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Abstract. Recent modelling of coffee bean roasting suggests that in the early stages of roasting, within each coffee bean,4
there are two emergent regions: a dried outer region and a saturated interior region. The two regions are separated by a5
transition layer (or, drying front). In this paper, we consider the asymptotic analysis of a recent multiphase model in order to6
gain a better understanding of its salient features. The model consists of a PDE system governing the thermal, moisture, and7
gas pressure profiles throughout the interior of the bean. By obtaining asymptotic expansions for these quantities in relevant8
limits of the physical parameters, we are able to determine the qualitative behaviour of the outer and interior regions, as well9
as the dynamics of the drying front. Although a number of simplifications and scalings are used, we take care not to discard10
aspects of the model which are fundamental to the roasting process. Indeed, we find that for all of the asymptotic limits11
considered, our approximate solutions faithfully reproduce the qualitative features evident from numerical simulations of the12
full model. From these asymptotic results, we have a better qualitative understanding of the drying front (which is hard to13
resolve precisely in numerical simulations), and hence, of the various mechanisms at play including heating, evaporation, and14
pressure changes. This qualitative understanding of solutions to the multiphase model is essential when creating more involved15
models that incorporate chemical reactions and solid mechanics effects.16
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1. Introduction. As one of the most valuable commodities in the world [1], the coffee industry relies19
on fundamental research to improve the techniques and processes relating to its products, especially with20
the roasting process of coffee beans. Most of the literature concerning the roasting of coffee beans present21
experimental data (see e.g. [2, 3, 4]) and use regression analysis and simple empirical models to interpret22
the results. Recently, the literature has included a more in-depth discussion concerning the mathematical23
modelling of the roasting of coffee beans (see e.g. [5, 6]). While other aspects of coffee processing have been24
examined from a mathematical perspective (e.g. [7]), mathematical models describing the roasting of coffee25
beans have, with the exception of a few studies, been largely unexplored.26

In [5], a system of partial differential equations (PDEs) that model the transport of moisture and heat27
throughout a coffee bean were derived and studied. This model uses the concept of “mass diffusivity” to28
describe the transport of moisture in the coffee bean that was originally derived in [8], which applies to29
lower-temperature evaporation. The ideas in [5] served as excellent motivation for the authors in [6] to30
derive a mathematical model from first principles using conservation equations. Multiphase modelling has31
been previously been applied in a variety of food heating problems [9, 10, 11, 12, 13, 14] (of particular32
relevance was the bread baking model of Zhang et al. [15]) and is a natural framework to model the coffee33
bean roasting process. In [6], the concepts of multiphase flow and water evaporation were included, and the34
resulting model (referred to as Model 2 in [6]) also incorporated the production of carbon dioxide gas, latent35
heat due to evaporation, and changes in porosity. Some simplifications were made to this full model (in36
particular, neglecting carbon dioxide production) in order to allow some preliminary understanding of the37
model behaviour. By examining numerical solutions of this model, a “drying front” that propagates through38
to the center of the bean was identified.39

Moisture transport in roasting coffee beans is a crucial aspect of the industrial process. Many chemical40
reactions that occur produce aromas and flavour compounds that determine the quality of the final product.41
Some of these chemical reactions are believed to be affected by the presence (or lack) of water [3]. Therefore,42
the spatial and temporal distribution of the moisture content is strongly linked to the quality of the final43
product.44

Mathematical models describing drying have been explored previously (see e.g. [16, 17, 18]), which relate45
the drying of wood, bricks, and other materials. However, due to the impermeable cellulose structure within46
a coffee bean, the water vapour created in the biological cells cannot be easily released into the roasting47
environment. In consequence, the ratio in timescales between evaporation dynamics and vapour transport is48
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very large, which motivates us to explore the leading-order dynamics of coffee bean roasting using asymptotic49
analysis. Hence, the model presented here should be appropriate to any drying problem where these physical50
phenomena are relevant.51

In [6], numerical results suggest that there are three main regions within a coffee bean as it is roasted.52
The first main region (which we refer to as Region i) is where the vapour pressure of water aligns with the53
steam table pressure. The second main region (which we refer to as Region ii) is when the moisture content54
of the bean is negligible. Between these two regions, we expect a thin transition layer, or “drying front”,55
in which moisture is rapidly evaporated. Issues surrounding numerical resolution make it computationally56
expensive to resolve the dynamics near the drying front. In light of these observations, we are motivated to57
extend the numerical results shown in [6] via asymptotic methods, in order to understand the qualitative58
features of the multiphase model: in particular, the interplay between the narrow transition layer and the59
two larger regions.60

