the problem to be solved
and write it as a set of Lagrangian evolution equations. We note that we can only expect
a probabilistic solution for general choices of initial data. In section 3, we describe the
procedure to construct approximate(discrete) solutions given some deterministic discrete
initial data, and show they satisfy the physical constraints. In section 4, we establish
necessary estimates about these discrete solutions. In section 5, we come up with the
notion of measure valued solutions, and show this coincides with a natural definition of
the solution when the initial data and evolution is deterministic. In section 6, we take
the limit of the discrete solutions as time/space step size tends to zero and obtain the
existence of measure valued solutions.

2. Definition of the problem

The problem to be studied, Bokhove et al. (2016), is

Dt(θ + q) = 0 in (z, t) ∈ [0, 1] × (0, T ).(2.1)

Dtθ =

{

0 if q < Qsat(θ, z, t)
[Dt(Q

sat(θ, z, t))]− if q = Qsat(θ, z, t)
in (z, t) ∈ [0, 1] × (0, T ).(2.2)

∂u

∂z
= 0 in (z, t) ∈ [0, 1] × (0, T ).(2.3)

q(z, t) ≤ Qsat(θ(z, t), z, t).(2.4)

As usual, we denote Dt = ∂t + u · ∂z. The equation (2.3) above should be interpreted
as the divergence free condition with respect to the space variable z, namely its flow is
measure preserving. The unknown functions are the potential temperature θ(z, t) and
the moisture content q(z, t). Equation 2.4 expresses the physical constraint that the
moisture content is limited by the known saturation value Qsat which is time dependent.
The interesting case, which we study, is where Qsat is monotonically decreasing in time.
However, this not needed in the subsequent argument. In the above, Qsat : R3 → R is a
smooth function in its variables, and the following strict monotonicity conditions hold:

(2.5) ∂θQ
sat > 0, ∂zQ

sat < 0, for any (θ, z, t) ∈ R
3.

Physical solutions to (2.1)-(2.4) should also satisfy the following constraint:

(2.6) z 7−→ θ(z, t) is monotone increasing in z for any t ∈ (0, T ).
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The reason for imposing such a constraint is that physical solutions should minimize the
energy functional

E(θ̄) = −
∫

[0,1]
zθ̄(z)dz,

where θ̄(z) is a bounded Borel function on [0, 1], among all the possible rearrangements
of the particles. It is easy to see that a function θ(z) achieves the minimum of E among
all the functions θ̄ with the same distribution as θ iff θ(z) is monotone increasing. Rear-
ranging the parcels is a measure preserving map which does not change the distribution.

It is not hard to see that, in general, the solution does not have good regularity.
Indeed, if everything is smooth, then let F : [0, T )× [0, 1] → [0, 1] be the flow map. From
(2.3), we get for each fixed t ∈ [0, T ), Ft(·) preserves L1

[0,1]. If F were continuous, then

we can obtain that F (z) = z or F (z) = 1− z. But F0 = id, hence by continuity in t, we
would be getting F (t, z) = z for all t. This is not compatible with (2.4) and (2.6) except
in trivial cases. Hence F cannot be continuous. Therefore, the velocity u is defined only
as a measure. It is not clear how to define weak solutions to (2.1)-(2.4) in a standard
way since the set {q = Qsat(θ, z, t)} is only a general Borel set and may not have nice
regularity.

We next define the solution in Lagrangian variables. Let Ft(z) be the flow map, we
then get a reformulation of (2.1)-(2.4):

∂t(θ̂ + q̂) = 0 in (z, t) ∈ [0, 1] × (0, T ).

(2.7)

∂tθ̂ =

{

0 if q̂ < Qsat(θ̂, Ft(z), t)

[∂t(Q
sat(θ̂, Ft(z), t))]

− if q̂ = Qsat(θ̂, Ft(z), t)
in (z, t) ∈ [0, 1] × (0, T ).

(2.8)

Ft#L1
[0,1] = L1

[0,1], for any t ∈ [0, T ).

(2.9)

q̂(z, t) ≤ Qsat(θ̂(z, t), Ft(z), t).

(2.10)

In the above, q̂ and θ̂ denote the corresponding variables in Lagrangian coordinates,

namely q̂(t, z) = q(t, Ft(z)), and θ̂(t, z) = θ(t, Ft(z)). Here we remark that the equations

can be interpreted in a natural way. Indeed, (2.7) means θ̂ + q̂ is conserved along flow
lines. As for equation (2.8), notice that the right hand side of (2.8) is nonnegative, hence

∂tθ̂ will be a nonnegative measure. If we can show t 7−→ Ft(z) has bounded variation,

then ∂t(Q
sat(θ̂, Ft(z), t)) is a well-defined finite signed measure and its negative part can

be defined. Therefore, (2.8) can be naturally defined as an equality of measures.
It will be convenient to consider the function Θ(w, z, t) as the solution θ to the equa-

tion:

(2.11) θ +Qsat(θ, z, t) = w

This function is well defined thanks to the assumed strict monotonicity of Qsat about θ.
Also we know that Θ is smooth and satisfies the strict monotonicity

(2.12) ∂wΘ > 0, ∂zΘ > 0.

This is clear from (2.5). First we make a simple observation whose proof is elementary.
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Lemma 2.1. Define θM(t, z) = θ(t, z) + q(t, z). Then q(t, z) ≤ Qsat(θ(t, z), z, t) is
equivalent to θ(t, z) ≥ Θ(θM(t, z), z, t). Equivalence holds true also if we replace the
above by a strict inequality.

We assume the inital data satisfies the physical constraint. Namely, we are given
θ0(z), q0(z) ∈ L∞([0, 1]), such that z 7−→ θ0(z) is monotone increasing, and q0(z) ≤
Qsat(θ0(z), z, 0) for a.e-z. Inspired by the previous discussions, we propose the following
definition of weak Lagrangian solutions.

Definition 2.2. Let θt(z), qt(z) ∈ L∞([0, T ) × [0, 1]) ∩ C([0, T ), L1([0, 1])), and F,F ∗ :
[0, T ) × [0, 1] → [0, 1] be Borel measure preserving maps such that Ft(·), F ∗

t (·) ∈
C([0, T );L1([0, 1])), and F·(z) ∈ L∞([0, 1];BV ([0, T )). Let θ0(z), q0(z) be as in previ-

ous paragraph. Denote θ̂t(z) = θt(Ft(z)) and q̂t(z) = qt(Ft(z)). Then we say (qt, θt, Ft)
is a weak Lagrangian solution to initial data θ0,q0 if the following holds:

(i)θt → θ0, qt → q0 in L1([0, 1]), Ft → id in L1([0, 1]) as t → 0.

(ii)z 7−→ θt(z) is monotone increasing for each t ∈ [0, T ).

(iii)For any t ∈ [0, T ), Ft ◦ F ∗
t (z) = z, F ∗

t ◦ Ft(z) = z for L1-a.e z ∈ [0, 1].

(iv)For L1−a.e z ∈ [0, 1], θ̂t(z) + q̂t(z) = θ0(z) + q0(z), for L1 − a.e t ∈ (0, T )

(v)For L1 − a.e z ∈ [0, 1], t 7−→ θ̂t(z) ≤ θ̂t′(z) for L2 − a.e− (t, t′) with t < t′

(vi)∂tθ̂(·, z) = [∂t(Q
sat(θ̂(·, z), F·(z), ·)]−⌊Ez, where Ez = {t ∈ (0, T ) : q̂∗t (z) = Qsat(θ̂∗t (z), Ft(z), t)},

and q̂∗t (z), θ̂
∗
t (z) is the monotone, left continuous version of q̂t(z), θ̂t(z). chosen according to

Remark 2.4.

Remark 2.3. Let f : (0, T ) → R be Borel measurable, such that f = f̃ for L1 − a.e

t ∈ (0, T ), with f̃ ∈ BV (0, T ), then ∂tf is a finite signed measure, defined by
∫ T

0
f(t)∂tζ(t)dt = −

∫ T

0
ζ(t)(∂tf)(dt), ∀ζ ∈ C1

c ((0, T )).

If we choose f̃ such that it is left continuous, then:

∂tf([a, b)) = f̃(b)− f̃(a), for any [a, b) ⊂ (0, T ).

Remark 2.4. Let f : (0, T ) → R be Borel measurable such that for L2 − a.e (t, t′) ∈
(0, T )2 with t < t′, we have f(t) ≤ f(t′), then there exists a unique function f∗ : (0, T ) →
R, monotone increasing, continuous from the left, such that f = f∗ for L1−a.e t ∈ (0, T ).

It turns out that above definition of weak Lagrangian solutions is still too strong, and
one cannot expect the existence of solutions in the sense defined above except for some
special choice of the function Qsat and the initial data.

One difficulty with the system (2.1)-(2.4) is that we do not have much regularity in
space. The only regularity in space comes from the monotonicity of θ, and in general,
no regularity in space for q, as well as the flow maps Ft, F

∗
t . This means we lack the

necessary compactness to get a function qt(z), or a measure preserving flow map F,F ∗

in the limit.
The evolution of θ and q is highly unstable under small perturbations of the initial

data, which can be seen from the construction of the discrete problem. This suggests
the use of probabilistic description of the solution. Under this description, heuristially
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for each time t, we have a certain probability distribution for {θ, q(z)}z∈[0,1), and we
make a random choice of θ, which is a monotone increasing function on [0, 1), also make
a random choice for q(z) for each z, according to this probability distribution and then
evolve. This determines the probability distribution for {θ, q(z)}z∈[0,1) at later times. In
this spirit, we need to prescribe some probability distribution as initial data.

On the other hand we need the correct equation to be satisfied (point (vi) of Definition
2.2), this suggests considering some ”path-spaces” which describes all the possible paths
of some parcel. Inspired by the probabilistic approach of transport equation, we wish
to obtain the solution as a measure in some path space, and the correct probability
distribution is obtained by projecting to each t.

We will make the above heuristic discussions rigorous in section 5.

3. Solution of the discrete problem

In this section, we construct discrete solutions following the method of Bokhove et a.
[2] and do estimates about them.

The discrete procedure is designed to reflect the underlying physics of the problem,
as expressed in Met Office [6], chapter 4. It is based on a representation of the fluid as

discrete parcels, so that θ̂ and q̂ are piecewise constant. The initial values satisfy the
physical constraints (2.10) and (2.6) at t = 0. We define Qsat to be a monotonically
decreasing function of time and discretise the time variation. Thus after some time
interval the constraint (2.10) will be violated.

The Lagrangian form of the equations (2.7)-(2.10) is solved by representing the flow

map Ft as a rearrangement of the fluid parcels. The evolution of θ̂ and q̂ on each parcel
is computed using (2.7) and (2.8). If (2.10) is violated for any parcel, then (2.8) is used

to update θ̂ and set q equal to Qsat. The update to θ̂ may result in the constraint (2.6)
being violated, in which case the parcels have to be rearranged to restore the constraint.
θ̂M = θ̂ + q̂ is conserved for each parcel under the rearrangement as required by (2.7),

and θ̂ ≥ Θ(θ̂M , z, t) at the final positions beacuse of Lemma 2.1.
As found by Bokhove et a.[2], finding this rearrangement is non-trivial because of the

dependence of Qsat on θ and z, and because (2.10) may be violated on several parcels
simultaneously. We call these ’wet’ parcels. In this case there may be many ways to
satisfy the constraints. The physics of the problem requires that the final position of the
wet parcel with the largest θ̂M is determined first. This is done by moving it upwards,
thus increasing θ̂, until it encounters a larger value of θ̂ at some z = zt. We refer to this
as the parcel ”beating” all other parcels with z < zt. All overtaken parcels have to move
down to compensate for the upward displacement. Extreme care is required in showing
that this procedure has a well defined limit as the timestep tends to zero.

We now define this procedure precisely. Denote zi = i
n , Ji = [ i−1

n , i
n), for any in-

teger 1 ≤ i ≤ n. Let {θnj }nj=1, and {qnj }nj=1 be given, such that θnj ≤ θnj+1, and

qnj ≤ Qsat(θnj , zj , 0), for any 1 ≤ j ≤ n. This means that a discrete version of (2.6)

and (2.10) is satisfied. It follows from Lemma 2.1 that θnj ≥ Θ(θnj + qnj , zj , 0). Let

δt = 1
Cn for some large constant C > 0 to be determined later on. This will be chosen

so that it depends only on the function Qsat, T , and the initial data. Define the wet set
at time step 0 to be Wn = {1 ≤ j ≤ n : θnj < Θ(θnj + qnj , zj , δt)}. We will also denote
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θM,n
j = θnj + qnj . First we decide which parcels move to zn. Define

W ′
n ={j0 ∈ Wn : for any j > j0 with j /∈ Wn, θ

n
j < Θ(θM,n

j0
, zj , δt), and if j ∈ Wn,

θM,n
j0

> θM,n
j }.

Here we make the convention that n ∈ W ′
n if and only if n ∈ Wn. The set W ′

n is exactly
the set of parcels which are ”wet” and can beat all other parcels above up to n. We will
sometimes call them ”eligible”. First assume W ′

n 6= ∅. Let j0 ∈ W ′
n be the parcel with

the largest θM,n
j among W ′

n(if there are more than one such parcels, simply choose j0 to

be largest possible), define the first rearrangement

σn(k) =







k if 1 ≤ k < j0;
n if k = j0;
k − 1 if j0 < k ≤ n.

To explain this in English, a parcel can jump to zn only if it is wet and has the largest
θM,n among all ”eligible” parcels.

We also update θnj after the first rearrangement in the following way:

θn,n−1
j =

{

θn
σ−1
n (j)

if j 6= n;

Θ(θM,n
j0

, zj , δt) if j = n.

That is, we update the θ of parcels which jumped according to its final position, and leave
the θ of other parcels unchanged. In Lagrangian coordinates, define θ̂n,n−1

j = θn,n−1
σn(j)

,

q̂n,n−1
j = θnj + qnj − θ̂n,n−1

j . This is consistent with (2.7). Define the new wet set

Wn−1 = {1 ≤ j ≤ n : θn,n−1
j < Θ(θM,n

σ−1
n (j)

, zj , δt)},

W ′
n−1 = {j0 ∈ Wn−1 : for any j0 < j ≤ n− 1 with j /∈ Wn−1, θ

n,n−1
j < Θ(θM,n

σ−1
n (j0)

, zj , δt).

or if j ∈ Wn−1, θ
M,n

σ−1
n (j0)

> θM,n

σ−1
n (j)

.}.

(3.1)

Notice that Wn−1 ⊂ {1, 2, · · · , n− 1}.
If W ′

n = ∅, then simply take σn = id, and take θn,n−1
j = θnj , q

n,n−1
j = qnj . Then we

have Wn−1 = Wn.

Next we repeat the above procedure to {θn,n−1
j }n−1

j=1 , {q
n,n−1
j }n−1

j=1 , and the new wet

set defined by (3.1). Let σn−1 be the resulting rearrangement of the first n− 1 parcels.
Let σn−1(n) = n, so that it becomes the rearrangement for n parcels.

In general, let σk be the rearrangement when we decide which parcel moves to zk with

σk(l) = l for l > k. Denote βk = σk+1 ◦ · · · ◦ σn, with βn = id. Let {θn,kj }nj=1, {qn,kj }nj=1

be the updated θ and q after σk+1. We also denote θnj = θn,nj , and qnj = qn,nj . The wet
set at this stage is given by

Wk = {1 ≤ j ≤ n : θn,kj < Θ(θM,n

β−1
k

(j)
, zj , δt)}

W ′
k = {j0 ∈ Wk : for any j0 < j ≤ k with j /∈ Wk, θ

n,k
j < Θ(θM,n

β−1
k

(j0)
, zj , δt),

or if j ∈ Wk, θ
M,n

β−1
k

(j0)
> θM,n

β−1
k

(j)
.}.

(3.2)
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As before, we make the convention that if j0 ≥ k, then j0 ∈ W ′
k if and only if j0 ∈ Wk.

The sets Wk, W
′
k determines the evolution when we decide which parcel moves to zk−1.

The following inductive formula holds when W ′
k+1 6= ∅. Let j∗ ∈ W ′

k+1 be such that

θM,n

β−1
k+1(j∗)

≥ θM,n

β−1
k+1(j)

for any j ∈ W ′
k+1, then we move this parcel to zk+1, namely,

(3.3) σk+1(j) =







j if j < j∗ or j > k + 1;
k + 1 if j = j∗;
j − 1 if j∗ < j ≤ k + 1.

We update θnj accordingly:

(3.4) θn,kj =







θn,k+1

σ−1
k+1(j)

if j 6= k + 1;

Θ(θM,n

β−1
k

(k+1)
, zk+1, δt) if j = k + 1.

If W ′
k+1 = ∅, then simply put σk+1 = id and θn,kj = θn,k+1

j .

