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Abstract. We study in this work a continuum model derived from 1D attachment-detachment-

limited (ADL) type step flow on vicinal surface,

ut = −u
2(u3)hhhh,

where u, considered as a function of step height h, is the step slope of the surface. We formulate a

notion of weak solution to this continuum model and prove the existence of a global weak solution,

which is positive almost everywhere. We also study the long time behavior of weak solution and

prove it converges to a constant solution as time goes to infinity. The space-time Hölder continuity

of the weak solution is also discussed as a byproduct.

1. Introduction

During the heteroepitaxial growth of thin films, the evolution of the crystal surfaces involves

various structures. Below the roughening transition temperature, the crystal surface can be well

characterized as steps and terraces, together with adatoms on the terraces. Adatoms detach from

steps, diffuse on the terraces until they meet one of the steps and reattach again, which lead to a

step flow on the crystal surface. The evolution of individual steps is described mathematically by
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2 WEAK SOLUTION OF A CONTINUUM MODEL FOR VICINAL SURFACE IN THE ADL REGIME

the Burton-Cabrera-Frank (BCF) type models [3]; see [5, 6] for extensions to include elastic effects.

Denote the step locations at time t by xi(t), i ∈ Z, where i is the index of the steps. Denote the

height of each step as a. For one dimensional vicinal surface (i.e., monotone surface), if we do not

consider the deposition flux, the original BCF type model, after non-dimensionalization, can be

written as (we set some physical constants to be 1 for simplicity):

(1.1) ẋi =
D

ka2

(

µi+1 − µi

xi+1 − xi +
D
k

− µi − µi−1

xi − xi−1 +
D
k

)

, for 1 ≤ i ≤ N.

where D is the terrace diffusion constant, k is the hopping rate of an adatom to the upward or

downward step, and µ is the chemical potential whose expression ranges under different assumption.

Often two limiting cases of the classical BCF type model (1.1) were considered. See [26, 16] for

diffusion-limited (DL) case and see [13, 1] for attachment-detachment-limited (ADL) case.

In DL regime, the dominated dynamics is diffusion across the terraces, i.e. D
k
<< xi+1 − xi, so

the step-flow ODE becomes

(1.2) ẋi =
D

ka2

(

µi+1 − µi

xi+1 − xi
− µi − µi−1

xi − xi−1

)

, for 1 ≤ i ≤ N.

In ADL regime, the diffusion across the terraces is fast, i.e. D
k
>> xi+1 − xi, so the dominated

processes are the exchange of atoms at steps edges, i.e., attachment and detachment. The step-flow

ODE in ADL regime becomes

(1.3) ẋi =
1

a2

(

µi+1 − 2µi + µi−1

)

, for 1 ≤ i ≤ N.

Those models are widely used for crystal growth of thin films on substrates; see many scientific

and engineering applications in the books [23, 28, 32]. As many of the film’s properties and

performances originate in their growth processes, understanding and mastering thin film growth is

one of the major challenges of materials science.

Although these mesoscopic models provide details of discrete nature, continuum approximation

for the discrete models is also used to analyze the step motion. They involve fewer variables than

discrete models so they can reveal the leading physics structure and are easier for numerical simu-

lation. Many interesting continuum models can be found in the literature on surface morphological

evolution; see [22, 25, 7, 29, 30, 24, 20, 4, 10] for one dimensional models and [19, 31] for two di-

mensional models. The study of relation between the discrete ODE models and the corresponding

continuum PDE has raised lots of interest. Driven by this goal, it is important to understand the

well-posedness and properties of the solutions to those continuum models.

For a general surface with peaks and valleys, the analysis of step motion on the level of continuous

PDE is complicated so we focus on a simpler situation in this work: a monotone one-dimensional

step train, known as the vicial surface in physics literature. In this case, Ozdemir, Zangwill [22]

and Al Hajj Shehadeh, Kohn and Weare [1] realized using the step slope as a new variable

is a convenient way to derive the continuum PDE model

(1.4) ut = −u2(u3)hhhh,

where u, considered as a function of step height h, is the step slope of the surface. We validate

this continuum model by formulating a notion of weak solution. Then we prove the existence of
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such a weak solution. The weak solution is also persistent, i.e., it is positive (or negative) almost

everywhere if non-negative (or non-positive) initial data are assumed.

The starting point of this PDE is the 1D attachment-detachment-limited (ADL) type models

(1.3). To simplify the analysis, we will consider a periodic train of steps in this work, i.e., we assume

that

(1.5) xi+N (t)− xi(t) = L, ∀ i ∈ Z, ∀ t ≥ 0,

where L is a fixed length of the period. Thus, only the step locations in one period {xi(t), i =
1, . . . , N} are considered as degrees of freedom. Since the vicinal surface is very large in practice

from the microscopic point of view, this is a good approximation. We set the height of each step

as a = 1
N
, and thus the total height changes across the N steps in one period is given by 1. This

choice is suitable for the continuum limit N → ∞. See Figure 1 for an example of step train in one

period.

x
0

x
1

x
2

x
N

x
N+1

h(x
0
)=0

h(x
N

)=1

L

Figure 1. An example of step configurations with periodic boundary condition.

The general form of the (free) energy functional due to step interaction is1

(1.6) FN = a

N−1
∑

i=0

f
(xi+1 − xi

a

)

,

where f reflects the physics of step interaction. Following the convention in focusing on entropic

and elastic-dipoles interaction [21, 14], we choose f(r) = 1
2r2

. Hence each step evolves by (1.3) with

chemical potential µi defined as the first variation of the step interaction energy

(1.7) FN =
1

2

N−1
∑

i=0

a3

(xi+1 − xi)2
,

with respect to xi. That is

(1.8) µi =
1

a

∂FN

∂xi
=

a2

(xi+1 − xi)3
− a2

(xi − xi−1)3
, for 1 ≤ i ≤ N.

From the periodicity of xi in (1.5), it is easy to see the periodicity of µ such that µi = µi+N .

When the step height a → 0 or equivalently, the number of steps in one period N → ∞, from

the viewpoint of surface slope, Al Hajj Shehadeh, Kohn and Weare [1] and Margetis,

1In this work, we neglect long range elastic interactions between the steps in the model; related models with long

range elastic interactions are briefly discussed below in later part of the introduction.
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Nakamura [20] studied the continuum model (1.4); see also [22] for physical derivation in general

case. We recall their ideas in our periodic setup. Denote the step slopes as

ui(t) =
a

xi+1(t)− xi(t)
, for 1 ≤ i ≤ N.

The periodicity of xi in (1.5) directly implies the periodicity of ui, i.e. ui = ui+N . Then by

straight-forward calculation, we have the ODE for slopes

(1.9) u̇i = − 1

a4
u2i

[

(u3i+2 − 2u3i+1 + u3i )− 2(u3i+1 − 2u3i + u3i−1) + (u3i − 2u3i−1 + u3i−2)
]

.

Under the periodic setup, when considering step slope u as a function of h in continuum model, u

has period 1. Keep in mind the height of each step xi is hi = ia. It is natural to anticipate that as

N → ∞, the solution of the slope ODE (1.9) should converge to the solution u(h, t) of continuum

model (1.4), which is 1-periodic with respect to step height h.

By different methods, [1] and [20] separately studied the self-similar solution of ODE (1.9) and

PDE (1.4). For monotone initial data, i.e. x1(0) < x2(0) < · · · < xN (0), [1] proved the steps do

not collide and the global-in-time solution to ODE (1.9) (as well as ODE (1.3)) was obtained in

their paper. By introducing a similarity variable, [1] first discovered that the self-similar solution

is a critical point of a “similarity energy”, for both discrete and continuum systems. Then they

rigorously prove the continuum limit of self-similar solution and obtained the convergence rate for

self-similar solution.

However, as far as we know, the global-in-time validation of the time-dependent continuum limit

model (1.4) is still an open question as stated in [15]. In fact, it is not even known whether (1.4)

has a well-defined, unique solution. Although the positivity of solution to continuum model (1.4)

corresponds to the non-collision of steps in discrete model, which was proved in [1]; even a “formal

proof” of positive global weak solution in the time-dependent continuous setting has not been

established.

Our goal is to formulate a notion of weak solution and prove the existence of global weak solution.