In this paper, we begin our discussion of the asymptotics of the full multiphase model in Section 2.61
Motivated by the numerical results in [6], we determine an approximate form of the drying front. We then62
obtain the leading-order asymptotics in Regions i and ii, as well as within the drying front. Despite several63
simplifications, we are able to obtain reasonable agreement between the asymptotic approximations and the64
numerical solutions in [6], and are confident that the asymptotics capture the qualitative dynamics of the65
problem. In order to obtain additional explicit results, and motivated by the observation that the entire coffee66
bean is almost always very close to the externally imposed roasting temperature, we fix the temperature at67
this roasting temperature in Section 3. Under this assumption, the vapour pressure and moisture content are68
also constant in Region i, while the leading order dynamics within Region ii reduce to a Stefan problem [19].69
By considering the large Stefan number limit, we determine a leading-order expression for the drying front70
for various geometries. As we will only focus on symmetric geometries with one spatial variable (e.g. planar71
and spherical geometries), we can obtain explicit expressions for the drying front. We focus on the planar72
and spherical geometries, as it is reasonable to represent a coffee bean either as a slab of porous material73
“curled up” into the shape of a bean or as a sphere. Finally, in Sec. 4, we provide a summary and discussion74
of the results.75

2. Asymptotics of the Multiphase Model with Variable Temperature. The full multiphase76
model that we will analyse consists of three PDEs that describe conservation of mass in water and vapour,77
as well as conservation of energy. These equations describe the behaviour of three variables: the water78
saturation S (i.e. the volume fraction of water divided by the total volume of water and gas), the partial79
pressure of water vapour P , and the temperature T . The only transport mechanism considered for water is80
via evaporation, whereas in the gas phase, water vapour is transported either via evaporation or via Darcy81
flow. Finally, we assume that heat is transported via conduction in all three phases within the bean, but82
via convection at the surface of the bean. Mathematically speaking, this multiphase model can be stated for83
nondimensional variables in symmetric geometries (i.e. using a single spatial variable r) as84

∂S

∂t
= − 1

ε2
Iv,(1)85

∂

∂t

[
(1 + T )P (1− σS)

1 + T T

]
= −1

δ

∂S

∂t
+∇ ·

[
(1 + T )P∇P

1 + T T

]
,(2)86

∂T

∂t
+A1

∂

∂t
[S(1 + T T )] = A2

∂S

∂t
+A3∇ · [(1 +A4S)∇T ] ,(3)87

88

where the ∇ operator should be interpreted appropriately for the different geometries as derivatives of r.89
Additionally, there are symmetry conditions at the centre of the bean90

(4) ∇T · n|r=0 = 0, ∇P · n|r=0 = 0,91

the boundary conditions at the surface of the bean92

(5) ∇T · n|r=1 = ν

(
1− σS
1− σ

)(
1 +A4

1 +A4S

)
(1− T ) ,93

94

(6) P |r=1 =

{
PST (T ), T < Ta,

Pa, T ≥ Ta,
95
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and the initial conditions96

(7) S(r, 0) = 1, T (r, 0) = 0, P (r, 0) = PST (0).97

Here, the evaporation rate Iv and steam table pressure PST (T ) are given by98

(8) Iv = S(1− σS)(PST − P )

√
1 + T

1 + T T
and PST (T ) = exp

(
β(T − 1)

1 + T T

)
.99

A complete derivation of this model from the “simplified” multiphase model presented in [6] can be found100
in Appendix A. A key feature of this model is ε, which can be interpreted as a ratio in timescales between101
Darcy-driven vapour transport and evaporation. One can interpret δ as a density ratio of water vapour102
to water, and σ represents the initial water-to-void volume ratio. The boundary condition (6) is slightly103
modified from that in [6] and is described in Appendix A. Here, Pa is the ambient vapour pressure in the104
roasting chamber.105

We will also make the assumption that the step in the boundary condition (6) for P only occurs at one106
critical time, namely, t∗. We define t∗ as the first time when the evaporation temperature Ta is achieved at107
the surface of the bean, i.e. as the solution to the equation108