Let θ̂n,kj = θn,kβk(j)
. Define qn,kj = qn,k+1

σ−1
k+1(j)

+ θn,k+1

σ−1
k+1(j)

− θn,kj . q̂n,kj = qn,kβk(j)
. We observe

some useful properties of above rearrangement algorithm:

Lemma 3.1. For each index j ∈ {1, 2, · · · , n}, one of the following must hold:
(i)There exists a unique k1 ∈ {1, 2, · · · , n}, such that βk1−1(j) = σk1(βk1(j)) = k1 >
βk1(j). Besides, for any k ≥ k1, βk(j) ≤ βk+1(j), and any k ≤ k1 − 1, βk(j) = k1.
(ii)βk(j) ≤ βk+1(j) for any 0 ≤ k ≤ n− 1.
Morover, if for some k2, βk2(j) ≤ k2 and /∈ Wk2, then the second alternative must hold.
On the other hand, if for some j1, j2, and some k3, it holds βk3(j1) < βk3(j2), but
βk3−1(j1) > βk3−1(j2), then the first alternative above holds for j1 with k1 = k3.

This lemma says that for any given parcel, either it experiences no lifts at all among
the σk‘s, or there is a unique σk which lifts this parcel and it stays there in the latter
rearrangements of the same time step. If a parcel becomes dry in a certain time step,
then it will stay dry in the latter arrangement. The only way the order of two parcels
can change is that the lower parcel experience a jump.

Proof. Fix an index j. Suppose there exists some 0 ≤ k1 ≤ n− 1, for which βk1−1(j) >
βk1(j). From the definition of the σk given in (3.3), we see that if σk(j) > j for some
j, k, it must hold that σk(j) = k. Hence from βk1−1(j) = σk1(βk1(j)) > βk1(j), we see
σk1(βk1(j)) = k1. If for some k ≥ k1, βk(j) > βk+1(j), then the same argument shows
βk(j) = σk+1(βk+1(j)) = k + 1. Now for any k′ ≤ k, we have σk′(βk(j)) = βk(j), a
contradiction. This proves for k ≥ k1, βk(j) ≤ βk+1(j). The case for k ≤ k1 − 1 follows
directly from definition of σk.

To see the moreover part, observe that for any k ≥ k2, we must have βk(j) ≤ βk+1(j).
If not, by the argument given in the first part, we can then conclude βk′(j) = k + 1,
for any k′ ≤ k. In particular, this means βk2(j) = k + 1 > k2, a contradiction. Since
βk2(j) /∈ Wk2 , from (3.3), we see βk2−1(j) = σk2(βk2(j)) ≤ βk2(j). This means that

θn,k2−1
βk2−1(j)

= θn,k2βk2
(j) ≥ Θ(θM,n

j , zβk2
(j), δt) ≥ Θ(θM,n

j , zβk2−1(j), δt).

It follows that βk2−1(j) /∈ Wk2−1. Hence one conclude βk2−2(j) = σk2−1(βk2−1(j)) ≤
βk2−1(j). Same argument as above applies and shows βk2−2(j) /∈ Wk2−2. One can apply
the same argument and shows βk(j) is monotone decreasing in k. The ”on the other
hand” part follows directly from the definirtion of σk given in (3.3). �
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We want to show above define algorithm preserves a discrete version of the physical
constraint:

Lemma 3.2. (i) θn,kj ≤ θn,kj+1 for any 1 ≤ j ≤ n− 1;

(ii)q̂n,kj + θ̂n,kj = qnj + θnj .

(iii)θ̂n,kj ≥ θ̂n,k+1
j .

(iv)qn,kj ≤ Qsat(θn,kj , zj , 0), for 1 ≤ j ≤ k, and qn,kj ≤ Qsat(θn,kn , zj , δt), for k+1 ≤ j ≤ n.

Proof. First we prove the point (ii). From our definition, we know that qn,kj + θn,kj =

qn,k+1

σ−1
k+1(j)

+ θn,k+1

σ−1
k+1(j)

. From this it immediately follows θ̂n,kj + q̂n,kj = θ̂n,k+1
j + q̂n,k+1

j .

We prove the other three statements by induction on n. First observe that statements
(i)-(iv) are true for k = n.(point (iii) is empty when k = n.) Now assume these are true
for k + 1 and above with 1 ≤ k + 1 ≤ n, wish to prove these for k.

Now we prove point (iii) for k, assumingW ′
k+1 6= ∅. One can see point (iii) is equivalent

to θn,kσk+1(j)
≥ θn,k+1

j , by our definition of θ̂n,kj . If σk+1(j) 6= k+1, then one has θn,kσk+1(j)
=

θn,k+1
j from (3.4). Now if σk+1(j∗) = k + 1, then

θn,kk+1 = Θ(θM,n

β−1
k+1(j∗)

, zk+1, δt) ≥ θn,k+1
k+1 ≥ θn,k+1

j∗
.

The first inequality above used the fact that j∗ ∈ W ′
k+1, hence it must ”beat” the parcel

originally at zk+1. The second inequality used the induction hypothesis that point (i)

holds with k + 1. If W ′
k+1 = ∅, then we simply have σk+1 = id, and θn,kj = θn,k+1

j , so
there is nothing to prove.

Then we prove point (i). We only consider the case when W ′
k+1 6= ∅, otherwise nothing

is changed by σk+1 and the proof is trivial. Let j∗ ≤ k+1 be such that σk+1(j∗) = k+1.
The only nontrivial cases to check is when j = k and j = k + 1, the rest of the cases

will follow from (3.3), (3.4) and the induction hypothesis that (i) holds for k + 1. So it
boils down to prove

(3.5) θn,k+1
k+1 ≤ Θ(θM,n

β−1
k+1(j∗)

, zk+1, δt) ≤ θn,k+1
k+2 .

The first part of the inequality follows from that j∗ ∈ W ′
k+1, that is, it needs to ”beat”

the parcel originally at zk+1 in order to rise to zk+1. To be precise, suppose that k+1 /∈
Wk+1, then we know from j∗ ∈ W ′

k+1 and the formula for W ′
k in (3.2) that θk+1

k+1 <

Θ(θM,n

β−1
k+1(j∗)

, zk+1, δt). This is exactly what we want. Now if k + 1 ∈ Wk+1, then again

from j∗ ∈ Wk+1 one concludes that θM,n

β−1
k+1(j∗)

≥ θM,n

β−1
k+1(k+1)

. Hence

Θ(θM,n

β−1
k+1(j∗)

, zk+1, δt) ≥ Θ(θM,n

β−1
k+1(k+1)

, zk+1, δt) ≥ θn,k+1
k+1 .

The first inequality used the monotonicity of Θ with respect to θM , the second inequality
used that k + 1 ∈ Wk+1. This proves the first part of (3.5).

The reason why the second part of the inequality holds is that if it were not true,
then j∗ would have risen to zk+2 instead of zk+1 in the rearrangement σk+2. To make
this precise, let σk+2(j∗∗) = j∗, then we must have j∗∗ ≥ j∗. If not, we will have
σk+2(j∗∗) = k + 2 = j∗, not possible. Since j∗ ∈ Wk+1, we have

θn,k+2
j∗∗

= θn,k+1
j∗

< Θ(θM,n

β−1
k+1(j∗)

, zj∗ , δt) ≤ Θ(θM,n

β−1
k+2(j∗∗)

, zj∗∗ , δt).
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This implies j∗∗ ∈ Wk+2. Now we claim that for any j with j∗∗ < j ≤ k + 1 and j /∈
Wk+2, then θn,k+2

j < Θ(θM,n

β−1
k+2(j∗∗)

, zj , δt). Indeed, since j /∈ Wk+2, we have σk+2(j) ≤ j,

σk+2(j) /∈ Wk+1, and θn,k+2
j = θn,k+1

σk+2(j)
. If the claim is not true, then

Θ(θM,n

β−1
k+1(j∗)

, zσk+2(j), δt) ≤ Θ(θM,n

β−1
k+1(j∗)

, zj , δt) ≤ θn,k+2
j = θn,k+1

σk+2(j)
.

Notice σk+2(j) ≤ k + 1, also σk+2(j) > σk+2(j∗∗) = j∗, this contradicts j∗ ∈ W ′
k+1.

Let j1 be the maximal j such that j ≥ j∗∗, j ∈ Wk+2, and θM,n

β−1
k+2(j∗∗)

≤ θM,n

β−1
k+2(j)

. From

the induction hypothesis with k + 2 and point (iv), we know j1 ≤ k + 2. Consider 2
cases:

If j1 /∈ W ′
k+2. First observe for any j > j1 and j ∈ Wk+2, we must have θM,n

β−1
k+2(j)

<

θM,n

β−1
k+2(j1)

. Otherwise it will contradict the maximality of j1. Also for any j with j1 <

j ≤ k + 1, and j /∈ Wk+2, we conclude from the claim θn,k+2
j < Θ(θM,n

β−1
k+2(j∗∗)

, zj , δt) ≤
Θ(θM,n

β−1
k+2(j1)

, zj , δt). The only possibility remains is that k + 2 /∈ Wk+2, and θn,k+2
k+2 ≥

Θ(θM,n

β−1
k+2(j1)

, zk+2, δt). That is, k + 2 is a dry parcel and cannot be beaten by j1. Hence

θn,k+1
k+2 ≥ θn,k+2

k+2 ≥ Θ(θM,n

β−1
k+2(j1)

, zk+2, δt) ≥ Θ(θM,n

β−1
k+2(j∗∗)

, zk+1, δt).

This is what we want.
If j1 ∈ W ′

k+2, let j2 ≤ k+ 2 be such that σk+2(j2) = k+ 2. From the definition of the

procedure, we have θM,n

β−1
k+2(j2)

≥ θM,n

β−1
k+2(j1)

, since the parcel that actually jumps up should

have the largest θM among all ”eligible” parcels. From the inductive formula (3.4), we
see

θn,k+1
k+2 = Θ(θM,n

β−1
k+2(j2)

, zk+2, δt) ≥ Θ(θM,n

β−1
k+2(j1)

, zk+2, δt) ≥ Θ(θM,n

β−1
k+2(j∗∗)

, zk+1, δt).

So far we finished the proof of point (i).

It only remains to show the point (iv). This is equivalent to showing θn,kj ≥ Θ(θn,kj +

qn,kj , zj , 0) for 1 ≤ j ≤ k, and θn,kj ≥ Θ(θn,kj + qn,kj , zj , δt), for k + 1 ≤ j ≤ n. To see

the first part, we know for 1 ≤ j ≤ k, θn,kj = θn,k+1

σ−1
k+1(j)

, and we also know from point (ii)

already proved that θn,kj + qn,kj = θn,k+1

σ−1
k+1(j)

+ qn,k
σ−1
k+1(j)

. Also σ−1
k+1(j) ≤ k + 1, since the

rearrangement σk+1 never moves down a parcel by 2. Apply the induction hypothesis
that (iv) holds for k + 1 we see

θn,kj = θn,k+1

σ−1
k+1(j)

≥ Θ(θn,k+1

σ−1
k+1(j)

+ qn,k+1

σ−1
k+1(j)

, zσ−1
k+1(j)

, 0) ≥ Θ(θn,kj + qn,kj , zj , 0).

To see the second part, consider first when W ′
k+1 6= ∅, and if j = k + 1, then we know

from (3.4)

θn,kk+1 = Θ(θM,n

β−1
k

(k+1)
, zk+1, δt) = Θ(qn,kk+1 + θn,kk+1, zk+1, δt).

In the second equality above, we used the point (ii) already proved, and also the definition

of θM,n
j given in the beginning of this section. If instead W ′

k+1 = ∅, then we know in
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particular k + 1 /∈ Wk+1, hence

θn,kk+1 = θn,k+1
k+1 ≥ Θ(θM,n

β−1
k

(k+1)
, zk+1, δt) ≥ Θ(θn,kk+1 + qn,kk+1, zk+1, δt).

If k+2 ≤ j ≤ n, note σk+1(j) = j we use the induction hypothesis and (3.3) to conclude

θn,kj = θn,k+1
j ≥ Θ(θn,k+1

j + qn,k+1
j , zj , δt) = Θ(θn,kj + qn,kj , zj , δt).

This finishes the proof. �

Denote θnj (δt) = θn,0j , qnj (δt) = qn,0j . Then we have qnj (δt) ≤ Qsat(θnj (δt), zj , δt), for

any 1 ≤ j ≤ n, and j 7−→ θnj (δt) is monotone increasing by Lemma 3.2. Define the

flow map at first time step F̃n
δt : [0, 1) → [0, 1) be such that it shifts Ji to Jβ0(i) by

translation, that is F̃n
δt(z) = z − zi + zβ0(i) for z ∈ Ji. Then F̃n

δt#L1
[0,1] = L1

[0,1]. Apply

the previous procedure to {θnj (δt)}nj=1, {qnj (δt)}nj=1, but with Qsat evaluated at δt to

get {θnj (2δt)}nj=1, {qnj (2δt)}nj=1, and the corresponding flow map F̃n
2δt : [0, 1) → [0, 1).

Repeating the procedure, we get a sequence of solutions at discrete times {θnj (kδt)}nj=1,

qnj (kδt)}nj=1, and a sequence of flow maps F̃n
kδt connecting kδt and (k + 1)δt. Denote

θM,n
j (kδt) = θnj (kδt) + qnj (kδt). Here k is an integer with 0 ≤ k ≤ T

δt + 1. Define

Fkδt = F̃kδt ◦ · · · F̃δt. We will also denote αkδt, α̃kδt be the corresponding rearrangement
map on the discrete indices {1, 2, · · · , n}. Denote θn(t, z) = θnj (kδt), q

n(t, z) = qnj (kδt)

if z ∈ Jj and kδt ≤ t < (k + 1)δt. Also Fn(t, z) = Fkδt if kδt ≤ t < (k + 1)δt. Define

θn0 (z) = θnj , q
n
0 (z) = qnj , and θM,n

0 (z) = θn0 (z)+qn0 (z), for z ∈ Jj . We deduce a immediate
corollary of Lemma 3.2.

Corollary 3.3. (i)z 7−→ θn(t, z) is monotone increasing for any t ∈ [0, T ).

(ii)Denote θ̂n(t, z) = θn(t, Fn(t, z)), q̂n(t, z) = qn(t, Fn(t, z)), then we have θ̂n(t, z) +
q̂n(t, z) = θn0 (z) + qn0 (z).

(iii)t 7−→ θ̂n(t, z) is monotone increasing for any z ∈ [0, 1).
(iv)qn(t, z) ≤ Qsat(θn(t, z), z, kδt), where k is the integer such that kδt ≤ t < (k+1)δt.

Now we can have a more precise description of the motion of a single particle.

Lemma 3.4. Suppose that nδt < inf ∂zΘ
sup |∂tΘ| , where both sup and inf are taken on the set

{(w, z, t) : |w| ≤ maxj |θM,n
j | , z ∈ [0, 1], t ∈ [0, T ]}, then one of the following must hold:

(i)There exists a unique k1 ∈ {1, 2, · · · , n}, such that βk1−1(j) = σk1(βk1(j)) = k1 >
βk1(j). Besides, for any k ≥ k1, βk(j) = βk+1(j), and any k ≤ k1 − 1, βk(j) = k1.
(ii)βk(j) ≤ βk+1(j) for any 0 ≤ k ≤ n− 1.

This lemma says that if nδt is small enough, then for any parcel experiencing a jump,
the rearrangements before and after the jump will fix this parcel. In particular, if a
parcel gets pushed down(βk−1(j) < βk(j) for some k), then we must be in the second
alternative, and by Lemma 3.1, it cannot overtake any other parcel.

Proof. The only difference between this lemma and Lemma 3.1 is that in the first al-
ternative, we can now conclude βk(j) = βk+1(j) for any k ≥ k1. Suppose we are in
the first alternative of Lemma 3.1, and βk(j) < βk+1(j) for some k ≥ k1, we will show
that βk(j) /∈ Wk. Clearly we have βk+1(j) ≤ k + 1, since σk+1 fix all index strictly

bigger than k + 1. From Lemma 3.2, we know θn,k+1
βk+1(j)

≥ Θ(θM,n
j , zβk+1(j), 0). Since
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σk+1 moves βk+1(j) down, it does not change the value of θ, hence θn,k+1
βk+1(j)

= θn,kβk(j)
, and

βk+1(j) ≥ βk(j) + 1. It follows that:

θn,kβk(j)
= θn,k+1

βk+1(j)
≥ Θ(θM,n

j , zβk+1(j), 0)

≥ Θ(θM,n
j , zβk(j), δt) + (inf ∂zΘ)n−1 − sup |∂tΘ|δt > Θ(θM,n

j , zβk(j), δt).

The last step used the smallness of nδt. Hence βk(j) /∈ Wk. It follows that βk−1(j) =
σk(βk(j)) ≤ βk(j). Repeat the argument shown in the proof of ”Moreover” part of
Lemma 3.1, we see βk(j) will keep decreasing starting from k, and then no jump up is
possible. �

To conclude this section, we make a simple observation which will be useful in the
next section.