We also prove the almost everywhere positivity of the solution, which might help the study of global

convergence of discrete model (1.3) to its continuum limit (1.4) in the future. Moreover, we study

the long time behavior of weak solutions and prove that all weak solutions converge to a constant

as time goes to infinity. The space-time Hölder continuity of the solution is also obtained.

One of the key structures of the model is that it possesses the following two Lyapunov functions,

(1.10) F (u) :=
1

2

∫ 1

0
u2 dh,

and

(1.11) E(u) :=

∫ 1

0

1

6
[(u3)hh]

2 dh.

Then we have
δF (u)

δu
= u,

δE(u)

δu
= u2(u3)hhhh,

and (1.4) can be recast as

(1.12) ut = −δE(u)

δu
= −u2∂hhhh

(

u2
δF (u)

δu

)

.
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Since the homogeneous degree of E(u) is 6, one has

6E(u) =

∫ 1

0
u
δE(u)

δu
dh.

Then by (1.12),we obtain

(1.13)
dF (u)

dt
+ 6E(u) =

∫ 1

0
u
(

ut +
δE(u)

δu

)

dh = 0.

Notice that

(1.14)
dE(u)

dt
=

∫ 1

0

δE(u)

δu
ut dh = −

∫ 1

0
u2t dh ≤ 0.

Therefore, we also have the following dissipation structures:

(1.15)
dE(u)

dt
+D(u) = 0,

where D :=
∫ 1
0 [u

2(u3)hhhh]
2 dh. From (1.15) and (1.13), for any T > 0, we obtain

6TE(u(T, ·)) ≤ 6

∫ T

0
E(u(t, ·)) dt ≤ F (u(0, ·)) − F (u(T, ·)),

which leads to the algebraic decay

(1.16) E(u(T, ·)) ≤ F (u(0, ·))
6T

, for any T > 0.

The free energy F is consistent with the discrete energy FN defined in (1.7) and E was first

introduced in the work [1]. We call it energy dissipation rate E due to its physical meaning (1.13),

i.e., E gives the rate at which the step free energy F is dissipated up to a constant. This relation

between E and F is important for proving the positivity, existence and long time behavior of weak

solution to (1.4).

On the contrary, if we also had E(u) ≤ cD(u) (which does not hold here), then (1.15) would

imply dE(u)
dt ≤ −cE(u), i.e., E is bounded by the dissipation rate of itself. This kind of structure

would lead to an exponential decay rate, which is widely used for convergence of weak solution to its

steady state, see e.g., [27]. While we do not have such a classical exponential decay structure, the

two related dissipation structures (1.15), (1.13) are good enough to get an algebraic decay (1.16)

and obtain the long time behavior of weak solution; see Section 3.

We also give a formal observation for the conservation law of 1
u
below. It gives the intuition to

prove the positivity of weak solution to regularized problem, which leads to the almost everywhere

positivity of weak solution to original problem; see Theorem 2.1. Multiplying (1.4) by 1
u2 gives

(1.17)
d

dt

∫ 1

0

1

u
dh =

∫ 1

0
(u3)hhhh dh = 0.

Hence we know
∫ 1
0

1
u
dh is a constant of motion for classical solution.

One of the main difficulties for PDE (1.4) is that it becomes degenerate-parabolic whenever u

approaches 0. As it is not known if solutions have singularities on the set {u = 0} or not, we

adopt a regularization method, ε-system, from the work of Bernis and Friedman [2]. First, we

define weak solution in the spirit of [2]. Then we study the ε-system and obtain an unique global

weak solution to ε-system. The positive lower bound of solution to ε-system is important in the
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proof of existence of almost everywhere positive weak solution to PDE (1.4). Observing the energy

dissipation rate E defined in (1.11) and the corresponding variational structure, we will make the

natural choice of using u3 as the variable. Yet another difficulty arises since we do not have lower

order estimate for u3 after regularization. Therefore we need to adopt the a-priori assumption

method and verify the a-priori assumption by calculating the positive lower bound of solutions to

ε-system. Finally, we prove the limit of solution to ε-system is the weak solution to (1.4). When

it comes to establish two energy-dissipation inequalities for the weak solution u, singularities on set

{u = 0} cause problem too. Hence we also need to take the advantage of the ε-system, which allows

us avoiding the difficulty due to singularities, to obtain the two energy-dissipation inequalities.

While we prove the existence, the uniqueness of the weak solution is still an open question.

Since we consider a degenerate problem not in divergence form, we have not been able to show

the uniqueness after the solution touches zero, nor can we obtain any kind of conservation laws

rigorously.

One of the closely related models is the continuum model in DL regime (we set some physical

constants to be 1 for simplicity)

(1.18) ht =
(

−aH(hx)−
(a2

hx
+ 3hx

)

hxx

)

xx
,

which was first proposed by Xiang [29], who considered DL type model (1.2) with a different

chemical potential µi. More specifically, an additional contribution from global step interaction is

included besides the local terms in the free energy (1.6),

(1.19) FN = a

N−1
∑

i=0

f1
(xi+1 − xi

a

)

+ a2
N−1
∑

i=0

N−1
∑

j=0,j 6=i

f2
(xj − xi

a

)

,

with f1(r) = 1
2r2

and f2(r) = a2 ln |r|. While the free energy FN is slightly different from that

of [29], where the first term f1 is also treated as a global interaction, the formal continuum limit

PDE are the same. As argued in [30], the second term f2 comes from the misfit elastic interaction

between steps, and is hence higher-order in a compared with the broken bond elastic interaction

between steps which contributes to the first term. Note that (1.18) is a PDE for the height of the

surface as a function of the position and the first two terms involve the small parameter a. We

include in the appendix some alternative forms of the PDE (1.4). In particular, when formally

ignoring these terms with small a-dependent amplitude, (1.18) becomes

(1.20) ht = −3

2

(

(hx)
2
)

xxx
,

which is parallel to (A.12) in our case. For the DL type PDE (1.20), a fully rigorous understanding

is available in [15, 11]. Kohn [15] pointed out that a rigorous understanding for the evolution of

global solution to ADL type model (A.12) (as well as PDE (1.4)) is still open because the mobility
1
hx

in (A.12) (which equals 1 in DL model) brings more difficulties.

Recently, Dal Maso, Fonseca and Leoni [4] studied the global weak solution to (1.18) by

setting a = 1 in the equation, i.e.,

(1.21) ht =
(

−H(hx)−
(

3hx +
1

hx

)

hxx

)

xx
.
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The work [4] validated (1.21) analytically by verifying the almost everywhere positivity of hx.

Moreover, Fonseca, Leoni and Lu [9] obtained the existence and uniqueness of the weak solution

to (1.21). However, also because the mobility 1
hx

(which equals 1 in DL model) appears when

the PDE is rewritten as h-equation (A.12), there is little chance to recast it into an abstract

evolution equation with maximal monotone operator in reflexive Banach space by choosing other

variables, which is the key to the method in [9]. It is very challenged to apply the classical maximal

monotone method to a non-reflexive Banach space, so we use different techniques following Bernis

and Friedman [2] and the uniqueness is still open.

The remainder of this paper is arranged as follows. After defining the weak solution, Section 2

is devoted to prove the main Theorem 2.1. In Section 2.1, we establish the well-posedness of the

regularized ε-system and study its properties. In Section 2.2, we study the existence of global weak

solution to PDE (1.4) and prove it is positive almost everywhere. In Section 2.3, we obtain the

space-time Hölder continuity of the weak solution. Section 3 considers the long time behavior of

weak solution. The paper ends with Appendix which include a few alternative formulations of the

PDEs based on other physical variables than the slope.

2. Global weak solution

In this section, we start to prove the global existence and almost everywhere positivity of weak

solutions to PDE (1.4). In the following, with standard notations for Sobolev spaces, denote

(2.1) Hm
per([0, 1]) := {u(h) ∈ Hm(R); u(h+ 1) = u(h) a.e. h ∈ R},

and when m = 0, we denote as L2
per([0, 1]). We will study the continuum problem (1.4) in periodic

setup.

Although we can prove the measure of {(t, x);u(t, x) = 0} is zero, we still have no information

for it. To avoid the difficulty when u = 0, we use a regularized method introduced by Bernis and

Friedman [2]. Since we do not know the situation in set {(t, x);u(t, x) = 0}, we need to define a

set

(2.2) PT := (0, T )× (0, 1)\{(t, h);u(t, h) = 0}.