(9) T (1, t∗) = Ta := P−1
ST (Pa) .109

This critical time will be used not only to signal which part of the step in (6) is relevant, but also to signal110
where the asymptotic behaviour changes.111

We can divide the solution to the model into three regions in order to understand the approximate112
dynamics that occur in the coffee bean. Using parameter values shown in [6], a typical value of ε ≈ 1.54×10−4113
suggests that we should consider the limit of ε→ 0+. We note that δ = O(1) is the distinguished limit of this114
system and concentrate on considering this case, despite the analysis being also valid for small δ. We will115
consider δ being small when the equations in Regions i and ii require further simplifications to extract closed116
form solutions. In Section 2.2, we will determine how small δ is allowed to be before a different analysis is117
required. In the ε → 0+ limit, we can see from (1) that if time and space remain unscaled, Iv = 0 will be118
the leading-order equation, and from (8), this can occur in one of three ways. Firstly, Iv = 0 if the vapour119
pressure is in equilibrium with its steam table pressure, i.e. P = PST . As the initial data is consistent with120
this equilibrium, we will observe this first (which will be referred to as Region i). Secondly, Iv = 0 can121
be achieved by setting S = 0. This corresponds to where there is no more water to evaporate and will be122
denoted as Region ii. A final case where Iv = 0 is when S = σ−1; however, this corresponds to when the123
coffee bean is completely saturated with water, which we will discard as an extraneous case.124

We will also consider a narrow “drying front” that connects Regions i and ii. This drying front, which125
is centred about r = R(t), propagates from the surface of the bean towards the center of the bean and is126
where the moisture content S quickly goes from 1 to 0. In this drying front around R(t), we find that the127
temperature is spatially uniform, but will vary as time progresses. The temperature profile within the drying128
front is denoted as T ∗(t). A schematic diagram of these three regions is shown in Figure 1, including the129
time t∗ at which evaporation first occurs at the surface of the bean.130

2.1. Asymptotics of Region i. In Region i, we have, from (1), Iv = 0 to leading order in the limit of131
ε→ 0+, implying that that P = PST (T ). Consider the asymptotic series valid as ε→ 0+,132

(10) S = S0(r, t) + εS1(r, t) +O(ε2), T = T0(r, t) + εT1(r, t) +O(ε2), P = PST (r, t) + εP1(r, t) +O(ε2).133

Substituting (10) into (2) and (3) gives, to lowest order,134

∂S0

∂t

(
1

δ
− σPST (T0)Λ(T0)

)
+ (1− σS0)

∂

∂t
[PST (T0)Λ(T0)] = ∇ · [PST (T0)Λ(T0)∇PST (T0)] ,(11)135

∂S0

∂t
(A1(1 + T T0)−A2) +

∂T0

∂t
[1 +A1T S0] = A3∇ · [(1 +A4S0)∇T0] ,(12)136

137

where Λ(T0) = 1
1+T T0

. As we cannot solve this system analytically, we now suppose that δ � 1 and write138

an asymptotic series in powers of δ for S0 and T0 valid in the limit δ → 0+ as139

(13) S0 = S̃0(r, t) + δS̃1(r, t) +O(δ2), T0 = T̃0(r, t) + δT̃1(r, t) +O(δ2).140
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Fig. 1. A summary of where the different regions are as the bean dries. Region i is when the vapour pressure is in
equilibrium, Region ii is the dry region, and the dashed lines indicate the narrow transition layer between the regions, which
begins at time t∗, defined in (9).

Substituting (13) into (11) gives us, to leading order, that ∂S̃0

∂t = 0. Therefore, the moisture content of the141

bean stays at its initial value, i.e. S̃0 = 1. To lowest order, (12) then gives us142

(14)
∂T̃0

∂t
= K∇2T̃0, where K =

A3(1 +A4)

1 +A1T
.143

Equation (14) must be solves subject to the boundary condition (6), which can be stated as144

∇ · T̃0

∣∣∣
r=1

= ν
(

1− T̃0

∣∣
r=1

)
, t < t∗,(15)145

T̃0

∣∣
r=R(t)

= T ∗(t), t ≥ t∗.(16)146
147

Additionally, we will impose the symmetry condition ∇T̃0 · n = 0 at r = 0, as well as the initial data148
T̃0(r, 0) = 0. We are able to solve the PDE for t < t∗; in particular, we can determine a leading-order149
approximation for t∗. By solving (14) in spherical co-ordinates, we obtain that150