Lemma 3.5. Suppose for some pair of index j1, j2 ∈ {1, 2, · · · , n}, and for some k,

we have αkδt(j1) < αkδt(j2), and α(k+1)δt(j1) > α(k+1)δt(j2), then θM,n
j1

> θM,n
j2

. In

particular, αlδt(j1) > αlδt(j2) for all l > k.

In plain English, this lemma says if the index j1 is initially below j2, then a necessary
condition for j1 to overtake j2 is to have strictly larger θM . This means, in particular,
that j2 cannot overtake j1 again since θM is invariant along parcels.

Proof. Here we write α̃(k+1)δt = σ1 ◦ · · · ◦ σn and βk = σk+1 ◦ · · · ◦ σn. Let m0 be the
maximal integer m for which βm−1(αkδt(j1)) > βm−1(αkδt(j2)). Then βm0(αkδt(j1)) <
βm0(αkδt(j2)), and βm0(αkδt(j1)) ∈ W ′

m. If βm0(αkδt(j2)) ∈ Wm, then we immediately

have θM,n
j1

> θM,n
j2

. Otherwise,

Θ(θM,n
j1

, zβm0 (αkδt(j2)), (k + 1)δt) > θn,m0

βm0(αkδt(j2))
(kδt) ≥ Θ(θM,n

j2
, zβm0 (αkδt(j2)), (k + 1)δt).

The first inequality used the definition of W ′
m, the second used definition of Wm. �

4. Estimates on the discrete solution

Next we do some estimates on the discrete solutions. Denote M ′ = ||θn0 ||L∞(0,1) +
||qn0 ||L∞(0,1). In the following, we say a constant is universal, if it only depends on M ′, T ,

and Qsat. We will derive the following estimates for the discrete solutions in this section.
They are collected in the following theorem.

Theorem 4.1. (i)||θn||L∞((0,1)×(0,T ))+ ||qn||L∞((0,1)×(0,T )) ≤ C1, for some universal con-
stant C1.

(ii)There exists a universal constant C2 > 0, such that for any ε > C2
n , and any

t ∈ [0, T ), if θ̂n(t, z) > Θ(θM,n(t, z), Fn
t (z), t) + ε, then we have θ̂t′(z) = θ̂t(z), and

Ft′(z) ≤ Ft(z) holds for any t′ − t < ε
C2

.

(iii)For any z ∈ [0, 1], TVt∈[0,T )(F
n
t (z)) ≤ C3.

If nδt < 1
C′

4
for some universal constant C ′

4 > 0, then the following hold:

(iv)For any ε > 0, and any [t − ε, t + ε] ⊂ [0, T ), we have |θ̂nt+ε(z) − θ̂nt−ε(z) −
(Θ(θM,n(z), Fn

t+ε(z), t+ ε)−Θ(θM,n(z), Fn
t−ε(z), t− ε))+| ≤ 2C4(ε+ δt).

(v)For any s < t ∈ [0, T ), we have ||θn(t, ·)−θn(s, ·)||L1([0,1]) = ||θ̂n(t, ·)−θ̂n(s, ·)||L1([0,1]) ≤
C5

√
t− s+ δt.
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(vi)For any s < t ∈ [0, T ), we have ||Fn(t, ·) − Fn(s, ·)||L1([0,1]) ≤ C6

√
t− s+ δt for

some universal constant C.

Thoughout this section, we make the following conventions: when we write expressions
like sup |∂tΘ| and so on, they are assumed to be taken over the set {(w, z, t) ∈ R

3 : |w| ≤
M ′, z ∈ [0, 1], t ∈ [0, T ]} unless otherwise stated.

We start with point (i) of above theorem.

Lemma 4.1. There exists a universal constant C1 > 0, such that

||θn||L∞((0,1)×(0,T )) + ||qn||L∞((0,1)×(0,T )) ≤ C1.

Proof. We need to go back to the construction of the discrete solution. First we know
from Corollary 3.3 point (ii) that for any z ∈ [0, 1]

θn(t, z)+qn(t, z) = θ̂n(t, (Fn
t )

−1(z))+ q̂n(t, (Fn
t )

−1(z)) = θn0 ((F
n
t )

−1(z))+qn0 ((F
n
t )

−1(z)).

Therefore ||θn + qn||L∞ ≤ M ′.
On the other hand, from the construction of θnl (kδt), we know either θnl (kδt) = θnj ((k−

1)δt) for some 1 ≤ j ≤ n, or θnl (kδt) = Θ(θM,n
j , zl, kδt). In the former case, we have

|θnl (kδt)| ≤ maxj |θnj ((k−1)δt). In the latter case, we have |θnl (kδt)| ≤ sup |Θ|. Here sup
is taken over the set {(w, z, t) : |w| ≤ M ′, z ∈ [0, 1], t ∈ [0, T ]}. But Θ is determined via
(2.11) in terms of Qsat, hence sup |Θ| satisfies a universal bound. In any case, we have
maxj |θnj (kδt)| ≤ max(maxj |θnj ((k − 1)δt)|, sup |Θ|). It then follows easily by induction

that ||θn||L∞ ≤ max(M ′, sup |Θ|). The bound for q then follows automatically. �

Next we prove the point (ii). Roughly speaking, point (ii) says if a parcel is ”strictly”
dry, then it will remain dry and go down for a while, the length of time this state lasts
depends in a universal way how dry this parcel is.

Lemma 4.2. There is a universal constant C̃2 > 0, such that for any ε > 0, if for some

interger k, j, it holds θ̂nj (kδt) > Θ(θM,n
j , zαkδt(j), kδt)+ ε, we have θ̂nj (lδt) = θ̂nj (kδt), and

αlδt(j) ≤ αkδt(j) for any l with 0 ≤ (l − k)δt ≤ ε
C̃2

.

Proof. Actually we will see one can take C̃2 = 2 sup |∂tΘ|. We prove this by induction on
l. First observe that the statement is trivial if l = k. Assume this is true for some l with
(l + 1 − k)δt ≤ ε

2 sup |∂tΘ| . Need to show this is true also for l + 1. Using the induction

hypothesis, we can calculate

θ̂nj (lδt) = θ̂nj (kδt) > Θ(θM,n
j , zαkδt(j), kδt) + ε

≥ Θ(θM,n
j , zαlδt(j), (l + 1)δt) + ε− sup |∂tΘ|(l + 1− k)δt

≥ Θ(θM,n
j , zαlδt(j), (l + 1)δt).

The first equality is the induction hypothesis. In the second inequality, we used the
induction hypothesis that αlδt(j) ≤ αkδt(j).

Above calculation shows that at time lδt, the parcel αlδt(j) is still ”dry” by taking
one more time step forward. Hence we know α(l+1)δt = α̃(l+1)δt(αlδt(j)) ≤ αlδt(j), and

θ̂nj ((l + 1)δt) = θ̂nj (lδt), from the procedure. �

Now we can deduce point (ii) as a corollary of previous lemma.
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Corollary 4.3. Let ε > 0, nδt ≤ 1. Then there exists a universal constant C2 > 0,
such that if ε > C2

n and θ̂n(t, z) > Θ(θM,n(z), Fn
t (z), t) + ε for some t ∈ [0, T ), we have

θ̂nt′(z) = θ̂nt (z), and Fn
t′ (z) ≤ Fn

t (z) holds for any t′ − t < ε
C2

.

Proof. First we can find integers k, j, such that kδt ≤ t < (k + 1)δt, and z ∈ Jj . It then

follows from the definition of θ̂n that

θ̂n(t, z) = θ̂nj (kδt) > Θ(θM,n(t, z), Fn
t (z), t) + ε

≥ Θ(θM,n
j , zαkδt(j), kδt) + ε− sup |∂zΘ|n−1 − sup |∂tΘ|δt.

Since δt ≤ n−1, we will have ε − sup |∂zΘ|n−1 − sup |∂tΘ|δt > ε
2 , if ε >

C′

2
n for some

universal constant n. With such a choice of ε, we then have

θ̂nj (kδt) > Θ(θM,n
j , zαkδt(j), kδt) +

ε

2
.

Now we can conclude from Lemma 4.2 that θ̂nj (lδt) = θ̂nj (kδt), and αlδt(j) ≤ αkδt(j)

for any integer l with 0 ≤ (l − k)δt ≤ ε
C′′

2
for some universal constant C ′′

2 . This means

precisely that θ̂n(t′, z) = θ̂n(t, z) and Fn
t′ (z) ≤ Fn

t (z) for any t′ − t < ε
C′′

2
. �

Next we wish to prove point (iii). For this, we need to establish a lemma which gives
control over the total variation of t 7−→ Fn

t (z) in terms of the absolute bound of θ.

Lemma 4.4. There exists a universal constant C ′
3 > 0, such that for any indices j ∈

{1, 2 · · · , n},
∑

0≤k≤ T
δt

1

n
(α(k+1)δt(j)− αkδt(j))

+ ≤ C ′
3||θ̂n||L∞((0,T )×(0,1)),

∑

0≤k≤ T
δt

1

n
|α(k+1)δt(j)− αkδt(j)| ≤ 2C ′

3(||θ̂n||L∞((0,T )×(0,1)) + 2.

Proof. First we observe that the second estimate follows from the first. Indeed, we just
need to notice

∑

0≤k≤ T
δt

1

n
|α(k+1)δt(j) − αkδt(j)|

=
∑

0≤k≤ T
δt

2

n
(α(k+1)δt(j) − αkδt(j))

+ −
∑

0≤k≤ T
δt

1

n
(α(k+1)δt(j)− αkδt(j))

≤ 2C ′
3||θ̂n||L∞((0,T )×(0,1)) + 2.

Now we only need to focus on the first estimate. Fix some k such that α(k+1)δt(j) >
αkδt(j). Then we know α(k+1)δt(j) = α̃(k+1)δt(αkδt(j)) > αkδt(j). This means the parcel

αkδt(j) is ”wet” at kδt, or θ̂nj (kδt) < Θ(θM,n
j , zαkδt(j), (k + 1)δt). After the time step, we

know θ̂nj ((k + 1)δt) = Θ(θM,n
j , zα(k+1)δt(j), (k + 1)δt). Therefore

θ̂nj ((k + 1)δt)−θ̂nj (kδt) ≥ Θ(θM,n
j , zα(k+1)δt(j), (k + 1)δt) −Θ(θM,n

j , zαkδt(j), (k + 1)δt)

≥ (inf ∂zΘ)(zα(k+1)δt(j) − zαkδt(j))
+ =

1

n
(inf ∂zΘ)(α(k+1)δt(j)− αkδt(j))

+.

(4.1)
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Now we sum (4.1) over k, the first estimate follows. �

Then we can deduce point (iii) as a corollary

Lemma 4.5. For any z ∈ [0, 1)

PVt∈[0,T )(F
n
t (z)) ≤ C ′

3||θ̂n||L∞((0,T )×(0,1)).

TVt∈[0,T )(F
n
t (z)) ≤ 2C ′

3||θ̂n||L∞((0,T )×(0,1)) + 2.

Here PV denotes the positve variation, and TV denotes the total variation. C ′
3 is the

same constant as in previous lemma.

Proof. Find indices j ∈ {1, 2 · · · , n} such that z ∈ Jj , then

PVt∈[0,T )(F
n
t (z)) =

∑

0≤k≤ T
δt

(zα(k+1)δt(j) − zαkδt(j))
+ =

∑

0≤k≤ T
δt

1

n
(α(k+1)δt(j)− αkδt(j))

+

TVt∈[0,T )(F
n
t (z)) =

∑

0≤k≤ T
δt

|zα(k+1)δt(j) − zαkδt(j)| =
∑

0≤k≤ T
δt

1

n
|α(k+1)δt(j) − αkδt(j)|.

�

It only remains to prove the point (iv) and (v). For this we need the following key
lemma, which concludes that any given parcel can only be overtaken at a finite rate.

Lemma 4.6. Fix j0 ∈ {1, 2, · · · , n}. Let 0 ≤ k < l ≤ T
δt . Define the set

Jk,l = {j ∈ {1, 2, · · · , n} : αkδt(j) < αkδt(j0), αlδt(j) > αlδt(j0)}.
Then there exists a universal constant C ′

4 > 0, such that if nδt < 1
C′

4
, we have

#J ≤ 2(l − k).

Proof. We will prove this statement with the choice of constant C ′
4 =

sup |∂tΘ|
inf ∂zΘ

. Here sup,

inf is taken over the set {(w, z, t) : |w| ≤ M,z ∈ [0, 1], t ∈ [0, T ]}. With this choice,
Lemma 3.4 applies. For k ≤ s ≤ l − 1, we may define

As = {j ∈ {1, 2, · · · , n} : αs′δt(j) < αs′δt(j0), for any s′ with k ≤ s′ ≤ s, and

α(s+1)δt(j) > α(s+1)δt(j0)}.
Then we have Jk,l = ∪l−1

s=kAs. That Jk,l ⊂ ∪l−1
s=kAs is clear and the reverse inclusion

follows from Lemma 3.5. Therefore it suffices to show #As ≤ 2 for each s, when nδt is
small. Here we use the notation of section 2 and write α̃(s+1)δt = σ1 ◦ · · · ◦σn. Here σk is
the rearrangement map of the indices when we decide which parcel moves to zk. Denote
βk = σk+1 ◦ · · · ◦ σn. Without loss of generality, we may assume that between time step
sδt and (s+ 1)δt, the second alternative of Lemma 3.4 holds for αsδt(j0). Indeed, if the
first alternative holds, we will have As = ∅, and there is nothing to prove in this case.

If #As ≤ 2 fails, then let k1 > k2 > k3 be the 3 biggest integers for which there
exists some index j such that αsδt(j) < αsδt(j0) and βk−1(αsδt(j)) > βk−1(αsδt(j0)).
Let j1, j2, j3 be the index corresponding to k1, k2, k3. Namely αsδt(ji) < αsδt(j0),
but βki−1(αsδt(ji)) > βki−1(αsδt(j0)), i = 1, 2, 3. It is clear that βki(αsδt(ji)) <
βki(αsδt(αsδt(j0)), 1 ≤ i ≤ 3. It is also clear that such index ji must be unique
since each σk lifts at most one index. From Lemma 3.4, we can see it must hold
αsδt(j3) < αsδt(j2) < αsδt(j1) < αsδt(j0). The last inequality is clear, since αsδt(j0)
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will not jump. If, say αsδt(j2) > αsδt(j1), then αsδt(j1) overtakes αsδt(j2) since αsδt(j1)
jumps first(under σk1) and ends up above αsδt(j0). Thus αsδt(j2) will get pushed down
by σk1 . But then according to Lemma 3.4, it cannot jump later on and cannot overtake
any other parcel.

The plan is to show θM,n
j3

≤ θM,n
j2

≤ θM,n
j1

, and also show this implies βk3(αsδt(j3)) /∈
W ′

k3
. This will be a contradiction since we will have βk3(αsδt(j3)) cannot jump under

σk3 .
First we observe that for any k with k2 < k ≤ k1, and any index j with βk1(αsδt(j1)) <

βk1(αsδt(j)) ≤ k1, it holds βk−1(αsδt(j)) = βk1(αsδt(j)) − 1, while for index j with
βk1(αsδt(j)) < βk1(αsδt(j1)), it must hold βk−1(αsδt(j)) = βk1(αsδt(j)). Observe it is
clear with k = k1. For k < k1, and j satisfying βk1(αsδt(j1)) < βk1(αsδt(j)) ≤ k1, they
cannot jump under σk since they are already overtaken by αsδt(j1). For j satisfying
βk1(αsδt(j)) < βk1(αsδt(j1)), they cannot jump up because once they jump up under σk,
they will jump to zk, hence overtake αsδt(j0), contradicting our choice of k2. They also
cannot be pushed down since if this happens, some parcel below needs to jump, again
contradicting the choice of k2.

Now we wish to prove θM,n
j2

≤ θM,n
j1

. If not, we will show below that βk1(αsδt(j2)) ∈
W ′

k1
. This will give us a contradiction since the parcel βk1(αsδt(j1)) does not have the

largest θM among the parcels in the set W ′
k1
, hence cannot jump up under σk1 . First

it is clear from the ”moreover” part of Lemma 3.1 that βk1(αsδt(j2)) ∈ Wk1 . For any
index j with βk1(αsδt(j2)) < βk1(αsδt(j)) < βk1(αsδt(j1)), and any k with k2 < k ≤ k1,

we conclude from last paragraph that σk = id, and θn,k−1
βk−1(αsδt(j))

= θn,k1βk1
(αsδt(j))

. Since

βk2(αsδt(j2)) ∈ W ′
k2
, and no changes happen for these j‘s under σk with k2 < k ≤

k1, we see βk1(αsδt(j2)) will beat them under rearrangement σk1 . Since we assumed

θM,n
j2

> θM,n
j1

, we know αsδt(j2) beats αsδt(j1) as well. Now consider index j satisfying

βk1(αsδt(j1)) < βk1(αsδt(j)) ≤ k1, if βk1(αsδt(j)) ∈ Wk1 , it can be beaten by βk1(αsδt(j1)),

which means θM,n
j < θM,n

j1
. Since θM,n

j2
> θM,n

j1
, it can also be beaten by αsδt(j2). If

βk1(αsδt(j)) /∈ Wk1 , we know from Lemma 3.1 that βk2(αsδt(j)) /∈ Wk2 . Hence from

βk2(αsδt(j2)) ∈ W ′
k2
, we see θn,k2βk2

(αsδt(j))
< Θ(θM,n

j2
, zβk2

(αsδt(j)), (s + 1)δt). Since they

are ”dry” parcels, we know their θ does not change, namely θn,k2βk2
(αsδt(j))

= θn,k1βk1
(αsδt(j))

,

also we know from the observation made in previous paragraph with k = k2 + 1 that
βk2(αsδt(j)) = βk1(αsδt(j)−1. Hence they will be beaten by αsδt(j2) in the rearrangement
σk1 . This shows βk2(αsδt(j2)) ∈ W ′

k1
.