As a consequence of (2.8) and time-space Hölder regularity estimates for u3 in Proposition 2.6, we

know that PT is an open set and we can define a distribution on PT . Recall the definition E in

(1.11). First we give the definition of weak solution to PDE (1.4).

Definition 1. For any T > 0, we call a non-negative function u(t, h) with regularities

(2.3) u3 ∈ L∞([0, T ];H2
per([0, 1])), u2(u3)hhhh ∈ L2(PT ),

(2.4) ut ∈ L2([0, T ];L2
per([0, 1])), u3 ∈ C([0, T ];H1

per([0, 1])),

a weak solution to PDE (1.4) with initial data u0 if

(i) for any function φ ∈ C∞([0, T ] × R), which is 1-periodic with respect to h, u satisfies

(2.5)

∫ T

0

∫ 1

0
φut dhdt+

∫ ∫

PT

φu2(u3)hhhh dhdt = 0;
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(ii) the following first energy-dissipation inequality holds

(2.6) E(u(T, ·)) +
∫ ∫

PT

(u2(u3)hhhh)
2 dhdt ≤ E(u(0, ·)).

(iii) the following second energy-dissipation inequality holds

(2.7) F (u(T, ·)) + 6

∫ T

0
E(u(t, ·)) dt ≤ F (u(0, ·)).

We now state the main result the global existence of weak solution to (1.4) as follows.

Theorem 2.1. For any T > 0, assume initial data u30 ∈ H2
per

([0, 1]),
∫ 1
0

1
u0

dh = m0 < +∞ and

u0 ≥ 0. Then there exists a global non-negative weak solution to PDE (1.4) with initial data u0.

Besides, we have

(2.8) u(t, h) > 0, for a.e. (t, h) ∈ [0, T ]× [0, 1].

We will use an approximation method to obtain the global existence Theorem 2.1. This method

is proposed by [2] to study a nonlinear degenerate parabolic equation.

2.1. Global existence for a regularized problem and some properties. Consider the fol-

lowing regularized problem in one period h ∈ [0, 1]:

(2.9)







uεt = − u4ε
ε+ u2ε

(u3ε)hhhh, for t ∈ [0, T ], h ∈ [0, 1];

uε(0, h) = u0 + ε
1
3 , for h ∈ [0, 1].

We point out that the added perturbation term is important to the positivity of the global weak

solution.

First we give the definition of weak solution to regularized problem (2.9).

Definition 2. For any fixed ε > 0, T > 0, we call a non-negative function uε(t, h) with regularities

(2.10) u3ε ∈ L∞([0, T ];H2
per([0, 1])),

u3ε
√

ε+ u2ε
(u3ε)hhhh ∈ L2(0, T ;L2

per([0, 1])),

(2.11) uεt ∈ L2([0, T ];L2
per([0, 1])), u3ε ∈ C([0, T ];H1

per([0, 1])),

weak solution to regularized problem (2.9) if

(i) for any function φ ∈ C∞([0, T ] × [0, 1]), uε satisfies

(2.12)

∫ T

0

∫ 1

0
φuεt dhdt+

∫ T

0

∫ 1

0
φ

u4ε
ε+ u2ε

(u3ε)hhhh dhdt = 0;

(ii) the following first energy-dissipation equality holds

(2.13) E(uε(T, ·)) +
∫ T

0

∫ 1

0

[ u3ε
√

ε+ u2ε
(u3ε)hhhh

]2
dhdt = E(uε(0, ·)).

(iii) the following second energy-dissipation equality holds

(2.14) Fε(uε(T, ·)) + 6

∫ T

0
E(uε(t, ·)) dt = Fε(uε(0, ·)),

where Fε(uε) :=
∫ 1
0 ε ln |uε|dh+ F (uε) is a perturbed version of F .
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Now we introduce two lemmas which will be used later.

Lemma 2.2. For any 1-periodic function u, we have the following relation

(2.15)

∫ 1

0
((u3)hh)

2 dh = 9

∫ 1

0
u4(uhh)

2 dh.

Proof. Notice that

((u3)hh)
2 = [(3u2uh)h]

2 = [6uu2h + 3u2uhh]
2

= 9u4u2hh + 36u2u4h + 36u3u2huhh

= 9u4u2hh + 36u2u4h + 12u3(u3h)h

= 9u4u2hh + 12(u3u3h)h.

Integrating from 0 to 1, we obtain (2.15). �

Lemma 2.3. For any function u(h) such that uhh ∈ L2([0, 1]), assume u achieves its minimal

value umin at h⋆, i.e. umin = u(h⋆). Then we have

(2.16) u(h)− umin ≤ 2

3
‖uhh‖L2([0,1])|h− h⋆| 32 , for any h ∈ [0, 1].

Proof. Since uhh ∈ L2([0, 1]), uh is continuous. Hence by umin = u(h⋆), we have uh(h
⋆) = 0 and

(2.17) |uh(h)| = |
∫ h

h⋆

uhh(s) ds| ≤ |h− h⋆| 12 ‖uhh‖L2([0,1]), for any h ∈ [0, 1].

Hence we have

|u(h)− umin| ≤
∫ h

h⋆

|s− h⋆| 12 ‖uhh‖L2([0,1]) ds

≤ 2

3
|h− h⋆| 32 ‖uhh‖L2([0,1]).

�

Next, we study the properties of the regularized problem. From now on, we denote C(‖u30‖H2)

as a constant that only depends on ‖u30‖H2([0,1]). The existence and uniqueness of solution to the

regularized problem (2.9) is stated below.

Proposition 2.4. Assume u30 ∈ H2
per

([0, 1]),
∫ 1
0

1
u0

dh = m0 < +∞ and u0 ≥ 0. Then for any

T > 0, there exists uε being the unique positive weak solution to the regularized system (2.9) and

u3ε ∈ L∞([0, T ];H2
per

([0, 1])) ∩C([0, T ];H1
per

([0, 1]))

satisfies the following estimates uniformly in ε

(2.18)

‖u3ε‖L∞([0,T ];H2([0,1])) ≤ C(‖u30‖H2),

‖ u3ε
√

ε+ u2ε
(u3ε)hhhh‖L2([0,T ];L2([0,1])) ≤ C(‖u30‖H2),

(2.19) ‖uεt‖L2([0,T ];L2
per

([0,1])) ≤ C(‖u30‖H2).

Moreover, uε has the following properties:
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(i) uε has a positive lower bound

(2.20) uε(t, h) ≥
1

18
1
3E

1
3

0 Cm0

ε, for any t ∈ [0, T ], h ∈ [0, 1],

where Cm0
=

∫ 1
0

1
u0

dh+ 1 and E0 =
∫ 1
0

1
6 [(u

3
0)hh]

2 dh is the initial energy.

(ii) uε satisfies the Hölder continuity properties, i.e.,

(2.21) u3ε(t, ·) ∈ C
1
2 ([0, 1]), for any t ∈ [0, T ].

(iii) For any δ > 0,

(2.22) µ{(t, h);uε(t, h) < δ} ≤ Cm0
Tδ,

where µ{A} is the Lebesgue measure of set A.

Proof. For a fixed ε > 0, in order to get the solution to regularized problem (2.9), first we need some

a-priori estimates for uε, the existence of which will discussed later. Denote Cm0
:=

∫ 1
0

1
u0

dh+ 1,

and umin is the minimal value of uε in [0, T ]×[0, 1]. For any t ∈ [0, T ], denote um(t) as the minimal

value of uε(t, h) for h ∈ [0, 1]. Assume uε achieves its minimal value at t⋆, h⋆, i.e. umin = uε(t
⋆, h⋆).

Denote

E0 :=

∫ 1

0

1

6
[(u30)hh]

2 dh ≤ C(‖u30‖H2).

In Step 1, we first introduce some a-priori estimates under the a-priori assumption

(2.23) uε(t, h) ≥ umin ≥ ε
4
3 , for any t ∈ [0, T ], h ∈ [0, 1].