(17) T̃0(r, t) = 1−
∞∑
n=1

cn
r

sin(µnr) exp(−µ2
nKt).151

where the eigenvalues µn satisfy the transcendental equation µn cot(µn) = 1− ν and the constants cn have152
the form153

(18) cn =


2ν cosµn

µn(sin2 µn−ν)
, ν 6= 1,

8(−1)n

π2(1+2n)2 , ν = 1.
154

While the case ν = 1 is reasonably pathological, it is included in this analysis for completeness. Typical155
parameter values seen in [6] give ν ≈ 0.585, so we will only consider the case where ν 6= 1 from here on.156

To determine t∗ in spherical co-ordinates, denoted as t∗Sph, we impose, from (9), that T̃0(1, t∗Sph) = Ta.157
When ν 6= 1, this is equivalent to writing158

(19)
∞∑
n=1

(
cos2 µn

sin2 µn − ν

)
exp(−µ2

nKt∗Sph) =
(1− Ta) (1− ν)

2ν
.159

Using the parameter values in [6] (K ≈ 2.25, ν ≈ 0.585, Ta ≈ 0.519), (19) has the solution t∗Sph ≈ 0.173, or160
about 45.9 seconds in dimensional units.161

Similarly, we can determine t∗ in Cartesian co-ordinates, denoted as t∗Cart, by noting that the solution162
of (14) in Cartesian co-ordinates, with a Neumann boundary condition at r = 0, is163

(20) T̃0(r, t) = 1−
∞∑
n=1

dn cos(λnr) exp(−λ2
nKt),164
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where165

(21) λn tanλn = ν and dn =
2ν sinλn

λn(ν + sin2 λn)
.166

This allows us to determine t∗Cart via the transcendental equation167

(22)
∞∑
n=1

sin2 λn

ν + sin2 λn
exp(−λ2

nKt∗Cart) =
1− Ta

2
,168

which, using parameter values stated above, gives t∗Cart ≈ 0.494, or about 131 seconds in dimensional units.169
Hence, we have determined when the step occurs in the boundary condition (6). When the boundary170
condition changes, we find that the transition layer forms at the surface. We shall not consider the very171
small time while the transition layer is close to the surface, as it does not give any useful insight, but proceed172
to when it is in the interior of the bean.173

2.2. Asymptotics of the Transition Layer. In order to understand how S varies from 1 to 0, we174
must examine the transition layer in the limit ε → 0+. We first discuss the distinguished limit δ = O(1).175
We will find that both P and T are spatially uniform at lowest order with small variations of equal size (say176
O(εa), a > 0) and hence variations of the evaporation rate are also O(εa). The transition layer is narrow (say177
O(εb), b > 0) around a moving front at r = R(t) and we find, noting that S = O(1), that a balance between178
the resulting advective term in (1) and the evaporation rate requires −b = −2+a. Similarly, having a balance179
of vapour production due to evaporation with transport by Darcy flow in (2) requires that −b = −2b + a.180
Hence, in the distinguished limit δ = O(1), we take a = b = 1. We can also consider small δ; when δ = O(εα)181
and α > 0, a dominant balance requires that −b = a − 2 and −α − b = −2b + a. Therefore, the transition182
layer has width O(ε1+α/2) and the variations in P and T are O(ε1−α/2). Since we require these variations183
to be small, we must have α < 2. We conclude that the analysis in the distinguished limit δ = O(1) is valid184
until δ = O(ε2).185

For the case δ = O(1), the transition layer is around “drying front” R(t) and we introduce the scaling186
r = R(t) + εr̂. We also take P , T , and S as asymptotic series as ε→ 0+, with187

(23) S = S0(r̂, t) + εS1(r̂, t) +O(ε2), P = P0(r̂, t) + εP1(r̂, t) +O(ε2), T = T0(r̂, t) + εT1(r̂, t) +O(ε2).188

We will first show that T0(r̂, t) ≡ T ∗(t) and P0(r̂, t) ≡ P ∗(t) := PST (T ∗(t)). To do this, we note that, in189
order to match our transition layer into Region i, we must have that190