By the same argument as above, one can also conclude θM,n
j3

≤ θM,n
j2

, following the

same logic that if θM,n
j3

> θM,n
j2

, we will then conclude βk2(αsδt(j3)) ∈ W ′
k2
, thus αsδt(j2)

will not jump under σk2 . So we have shown θM,n
j3

≤ θM,n
j2

≤ θM,n
j1

.

Next we show βk3(αsδt(j3)) /∈ W ′
k3
. Let j4 be the index such that βk1(αsδt(j4)) =

βk1(αsδt(j1)) + 1. Since it is overtaken by j1 under σk1 it will remain ”dry” for all later
rearrangements, that is, βm(αsδt(j4)) /∈ Wm, for any 1 ≤ m < k1. If βk3(αsδt(j3)) ∈
W ′

k3
, in particular, one should have Θ(θM,n

j3
, zβk3

(αsδt(j4)), (s + 1)δt) > θn,k3βk3
(αsδt(j4))

=

θn,k1βk1
(αsδt(j4))

. On the other hand, using Corollary 3.3, point (i), (iv), we see

(4.2) θn,k1βk1
(αsδt(j4))

≥ θn,k1βk1
(αsδt(j1))

≥ Θ(θM,n
j1

, zβk1
(αsδt(j1)), sδt).
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Observe that βk3(αsδt(j4)) ≤ βk1(αsδt(j4))−2 = βk1(αsδt(j1))−1, since there are at least
2 parcels(j1 and j2) overtaking j4. Therefore

θn,k1βk1
(αsδt(j4))

< Θ(θM,n
j3

,zβk3
(αsδt(j4)), (s+ 1)δt) ≤ Θ(θM,n

j3
, zβk1

(αsδt(j1))−1, (s+ 1)δt)

≤ Θ(θM,n
j1

, zβk1
(αsδt(j1)), sδt) − (inf ∂zΘ)n−1 + (sup |∂tΘ|)δt.

(4.3)

In the second inequality above, we used above observation, and in the third inequality we

used that θM,n
j3

≤ θM,n
j2

≤ θM,n
j1

. Now combining (4.2) and (4.3) gives a contradiction. �

From above discrete estimate, we can get the lemma of ”finite speed of penetration”.

Lemma 4.7. Let zi0 ∈ [0, 1). Choose n, δt such that nδt = 1
2C′

4
, where C ′

4 is the constant

given by previous lemma. Let t0 ∈ [0, T ), ε > 0, define the set

J = {z ∈ [0, 1) : Ft0(z) < Ft0(zi0), Ft0+ε(z) > Ft0+ε(zi0)}.
Then L1(J) ≤ C(ε+ δt), for some universal constant C.

Proof. Choose j0 ∈ {1, 2, · · · , n}, such that zi0 ∈ Jj0 . Choose integers k, l such that
kδt ≤ t0 < (k + 1)δt, lδt ≤ t0 + ε < (l + 1)δt. Then we know that J = ∪j∈Jk,lJj . Here
Jk,l is defined as in previous lemma. Hence

L1(J) = n−1#Jk,l ≤
2(l − k)

n
=

2(l − k)δt

nδt
≤ 4C ′

4(ε+ δt).

�

As an application of this lemma, we can prove point (iv) of Theorem 4.1.

Proposition 4.8. Let n, δt be chosen as in Lemma 4.7. There exists a universal constant
C > 0, such that for any ε > 0, and t ∈ [0, T ), with [t− ε, t+ ε] ⊂ [0, T ), we have
(4.4)

|θ̂nt+ε(z)− θ̂nt−ε(z)−
(

Θ(θM,n(z), Fn
t+ε(z), t+ε)−Θ(θM,n(z), Fn

t−ε(z), t−ε)
)+| ≤ C(ε+δt).

Proof. Let κ be the quantity in the absolute value above. First we show κ ≤ C(ε+ δt).

Without loss of generality, we can then assume κ > 0. Then we know that θ̂nt+ε(z) −
θ̂nt−ε(z) ≥ κ. It follows from Corollary 4.3 that

(4.5) θ̂nt−ε(z) ≤ Θ(θM,n(z), Fn
t−ε(z), t − ε) + Cε.

On the other hand

θ̂nt+ε(z)− θ̂nt−ε(z) ≥ Θ(θM,n(z), Fn
t+ε(z), t+ ε)−Θ(θM,n(z), Fn

t−ε(z), t− ε) + κ

≥ Θ(θM,n(z), Fn
t+ε(z), t+ ε)− θ̂nt−ε(z)− sup |∂tΘ|δt+ κ.

(4.6)

In the first inequality, we only used the definition of κ, and in the second inequality,
we used Corollary 3.3, point (iv). If we let t′ ∈ [t − ε, t + ε] be such that Fn

t′ (z) =

maxτ∈[t−ε,t+ε] F
n
τ (z), we have θ̂nt+ε(z) ≤ Θ(θM,n(z), Fn

t′ (z), t + ε) + sup |∂tΘ|ε. Hence it
follows from (4.6) that

(4.7) Θ(θM,n(z), Fn
t′ (z), t+ε)+sup |∂tΘ|ε ≥ Θ(θM,n(z), Fn

t+ε(z), t+ε)− sup |∂tΘ|δt+κ.

Noticing δt ≤ ε, we obtain

Fn
t′ (z)− Fn

t+ε(z) ≥
1

inf ∂zΘ
(κ− 2 sup |∂tΘ|ε).
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Now consider the set E′ = {z′ ∈ [0, 1] : Fn
t′ (z

′) < Fn
t′ (z), F

n
t+ε(z

′) > Fn
t+ε(z)}. Then

we know L1(E′) ≥ 1
inf ∂zΘ

(κ − 2 sup |∂tΘ|ε). But it follows from Corollary 4.7 that

L1(E′) ≤ C(ε+ δt). Hence κ ≤ C ′(ε+ δt), for some universal constant C ′.

Next we derive a lower bound. We consider two cases. First if θ̂nt+ε(z) > θ̂nt−ε(z), then
as has been observed in (4.5), we know that

(4.8) θ̂nt+ε(z)− θ̂nt−ε(z) ≥ Θ(θM,n(z), Fn
t+ε(z), t+ ε)−Θ(θM,n(z), Fn

t−ε(z), t− ε)− Cε.

If Θ(θM,n(z), Fn
t+ε(z), t + ε) − Θ(θM,n(z), Fn

t−ε(z), t − ε) ≥ 0, then we can immediately
conclude κ ≥ −Cε. If it is negative, then we can calculate:

Θ(θM,n(z), Fn
t+ε(z), t + ε)−Θ(θM,n(z), Fn

t−ε(z), t − ε)

≥ − sup |∂zΘ|(Fn
t+ε(z)− Fn

t−ε(z))
− − sup |∂tΘ|2ε.

(4.9)

Define Ẽ = {z′ ∈ [0, 1) : Fn
t−ε(z

′) < Fn
t−ε(z), F

n
t+ε(z

′) > Fn
t+ε(z)}. Then Lemma 4.7

shows L1(Ẽ) ≤ C(ε + δt). But this means Fn
t+ε(z) − Fn

t−ε(z) ≥ −C(ε+ δt). Thus from

(4.8), (4.9), we know θ̂nt+ε(z)− θ̂nt−ε(z) ≥ −C(ε+ δt). The conclusion follows as well.

If θ̂nt+ε(z) = θ̂nt−ε(z), this means no jumps happen during [t − ε, t + ε]. Therefore
Fn
t+ε(z) ≤ Fn

t−ε(z). In this case

Θ(θM,n(z), Fn
t+ε(z), t + ε) ≤ Θ(θM,n(z), Fn

t−ε(z), t − ε) + Cε.

Therefore, we also have the quantity ≥ −Cε as well. �

As a second application of Lemma 4.7, we finally prove point (v) of the Theorem.
First we derive an obvious corollary of above lemma.

Fix some t0 ∈ [0, T ), take ε > δt, κ > 0, and define

J1 = {z ∈ [0, 1) : sup
t∈[t0,t0+ε]

Fn
t (z)− Fn

t0(z) ≥ κ},

J2 = {z ∈ [0, 1) : Fn
t0+ε(z)− Fn

t0(z) ≥
κ

2
}.

First we observe the following lemma:

Lemma 4.9. Let n, δt be chosen as in Lemma 4.7. Then there exists a universal constant
C > 0, such that if ε+ δt ≤ κ

C , then J1 ⊂ J2.

Proof. Suppose there exists z0 ∈ J1 − J2. Let t′ ∈ [t0, t0 + ε] be such that Fn
t′ (z0) =

maxt∈[t0,t0+ε] F
n
t (z0). Then we know Fn

t′ (z0) − Fn
t0(z) ≥ κ. It follows that Fn

t′ (z0) −
Fn
t0+ε(z0) ≥ κ

2 . Consider the set

Ĵz0,ε,κ = {z ∈ [0, 1] : Fn
t′ (z) < Fn

t′ (z0);F
n
t0+ε(z) > Fn

t0+ε(z0)}.

Then we know that L1(Ĵz0,ε,κ) ≥ κ
2 . On the other hand, it follows from Lemma 4.7 that

L1(Ĵz0,ε,κ) ≤ C(ε+ δt) with a universal constant C. Hence we have κ
2 ≤ C(ε+ δt). �

The next lemma estimates L1(J2).

Lemma 4.10. Let ε, n, δt be chosen as in previous lemma. Let κ ≥ Cε, where C is
the constant given by previous lemma, then for some universal constant C ′, we have
L1(J2) ≤ C′ε

κ .
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Proof. Let δ = L1(J2). Since Fn measure preserving, we know
∫

[0,1)
Fn
t0+ε(z)− Fn

t0(z)dz = 0.

On the other hand from the definition of J2,
∫

J2

Fn
t0+ε(z)− Fn

t0(z)dz ≥ δκ

2
.

Therefore, there exists z1 ∈ [0, 1], such that Fn
t0+ε(z1)− Fn

t0(z1) ≤ − δκ
2 . Now consider

Ĵz1,ε = {z ∈ [0, 1] : Fn
t0(z) < Fn

t0(z1), F
n
t0+ε(z) > Fn

t0+ε(z1)}.
Then we have L1(Ĵz1,ε) ≥ δκ

2 . But by Lemma 4.7, we know L1(Ĵz1,ε) ≤ C(ε+ δt) ≤ 3Cε.

Hence δκ
2 ≤ 3Cε. This completes the proof.

�

With above preparation, we can obtain the following continuity estimate

Lemma 4.11. Let n, δt be chosen as in Lemma 4.7. Let ε > δt
2 . Then there exists a

universal constant C such that if ε < 1
C , we have

||θ̂nt0+ε − θ̂nt0 ||L1(0,1) = ||θnt0+ε − θnt0 ||L1(0,1) ≤ C ′√ε.

for some universal contant C ′.

Proof. From the discrete procedure, we know if θ̂nt0+ε(z) > θ̂nt0(z),

θ̂nt0+ε(z) ≤ max
t′∈[t0,t0+ε]

Θ(θM,n
0 (z), Fn

t′ (z), t0 + ε) + sup |∂tΘ|ε.

Since θ̂nt0(z) ≥ Θ(θM,n(z), Fn
t0(z), t0)− sup |∂tΘ|δt, by Corollary 3.3 point (iv), we know

θ̂nt0+ε(z)− θ̂nt0(z) ≤ sup ∂zΘ · max
t∈[t0,t0+ε]

(Fn
t (z)− Fn

t0(z)) + sup |∂tΘ| · (ε+ δt).

Let κ ≥ Cε, where C is the universal constant given by Lemma 4.9. Combining Lemma
4.9,4.10, we conclude L1(J1) ≤ L1(J2) ≤ C′ε

κ . Hence
∫

[0,1]
θ̂t0+ε(z)− θ̂t0(z)dz =

∫

J1

θ̂t0+ε(z)− θ̂t0(z)dz +

∫

Jc
1

θ̂t0+ε(z)− θ̂t0(z)dz

≤ ||θ̂||L∞ · C
′ε

κ
+ sup |∂zΘ|κ+ 3 sup |∂tΘ| · ε.

Now we take ε small enough such that
√
ε ≤ 1

C , where C is given by Lemma 4.9 and let
κ =

√
ε, we obtain the continuity estimates:

∫

[0,1]
|θt0+ε(z)− θt0(z)|dz =

∫

[0,1]
θ̂t0+ε(z)− θ̂t0(z)dz ≤ C ′√ε.

�

Next we derive the continuity estimate for the flow maps, which follows from the
continuity estimate for θ

Lemma 4.12. Let s, t ∈ [0, T ), then for some universal constant C

(4.10) (Fn(t, z)− Fn(s, z))+ ≤ C(θ̂n(t, z)− θ̂n(s, z)).
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Proof. As before, this follows from the discrete estimate. For any k, l integers with
0 ≤ k < l ≤ T

δt , (F
n
lδt(z) − Fn

kδt(z))
+ ≤ C(θ̂nlδt(z) − θ̂nkδt(z)). This follows from sum (4.1)

from k to l − 1. �

Corollary 4.13. Let s, t ∈ [0, T ), then for the same constant as in previous lemma, we
have

∫

[0,1]
|Fn(t, z)− Fn(s, z)|dz ≤ 2C

∫

[0,1]
(θ̂n(t, z)− θ̂n(s, z))dz.

Proof. SInce Fn measure preserving, we know
∫

[0,1](F
n(t, z)−Fn(s, z))+dz =

∫

[0,1](F
n(t, z)−

Fn(s, z))−dz. Then the result follows by integrating (4.10) in z. �

The point (vi) follows from previous corollary and the continuity estimate for θ.

5. Definition of measure valued solution

In this section, we wish to define the measure valued solutions. As suggested in the
discussion in the first section, we need to consider ”path-spaces” which represents all the
possible trajectories of an arbitrary parcel. Thanks to the point (iii) of 4.1, such paths
take value in [0, 1], and should have bounded variation, with uniform bound on BV .

Let B1 > 0 and XB1 be the set of functions f : (0, T ) → [0, 1] which is left continuous
and has total variation no bigger than B1, that is to say, for any partition of the interval
[0, T ], denoted as 0 < t0 < t1 < t2 < · · · < tm < T , we have

m
∑

i=1

|f(ti)− f(ti−1)| ≤ B1.

Let d be the L2 distance for functions in XB1 , that is

d(f, g) =
(

∫ T

0
|f(t)− g(t)|2dt

)
1
2 .

It is not hard to see that d is indeed a distance, since we required continuity from left.
Also one can check (XB1 , d) is a complete separable metric space, by Helly‘s selection
principle. The physical meaning of such a space XB1 is the space of all possible paths of
the parcels. The reason why such paths have bounded variation is due to point (iii) of
Theorem 4.1.

Let B2 > 0 and YB2 be the space of monotone increasing function on [0, 1], right
continuous on [0, 1), and with absolute bound ≤ B2, equipped with L2− distance. That
is, given h, k ∈ YB2 , define their distance to be d′(h, k) = ||h − k||L2(0,1). The physical
meaning of this space is all the possible profiles of potential temperature θ. We have
incorporated the physical constraint that they must be monotone increasing.

Let B3 > 0, put Y = C([0, T );YB3), that is, Y is the space of continuous maps from
[0, T ) to YB3 . Here B3 will be determined later on. We can define a metric on the space
Y : given h, k : [0, T ) → YB3 , define d(h, k) = maxt∈[0,T ) d

′(h(t), g(t)). The physical
meaning of the space is the possible evolutions of the potential temperature profile.

To avoid confusion, we will denote a generic element from the space YB to be θ, while
a generic element from the space Y will be denoted by θ̃. It is easy to check both YB

and Y are complete separable metric spaces, for any fixed B > 0.
First we specify the class of initial data we will be considering. Since we will be consid-

ering solutions in some ”probabilistic” sense, our initial data will also be ”probabilistic”,
namely some probability distributions. Let B2 > 0 be an arbitrary positive constant.
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Definition 5.1. Let ζ0 ∈ P(YB2 × R × [0, 1]). We say ζ0 is an admissible data if the
following holds:

(i)π13#ζ0 = µ0 × L1
[0,1] for some µ0 ∈ P(YB2), and π2#ζ0 has compact support;

(ii)Qsat(θ(z), z, 0) ≥ s− θ(z) for ζ0− a.e (θ, s, z).