In Step 2, we prove the lower bound of uε depending on ε, which is the property (i), and verify

the a-priori assumption (2.23). After that, the proof for existence of uε is standard. Here, let

us sketch the modified method from [18]. We can first modify (2.9) properly using the standard

mollifier Jδ such that the right hand side is locally Lipschitz continuous in Banach space L∞([0, 1]),

so that we can apply the Picard Theorem in abstract Banach space. Hence by [18, Theorem 3.1],

it has a unique local solution uεδ. Then by the a-priori estimates in Step 1 and Step 2, we can

get uniform regularity estimates, extend the maximal existence time for uεδ and finally obtain the

limit of uεδ, uε, is a weak solution to the regularized problem (2.9). In Step 3, we prove that the

solution obtained above is unique. In Step 4, we study the properties (ii) and (iii).

Remark 1. For the a-priori assumption method, to be more transparent, we claim uε ≥ C⋆ε for

any t ∈ [0, T ], where C⋆ =
1

18
1
3 E

1
3
0 Cm0

. If not, there exists t⋆ ∈ (0, T ) such that

uε(t, h) ≥ C⋆ε, for any t ∈ [0, t⋆], h ∈ [0, 1].

Due to the continuity of uε, there exists t⋆⋆ ∈ (t⋆, T ) such that

uε(t, h) ≥ ε
4
3 , for any t ∈ (t⋆, t⋆⋆), h ∈ [0, 1],

and there exists h̃ ∈ [0, 1], t̃ ∈ (t⋆, t⋆⋆) such that

uε(t̃, h̃) < C⋆ε.

This is in contradiction with

uε(t, h) ≥ C⋆ε, for any t ∈ [0, t⋆⋆), h ∈ [0, 1],
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which is verified in Step 2.

Step 1. a-priori estimates.

First, multiplying (2.9) by u2ε gives

1

3
(u3ε)t = − u6ε

ε+ u2ε
(u3ε)hhhh.

Then multiply it by (u3ε)hhhh and integrate by parts. We have

(2.24)
1

6

d

dt

∫ 1

0
((u3ε)hh)

2 dh = −
∫ 1

0

u6ε
ε+ u2ε

[

(u3ε)hhhh
]2

dh ≤ 0.

Thus we obtain, for any T > 0,

(2.25) ‖(u3ε)hh‖L∞([0,T ];L2[0,1]) ≤
√
6E

1
2

0 .

Moreover, from (2.24), we also have

(2.26) ‖ u3ε
√

ε+ u2ε
(u3ε)hhhh‖L2([0,T ];L2([0,1])) ≤ E

1
2

0 .

Second, to get the lower order estimate, we need the a-priori assumption (2.23). Multiplying

(2.9) by ε+u2
ε

uε
, we have

(2.27)
d

dt

∫ 1

0
ε ln |uε|+

u2ε
2

dh =

∫ 1

0

( ε

uε
+ uε

)

uεt dh =

∫ 1

0
−((u3ε)hh)

2 dh ≤ 0,

which implies
∫ 1

0
ε ln |uε(t, ·)|+

uε(t, ·)2
2

dh

≤
∫ 1

0
ε ln uε(0) +

uε(0)
2

2
dh

≤
∫ 1

0
uε(0)

2 dh ≤ C(‖u30‖H2), for any t ∈ [0, T ].

Hence we have
∫ 1

0

uε(t, h)
2

2
dh ≤ −

∫ 1

0,|uε|<1
ε ln |uε(t, h)|dh+ C(‖u30‖H2)

≤ −4

3
ε ln ε+ C(‖u30‖H2)

≤ C(‖u30‖H2), for any t ∈ [0, T ]

where we used the a-priori estimate (2.23). Thus we have, for any T > 0,

(2.28) ‖uε‖L∞([0,T ];L2[0,1]) ≤ C(‖u30‖H2).

Third, from Lemma 2.3, we have

(2.29) uε(t, h)
3 − um(t)3 ≤ 2

3
‖(u3ε)hh(t, ·)‖L2([0,1])|h− h⋆| 32 , for any t ∈ [0, T ]h ∈ [0, 1].

Since (2.28) gives

um(t)3 ≤ (

∫ 1

0
uε(t, h)

2 dh)
3
2 ≤ C(‖u30‖H2), for any t ∈ [0, T ],
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we know

(2.30) uε(t, h)
3 ≤ C(‖u30‖H2) +

2
√
6

3
E

1
2

0 ≤ C(‖u30‖H2), for any t ∈ [0, T ], h ∈ [0, 1],

where we used (2.25) and (2.29). Hence we have

(2.31) ‖uε‖L∞([0,T ];L∞([0,1])) ≤ C(‖u30‖H2).

This, together with (2.25), shows that, for any T > 0,

(2.32) ‖u3ε‖L∞([0,T ];H2([0,1])) ≤ C(‖u30‖H2).

Therefore, (2.26) and (2.32) yield (2.18).

On the other hand, from (2.24) and (2.9), we have

1

6

d

dt

∫ 1

0
((u3ε)hh)

2 dh = −
∫ 1

0

u2ε + ε

u2ε
u2εt dh.

Hence
∫ T

0

∫ 1

0
u2εt dhdt ≤

∫ T

0

∫ 1

0

u2ε + ε

u2ε
u2εt dhdt ≤ C(‖u30‖H2),

which gives

(2.33) ‖uεt‖L2([0,T ];L2([0,1])) ≤ C(‖u30‖H2).

This, together with (2.31), gives that

(2.34) ‖(u3ε)t‖L2([0,T ];L2([0,1])) ≤ C(‖u30‖H2).

In fact, from (2.32) and (2.34), by [8, Theorem 4, p. 288], we also know

u3ε ∈ C([0, T ];H1([0, 1])) →֒ C([0, T ]× [0, 1]).

Moreover, the two dissipation equalities (2.13) and (2.14) in Definition 2 can be easily obtained

from (2.24) and (2.27) separately.

Step 2. Verify the a-priori assumption.

First from (2.9), we have

(2.35)
d

dt

∫ 1

0

ε

3u3ε
+

1

uε
dh = 0.

Hence

(2.36)

∫ 1

0

ε

3uε(t, h)3
+

1

uε(t, h)
dh ≡

∫ 1

0

ε

3(u0 + ε
1
3 )3

+
1

u0 + ε
1
3

dh ≤ Cm0
, for any t ∈ [0, T ].

Then from (2.29), for any 0 < α ≤ 1
2ε2

, t ∈ [0, T ], we have

αε3

um(t)3 +
2
√
6E

1
2
0

3 α
3
2 ε3

=

∫ h⋆+αε2

h⋆

ε

um(t)3 +
2
√
6E

1
2
0

3 α
3
2 ε3

dh

≤
∫ 1

0

ε

um(t)3 +
2
√
6E

1
2
0

3 |h− h⋆| 32
dh ≤

∫ 1

0

ε

uε(t, h)3
dh ≤ Cm0

.
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Thus for any t ∈ [0, T ], we can directly calculate that, for α0 =
1

6E0C2
m0

,

(2.37) um(t) ≥
( α0

Cm0

− 2
√
6

3
E

1
2

0 α
3
2

0

)

ε3 =
1

18E0C3
m0

ε3 >> ε4,

and that

(2.38) u3min ≥ min
t∈[0,T ]

um(t) ≥ 1

18E0C3
m0

ε3 >> ε4,

for ε small enough. Note that for ε small enough, such α0 can be achieved. This verifies the

a-priori assumption and shows that uε has a positive lower bound depending on ε, i.e.,

uε(t, h) ≥
1

18
1
3E

1
3

0 Cm0

ε, for any t ∈ [0, T ], h ∈ [0, 1]

which concludes Property (i).

Step 3. Uniqueness of solution to (2.9).

Assume u, v are two solutions of (2.9). Then for any fixed ε, from (2.20), we know u, v ≥ cε > 0,

and we have

(2.39)
1

3
(u3 − v3)t = − u6

u2 + ε
(u3)hhhh +

v6

v2 + ε
(v3)hhhh,

(2.40) (u− v)t = − u4

u2 + ε
(u3)hhhh +

v4

v2 + ε
(v3)hhhh.

Let us keep in mind, for any p ≥ 0, u2

ε+u2u
p is increasing with respect to u, so there exist constants

m, M > 0, whose values depend only on ε, ‖u30‖H2([0,1]), p and m0, such that

(2.41) m ≤ u2

ε+ u2
up ≤ M,

and

(2.42) m ≤ v2

ε+ v2
vp ≤ M.