(24) P0

∣∣
r̂→−∞ → P ∗(t) and T0

∣∣
r̂→−∞ → T ∗(t).191

By substituting (23) into (2) and (3), we obtain, at O
(
ε−2
)
,192

(25)
∂

∂r̂

[
P0

∂P0

∂r̂

1 + T T0

]
= 0,

∂

∂r̂

[
∂T0

∂r̂
(1 +A4S0)

]
= 0.193

We note that these equations hold in any geometry at leading order, provided that we are sufficiently far194
away from any geometry-induced singularities that could produce additional derivative terms at O

(
ε−2
)
,195

e.g. if R(t) = O(ε) in spherical co-ordinates. Integrating (25) and imposing (24) implies that196

(26) T0(r̂, t) ≡ T ∗(t) and P0(r̂, t) ≡ P ∗(t).197

To determine the leading-order behaviour for S, we note that using (23) in (8) and expanding yields198

(27)
PST = P ∗

(
1 + ε

β(1 + T )

(1 + T T ∗)2
T1

)
+O

(
ε2
)
,

Iv = −ε
(
P1 −

β(1 + T )

(1 + T T ∗)2
T1P

∗
)
S0(1− σS0)

√
1 + T

1 + T T ∗
+O

(
ε2
)
.

199
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Using these along with (24), we obtain, at O(ε−1), that (1)-(3) give200

−R′(t)∂S0

∂r̂
=Ψ(P1, T1)S0(1− σS0),(28)201

σP ∗R′(t)
∂S0

∂r̂
=− 1

δ
Ψ(P1, T1)S0(1− σS0)

(
1 + T T ∗

1 + T

)
+ P ∗

∂2P1

∂r̂2
,(29)202

−A1(1 + T T ∗)R′(t)
∂S0

∂r̂
=A2Ψ(P1, T1)S0(1− σS0) +A3

∂

∂r̂

[
(1 +A4S0)

∂T1

∂r̂

]
,(30)203

204

where205

(31) Ψ(P1, T1) :=

√
1 + T

1 + T T ∗

(
P1 −

β(1 + T )

(1 + T T ∗)2
T1P

∗
)
.206

Finally, the matching conditions with Regions i and ii are207

S0 → 1, P1 → 0, and T1 → 0 as r̂ → −∞,(32)208

S0 → 0 as r̂ → +∞,(33)209

∂P1

∂r̂

∣∣∣
r̂→+∞

=
∂P

∂r

∣∣∣
r→R(t)

,(34)210

∂T1

∂r̂

∣∣∣
r̂→+∞

=
∂T

∂r

∣∣∣
r→R(t)

.(35)211
212

In interpreting (32)-(35), we note that the limits where r → R(t) are matching conditions for Regions i and213
ii, whereas the limits where r̂ → ±∞ refer to matching conditions for the transition layer.214

By eliminating the terms with Ψ(P1, T1) in (28) and (29), we obtain215

(36) P ∗
∂2P1

∂r̂2
=

[
σP ∗ − 1

δ

(
1 + T T ∗

1 + T

)]
R′(t)

∂S0

∂r̂
.216

Integrating this and imposing the matching conditions (32) yields217

(37)
∂P1

∂r̂
=

[
1

δ

(
1 + T T ∗

(1 + T )P ∗

)
− σ

]
R′(t)(1− S0).218

Similarly, eliminating terms with Ψ(P1, T1) in (28) and (30) gives us219

(38) R′(t) [A2 −A1(1 + T T ∗)]
∂S0

∂r̂
= A3

∂

∂r̂

[
(1 +A4S0)

∂T1

∂r̂

]
.220

Integrating and imposing the matching conditions (32) yields, after some rearranging,221

(39)
∂T1

∂r̂
= − 1

A3
R′(t) [A2 −A1(1 + T T ∗)]

(
1− S0

1 +A4S0

)
.222

Finally, by rearranging (28) to isolate S0, we obtain223

(40)
∂S0

∂r̂

S0(1− σS0)
= −Ψ(P1, T1)

R′(t)
.224

In order to write a single differential equation for S0, we differentiate (40) with respect to r̂, as well as225
substitute in (37) and (39), to give us226

(41)
∂2S0

∂r̂2
−
(
∂S0

∂r̂

)2
1− 2σS0

S0(1− σS0)
+ S0(1− σS0)(1− S0)Υ(S0) = 0,227
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where we define228