Remark 5.2. Heuristically, ζ0 can be thought of prescribing the probability distribution
of {θ, θM(z)}z∈[0,1], where θM = θ + q. Indeed, using that π13#ζ0 = µ0 × L1

[0,1] and also

the disintegration theorem, we can write ζ0 =
∫

YB2
×[0,1] d(µ0 × L1

[0,1])(θ, z)
∫

R
dζθ,z(s).

Here (θ, z) 7−→ dζθ,z(s) is a Borel family of probability measures on R.. This describes

the probability distribution of θM , hence q, given θ and z. The second point simply says
the physical constraint is satisfied with probability 1.

We can define the following evaluation maps for the space XB1 and Y . Fix any
t ∈ (0, T ), define et : X → [0, 1] by γ 7−→ γ(t). Similarly define e′t : Y → YB3 by

θ̃ 7−→ θ̃(t). We will frequently write et(γ) = γt and e′t(θ̃) = θ̃t to simplify the notation.
We see from the definition of the space Y that e′t is a continuous map. Also we can
observe et is Borel, even if it is not continuous in general. Here we observe:

Lemma 5.3. The set {(θ, s, z) ∈ YB2 ×R× [0, 1] : Qsat(θ(z), z, 0) ≥ s− θ(z)} is a Borel
subset of YB2 × R× [0, 1]. Also the map et defined in previous paragraph is Borel map.

Proof. We just need to show the evaluation map A : (θ, z) 7−→ θ(z) is Borel. Fix ε > 0,

let Aε(θ, z) = ε−1
∫ z+ε
z θ(w)dw. Here we extended θ(w) ≡ C for w > 1. Then for each

fixed ε > 0, Aε(θ, z) is continuous, and for any fixed (θ, z), Aε(θ, z) → A(θ, z), since θ is
right continuous after extension. This proves A is Borel measurable.

That et is Borel is proved in a similar way. First we can define f(t) = f(0) for t ≤ 0.
With this extension, f(t) is define on (−∞, T ) and is left continuous. Hence the map

f(t) 7−→ ε−1
∫ t
t−ε f(s)ds will converge to f(t) as ε tends to 0. �

A ”deterministic” initial data takes the form ζ0 = δθ0 × ((θ0+ q0)× id)#L1
[0,1]. In this

case, there is only one possible choice θ0, and for each fixed z, θM takes a deterministic
value θ0(z) + q0(z).

Here we can make a definite choice of the constant B1 and B3 which are involved
in defining the spaces XB1 and Y . By point (i) in the Definition 5.1, we can assume
π2#ζ0 ⊂ [−M +1,M −1] for some M > 0. We will determine B1 and B3 such that they
depend only on B2, M , T and also the function Qsat. Now take B1 to be the constant C3

given by point (iii) of Theorem 4.1 if we have the bound ||θn0 ||L∞ + ||qn0 ||L∞ ≤ M +2B2.
Let B3 be the constant C1 given by point (i) of Theorem 4.1. if we have the bound
||θn0 ||L∞ + ||qn0 ||L∞ ≤ M + 2B2. Without loss of generality we can assume B3 > B2 so
that YB2 ⊂ YB3 .

With such a choice of constants in place, we propose the following defintion of measure-
valued solutions.

Definition 5.4. Let λ ∈ P(Y ×R× [0, 1]×XB1), and denote ηt = (e′t× id× id× et)#λ,
ζt = π124#ηt ∈ P(YB3 × R × [0, 1]). Then we say λ is a measure valued solution to
admissible initial data ζ0 if the following are satisfied:
(i)ζt → ζ0, π34#ηt ∈ Γ(L1

[0,1],L1
[0,1]) → (id × id)#L1

[0,1] as t → 0, and t 7−→ ηt narrowly

continuous.
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(ii)For any t ∈ (0, T ), π13#ζt = µt × L1
[0,1], π2#ζt has compact support. Besides

Qsat(θ(z), z, t) ≥ s− θ(z) for ζt−a.e (θ, s, z).

(iii)For λ−a.e (θ̃, s, z, γ), we have θ̃t(γt) ≤ θ̃t′(γt′) for L2−a.e (t, t′) ∈ (0, T )2 and t < t′.

(iv)For λ−a.e (θ̃, s, z, γ), we have the equality of measures:

∂t(θ̃t(γt)) =
[

∂t(Q
sat(θ̃t(γt), γt, t))

]−⌊Eθ̃,s,γ,

where Eθ̃,s,γ is the wet set given by Eθ̃,s,γ = {t ∈ (0, T ) : (θ̃(γ))∗(t) = s −
Qsat((θ̃(γ))∗(t), γt, t)}.

In the above, (θ̃(γ))∗ is the monotone increasing, left continuous version of θ̃t(γt)
chosen according to Remark 2.4. This is possible due to point (iii) in the above definition.
The notation Γ(L1

[0,1],L1
[0,1]) in point (i) denotes the set of Radon probability measures

on [0, 1]2 whose projections on both components are equal to L1
[0,1].

Point (i) simply specifies in what sense the initial data is satisfied. ζt gives the prob-
ability distribution of {θ, θM(z)}z∈[0,1] at time t, and narrowly converge to ζ0 as t → 0.
The second convergence simply means the ”flow map” converges to identity as t → 0.
That π34ζt ∈ L1

[0,1] is a reformulation of the measure preserving property of the flow

map, namely the incompressibility.
Point (ii) shows that ζt obtained satisfies the same conditions as required by the

”admissibility” of the data. Therefore, one can take any ζt as initial data and evolves
the solution forward.

Point (iii) shows that for all the possible choice of evolution of θ̃ and the fluid path γ,

t 7−→ θ̃t(γt) is always monotone increasing in t(up to some set of Lebesgue measure 0).

Point (iv) shows that for possible choice of evolution of θ̃ and the fluid path γ, the
correct equation is satisfied.

Next we show if the random evolution of the solution happens to be deterministic,
then Definition 2.2 and Definition 5.4 are consistent.

Lemma 5.5. Let λ be a measure valued solution to admissble initial data ζ0. Assume
ζ0 = δθ0×

(

(θ0+q0)×id
)

#L1
[0,1]. Assume also that λ = δθ(t)×

(

(θ0+q0)×id×ΦF )#L1
[0,1],

for some Borel map F : [0, T ) × [0, 1] → [0, 1]. Let ΦF (z) associates each z to its
path t 7−→ Ft(z). We also assume that there exists inverse map F ∗ : [0, T ) × [0, 1] →
[0, 1] with F ∗

t ◦ Ft = id and Ft ◦ F ∗
t = id for L1

[0,1] − a.e z and any t ∈ (0, T ). Then

(θ(t, z), θ0(F
∗
t (z) + q0(F

∗
t (z)) − θ(t, z), F ) is a weak Lagrangian solution in the sense of

Definition 2.2.

Proof. From the definition of admissible data, we know that for L1− a.e z ∈ [0, 1], it holds
Qsat(θ0(z), z, 0) ≥ q0(z) for L1 − a.e z ∈ [0, 1]. Since supp π2#ζ0 = (θ0 + q0)#L1

[0,1] ⊂
[−M,M ], this means ||θ0 + q0||L∞ ≤ M .

That θt ∈ L∞([0, T )× [0, 1])∩C([0, T ), L1([0, 1])) follows from that θt ∈ C([0, T ];YB2).
Let qt(z) = θ0(F

∗
t (z)) + q0(F

∗
t (z))− θ(t, z). From the boundedness of θ0 + q0, we imme-

diately get qt ∈ L∞([0, T ) × [0, 1]).
That Ft(·) ∈ C([0, T );L1([0, 1])) follows from that π34#ηt = (id × Ft)#L1

[0,1] is nar-

rowly continuous. From π34#ηt ∈ Γ(L1
[0,1],L1

[0,1]), we see Ft#L1
[0,1] = L1

[0,1], namely

Ft is measure preserving. Combined with the assumption F ∗
t ◦ Ft = id shows that

(id × Ft)#L1
[0,1] = (F ∗

t × id)#L1
[0,1], hence F ∗

t is also measure preserving. As before,
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the narrow continuity of t 7−→ π34#ηt implies F ∗
t (·) ∈ C([0, T );L1([0, 1])). This in turn

implies qt ∈ C([0, T );L1([0, 1])).
From the definition of the space XB1 , we see F·(z) ∈ L∞([0, 1];BV (0, T )), with total

variation ≤ C. Next we will check through the points (i)-(vi) in the Definition 2.2.
To see point (i), we observe that the measure π1#ζt → π1#ζ0 narrowly. In other

words, we have δθt → δθ0 narrowly in P(X0). This implies θt → θ0 in L2([0, 1]). That
Ft → id follows from that π34#ηt = (id× Ft)#L1

[0,1] → (id× id)#L1
[0,1].

Point (ii) immediately follows from the definition of the space Y and YB2 .
Point (iii) follows from the assumption of F made in this lemma.
To see point (iv), Recall qt(z) = θ0(F

∗
t (z))+q0(F

∗
t (z))−θ(t, z). Hence for any t ∈ (0, T )

q̂t(z) = qt(Ft(z)) = θ0(F
∗
t ◦ Ft(z)) + q0(F

∗
t ◦ Ft(z)) − θ(t, Ft(z)) = θ0(z) + q0(z) − θ̂t(z),

for L1− a.e z.
Point (v) of Definition 2.2 follows from point (iii) of Definition 5.4. Indeed, from

point (iii), we know that for π14#λ − a.e (θ̃, γ), it holds θ̃t(γt) ≤ θ̃t′(γt′) for L2−a.e
(t, t′) ∈ (0, T )2 with t < t′. But π14#λ = δθ(t)×ΦF#L1

[0,1]. Hence for L1−a.e z, it holds

θt(Ft(z)) ≤ θt′(Ft′(z)) for L2-a.e (t, t′) ∈ (0, T )2 with t < t′.

To see the last point, we know from our assumption on λ that for λ− a.e (θ̃, s, z, γ),

it holds s = θ0(z) + q0(z), and γt = Ft(z). For (θ̃, s, z, γ) such that this holds, we know

Eθ,s,γ = Eθ,θ0(z)+q0(z),F·(z) = {t ∈ (0, T ) : (θ(F ))∗t (z)

= θ0(z) + q0(z)−Qsat((θ(F ))∗t (z), Ft(z), t)}.

We have seen in the above proof that for L1 − a.e z, we have q̂t(z) = θ0(z) + q0(z) −
θt(Ft(z)). Hence if we choose the monotone and left continuous representative, we have

q̂∗t (z) = θ0(z)+ q0(z)− (θ(F ))∗t (z). Hence for λ− a.e (θ̃, s, z, γ), Eθ,s,γ = Ez, where Ez is
given in point (vi) of Definition 2.2. Finally the measure theoretic equation holds λ−a.e.
Since π2#λ = L1

[0,1], we see the point (vi) of Definition 2.2 holds. �

The main existence theorem we will prove will be the following:

Theorem 5.1. Let ζ0 be an admissible initial data, then there exists a measure valued
solution to (2.1)-(2.4) with initial data ζ0.

6. Existence of measure valued solutions

In this section, we will show the existence of measure valued solutions to any admissible
data defined in previous section.

The plan is the following: Let ζ0 be an admissible initial data, then we approximate
ζ0 by convex combinations of discrete and ”deterministic” initial data. For each measure
appearing in the convex combination, we can run the discrete procedure described in
section 3. The question is to show one can take the limit of this approximation and the
properties given in Definition 5.4 hold in the limit.

6.1. Discretizing the initial data. We assume π2#ζ0 ⊂ [−M + 1,M − 1] for some
M > 0. Write K = M − 1. As a preliminary step, we note the following:

Lemma 6.1. Let ζ0 be an admissible data. Then there exists a Borel family of probability
measures {αθ}θ∈YB2

⊂ P(R × [0, 1]), such that for µ0 − a.e θ, supp π1#αθ ⊂ [−K,K],
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π2#αθ = L1
[0,1], θ(z) ≥ Θ(s, z, 0) for αθ − a.e (s, z) and for any bounded Borel function

f(θ, s, z) : YB2 × R× [0, 1] → R, it holds:

(6.1)

∫

YB2
×R×[0,1]

f(θ, s, z)dζ0(θ, s, z) =

∫

YB2

dµ0(θ)

[
∫

R×[0,1]
f(θ, s, z)dαθ(s, z)

]

.

Proof. The existence of this family of probability measures satisfying the integral identity
(6.1) is the standard disintegration theorem, see Theorem 5.3.1 of [1]. We just need to
check that supp π1#αθ ⊂ [−K,K], π2#αθ = L1

[0,1], θ(z) ≥ Θ(s, z, 0) for αθ − a.e (s, z).

To see supp π1#αθ ⊂ [−K,K], take f(θ, s, z) = f1(θ)χ[−K,K]c(s), and f1 : YB2 → R

bounded and Borel measurable. Then we see

|
∫

f1(θ)χ[−K,K]c(s)dζ0(θ, s, z)| ≤ sup |f |
∫

χ[−K,K]c(s)dζ0(θ, s, z) = 0.

From (6.1), we know for any choice of bounded Borel function f1, one has
∫

f1(θ)dµ0(θ)
[

∫

χ[−K,K]cdαθ(s, z)
]

= 0.

This implies
∫

χ[−K,K]c(s)dαθ(s, z) = 0 for µ0−a.e θ. For such θ, we have supp π1#αθ ⊂
[−K,K].

To see π2#αθ = L1
[0,1], one can similarly take f(θ, s, z) = f1(θ)f2(z), using that

π13#ζ0 = µ0 × L1
[0,1], one concludes for any choice of f2(z) bounded and Borel on [0, 1]

it holds
∫

R×[0,1] f2(z)dαθ(s, z) =
∫

f2(z)dz for µ0 − a.e θ. One just needs to choose

a countable dense subset {fn
2 }n≥1 of C([0, 1]), apply this argument with f2 = fn

2 and
concludes for µ0 − a.e θ, π2#αθ = L1

[0,1].

To see that θ(z) ≥ Θ(s, z, 0) for αθ − a.e (s, z), we integrate χ{(θ,s,z):θ(z)≥Θ(s,z,0)}, and
use (6.1). By Lemma 5.3, such a function is bounded and Borel, hence its integral is well
defined. �

Due to Lemma 6.1, we can write ζ0 =
∫

YB2
δθ × αθ(s, z)dµ0(θ), and for µ0 − a.e θ,

αθ(s, z) satisfy the ”correct” condition mentioned in Lemma 6.1 Next we will construct
discretization of αθ for each fixed such θ.

Recall we have shown supp αθ ⊂ [−K,K]× [0, 1], Define Kj = [−K + (j−1)2K
n ,−K +

j·2K
n ] for 1 ≤ j ≤ n, call wj = −K + j·2K

n . Suppose αθ(Kj × Ji) > 0, since we assumed
θ(z) ≥ Θ(s, z, 0) for αθ−a.e (s, z), we have, for some (α̃ij , zij) ∈ Kj × Ji, we have

θ(zij) ≥ Θ(α̃ij , zij , 0). Therefore, for some universal constant C > 2K + sup |∂zΘ|
inf ∂wΘ , if we

define αij = wj − C
n , we have

θ(zi) ≥ θ(zij) ≥ Θ(α̃ij, zij , 0) ≥ Θ(α̃ij , zi, 0)−
sup |∂zΘ|

n
≥ Θ(wj −

C

n
, zi, 0).

There is no loss of generality to assume n is chosen sufficiently large so that C
n < 1. Now

we can define a measure αn
θ which is an approximation to αθ, by putting:

αn
θ =

n
∑

i=1

∑

j∈Hθ,i

χJi(z)dz · nαθ(Kj × Ji)δαij
(s).

Here we denote

(6.2) Hθ,i = {j : 1 ≤ j ≤ n, αθ(Kj × Ji) > 0}.
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Lemma 6.2. αn
θ → αθ narrowly in P(R × [0, 1]).

Proof. Let f ∈ Cb(R × [0, 1]) with Lipschitz constant 1, and we denote Hi = Hθ,i for
simplicity.

∫

f(s, z)dαθ(s, z) =

n
∑

i=1

∑

J∈Hi

∫

Kj×Ji

f(z, s)dαθ(s, z)

=
n
∑

i=1

∑

j∈Hi

∫

Kj×Ji

(

f(z, s)− f(zi, wj −
C

n
)
)

dαθ(s, z) +
n
∑

i=1

∑

j∈Hi

f(zi, wj −
C

n
)αθ(Kj × Ji)

=
n
∑

i=1

∑

j∈Hi

∫

Ji

f(z, wj −
C

n
)dz · nαθ(Ji ×Kj) +

n
∑

i=1

∑

j∈Hi

∫

Ji×Kj

(

f(z, s)− f(zi, wj −
C

n
)
)

dαθ(z, s)

+

n
∑

i=1

∑

j∈Hi

∫

Ji

f(zi, wj −
C

n
)− f(z, wj −

C

n
)dz · nαθ(Ji ×Kj).