First, multiply (2.39) by (u3 − v3)hhhh and integrate by parts. We have

d

dt

∫ 1

0

1

6
(u3 − v3)2hh dh

=

∫ 1

0

[

− u6

u2 + ε
(u3)hhhh +

v6

v2 + ε
(u3)hhhh −

v6

v2 + ε
(u3)hhhh

+
v6

v2 + ε
(v3)hhhh

]

(u3 − v3)hhhh dh

=−
∫ 1

0

v6

v2 + ε
((u3 − v3)hhhh)

2 dh+

∫ 1

0

( v6

v2 + ε
− u6

u2 + ε

)

(u3)hhhh(u
3 − v3)hhhh dh

= : R1 +R2.

For the first term R1, from (2.42), we have

(2.43) R1 ≤ −m

∫ 1

0
((u3 − v3)hhhh)

2 dh,

which will be used to control other terms.
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For the second term R2, notice that

(2.44)

∥

∥

∥

v6

v2 + ε
− u6

u2 + ε

∥

∥

∥

L∞([0,1])

=
∥

∥

∥

(u2 + ε)v6 − (v2 + ε)u6

(v2 + ε)(u2 + ε)

∥

∥

∥

L∞([0,1])

=
∥

∥

∥

u2v2(v4 − u4)

(v2 + ε)(u2 + ε)
+

ε(v6 − u6)

(v2 + ε)(u2 + ε)

∥

∥

∥

L∞([0,1])

≤C(‖u30‖H2([0,1]), ε,m0)‖v − u‖L∞([0,1]),

where we used the upper bound and lower bound of u, v. Then by Young’s inequality and Hölder’s

inequality, we know

(2.45)

R2 ≤
m

4

∫ 1

0
((u3 − v3)hhhh)

2 dh+ C
∥

∥

∥

v6

v2 + ε
− u6

u2 + ε

∥

∥

∥

2

L∞([0,1])

∫ 1

0
((u3)hhhh)

2 dh

≤ m

4

∫ 1

0
((u3 − v3)hhhh)

2 dh+ C(‖u30‖H2([0,1]), ε,m0)‖v − u‖2L∞([0,1]),

where we used (2.18) and (2.44). Combining (2.43) and (2.45), we obtain

(2.46)

d

dt

∫ 1

0

1

6
(u3 − v3)2hh dh

≤− 3m

4

∫ 1

0
((u3 − v3)hhhh)

2 dh+ C(‖u30‖H2([0,1]), ε,m0)‖v − u‖2L∞([0,1]).

Second, multiply (2.40) by u− v and integrate by parts. We have

1

2

d

dt

∫ 1

0
(u− v)2 dh

=

∫ 1

0

[

− u4

u2 + ε
(u3)hhhh +

v4

v2 + ε
(u3)hhhh −

v4

v2 + ε
(u3)hhhh

+
v4

v2 + ε
(v3)hhhh

]

(u− v) dh

=−
∫ 1

0

v4

v2 + ε
(u3 − v3)hhhh(u− v) dh+

∫ 1

0

( v4

v2 + ε
− u4

u2 + ε

)

(u3)hhhh(u− v) dh

= : R3 +R4.

For R3, by Hölder’s inequality, we have

(2.47) R3 ≤
m

4

∫ 1

0
((u3 − v3)hhhh)

2 dh+ C(‖u30‖H2([0,1]),m0)‖v − u‖2L2([0,1]),
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where we used (2.42). To estimate R4, notice that

(2.48)

∥

∥

∥

v4

v2 + ε
− u4

u2 + ε

∥

∥

∥

L∞([0,1])

=
∥

∥

∥

(u2 + ε)v4 − (v2 + ε)u4

(v2 + ε)(u2 + ε)

∥

∥

∥

L∞([0,1])

=
∥

∥

∥

u2v2(v2 − u2)

(v2 + ε)(u2 + ε)
+

ε(v4 − u4)

(v2 + ε)(u2 + ε)

∥

∥

∥

L∞([0,1])

≤C(‖u30‖H2([0,1]), ε,m0)‖v − u‖L∞([0,1]).

Hence, we have

(2.49)

R4 ≤ C

∫ 1

0
(u− v)2 dh+ C

∥

∥

∥

v4

v2 + ε
− u4

u2 + ε

∥

∥

∥

2

L∞([0,1])

∫ 1

0
((u3)hhhh)

2 dh

≤ C

∫ 1

0
(u− v)2 dh+ C(‖u30‖H2([0,1]), ε,m0)‖v − u‖2L∞([0,1]).

Therefore, combining (2.47) and (2.49), we obtain

(2.50)

1

2

d

dt

∫ 1

0
(u− v)2 dh

≤m

4

∫ 1

0
((u3 − v3)hhhh)

2 dh+ C(‖u30‖H2([0,1]),m0, ε)‖v − u‖2L∞([0,1]).

Finally, (2.46) and (2.50) show that

(2.51)

d

dt

[

∫ 1

0
(u− v)2 dh+

∫ 1

0
(u3 − v3)2hh dh

]

≤C(‖u30‖H2([0,1]), ε,m0)‖v − u‖2L∞([0,1]).

In remains to show the right-hand-side of (2.51) is controlled by
∫ 1
0 (u−v)2 dh+

∫ 1
0 (u

3−v3)2hh dh.

From (2.20), we have

cε|u− v| ≤ |u− v|(u2 + v2 + uv) = |u3 − v3|.
Thus

‖v − u‖2L∞([0,1]) ≤ cε‖v3 − u3‖2L∞([0,1])

≤ cε‖v3 − u3‖2H2([0,1])

≤ cε
(

‖v3 − u3‖2L2([0,1]) + ‖(v3 − u3)hh‖2L2([0,1])

)

≤ cε
(

‖v − u‖2L2([0,1]) + ‖(v3 − u3)hh‖2L2([0,1])

)

.

This, together with (2.51), gives

(2.52)

d

dt

[

∫ 1

0
(u− v)2 dh+

∫ 1

0
(u3 − v3)2hh dh

]

≤C(‖u30‖H2([0,1]),m0, ε)
[

∫ 1

0
(u− v)2 dh+

∫ 1

0
(u3 − v3)2hh dh

]

.

Hence if u(0) = v(0), Grönwall’s inequality implies u = v.

Step 4. The properties (ii) and (iii).
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To obtain (ii), denote w = u3ε. From (2.18), we know w ∈ L∞(0, T ;H2([0, 1])). SinceH2([0, 1]) →֒
C1, 1

2 ([0, 1]), we can get (2.21) directly.

To obtain (iii), for any δ > 0, (2.36) also gives that

µ{(t, h);uε < δ}1
δ
≤

∫ T

0

∫ 1

0

ε

3u3ε
+

1

uε
dhdt≤ Cm0

T,

which concludes (2.22).

This completes the proof of Proposition 2.4. �

2.2. Global existence of weak solution to PDE (1.4). After those preparations for regularized

system, we can start to prove the global weak solution of (1.4).

Proof of Theorem 2.1. In Step 1 and Step 2, we will first prove the regularized solution uε obtained

in Proposition 2.4 converge to u, and u is positive almost everywhere. Then in Step 3 and Step 4,

we prove this u is the weak solution to PDE (1.4) by verifying condition (2.5) and (2.6).

Step 1. Convergence of uε.

Assume uε is the weak solution to (2.9). From (2.18) and (2.19), we have

‖(u3ε)t‖L2([0,T ];L2
per([0,1]))

≤ C(‖u30‖H2).

Therefore, as ε → 0, we can use Lions-Aubin’s compactness lemma for u3ε to show that there exist

a subsequence of uε (still denoted by uε) and u such that

(2.53) u3ε → u3, in L∞([0, T ];H1
per([0, 1])),

which gives

(2.54) uε → u, a.e. t ∈ [0, T ], h ∈ [0, 1].

Again from (2.18) and (2.19), we have

(2.55) u3ε
⋆
⇀u3 in L∞([0, T ];H2

per([0, 1])),

and

(2.56) uεt ⇀ ut in L2([0, T ];L2
per([0, 1])),

which imply that

(2.57) u3 ∈ L∞([0, T ];H2
per([0, 1])), ut ∈ L2([0, T ];L2

per([0, 1])).