(42) Υ(S0) :=

√
1 + T

1 + T T ∗

[
1

δ

(
1 + T T ∗

(1 + T )P ∗

)
− σ −

(
β(1 + T )P ∗

A3(1 + T T ∗)2

)(
A2 −A1(1 + T T ∗)

1 +A4S0

)]
.229

We note that, aside from the denominator 1 +A4S0, the components of the function Υ(S0) are independent230
of r̂. By identifying equation (41) as a Bernoulli-like ODE, we can use integrating factors and the matching231
conditions (33) to obtain the first-order non-linear autonomous differential equation for S0(r̂):232

(43)
∂S0

∂r̂
= −S0(1− σS0)

√
2

ˆ 1

S0

(1− χ)Υ(χ)

χ(1− σχ)
dχ .233

It immediately follows that S0 is monotone decreasing when S0 lies between 0 and 1. Hence, we conclude234
that P and T do not drastically change within the transition layer and the O(ε) perturbations P1 and T1235
can be related to S0, which is the solution of a first-order differential equation in r̂.236

2.3. Asymptotics of Region ii. While the leading-order dynamics of S, T, and P have been deter-237
mined in the transition layer, we still do not have an explicit form for R(t) and T ∗(t). To find these, we now238
examine Region ii, where negligible water is present. From (1), we have that S = 0 at O(ε−2). However,239
this in turn causes a cascading effect in the asymptotic expansion of (1), and we conclude that S = o(εn) for240
all natural numbers n. Motivated by this fact, we anticipate that S will be exponentially small in Region ii.241
Therefore, we can solve (1) explicitly, coupled with the condition that S = 1 at t = t∗:242

(44) S =

{
(1− σ) exp

[
1

ε2

ˆ t

t∗
(PST (T (r, s))− P (r, s))

√
1 + T

1 + T T (r, s)
ds

]
+ σ

}−1

.243

If we then neglect exponentially small terms, (2) and (3) become244

∂

∂t

[
P

1 + T T

]
= ∇ ·

[
P∇P

1 + T T

]
,(45)245

∂T

∂t
= A3∇2T.(46)246

247

For our boundary conditions in Region ii, we have the matching conditions (33)-(35), implying248

T
∣∣
r→R(t)

→ T ∗(t), P
∣∣
r→R(t)

→ P ∗(t),(47)249

∂P

∂r

∣∣∣
r→R(t)

=
∂P1

∂r̂

∣∣∣
r̂→+∞

→
[

1

δ

(
1 + T T ∗

(1 + T )P ∗)

)
− σ

]
R′(t),(48)250

∂T

∂r

∣∣∣
r→R(t)

=
∂T1

∂r̂

∣∣∣
r̂→+∞

→ − 1

A3
[A2 −A1(1 + T T ∗)]R′(t).(49)251

252

We must also give an initial condition for R(t) and T ∗(t). As the drying front starts from the surface253
of the bean and the temperature is at the switching point of (6), the initial conditions are R(t∗) = 1,254
T ∗(t∗) = Ta. Finally, our solutions must also continue to agree with the external boundary conditions of the255
system, namely,256

(50)
∂T

∂r

∣∣∣
r=1

= ν

(
1 +A4

1− σ

)[
1− T

∣∣
r=1

]
and P

∣∣
r=1

= Pa.257

Therefore, our leading-order problem is a coupled system of two Stefan-like problems in a mass transfer258
setting, rather than the classical heat transfer setting [19]. As this coupled system of PDEs (45)-(50) is259
not explicitly solvable, we are motivated to use the large Stefan number approximation by considering the260
limiting case when δ � 1. The large Stefan number approximation has been studied previously in the context261
of heat transfer on spheres (see e.g. [21]). For Region ii, the large Stefan limit δ � 1 corresponds to the262
drying front moving very slowly relative to the speed of vapour diffusion.263
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By rescaling time with τ = δ(t− t∗), we can examine the asymptotic series264

(51) T = T0(r, τ) + δT1(r, τ) +O(δ2), P = P0(r, τ) + δP1(r, τ) +O(δ2)265

as δ → 0+. In consequence, our leading-order Region ii problem (45)-(50) becomes266

∇2T0 = 0, T0

∣∣
r→R(τ)

→ T ∗(τ),
∂T0

∂r

∣∣∣
r→R(τ)