The first term above is exactly the integral of f with respect to αn
0 . The last two terms

will go to zero, because in each term of the sum, the integrand is controlled by C
n . �

For any B > 0 and each θ ∈ YB, we can define Dn : YB → YB by putting Dn(θ) =
∑n

i=1 θ(zi)χJi . Then for each fixed θ, it holds Dn(θ) → θ in YB . Now with choice
B = B2. By putting ζn0 =

∫

YB2
δDn(θ) × αn

θ (s, z)dµ0(θ), we then have ζn0 → ζ0 narrowly

in P(YB2 × R× [0, 1]) as n → ∞. Besides, ζn0 satisfies the following properties:
(i)π13#ζn0 = (Dn#µ0)× L1

[0,1], supp π2#ζn0 ⊂ [−K − 1,K + 1] = [−M,M ];

(ii)θ(zi) ≥ Θ(wj− C
n , zi, 0), whenever j ∈ Hθ,i, or θ(z) ≥ Θ(s, z, 0) for ζn0 −a.e (θ, s, z).

For simplicity of notation, we will write
(6.3)

αθ(s, z) =

n
∑

i=1

∑

j∈Hθ,i

nχJi(z) · µθ
ijδαij

(s), with µθ
ij = αθ(Kj × Ji), and αij = wj −

C

n
.

6.2. Construction of approximate solutions and passage to limit. The measures
ζn0 determines a sequence of discrete probability distributions. For each choice of θ, αθ

prescribes the probability distribution of θM(z) for each fixed z. More precisely, when
z ∈ Ji, the possible values of θM are given by αij , with probability µij .

In order to apply the discrete procedure, we will make a random choice of αij on each

Ji, and this gives us a ”deterministic” and discrete initial θM . Then we run the discrete
procedure, with this θM as initial data and it gives us a evolution, with probability
determined by the choice of αij.

First we make a random choice of the αij , allowed by the physical constraint. Denote
Sθ to be the set of functions σ : {1, 2, · · · , n} → {1, 2, · · · , n}, such that for each i,

σ(i) ∈ Hθ,i. Determine a discrete initial θM,n
0 from σ by prescribing:

θM,n
0,σ (z) =

n
∑

i=1

αiσ(i)χJi(z), or θM,n
0,σ,i = αiσ(i).

The probability of such a choice is given by nnµ1σ(1)µ2σ(2) · · ·µnσ(n). Notice here that
∑

j µij = 1
n , hence

∑

σ µ
θ
1σ(1) · · ·µθ

nσ(n) = n−n. It is straightforward to check that αθ
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given by (6.3) is equal to

(6.4) αθ =
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)(θ
M,n
0,σ × id)#L1

[0,1].

After we make such a choice, we apply the discrete procedure described in section 3

to {θ(zi)}ni=1, and {θM,n
σ,i − θ(zi)}ni=1, with time step size δt = 1

nC′

4
, here C ′

4 is given

by Theorem 4.1 in order for all the estimates in that theorem to hold. Notice that

θ(zi) ≤ θ(zi+1), and θ(zi) ≥ Θ(θM,n
σ,i , zi, 0), hence it satisfies the assumptions made in the

beginning of section 2. Denote {θnσ,j(kδt)}1≤j≤n,0≤k≤ T
δt
, {θM,n

σ,j (kδt)}1≤j≤n,0≤k≤ T
δt

to be

the discrete solutions contructed according to section 2 and we adopt similar notations
as there, but here with dependence on σ. Define

θn0 (z) =
∑

i

θ(zi)χJi .(6.5)

θnσ(t, z) = θnσ,j(kδt),(6.6)

θM,n
σ (t, z) = θM,n

σ,j (kδt),(6.7)

θ̄nσ(t, z) =
(k + 1)δt − t

δt
θnσ,j(kδt) +

t− kδt

δt
θnσ,j((k + 1)δt),(6.8)

for kδt ≤ t < (k + 1)δt and z ∈ Jj .
Denote Fn

σ (t, z) be the discrete flow map constructed in section 3. Since we know θ ∈
YB2 , we see ||θn0 ||L∞ ≤ B2, and ||θM,n

0,σ ||L∞ ≤ M . Hence ||θn0 ||L∞+||qn0 ||L∞ ≤ M+2B2. We

know from point (iii) of Theorem 4.1, as well as the choice of the constant B1 made in the
paragraph before Definition 5.4, that Fσ(·, z) ∈ XB1 , namely TVt∈(0,T )(F

n
σ (t, z)) ≤ B1.

Similarly we have ||θnσ ||L∞ ≤ B3, according to the point (i) of Theorem 4.1, as well as
the choice of B3 made before Definition 5.4. In particular, for each fixed t ∈ [0, T ), it
holds θ̄nσ(t, ·) ∈ YB3 . Hence θ̄nσ ∈ C([0, T );YB3) = Y .

Let Φn
σ : [0, 1] → XB1 be defined by Φn

σ(z) = Fn
σ (·, z). From the discussion in the

previous paragraph, we know Φn
σ indeed maps [0, 1] into the space XB1 and is easily seen

to be a Borel map.
Now we form the probability measure:

(6.9) λn =

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

(

δθ̄nσ × (θM,n
0,σ × id× Φn

σ)#L1
[0,1]

)

.

Then we see λn ∈ P(Y × R × [0, 1] × XB1), by our previous condtruction, and this
will be our approximate solutions. Following the notations in Definition 5.4, define
ηnt = (et × id× id× e′t)#λn, we have

(6.10) ηnt =

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

(

δθ̄nσ (t) × (θM,n
0,σ × id× Fn

σ,t)#L1
[0,1]

)

.

In order to take limit, we need to show that λn is tight. For this, we just need to
show πk#λn is tight, for k = 1, 2, 3, 4, where πk is the projection map onto the k-th
component. Indeed, we have

π1#λn =

∫

YC

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)δθnσ .
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Because of point (v) in Theorem 4.1, we see that for any σ ∈ Sθ, and s, t ∈ [0, T ), with
t− s > δt

2 we have

||θnσ(s, ·)− θnσ(t, ·)||L1 ≤ C5

√

3(t− s).

The constant C5 is given by point (v) of Theorem 4.1 when we have the bound ||θn0 ||L∞+
||qn0 ||L∞ ≤ M + 2B2. Recalling (6.8), it follows that θ̄nσ satisfies the same estimate, but

without the restriction t− s > δt
2 . Therefore, π1#λn is concentrated on the compact set:

F = {f ∈ Y : ||f(t, ·)− f(s, ·)||L2 ≤ C5

√

3(t− s) for any s < t}.

That this is a compact set follows from the Arzela-Ascoli theorem and the compactness
of the space YB3 . Note that the functions in Y has bound in L∞, so convergence in Lp

are equivalent for any p < ∞.
As for π2#λn, since for all σ ∈ Sθ, we know from the construction of discrete solutions

that ||θM,n
0,σ ||L∞ ≤ M . Hence suppπ2#λn ⊂ [−M,M ], hence is tight.

There is nothing to prove for π3#λn and π4#λn, as [0, 1] and XB1 are compact spaces.
So up to extracting a subsequence, we can pass to limit for the measure defined in

(6.9), and we denote a limit measure to be λ ∈ P(Y ×R× [0, 1]×XB1). It only remains
to show λ is a solution. Finally we record a lemma which will be useful in the next
subsection.

Lemma 6.3. Define ηnt = (e′t × id × id × et)#λn, then ηnt → ηt for any t ∈ (0, T ) as
n → ∞.

Proof. First we remind the reader that this is not completely obvious as the evaluation
map et in the last component is not continuous. Instead, we will use the continuity
estimates in point (vi) of Theorem 4.1.

For γ ∈ XB1 , extend γ(t) = γ(0+) for t ≤ 0, and define the operator: A′
ε : XB1 → XB1 ,

given by γ 7−→ ε−1
∫ t
t−ε γ(s)ds. Then it is straightforward to check A′

ε is a continuous

map for each fixed ε, and Aε(γ) → γ for each fixed γ as ε → 0.
Let f ∈ Cb(YB3 ×R× [0, 1] × [0, 1]) and is 1-Lipschitz, then we can compute

∫

f(θ, s, z, z′)dηnt (θ, s, z, z
′) =

∫

f(θ̃t, s, z, γt)dλ
n(θ̃, s, z, γ)

=

∫

(f(θ̃t, s, z, γt)− f(θ̃t, s, z, (A
′
ε(γ))t)dλ

n(θ̃, s, z, γ) +

∫

f(θ̃t, s, z, (Aε(γ))t)dλ
n(θ̃, s, z, γ).

(6.11)

Now observe that for each fixed ε > 0, the map (θ̃, s, z, γ) 7−→ (θ̃t, s, z, (A
′
ε(γ))t) is

continuous. Hence for each fixed ε > 0, the following convergence holds as n → ∞.

(6.12)

∫

f(θ̃t, s, z, (Aε(γ))t)dλ
n(θ̃, s, z, γ) →

∫

f(θ̃t, s, z, (Aε(γ))t)dλ(θ̃, s, z, γ).
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To estimate the first term of (6.11), observe

|
∫

(f(θ̃t, s, z, γt)− f(θ̃t, s, z, (Aε(γ))t)dλ
n(θ̃, s, z, γ)| ≤

∫

|γt − (Aε(γ))t|dλn(θ̃, s, z, γ)

≤
∫

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

[0,1]
|Fn

σ,t(z) − (AεF
n
σ,·(z))(t)|dz

≤
∫

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n) · ε−1

∫ t

t−ε

∫

[0,1]
|Fn

σ,t(z) − Fn
σ,s(z)|dzds ≤ C6

√
ε+ δt.

(6.13)

In the last inequality, we used point (vi) of Theorem 4.1.
Combining (6.11)-(6.13), it follows that

lim sup
n→∞

|
∫

f(θ, s, z, z′)d(ηnt − ηt)| ≤ C6
√
ε+

∫

|γt − (Aε(γ))t|dλ(θ̃, s, z, γ).

Now using the bounded convergence theorem, we can conclude the integral on the right
hand side tends to zero as ε → 0 since (Aε(γ))t → γt as ε → 0 and γ is left continuous. �

6.3. The limit is a solution. In this section, we will show the limit λ obtained in
previous subsection is a measure valued solution. Some preparations are needed before
we proceed.

For any B > 0, we may define the ”averaging” operator: Aε : YB → YB , given by
Aε(θ)(z) = ε−1

∫ z+ε
z θ(w)dw. Here we extended the definition of θ so that θ(z) = B for

z ≥ 1. It is clear that for any θ1, θ2 ∈ YB, one has ||Aε(θ1)− Aε(θ2)||L2 ≤ ||θ1 − θ2||L2 .
Hence Aε is a continuous map for each fixed ε > 0. Also it is clear that for any θ ∈ YB ,
we have Aεθ → θ in YB as ε → 0. We can define a map Aε : Y → Y by the same
formula, namely Aε(θ̃)(t, z) = ε−1

∫ z+ε
z θ̃(w, t)dw. Also one can check Aε : Y → Y is a

continuous map for each ε → 0, and Aε(θ̃) → θ̃ in Y as ε → 0.
Now choose B = B3, we prove the following estimate about Aε.

Lemma 6.4. Let ε > 0. For any n ≥ 1, and any t ∈ (0, T ), it holds

∫

Y×XB1

|θ̃t(γt)− (Aεθ̃)t(γt)|dπ14#λn(θ, γ) ≤ B3ε.

Proof. From the definition of the measure λn, we can calculate:

∫

Y×XB1

|θ̃t(γt)− (Aεθ̃)t(γt)|dπ14#λn(θ̃, γ)dt

=

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµ1σ(1) · · · µθ
nσ(n)

∫

[0,1]
|θ̄nσ,t(Fn

σ,t(z))− (Aεθ̄
n
σ)t(F

n
σ,t(z))|dz

=

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµ1σ(1) · · · µθ
nσ(n)

∫

[0,1]
|θ̄nσ,t(z)− (Aεθ̄

n
σ)t(z)|dz.
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In the last equality, we used the measure preserving property of Fn
σ,t. For each fixed θ,

σ, we can estimate
∫

[0,1]
|θ̄nσ,t(z) − (Aεθ̄

n
σ)t(z)|dz = ε−1

∫ ε

0
ds

∫

[0,1]
θ̄nσ,t(z + s)− θ̄nσ,t(z)dz

= ε−1

∫ ε

0
ds
[

∫ 1+s

1
θ̄nσ,t(z)dz −

∫ s

0
θ̄nσ,t(z)dz

]

ds ≤ ε−1

∫ ε

0
2B3sds ≤ B3ε.

In the first equality above, we used the monotonicity of θ̄nσ in z. �

Next we will check the properties listed in Definition 5.4 one by one.

Lemma 6.5. Following the notation of Definition 5.4, we have t 7−→ ηt ∈ P(YB3 ×
R × [0, 1] × [0, 1]) is narrowly contiuous, and ζt → ζ0, π34#ηt ∈ Γ(L1

[0,1],L1
[0,1]) →

(id× id)#L1
[0,1] as t → 0.

Proof. First we check the continuity. Let f ∈ Cb(YB3 ×R× [0, 1]× [0, 1]) be 1-Lipschitz.
We compute
∫

f(θ, s, z, z′)dηnt (θ, z, s, z
′) =

∫

YB2

dµ0(θ)

[

∑

σ∈Sθ

nnµθ
1σ(1) · · · µθ

nσ(n)

∫

f(θ̄nσ(t), z, θ
M,n
0,σ (z), Fn

σ,t(z))dz

]

.

Now choose t, t′, with t′ > t, one has for each fixed θ ∈ YB2 , and each σ ∈ Sθ,
∫

|f(θ̄nσ(t), θM,n
0,σ (z), z, Fn

σ,t(z))− f(θ̄nσ(t
′), θM,n

0,σ (z), z, Fn
σ,t′ (z)|dz

≤ ||θ̄nσ(t)− θ̄nσ(t
′)||L2([0,1]) +

∫

|Fn
σ,t(z)− Fn

σ,t′(z)|dz ≤ (C5B3 + C6)
√
t′ − t+ δt.

Here the constants C5 and C6 are given by the points (v) and (vi) of Theorem 4.1. Now
since

∑

σ∈S nnµ1σ(1) · · ·µnσ(n) = 1, we obtain for any t < t′:

(6.14) |
∫

f(θ, s, z, z′)d(ηnt − ηnt′)(θ, s, z, z
′)| ≤ (C5B3 + C6)

√
t′ − t+ δt.

The continuity now follows from sending n → ∞ in (6.14) and use Lemma 6.3. To show
that ζt → ζ0, we show that for each f ∈ Cb(YB3 × R × [0, 1]), and 1-Lipschitz, one has
supn |

∫

fdζnt −
∫

fζn0 | ≤ C
√
t, with C universal. Indeed we calculate

∫

f(θ, s, z′)dζnt (θ, s, z
′) =

∫

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

f(θ̄nσ(t), θ
M,n
0,σ (z), Fn

σ,t(z))dz.

On the other hand, from (6.4), we know that
∫

f(θ, s, z′)dζn0 (θ, s, z
′) =

∫

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

f(θn0 , θ
M,n
0,σ (z), z)dz.

Using point (v) and (vi) in Theorem 4.1 once more, we see that for any choice of θ ∈ YB2

, s ∈ R, and σ ∈ Sθ, we have
∫

[0,1]
|f(θn0 , s, z) − f(θ̄nσ(t), s, F

n
σ,t(z)|dz ≤ ||θn0 − θ̄nσ,t||L2 +

∫

[0,1]
|z − Fn

σ,t(z)dz|

≤ (C5B3 + C6)
√
t+ δt.
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Then we can proceed in a similar way as before. That π34#ηnt ∈ Γ(L1
[0,1],L1

[0,1]) follows

readily from (6.10). The convergence for π34#ηnt is similar. �

Next we check the point (ii) of Definition 5.4.

Lemma 6.6. For any t ∈ (0, T ), π13#ζt = µt × L1
[0,1], π2#ζt has compact support.

Besides, θ(z) ≥ Θ(s, z, t) for ζt − a.e (θ, s, z).

Proof. From (6.10) we conclude:

(6.15) ζnt =

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · · µθ

nσ(n)δθ̄nσ (t) × (θM,n
0,σ × Fn

σ,t)#L1
[0,1].

Hence we conclude

(6.16) π13#ζnt =

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)δθ̄nσ (t) ×
(

Fn
σ,t#L1

[0,1]

)

= µn
t × L1

[0,1].