In fact, by [8, Theorem 4, p. 288], we also know

u3 ∈ C([0, T ];H1
per([0, 1])) →֒ C([0, T ]× [0, 1]).

Step 2. Positivity of u.

From (2.54), we know, up to a set of measure zero,

{(t, h);u(t, h) = 0} ⊂
∞
⋂

n=1

{(t, h);uε <
1

n
}.

Hence by (2.22) in Proposition 2.4, we have

µ{(t, h);u(t, h) = 0} = lim
n→0

µ{(t, h);uε <
1

n
} = 0,
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which concludes u is positive almost everywhere.

Step 3. u is a weak solution of (1.4) satisfying (2.5).

Recall uε is the weak solution of (2.9) satisfying (2.12). We want to pass the limit for uε in

(2.12) as ε → 0. From (2.56), the first term in (2.12) becomes

(2.58)

∫ T

0

∫ 1

0
φuεt dhdt →

∫ T

0

∫ 1

0
φut dhdt.

The limit of the second term in (2.12) is given by the following claim:

Claim 2.5. For PT defined in (2.2), for any function φ ∈ C∞([0, T ]× [0, 1]), we have

(2.59)

∫ T

0

∫ 1

0
φ

u4ε
ε+ u2ε

(u3ε)hhhh dhdt →
∫ ∫

PT

φu2(u3)hhhh dhdt,

as ε → 0.

Proof of claim. First, for any fixed δ > 0, from (2.53), we know there exist a constant K1 > 0 large

enough and a subsequence uεk such that

(2.60) ‖uεk − u‖L∞([0,T ]×[0,1]) ≤
δ

2
, for k > K1.

Denote

D1δ(t) := {h ∈ [0, 1]; 0 ≤ u(t, h) ≤ δ},
D2δ(t) := {h ∈ [0, 1]; u(t, h) > δ}.

The left-hand-side of (2.59) becomes
∫ T

0

∫ 1

0
φ

u4εk
εk + u2εk

(u3εk)hhhh dhdt

=

∫ T

0

∫

D1δ(t)
φ

u4εk
εk + u2εk

(u3εk)hhhh dhdt+

∫ T

0

∫

D2δ(t)
φ

u4εk
εk + u2εk

(u3εk)hhhh dhdt

=:I1 + I2.

Then we estimate I1 and I2 separately.

For I1, from (2.60), we have

(2.61) |uεk(t, h)| ≤
3δ

2
, for t ∈ [0, T ], h ∈ D1δ(t).

Hence by Hölder’s inequality, we know

I1 ≤
[

∫ T

0

∫

D1δ(t)

(

φ
uεk

√

εk + u2εk

)2
dhdt

]
1
2

(2.62)

·
[

∫ T

0

∫

D1δ(t)

( u3εk
√

εk + u2εk

(u3εk)hhhh

)2
dhdt

]
1
2

≤C(‖u30‖H2)‖φ‖L∞([0,T ]×[0,1])

(

µ
{

(t, h); |uεk | ≤
3δ

2

}

)
1
2

≤C(‖u30‖H2)T
1
2 δ

1
2 .

Here we used (2.18) in the second inequality and (2.22) in the last inequality.
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Now we turn to estimate I2. Denote

Bδ :=
⋃

t∈[0,T ]

{t} ×D2δ(t).

From (2.60), we know

(2.63) uεk(t, h) >
δ

2
, for (t, h) ∈ Bδ.

This, combined with (2.18), shows that

(2.64)

(

δ
2

)6

εk +
(

δ
2

)2

∫ ∫

Bδ

((u3εk)hhhh)
2 dhdt

≤
∫ T

0

∫ 1

0

u6εk
εk + u2εk

((u3εk)hhhh)
2 dhdt ≤ C(‖u30‖H2

per([0,1])
).

From (2.64) and (2.54), there exists a subsequence of uεk (still denote as uεk) such that

(u3εk)hhhh ⇀ (u3)hhhh, in L2(Bδ).

Hence, together with (2.54), we have

(2.65) I2 =

∫ ∫

Bδ

φ
u4εk

εk + u2εk
(u3εk)hhhh dhdt →

∫ ∫

Bδ

φu2(u3)hhhh dhdt.

Combining (2.62) and (2.65), we know there exists K > K1 large enough such that for k > K,

∣

∣

∣

∫ T

0

∫ 1

0
φ

u4εk
εk + u2εk

(u3εk)hhhh dhdt−
∫ ∫

Bδ

φu2(u3)hhhh dhdt
∣

∣

∣
≤ C(‖u30‖H2)T

1
2 δ

1
2 ,

which implies that

lim
δ→0+

lim
k→∞

[

∫ T

0

∫ 1

0
φ

u4εk
εk + u2εk

(u3εk)hhhh dhdt−
∫ ∫

Bδ

φu2(u3)hhhh dhdt
]

= 0.

For any ℓ ≥ 1, assume the sequence δℓ → 0. Thus we can choose a sequence εℓk → +∞. Then by

the diagonal rule, we have

δℓ → 0, εℓℓ → +∞,

as ℓ tends to +∞. Notice

PT =
⋃

δ>0

Bδ.

We have

lim
ℓ→∞

∫ T

0

∫ 1

0
φ

u4εℓℓ
εℓℓ + u2εℓℓ

(u3εℓℓ)hhhh dhdt

= lim
ℓ→∞

∫ ∫

Bδℓ

φu2(u3)hhhh dhdt

=

∫ ∫

PT

φu2(u3)hhhh dhdt.

This completes the proof of the claim. �
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Hence the function u obtained in Step 1 satisfies weak solution form (2.5). It remains to verify

(2.6) in Step 4.

Step 4. Energy-dissipation inequality (2.6) and (2.7).

First recall the regularized solution uε satisfies the Energy-dissipation equality (2.13), i.e.,

E(uε(·, T )) +
∫ T

0

∫ 1

0

[ u3ε
√

ε+ u2ε
(u3ε)hhhh

]2
dhdt = E(uε(·, 0)).

From the Claim 2.5, we have

u4ε
ε+ u2ε

(u3ε)hhhh ⇀ u2(u3)hhhh, in PT .

Then by the lower semi-continuity of norm, we know

(2.66)

∫ ∫

PT

(u2(u3)hhhh)
2 dhdt ≤ lim inf

ε→0

∫ ∫

PT

[ u4ε
ε+ u2ε

(u3ε)hhhh

]2
dhdt

≤ lim inf
ε→0

∫ ∫

PT

[ u3ε
√

ε+ u2ε
(u3ε)hhhh

]2
dhdt.

Also from (2.18), we have

(2.67) E(u(t, ·)) ≤ lim inf
ε→0

E(uε(t, ·)), for t ∈ [0, T ].

Combining (2.13), (2.66) and (2.67), we obtain

E(u(T, ·)) +
∫ ∫

PT

(u2(u3)hhhh)
2 dhdt ≤ E(u(0, ·)).

Second, recall the regularized solution uε satisfies the Energy-dissipation equality (2.14), i.e.,

Fε(uε(T, ·)) + 6

∫ T

0
E(uε(t, ·)) dt = Fε(uε(0, ·)).

From (2.18) and the lower semi-continuity of norm, we know

(2.68)

∫ T

0
E(u(t, ·)) dt ≤ lim inf

ε→0

∫ T

0
E(uε(t, ·)) dt,

F (u(t, ·)) ≤ lim inf
ε→0

F (uε(t, ·)), for any t ∈ [0, T ].

For the first term in Fε, for any t ∈ [0, T ], from (2.18) and (2.20), we have

ε

∫ 1

0
| lnuε|dh ≤ C(| ln ε|+ 1)ε → 0,

as ε tends to 0. This, together with (2.68), implies

F (u(T, ·)) + 6

∫ T

0
E(u(t, ·)) dt ≤ F (u(0, ·)).

Hence we complete the proof of Theorem 2.1. �
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2.3. Time Hölder regularity of weak solution. In the following, we study the time-space

Hölder regularity of weak solution to PDE (1.4).

Proposition 2.6. Assume the initial data u0 satisfies the same assumption as in Theorem 2.1.

Let u be a non-negative weak solution to PDE (1.4) with initial data u0. Then u3 has time-space

Hölder continuity in the following sense: for any t1, t2 ∈ [0, T ], u3 satisfies

(2.69) |u3(t1, h)− u3(t2, h)| ≤ C(‖u30‖H2)
∣

∣t2 − t1
∣

∣

1
4 , for any h ∈ [0, 1];

and

(2.70) u3ε(t, ·) ∈ C
1
2 ([0, 1]), for any t ∈ [0, T ].

Proof. First, (2.70) is a direct consequence of u3 ∈ L∞([0, T ];H2([0, 1])) and the embedding

H2([0, 1]) →֒ C1, 1
2 ([0, 1]).

Second, define two cut-off functions as [17, Lemma B.1]. For any t1, t2 ∈ [0, T ], t1 < t2, we

construct bδ(t) =
∫ t

−∞ b′δ(t)dt, with b′δ(t) satisfying

(2.71) b′δ(t) =











1
δ
, |t− t2| < δ,

−1
δ
, |t− t1| < δ,

0, otherwise,

where the constant δ satisfies 0 < δ <
|t2−t1|

2 . Then it is obvious that bδ(t) is Lipschitz continuous

and satisfies |bδ(t)| ≤ 2.

For any h0 ∈ (0, 1), we construct an auxiliary function

(2.72) a(h) = a0

(K(h− h0)

|t2 − t1|α
)

,

where 0 < α < 1, K > 0 are constants determined later and a0(h) ∈ C∞
0 (R) is defined by

a0(h) =

{

1, −1
2 ≤ h ≤ 1

2 ,

0, |h| ≥ 1.

Hence we have

a(h) =

{

1, |h− h0| ≤ 1
2K |t2 − t1|α,

0, |h− h0| ≥ 1
K
|t2 − t1|α.

In the following, C is a general constant depending only on ‖u30‖H2([0,1]).

Third, since (2.3) implies u3 ∈ L∞([0, T ];H2([0, 1])) →֒ L∞([0, T ];W 1,∞([0, 1])), we know for

any y ∈ R, t ∈ [0, T ],

(2.73) |u3(t, h0 + y)− u3(t, h0)| ≤ C|y|.

Then we have

Lemma 2.7. Let function u3 ∈ L∞([0, T ];H2([0, 1])). Then for almost everywhere h0 ∈ [0, 1],

t1, t2 ∈ [0, T ], t1 < t2, it holds

|u3(t2, h0)− u3(t1, h0)|(2.74)

≤C(‖u30‖H2([0,1]), T )
(

∫ T

0

∫ 1

0
u3(t, h)a(h)b′δ(t) dhdt|t2 − t1|−α + |t2 − t1|α

)

.
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Proof. The proof of Lemma 2.7 is the same as Lemma B.2 in [17] except we proceed on u3 instead

of u(t, ·) ∈ C
1
2 ([0, 1]) in [17, Lemma B.2]. We just sketch the idea here. First calculate the inner

product of u3(t, h) and a(h)b′δ(t). Then by the definition of b′δ(t) and (2.73), we have

∫ T

0

∫ 1

0
u3(t, h)a(h)b′δ(t) dhdt

≥ 1

δ

∫ δ

−δ

∫ 1
K
|t2−t1|α

− 1
K
|t2−t1|α

a(h0 + y)
(

u3(t2 + τ, h0)− u3(t1 + τ, h0)
)

dy dτ − C(t2 − t1)
3α
2 .

Notice the definition of a(h) and the Lebesgue differentiation theorem. Let δ tend to 0, and thus

we obtain (2.74). �

Finally, since the solution u satisfies (2.5), for any φi ∈ C∞([0, T ] × [0, 1]), u satisfies

(2.75)

∫ T

0

∫ 1

0
φiut dhdt+

∫ ∫

PT

φiu
2(u3)hhhh dhdt = 0.

We can take φi such that φi → u2a(h)bδ(t) in L2([0, T ];L2([0, 1])) as i → ∞. Hence from (2.3) and

(2.4), we can take a limit in (2.75) to obtain
∫ T

0

∫ 1

0

(1

3
u3

)

t
a(h)bδ(t) dhdt+

∫ ∫

PT

u4(u3)hhhha(h)bδ(t) dhdt = 0.

Therefore, using (2.3), we have

∣

∣

∣

∫ T

0

∫ 1

0

(1

3
u3

)

t
a(h)bδ(t) dhdt

∣

∣

∣

≤‖u4(u3)hhhh‖L2(PT )‖a(h)bδ(t)‖L2([0,T ];L2([0,1]))

≤C‖a(h)bδ(t)‖L2([0,T ];L2([0,1])).

Noticing the denifitions of a(h) and bδ(t), we can calculate that

(2.76)

∣

∣

∣

∫ T

0

∫ 1

0

1

3
u3a(h)b′δ(t) dhdt

∣

∣

∣
=

∣

∣

∣

∫ T

0

∫ 1

0

(1

3
u3

)

t
a(h)bδ(t) dhdt

∣

∣

∣

≤C‖a(h)bδ(t)‖L2([0,T ];L2([0,1])) =
(

∫ h0+
1
K
|t2−t1|α

h0− 1
K
|t2−t1|α

a(h)2 dh
)

1
2
(

∫ T

0
b2δ(t) dt

)
1
2

≤C|t2 − t1 + 2δ| 12 ≤ C|t2 − t1|
1
2 ,

where we used δ <
|t2−t1|

2 .

Therefore, (2.76) and Lemma 2.7 show that

|u3(t2, h0)− u3(t1, h0)|

≤C(‖u30‖H2([0,1]), T )
(

∫ T

0

∫ 1

0
u3(t, h)a(h)b′δ(t) dhdt|t2 − t1|−α + |t2 − t1|α

)

≤C(‖u30‖H2([0,1]), T )
(

|t2 − t1|
1
2
−α + |t2 − t1|α

)

,

for almost everywhere h0 ∈ [0, 1], t1, t2 ∈ [0, T ], t1 < t2. Taking α = 1
4 , we conclude (2.69) and

complete the proof of Proposition 2.6. �
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3. Long time behavior of weak solution

After establishing the global-in-time weak solution, we want to study how the solution will

behavior as time goes to infinity. In our periodic setup, it turns out to be a constant solution of

PDE (1.4).

Theorem 3.1. Under the same assumptions of Theorem 2.1, for every weak solution u obtained

in Theorem 2.1, there exists a constant u⋆ such that, as time t → +∞, u converges to u⋆ in the

sense

(3.1) ‖u3 − (u⋆)3‖H1([0,1]) → 0, as t → +∞,

and

(3.2) ‖u− u⋆‖L∞([0,1]) → 0, as t → +∞.

Proof. Step 1. Limit of free energy E(u(t)).

For any T > 0, from the second energy-dissipation inequality (2.7), we have

(3.3)

∫ 1

0
u(T )2 dh+ 12

∫ T

0
E(u(t, ·)) dt ≤

∫ 1

0
u20 dh.

By (2.6), we know E(u(t)) is decreasing with respect to t. Then (3.3) implies

(3.4) 12TE(u(T )) ≤ 12

∫ T

0
E(u(t, ·)) dt ≤

∫ 1

0
u20 dh−

∫ 1

0
u(T )2 dh ≤

∫ 1

0
u20 dh.

Hence we have

(3.5) E(u(t, ·)) ≤ c

t
→ 0, for any t ≥ 0,

which shows that E(u(t)) converges to its minimum 0 as t → +∞.

On the other hand, denote w := u3, and

E(w) =

∫ 1

0
((u3)hh)

2 dh =

∫ 1

0
(whh)

2 dh.

Since E(w) is strictly convex in Ḣ2 and E(w) → +∞ when ‖w‖Ḣ2 → +∞, hence E(w) achieves

its minimum 0 at unique critical point w⋆ in Ḣ2. Notice w is periodic so w⋆ ≡ constant.

Step 2. Convergence of solution to its unique stationary solution.

Assume u3 ∈ L∞([0,∞);H2([0, 1])) is a solution of (1.4). Notice H2([0, 1]) →֒ H1([0, 1]) com-

pactly. Then for any sequence tn → +∞, there exists a subsequence tnk
and f⋆(h) in H1([0, 1])

such that

(3.6) u3(tnk
, ·) → f⋆(·), in H1([0, 1]) as tnk

→ +∞.