In the above, we used the measure preserving property of the map Fn
σ,t and here µn

t =
∫

YB2
dµ0(θ)

∑

σ∈Sθ
µθ
1σ(1) · · ·µθ

nσ(n)δθ̄nσ (t) ∈ P(YC1). Lemma 6.3 implies ζnt → ζt. On the

other hand, we may assume µn
t → µt. Passing to limit in (6.16), we see π13#ζt =

µt × L1
[0,1].

Now from (6.15), one also calculate

π2#ζnt =

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)θ
M,n
0,σ #L1

[0,1].

From the construction given in the last subsection, we have ||θM,n
0,σ ||L∞ ≤ M , hence supp

π2#ζnt ⊂ [−M,M ]. Passing to the limit, the same will hold for π2#ζt.
It remains to check that θ(z) ≥ Θ(s, z, t) for ζt − a.e (θ, s, z). It suffices to show

∫

(θ(z)−Θ(s, z, t))−dζt(θ, s, z) = 0. Now we calculate
∫

YB3
×R×[0,1]

(θ(z)−Θ(s, z, t))dζnt (θ, s, z)

=

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

[0,1]
(θ̄nσ(t, F

n
σ,t(z)) −Θ(θM,n

σ (z), Fn
σ,t(z), t)

−dz

≤
∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

[0,1]
|θ̄nσ(t, Fn

σ,t(z)) − θnσ(t, F
n
σ,t(z)|dz + sup |∂tΘ|δt

≤ (C5 + sup |∂tΘ|)
√
δt

In the first inequality above, we used that θnσ(t, F
n
σ,t(z)) ≥ Θ(θM,n

σ (z), Fn
σ,t(z), kδt), where

t ≤ kδt < (k + 1)δt. This follows from point (iv) of Corollary 3.3. In the last inequality,
we used the point (v) of Theorem 4.1 and the measure preserving property of the map
Fn
σ,t. Passing to the limit as n → ∞, the conclusion follows. �

Now we check the point (iii) of Definition 5.4.

Lemma 6.7. Fix ε > 0, define the function Iε : Y ×XB1 → R, given by

(θ̃, γ) 7−→
∫

(0,T )2
((Aεθ̃)t1(γt1)− (Aεθ̃)t2(γt2))

+χt1<t2dt1dt2
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is continuous.

Proof. Let (θ̃k, γk) → (θ̃, γ) in Y ×XB1 , we need to show I(θ̃k, γk) → I(θ̃, γ). We prove

this by showing for L1−a.e t ∈ (0, T ), we have pointwise convergence:(Aε θ̃
k)t(γ

k) →
(Aεθ̃)t(γt), and then the desired convergence follows from dominated convergence theo-
rem.

By Helly‘s selection principle, we know that γkt → γt except for a countable set

of t. Since |Aε(θ̃
k)t(z) − Aε(θ̃)t(z)| ≤ ε−1/2||θ̃kt − θ̃t||L2 , we know that Aε(θ̃

k)t →
Aε(θ̃)t uniformly for each t ∈ (0, T ). Hence for any t with γk(t) → γ(t), it

holds (Aεθ̃
k)t(γ

k
t ) → (Aεθ̃)t(γt). It follows that ((Aε(θ̃

k))t1(γ
k
t1) − (Aεθ̃

k)t2(γ
k
t2))

+ →
((Aε(θ̃))t1(γt1)−(Aεθ̃)t2(γt2))

+ for L2−a.e (t1, t2). Then the result follows from bounded
convergence theorem.

�

Lemma 6.8. For any n, the following estimate holds:
∫

(0,T )2

∫

Y×XB1

(θ̃t1(γt1)− θ̃t2(γt2))
+χt1<t2dL2(t1, t2)dπ14#λn(θ, γ) ≤ 2C5T

2
√
δt.

Here C5 is the universal constant given in point (v) of Theorem 4.1.

Proof. According to the definition of λn, we find
∫

(0,T )2

∫

Y×XB1

(θ̃t1(γt1)− θ̃t2(γt2))
+χt1<t2dL2(t1, t2)dπ14#λn(θ, γ)

=

∫

YB2

µ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

(0,T )2

∫

[0,1]
(θ̄nσ,t1(F

n
σ,t1(z))− θ̄nσ,t2(F

n
σ,t2(z)))

+χt1<t2dt1dt2dz.

For each fixed σ and θ, it holds:
∫

(0,T )2

∫

[0,1]
(θ̄nσ,t1(F

n
σ,t1(z)) − θ̄nσ,t2(F

n
σ,t2(z)))

+χt1<t2dt1dt2dz

≤ 2T

∫ T

0

∫

[0,1]
|θ̄nσ,t(Fn

σ,t(z))− θnσ,t(F
n
σ,t(z))|dtdz

+

∫

(0,T )2

∫

[0,1]
(θnσ,t1(F

n
σ,t1(z)) − θnσ,t2(F

n
σ,t2(z)))

+χt1<t2dt1dt2dz

= 2T

∫ T

0

∫

[0,1]
|θ̄nσ,t(z)− θnσ,t(z)|dtdz ≤ 2T 2C5

√
δt.

In the above calculation, we used point (iii) of Corollary 3.3, hence for any σ ∈ Sθ,
θnσ,t1(F

n
σ,t1) ≤ θnσ,t2(F

n
σ,t2), for any t1 < t2. When estimating θ̄nσ − θnσ , we used (6.8) and

point (v) of Theorem 4.1. �

Lemma 6.9. For λ−a.e (θ̃, s, z, γ) ∈ Y × R× [0, 1] ×XB1 , we have

θ̃t1(γt1) ≤ θ̃t2(γt2), for L2 − a.e (t1, t2) ∈ (0, T )2 with t1 < t2.

Proof. It suffices to show that

(6.17)

∫

(0,T )2

∫

Y×XB1

(θ̃t1(γt1)− θ̃t2(γt2))
+χt1<t2dL2(t1, t2)dπ1,4#λ(θ̃, γ) = 0.
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For any ε > 0, we can write
∫

(0,T )2

∫

Y×XB1

(θ̃t1(γt1)− θ̃t2(γt2))
+χt1<t2dL2(t1, t2)dπ1,4#λ(θ̃, γ)

≤ 2T

∫ T

0

∫

Y×XB1

(θ̃t(γt)− (Aεθ̃)t(γt))
+dtdπ14#λ(θ̃, γ)

+

∫

(0,T )2

∫

Y×XB1

((Aεθ̃)t1(γt1)− (Aεθ̃)t2(γt2))
+χt1<t2dL2(t1, t2)dπ14#λ(θ̃, γ).

For the first term, it goes to zero as ε → 0, since the integrant tends to 0 for each fixed
(t, θ̃, γ) and is clearly bounded. For the second term, we estimate:
∫

(0,T )2

∫

Y×XB1

((Aεθ̃)t1(γt1)− (Aεθ̃)t2(γt2))
+χt1<t2dL2(t1, t2)dπ14#λn(θ̃, γ)

≤ 2T

∫ T

0

∫

Y×XB1

|θ̃t(γt)− (Aεθ̃)t(γt)|dtdπ14#λn(θ̃, γ) + 2C5T
2
√
δt ≤ 2B3T

2ε+ 2C5T
2
√
δt.

The last inequality follows from the Lemma 6.4, while the first inequality used Lemma
6.8. Now send n → ∞, Lemma 6.7 allows us to conclude:
∫

(0,T )2

∫

Y×XB1

((Aεθ̃)t1(γt1)− (Aεθ̃)t2(γt2))
+χt1<t2dL2(t1, t2)dπ14#λ(θ̃, γ) ≤ 2B3T

2ε.

The proof is completed by sending ε → 0. �

Up to now, we have checked points (i)-(iii) in Definition 5.4. It only remains to check

point (iv). Our first goal will be to show the measure ∂t(θ̃t(γt)) is concentrated on the
”wet” set. As preparation, we prove the following:

Lemma 6.10. For any ε, ε1, ε2 > 0, define the function Ki : Y ×R×XB1 → R, i = 1, 2,
given by

K1(θ̃, s, γ) =

∫

(0,T )2
χ{0<t2−t1<ε1}|(Aεθ̃)t1(γt1)− (Aεθ̃)t2(γt2)|χ{(Aε θ̃)t1 (γt1 )>Θ(s,γt1 ,t1)+ε2}

dt1dt2,

K2(θ̃, s, γ) =

∫

(0,T )2
χ{0<t2−t1<ε1}(γt2 − γt1)

+χ{(Aεθ̃)t1 (γt1 )>Θ(s,γt1 ,t1)+ε2}
.

Then Ki is lower semi-continuous, i = 1, 2.

Proof. Let (θ̃k, sk, γk) → (θ̃, s, γ), need to show Ki(θ̃, s, γ) ≤ lim infk→∞Ki(θ̃
k, sk, γk).

As explained in the proof of Lemma 6.7, for any t such that γk(t) → γ(t), we have

(Aεθ̃
k)t(γ

k
t ) → (Aεθ̃)t(γt). Hence for such t

χ{(Aεθ̃)t(γt)>Θ(s,γt,t)+ε2}
≤ lim inf

k→∞
χ{(Aεθ̃k)t(γk

t )>Θ(s,γk
t ,t)+ε2}

.

The integrand is lower semi-continuous with respect to (θ̃, s, γ) if we fix (t1, t2) such that
γkti → γti , i = 1, 2. Then the lower semi-continuity of Ji follows from applying Fatou‘s
lemma. �
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Lemma 6.11. Let C2 be the universal constant given by Theorem 4.1, point (ii). Then
we have for any ε > 0
(6.18)
∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|θ̃t2(γt2)− θ̃t1(γt1)|χ{θ̃t1 (γt1 )>Θ(s,γt1 ,t1)+2ε}dλ(θ̃, s, z, γ) = 0.

and

(6.19)

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

(γt2−γt1)
+χ{θ̃t1 (γt1 )>Θ(s,γt1 ,t1)+2ε}dλ(θ̃, s, z, γ) = 0.

Proof. We only prove (6.18). The proof of (6.19) follows similar lines and is simpler. Fix
0 < δ < ε. Denote χδ,ε = χ{(Aδ θ̃)t1 (γt1 )>Θ(s,γt1 ,t1)+ε}. From the lower semi-continuity

proved in previous lemma, we conclude:

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|(Aδ θ̃)t2(γt2)− (Aδ θ̃)t1(γt1)|χδ,2εdλ(θ, s, z, γ)

≤ lim inf
n→∞

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|(Aδ θ̃)t2(γt2)− (Aδ θ̃)t1(γt1)|χδ,2εdλ
n(θ̃, s, z, γ).

(6.20)

We know the left hand side of (6.20) will tend to the left hand side of (6.18) as δ → 0.
Next we estimate the right hand side of (6.20).

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|(Aδ θ̃)t2(γt2)− (Aδ θ̃)t1(γt1)|χδ,2εdλ
n(θ̃, s, z, γ)

≤ 2T

∫ T

0

∫

Y×XB1

|(Aδ θ̃)t(γt)− θ̃t(γt)|dπ14#λn(θ̃, γ)

+

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|θ̃t2(γt2)− θ̃t1(γt1))|χδ,2εdλ
n(θ̃, s, z, γ)

≤ 2B3T
2δ +

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|θ̃t2(γt2)− θ̃t1(γt1))|χ{θ̃t1 (γt1 ))>Θ(s,γt1 ,t1)+1.5ε}dλ
n

+B3T

∫ T

0
dt1

∫

(χδ,2ε − χ{θ̃t1(γt1 ))>Θ(s,γt1 ,t1)+1.5ε})
+dλn.

(6.21)

In the second inequality, we used Lemma 6.4. For the second term of the right hand side
above, we calculate:

∫

[0,T ]2
χ{0<t2−t1<

ε
C2

}dt1dt2

∫

|θ̃t2(γt2)− θ̃t1(γt1))|χ{θ̃t1 (γt1 ))>Θ(s,γt1 ,t1)+1.5ε}dλ
n

=

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

(0,T )2

∫ 1

0
χ{0<t2−t1<

ε
C2

}|θ̄nσ,t2(Fn
σ,t2(z)) − θ̄nσ,t1(F

n
σ,t1(z))|

χ
{θ̄nσ,t1

(Fn
σ,t1

(z))>Θ(θM,n
0,σ (z),Fn

σ,t1
(z),t1)+1.5ε}

dt1dt2dz.

(6.22)
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Now define:

χ1 = χ
{θ̄nσ,t1

(Fn
σ,t1

)>Θ(θM,n
0,σ (z),Fn

σ,t1
(z),t1)+1.5ε}

,

χ2 = χ
{θnσ,t1

(Fn
σ,t1

)>Θ(θM,n
0,σ (z),Fn

σ,t1
(z),t1)+ε}

.

We now estimate the right hand side of (6.22). For any θ ∈ YB2 and σ ∈ Sθ,
∫

(0,T )2

∫ 1

0
χ{0<t2−t1<

ε
C2

}|θ̄nσ,t2(Fn
σ,t2(z)) − θ̄nσ,t1(F

n
σ,t1(z))|χ1dt1dt2dz

≤ 2T

∫ T

0

∫ 1

0
|θ̄nσ,t(Fn

σ,t(z)) − θnσ,t(F
n
σ,t(z))|dtdz

+

∫

(0,T )2

∫ 1

0
χ{0<t2−t1<

ε
C2

}|θnσ,t2(Fn
σ,t2(z)) − θnσ,t1(F

n
σ,t1(z))|χ1dt1dt2dz

≤ 2T 2C5

√
δt+

∫

(0,T )2

∫ 1

0
χ{0<t2−t1<

ε
C2

}|θnσ,t2(Fn
σ,t2(z))− θnσ,t1(F

n
σ,t1(z))|χ2dt1dt2dz

+ 2B1

∫

(0,T )2

∫ 1

0
(χ1 − χ2)

+dt1dt2dz.

In the last inequality, we used the point (v) of Theorem 4.1. The second term of right
hand side above is 0, due to point (iv) of Theorem 4.1. To estimate the last term, we
notice

∫

(0,T )2

∫ 1

0
(χ1 − χ2)

+dt1dt2dz ≤
∫

(0,T )2

∫ 1

0
χ{θ̄nσ,t1

(Fn
σ,t1

(z))−θnσ,t1
(Fn

σ,t1
(z))>0.5ε}

≤ 2T

ε

∫ T

0

∫ 1

0
|θ̄nσ,t(z) − θnσ,t(z)|dzdt ≤

2TC5

√
δt

ε
.

For the last term of (6.21), we have
∫ T

0
dt1

∫

(χδ,2ε − χ{θ̃t1 (γt1 ))>Θ(s,γt1 ,t1)+ε})
+dλn

≤
∫ T

0
dt1

∫

χ{|(Aδ θ̃)t1 (γt1 )−θ̃t1(γt1 ))|≥ε}dλ
n ≤ ε−1

∫ T

0
dt1

∫

|(Aδ θ̃)t1(γt1)− θ̃t1(γt1))|dλn

≤ ε−1B3Tδ.

In the last inequality, we use Lemma 6.4 again. Combining the calculations above, we
obtain the left hand side of (6.20) ≤ ε−1B3Tδ+2B3T

2δ. The proof follows from sending
δ → 0. �

By Remark 2.4, and Lemma 6.9, we know for π14#λ− a.e (θ, γ), one can determine a
unique monotone increasing, and left continuous function (θ(γ))∗, which equals θt(γt) for
L1 − a.e t ∈ (0, T ). We will simply denote this function by α(t) in the following lemma.

Lemma 6.12. Let ε > 0, then for λ−a.e (θ̃, s, z, γ) ∈ Y ×XB1 , the following property
holds:

For any t ∈ (0, T ) such that α(t) > Θ(s, γt, t) + ε, it holds α(t′) = α(t), and γt′ ≤ γt,
for any 0 < t′ − t < ε

2C2
. Here C2 is the constant given by point (ii), Theorem 4.1.
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Proof. Let (θ, γ) be chosen so that the statement of Lemma 6.9 holds true, so that we

can define α(t). Let (θ̃, s, z, γ) also satisfy that

(6.23)

∫

[0,T ]2
χ{0<t2−t1<

ε
2C

}|θ̃t2(γt2)− θ̃t1(γt1))|χ{θ̃t1 (γt1 ))>Θ(s,γt1 ,t1)+ε}dt1dt2 = 0,

and

(6.24)

∫

[0,T ]2
χ{0<t2−t1<

ε
2C

}dt1dt2

∫

(γt2 − γt1)
+χ{θ̃t1 (γt1 ))>Θ(s,γt1 ,t1)+ε} = 0.

We know from Lemma 6.11 that (6.23) and (6.24) holds for λ−a.e (θ̃, s, z, γ), for λ −
a.e (θ̃, s, z, γ). Choose some (θ̃, s, z, γ) so that (6.23) and (6.24) hold, then we have

θ̃t2(γt2) = θ̃t1(γt1)) and γt2 ≤ γt1 , for L2 − a.e (t1, t2) with θ̃t1(γt1)) > Θ(s, γt1 , t1) + ε
and 0 < t2 − t1 <

ε
2C .