From (3.5) and the uniqueness of critical point, we have
∫ 1

0
((u(t, ·)3)hh)2 dh →

∫ 1

0
((w⋆)hh)

2 dh = 0, as t → +∞.

Hence

(3.7) u3(t, ·) → w⋆ in Ḣ2([0, 1]), as t → +∞.
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Since u is periodic, we have poincare inequality for (u3)h and

(3.8) u3(t, ·) → w⋆ in Ḣ1([0, 1]), as t → +∞.

This, together with (3.6), gives

f⋆
h ≡ 0,

which implies f⋆ is also a constant.

Next we state the constant is unique. Denote u⋆ = (f⋆)
1
3 . From (3.6) we know

(3.9) ‖u(tnk
, ·)3 − (u⋆)3‖L∞([0,1]) → 0, as tnk

→ +∞.

Since

(1− x)3 ≤ 1− x3, for 0 ≤ x ≤ 1,

we have

(3.10) |u− u⋆|3 ≤ |u3 − (u⋆)3|,

which, together with (3.9), implies

(3.11) ‖u− u⋆‖L∞([0,1]) → 0, as tnk
→ +∞.

Hence u converges to u⋆ in L2([0, 1]). Besides, from the second energy-dissipation inequality (2.7),

we know
∫ 1
0 u2 dh is decreasing with respect to t so it has a unique limit

∫ 1
0 (u

⋆)2 dh. Combining this

with the uniqueness of critical point in Ḣ2, we know the stationary constant solution is unique and

f⋆ ≡ w⋆ ≡ (u⋆)3. Therefore, as tnk
→ +∞, the solution u3(tnk

) converges to the unique constant

(u⋆)3 in H1([0, 1]). From the arbitrariness of tn, we know, as t → +∞, the solution u3 to PDE

(1.4) converges to (u⋆)3 in H1([0, 1]). Besides, by (3.11) we obtain (3.2). �

Remark 2. Given the initial data u0, we can not obtain a unique value of the constant solution for

all weak solutions to PDE (1.4) so far. From PDE (1.4), the conservation law for classical solution

is obvious

(3.12)
d

dt

∫ 1

0

1

u
dh = 0, for any t ≥ 0.

Hence for any u0, we can calculate the value of the stationary constant solution u⋆. In fact, for

m0 =
∫ 1
0

1
u0

dh, we have

(u⋆)3 =
1

(

∫ 1
0

1
u0

dh
)3 =

1

m3
0

.

However, the conservation law for weak solution is still an open question although in physics it is

true: u is the slope as a function of height and time satisfying

∫ 1

0

1

u
dh =

∫ 1

0
xh dh = x|h=1 − x|h=0 ≡ L.
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Appendix A. Formulations using other physical variables

For completeness, in this appendix, we include some alternative forms of PDE (1.4) using other

physical variables to describe the surface dynamics. To avoid confusion brought by different vari-

ables, we replace h by α when the height variable is considered as an independent variable. Let us

introduce the following variables:

• u(α, t), step slope when considered as a function of surface height α;

• ρ(x, t), step slope when considered as a function of step location x;

• h(x, t), surface height profile when considered as a function of step location x;

• φ(α, t), step location when considered as a function of surface height α.

Several straightforward relations between the four profiles are listed as follows. First, since φ is

the inverse function of h such that

(A.1) α = h(φ(α, t), t), ∀α,

we have

(A.2) φt = − ht

hx
, φα =

1

hx
.

Second, from the definitions above, we know

(A.3) u(α, t) = ρ(φ(α, t), t) = hx(φ(α, t), t) =
1

φα
.

We formally derive the equations for h, ρ, φ from the u-equation, which consist with the widely-

used h, ρ-equation in the previous literature. The four forms of PDEs are rigorously equivalent for

local strong solution. Now under the assumption u ≥ 0, we want to formally derive the other three

equations from the u-equation (1.4) (i.e. ut = −u2(u3)αααα if using variable α).

First, from (A.3), we can rewrite (1.4) as

(A.4) φαt =
( 1

φ3
α

)

αααα
.

Integrating respect to α, (A.4) becomes

(A.5) φt =
( 1

φ3
α

)

ααα
+ c(t),

where c(t) is a function independent of α and will be determined later.

Second, let us derive h-equation and ρ-equation. On one hand, from (A.2) and (A.3), we have

(A.6) ut = ρxφt + ρt = −ρ
ht

hx
+ ρt = −ρx

ρ
ht + ρt.

On the other hand, due to the chain rule uα = ρxφα, we have

(A.7) (u3)α = 3u2uα = 3ρρx =
3

2
(ρ2)x.
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Hence

(A.8)

ut = −u2(u3)αααα

= −u2
[

(

((u3)αxφα)xφα

)

x
φα

]

= −3

2
ρ
(1

ρ

((ρ2)xx
ρ

)

x

)

x

=
3

2

ρx

ρ

( (ρ2)xx
ρ

)

x
− 3

2

((ρ2)xx
ρ

)

xx
.

Now denote A := −3
2

(

(ρ2)xx
ρ

)

x
. Comparing (A.6) with (A.8), we have

(ht −A)
ρx

ρ
= (ht −A)x,

which implies

ht −A = λ(t)hx, ρt −Ax = λ(t)ρx,

where λ(t) is a function independent of x and will be determined later.

Therefore, we know h satisfies

(A.9) ht = −3

2

((h2x)xx
hx

)

x
+ λ(t)hx,

and ρ satisfies

(A.10) ρt = −3

2

( (ρ2)xx
ρ

)

x
+ λ(t)ρx.

From (A.9), we immediately know d
dt

∫ L

0 h(x) dx = 0. Hence we have
∫ 1

0
φdα = L−

∫ L

0
h(x)dx,

due to (A.2). Thus we know d
dt

∫ 1
0 φdα = 0. This, together with (A.5), gives c(t) = 0, and we

obtain φ-equation

(A.11) φt =
( 1

φ3
α

)

ααα
.

Now keep in mind the chain rule ∂α = 1
hx
∂x and (A.2). Changing variable in (A.11) shows that

− ht

hx
=

(

(h3x)x
1

hx

)

αα
=

(3

2
(h2x)x

)

αα
=

3

2

1

hx

((h2x)xx
hx

)

x
,

and λ(t) = 0. Hence we obtain h-equation

(A.12) ht = −3

2

((h2x)xx
hx

)

x
,

and ρ-equation

(A.13) ρt = −3

2

((ρ2)xx
ρ

)

xx
.

From (A.11), (A.12) and (A.13), we can immediately see that
∫ 1
0 φdα,

∫ L

0 hdx and
∫ L

0 ρdx are

all constants of motion. The equation (20) in [15, p213] is exactly (A.12) for vicinal (monotone)

surfaces, which is consistent with our equations.
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Now we state the uniqueness and existence result for local strong solution to (1.4) with positive

initial value. The proof for Theorem A.1 is standard so we omit it here.

Theorem A.1. Assume u0 ∈ Hm
per

([0, 1]), u0 ≥ β, for some constant β > 0, m ∈ Z, m ≥ 5. Then

there exists time Tm > 0 depending on β, ‖u0‖Hm
per

([0,1]), such that

u ∈ L∞([0, Tm];Hm
per

([0, 1])) ∩ L2([0, Tm];Hm+2
per

([0, 1])),

ut ∈ L∞([0, Tm];Hm−4
per

([0, 1])).

is the unique strong solution of (1.4) with initial data u0, and u satisfies

(A.14) u ≥ β

2
, a.e. t ∈ [0, Tm], α ∈ [0, 1].

From (A.14) in Theorem A.1, we know

u(α, t) = ρ(φ(α, t), t) = hx(φ(α, t), t) =
1

φα
≥ β

2
> 0, a.e. t ∈ [0, Tm], α ∈ [0, 1].

Hence the formal derivation is mathematically rigorous and we have the equivalence for local strong

solution to (1.4), (A.12), (A.13) and (A.11). However, as far as we know, the rigorous equivalence

for global weak solution to (1.4), (A.12), (A.13) and (A.11) is still open. It is probably more difficult

than the uniqueness of weak solution.
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