Fix any (t1, t2) with 0 < t2− t1 <
ε

2C2
and α(t1) > Θ(s, γt1 , t1)+ ε. By left continuity,

there exists δ > 0, such that α(t′1) > Θ(s, γt′1 , t
′
1)+ ε for any t′1 ∈ (t1− δ, t1). By Fubini‘s

theorem, we know for L1−a.e t′1 ∈ (t1 − δ, t1), we have α(t′2) = θ̃t′2(γt′2) = θ̃t′1(γt′1) and

γt′2 ≤ γt′1 for L1 − a.e t′2 ∈ (t′1, t
′
1 +

ε
2C2

). By left contiuity of α(t) and γ(t), we conclude

α(t′2) = θ̃t′1(γt′1) and γt′2 ≤ γt′1 for any t′2 ∈ (t′1, t
′
1 + ε

2C2
). This is true for L1 − a.e

t′1 ∈ (t1 − δ, t1). Hence we can find a sequence {tn1}∞n=1 ⊂ (t1 − δ, t1) such that this is

true for tn1 and tn1 → t1 as n → ∞. We can assume θ̃tn1 (γtn1 ) = α(tn1 ) holds. Define
tn2 = tn1 + t2 − t1, then tn2 → t2, and we have α(tn2 ) = α(tn1 ) and γtn2 ≤ γtn1 . Let n → ∞,
and use left continuity of α and γ one more time, we can conclude α(t1) = α(t1) and
γt2 ≤ γt1 . �

Lemma 6.13. For any C > 0, ε > 0, define the function Hε : Y ×R×XB1 → R, given
by

Hε(θ̃, s, γ) =

∫

(0,T )2

(

|(Aεθ̃)t2(γt2)− (Aεθ̃)t1(γt1)− (Θ(s, γt2 , t2)

−Θ(s, γt1 , t1))
+| − C(t2 − t1)

)+

χt1<t2dt1dt2.

Then Hε is continuous.

Proof. The proof of this lemma is quite similar to Lemma 6.9. We already noted that
(θ̃k, γk) → (θ̃, γ) implies (Aεθ̃

k)t(γ
k
t ) → (Aεθ̃)t(γt) for any t such that pointwise conver-

gence of γkt happens. The proof follows then from dominated convergence since every-
thing is bounded. �

Lemma 6.14. Let C4 be the constant given in point (iv), Theorem 4.1, then we have:
(6.25)
∫

(0,T )2

∫
(

|θ̃t2(γt2)−θ̃t1(γt1))−(Θ(s, γt2 , t2)−Θ(s, γt1 , t1))
+|−C4(t2−t1)

)+

χt1<t2dt1dt2dλ = 0.

Proof. Write the left hand side of (6.25) to be
∫

H(θ̃, s, γ)dλ, with the definition of H
similar to Hε in the last lemma(without Aε). Then we can estimate
∫

Y×R×[0,1]×XB1

H(θ̃, s, γ)dλ(θ̃, s, z, γ) =

∫

(H −Hε)(θ̃, s, γ)dλ + lim
n→∞

∫

Hε(θ̃, s, γ)dλ
n.
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The first term will tend to zero as ε → 0. For the second term, we have
∫

Hε(θ̃, s, γ)dλ
n ≤

∫

|Hε −H|dλn +

∫

H(θ̃, s, γ)dλn

≤ 2T

∫ T

0

∫

|θ̃t(γt)− (Aεθ̃)t(γt)|dλn +

∫

H(θ̃, s, γ)dλn

≤ 2T 2B3ε+

∫

H(θ̃, s, γ)dλn.

In the last inequality above, we used Lemma 6.4. To deal with the remaining term, first
we can write:
∫

H(θ̃, s, γ)dλn =

∫

YB2

dµ0(θ)
∑

σ∈Sθ

nnµθ
1σ(1) · · ·µθ

nσ(n)

∫

[0,1]
H(θ̄nσ , θ

M,n
0,σ (z), Fn

σ (z))dz.

Fix some θ ∈ YB2 , and σ ∈ Sθ, we can calculate:
∫

H(θ̄nσ , θ
M,n
σ (z), Fn

σ (z))dz ≤ 2T

∫ T

0

∫

[0,1]
|θ̄nσ,t(Fn

σ,t(z))− θnσ,t(F
n
σ,t(z))|dtdz

+

∫

H(θnσ , θ
M,n
σ (z), Fn

σ (z))dz ≤ 2T 2C5

√
δt+ T 2C4δt.

In the second inequality above, we used the point (iv) and (v) of Theorem 4.1, and that
Fn
σ,t is measure preserving.
Now the proof is finished by first letting n → ∞ and then let ε → 0. �

As a corollary, we deduce that

Corollary 6.15. For λ− a.e (θ̃, s, z, γ), it holds:

|α(t2)− α(t1)− (Θ(s, γt2 , t2)−Θ(s, γt1 , t1)
+| ≤ C4(t2 − t1),

for any 0 < t1 < t2 < T . Here C4 is the constant given in point (iv) of Theorem 4.1.

With above preparation, we can check the point (iv) of Theorem 5.4.

Proposition 6.16. For λ−a.e (θ̃, s, z, γ), we have the equality of measures:

(6.26) ∂t(θt(γt)) =
[

∂t(Q
sat(θt(γt), γt, t))

]−⌊Eθ,s,γ.

where Eθ,s,γ is the wet set given by

Eθ,s,γ = {t ∈ (0, T ) : (θ(γ))∗(t) = s−Qsat((θ(γ))∗(t), γt, t)}.

Proof. We choose (θ̃, s, z, γ) such that the statement of Lemma 6.9, 6.12, and Corollary
6.15 hold. The plan is to apply Lemma 7.1 to the functions: f(t) = α(t), and g(t) =
s −Qsat(α(t), γ(t), t). Here α(t) is the monotone increasing and left continuous version
of θt(γt) chosen according to Remark 2.4. This is possible since Lemma 6.9 holds.

First we verify that for λ − a.e (θ̃, s, z, γ), it holds α(t) ≥ s − Qsat(α(t), γ(t), t), for
any t ∈ (0, T ). This is the same as α(t) ≥ Θ(s, γ(t), t). This follows from Lemma
6.6. Indeed, we have shown there that for any t ∈ (0, T ), θ(z′) ≥ Θ(s, z′, t) for ζt − a.e
(θ, s, z′). Recall the definition of ζt, this is the same as saying for any fixed t ∈ (0, T ),

θt(γt) ≥ Θ(s, γt, t) for λ − a.e (θ̃, s, z, γ). Now choose a countable dense subset D of
the set {t ∈ (0, T ) : α(t) = θt(γt)}. Then D ⊂ (0, T ) is also dense. Then for λ − a.e
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(θ̃, s, z, γ), it holds α(ti) ≥ Θ(s, γti , ti), for any ti ∈ D. Since D is dense and both α(t),
γ(t) continuous from left, we see it is true for all t ∈ (0, T ).

Next we verify points (i)-(iii) in Lemma 7.1.
The point (i) follows from Lemma 6.12. Indeed, if α(t) > s − Qsat(α(t), γ(t), t) + ε,

then we know α(t) > Θ(s, γ(t), t)+ ε
C7

for some universal constant C7. Now Lemma 6.12

implies that α(t′) = α(t), γ(t′) ≤ γ(t), for any 0 < t′ − t < ε
C8

. Hence α(t′) = α(t) >

s−Qsat(α(t′), γ(t′), t′)− sup |∂tQsat|(t′ − t)+ ε. If we still have ε > 2 sup |∂tQsat|(t′ − t),
then we have f(t′) > g(t′). Hence f(t′) = f(t) and f(t′) > g(t′) as long as 0 < t′ − t <

ε
C8+2 sup |∂tQsat| . This verifies point (i).

Next we verify point (ii). This follows from Corollary 6.15. Indeed, from that corollary,
we can deduce α(t+)− α(t) = (Θ(s, γ(t+), t) − Θ(s, γ(t), t))+, by fixing any t1 = t, and
t2 ց t. If α(t+) = α(t), we conclude Θ(s, γ(t+), t) ≤ Θ(s, γ(t), t). Therefore γ(t+) ≤ γ(t)
by strict monotonicity of Θ in z variable. Then Qsat(α(t+), γ(t+), t) ≥ Qsat(α(t), γ(t), t).
If α(t+) > α(t), we must have α(t) = Θ(s, γ(t), t), or α(t) = s − Qsat(α(t), γ(t), t),
otherwise it contradicts Lemma 6.12. But then α(t+) = Θ(s, γ(t+), t). Hence α(t+) =
s − Qsat(α(t+), γ(t+), t). In any case, we have f(t+) − f(t) = (g(t+) − g(t))+. This
verifies point (ii).

Point (iii) again follows from Lemma 6.12. Indeed, from the monotonicity of Qsat,
we just need to show for any [a, b) ⊂ {f > g}, it holds α(t2) = α(t1), and γ(t2) ≤
γ(t1), for any t1 < t2, t1, t2 ∈ [a, b). Let t∗ = sup{t ∈ [t1, t2] : α(t

′) = α(t1), γ(t
′) ≤

γ(t1), for any t′ ≤ t}. Then we must have t∗ = t2. Otherwise, since f(t∗) > g(t∗),
Lemma 6.12 allows us to push beyond t∗, giving a contradiction.

�

7. appendix

Lemma 7.1. Let f : (0, T ) → R be monotone increasing, and g : (0, T ) → R ∈
BV ((0, T )), both continuous from left and bounded, with f(t) ≥ g(t), ∀t ∈ (0, T ). Sup-
pose that for some constant C > 0

(i)f(t′) ≡ f(t), f(t′) > g(t′) for any t ∈ (0, T ) with f(t) > g(t) + ε and any t′ with t′ − t <
ε

C
.

(ii)f(t+)− f(t) = [g(t+)− g(t)]+, for any t ∈ (0, T ).

(iii)g(t2)− g(t1) ≤ C(t2 − t1) for any t1 < t2 ∈ [a, b) with [a, b) ⊂ {f > g}.

Then ∂tf is concentrated on the set {f = g} and for any Borel set E ⊂ {f = g}, one
has ∂tf(E) = (∂tg)

+(E).

Before we prove this result, we prove the following lemma as a preparation.

Lemma 7.2. Under the assumptions of previous lemma, we have for any [a, b) ⊂ (0, T )

(7.1) (∂tg)
+([a, b)) ≤ f(b)− f(a) + CL1([a, b) ∩ {f > g}).

Proof. First recall

(∂tg)
+([a, b)) = sup

{

n
∑

i=1

(g(ti)− g(ti−1))
+ : a = t0 < t1 < · · · < tn = b

}

.



RIGOROUS TREATMENT OF MOIST CONVECTION 37

We fix a partition appearing in the right hand side above. For each i, define

t′i−1 = sup{t ∈ [ti−1, ti) : [ti−1, t) ∩ {f = g} = ∅},
t′i = inf{t ∈ [ti−1, ti) : [t, ti) ∩ {f = g} = ∅}.

Let D be the set of i for which [ti−1, ti)∩{f = g} 6= ∅. Then for i ∈ D one can calculate:
If ti > t′i, choose ε < ti − t′i, since [t′i + ε, ti) ⊂ {f > g}, we see from point (iii):

g(ti)− g(t′i−1) = g(ti)− g(t′i + ε) + g(t′i + ε)− g(t′i−1)

≤ C(ti − t′i − ε) + g(t′i + ε)− g(t′i−1).

Let ε → 0, we see

g(ti)− g(t′i−1) ≤ C(ti − t′i) + g((t′i)
+)− g(t′i−1).

On the other hand, since [ti−1, t
′
i−1) ⊂ {f > g}, we can conclude

g(t′i−1)− g(ti−1) ≤ C(ti−1 − t′i−1).

Combining above calculations, we get:
n
∑

i=1

(g(ti)− g(ti−1))
+ =

∑

i∈D

(g(ti)− g(ti−1))
+ +

∑

i/∈D

(g(ti)− g(ti−1))
+

≤
∑

i∈D,ti>t′i

C(ti − t′i)+
∑

i∈D

C(t′i−1 − ti−1) +
∑

i/∈D

C(ti − ti−1)

+
∑

i∈D,ti>t′i

(g((t′i)
+)− g(t′i−1))

+ +
∑

i∈D,ti=t′i

(g(ti)− g(t′i−1))
+

≤ CL1([a, b) ∩ {f > g}) +
∑

i∈D,ti>t′i

(g((t′i)
+)− g(t′i−1))

+ +
∑

i∈D,ti=t′i

(g(ti)− g(t′i−1))
+.

In the first inequality above, we used condition (iii). If i ∈ D and ti > t′i, we will have

g((t′i)
+)− g(t′i−1) ≤ f(ti)− f(t′i−1).

Similarly for i ∈ C and ti = t′i, we see

g(ti)− g(t′i−1) ≤ f(ti)− f(t′i−1).

Hence
n
∑

i=1

(g(ti)− g(ti−1))
+ ≤ CL1([a, b) ∩ {f > g}) +

∑

i∈D

(f(ti)− f(t′i−1)

≤ CL1([a, b) ∩ {f > g}) + f(b)− f(a)

So the desired result follows.
�

Corollary 7.3. For any (a, b) ⊂ (0, T ),

(7.2) (∂tg)
+((a, b)) ≤ f(b)− f(a+) +CL1((a, b) ∩ {f > g}).

Proof. Apply previous lemma to [a+ ε, b), and send ε → 0. �

Now we can prove Lemma 7.1 with the help of previous lemma.
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Proof. Here ∂tf is the Radon measure defined on [0, T ) such that ∂tf([a, b)) = f(b)−f(a)
for any [a, b) ⊂ [0, T ).

First we show that ∂tf is concentrated on the set {f = g}. We show that ∂t({f > g}) =
0. Indeed, if t0 ∈ {f > g}, let βt0 = sup{t′ ≥ t0 : f(t′) = f(t)}. From the assumption,
we know βt0 > t0. Also we know {f > g} = ∪f(t)>g(t)[t, βt). Each component of the
set {f > g} contains a non-degenerate interval, hence there are only countably many
components. Therefore, {f > g} = ∪iCi, where Ci are connected components, and has
form [ai, bi) or (ai, bi). It is not hard to see that f remains a constant on Ci. Otherwise,
by continuity from the left, and also the point(i), one can conclude f(t) = g(t) for some
t ∈ Ci, contradiction. So ∂tf(Ci) = f(bi)− f(ai) = 0, or ∂tf(Ci) = f(bi)− f(a+i ) = 0.

Next let E ⊂ {f = g} be a Borel set, we want to show ∂tf(E) = (∂tg)
+(E). First

we show (∂tg)
+(E) ≤ ∂tf(E). Fix ε > 0, then from the outer regularity of the Radon

measure ∂tf and L1, we can find an open set U , with E ⊂ U , ∂tf(U − E) < ε, and
L1(U − E) < ε. Write U = ∪i(ai, bi), with (ai, bi) pairwise disjoint. Then we know
∑

i ∂tf((ai, bi)) ≤ ∂tE + ε, and
∑

i L1((ai, bi)−E) < ε.
Then from previous corollary, we know

(∂tg)
+(E) ≤

∑

i

(∂tg)
+((ai, bi)) ≤

∑

i

(f(bi)− f(a+i )) +
∑

i

CL1((ai, bi) ∩ {f > g})

≤ ∂tf(E) + ε+ C
∑

i

L1((ai, bi)− E) ≤ ∂tf(E) + 2ε.

Since ε is arbitrary, it follows that (∂tg)
+(E) ≤ ∂tf(E).

Now to prove the reverse inequality, Again we choose a cover E ⊂ U , with U =
∪i(ai, bi), (ai, bi) pairwise disjoint, such that (∂tg)

+(E) ≥ ∑

i(∂tg)
+((ai, bi))− ε.

We can assume (ai, bi) ∩ E 6= ∅ for each i. Denote

a′i = sup{t ∈ (ai, bi) : (ai, t) ∩ {f = g} = ∅},
b′i = inf{t ∈ (ai, bi) : [t, bi) ∩ {f = g} = ∅}.

For those i with b′i < bi, we can decrease bi, so that f(bi)− f((b′i)
+)+ |g(bi)− g((b′i)

+)| <
ε2−i. From the left continuity of f and g, one has f(b′i) = g(b′i). Now if bi = b′i, then

(∂tg)
+((ai, bi)) ≥ g(bi)− g(a+i ) ≥ f(bi)− f(a+i ).

If bi > b′i, then

(∂tg)
+((ai, bi)) ≥ (g((b′i)

+)− g(b′i))
+ + (g(b′i)− g(a+i ))

+

≥ f((b′i)
+)− f(b′i) + f(b′i)− f(a+i ) ≥ f(bi)− f(a+i )− ε2−i.

So sum up, we get
∑

i

(∂tg)
+((ai, bi)) ≥

∑

i

(f(bi)− f(a+i ))− ε ≥ ∂tf(E)− ε.

So the proof is complete. �
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