→ 0,(52)267

∇ ·
(
P0∇P0

1 + T T0

)
= 0, P0

∣∣
r→R(τ)

→ P ∗(τ),
∂P0

∂r

∣∣∣
r→R(τ)

→
(

1 + T T ∗

(1 + T )P ∗

)
R′(τ),(53)268

∂T0

∂r

∣∣∣
r=1

= ν

(
1 +A4

1− σ

)[
1− T0

∣∣
r=1

]
, P0

∣∣
r=1

= Pa,(54)269

R(0) = 1, T ∗(0) = Ta.(55)270271

Solving (52) implies that T0 ≡ T ∗(τ) and applying (54) forces T ∗(τ) ≡ 1. In consequence, this reduces our272
coupled Stefan problem to a Stefan problem for pressure alone, i.e.273

∇ · (P0∇P0) = 0, P0

∣∣
r→R(τ)

→ 1, P0

∣∣
r=1

= Pa,(56)274

∂P0

∂r

∣∣∣
r→R(τ)

→ R′(τ),(57)275

R(0) = 1.(58)276277

We note that this solution cannot satisfy the initial condition (55) for T ∗(t). For this to be resolved, we278
would have to consider the full problem in t, (45)-(50), which is not readily solvable.279

2.3.1. Determining R(t) in Cartesian Co-ordinates with T ∗ ≡ 1. In the limiting case where280
δ � 1, i.e. T ∗ ≡ 1, we can solve (56), provided that we neglect any short-time discrepancies between the281
initial condition T ∗(0) = Ta and T ∗ ≡ 1. Solving this PDE system (56) gives us282

(59) P0(r, τ) =

√
1− (1− P 2

a )

(
r −R(τ)

1−R(τ)

)
283

and our Stefan condition (57) gives us the ODE284

(60)
dR

dτ
= − 1− P 2

a

2(1−R)
.285

Based on the initial condition from (58), our drying front in Cartesian co-ordinates based on leading-order286
asymptotics, RCart(τ), is287

(61) RCart(τ) = 1−
√

(1− P 2
a )τ .288

By returning to the original timescale of Region ii, we determine that P0 can be fully expressed in Cartesian289
co-ordinates as290

(62) PCart
0 (r, t) =

√√√√P 2
a + (1− r)

√
1− P 2

a

δ (t− t∗Cart)
.291

Finally, we determine from (61) that the time to completely dry a bean based on leading-order asymptotics292
is293

(63) tdry
Cart = t∗Cart +

1

δ(1− P 2
a )
.294

Using parameter values shown in [6], as well as typical values Pa = 0.0879, δ = 0.1011, σ = 0.0842, and295

t∗Cart ≈ 0.494, we compute that tdry
Cart ≈ 10.46, or about 2768 seconds in dimensional units.296

8

This manuscript is for review purposes only.



2.3.2. Determining R(t) in Spherical Co-ordinates with T ∗ ≡ 1. In the limiting case where297
δ � 1, i.e. T ∗ ≡ 1, we have that in spherical co-ordinates, by solving (56),298

(64) P0(r, τ) =

√
1−

(
1− P 2

a

r

)(
r −R(τ)

1−R(τ)

)
,299

and our Stefan condition (57) gives us the ODE300

(65)
dR

dτ
= − 1− P 2

a

2R(1−R)
.301

We use our initial condition (58) to give us, in implicit form, that the inverse function of the drying front in302
spherical co-ordinates, τSph(R), satisfies the equation303

(66) τSph(R) =
1−R2(3− 2R)

3(1− P 2
a )

.304

We can invert (66) and solve RSph(τ) in the correct domain and range:305

(67) RSph(τ) =
1

2

(
1−

exp
(

2πi
3

)
Ξ (3(1− P 2

a )τ)
− exp

(
−2πi

3

)
Ξ
(
3(1− P 2

a )τ
))

,306

where307

(68) Ξ(χ) =
3

√
2
√
χ(χ− 1)− 2χ+ 1308

and Ξ(χ) uses the principal branch of the cube root. Now that we have determined R(τ) in spherical co-309
ordinates, we can return to our original timescale of the problem and obtain that our leading-order asymptotic310
approximation for P is311

(69) P̃ Sph
0 (r, t) =

√√√√√√1−
(

1− P 2
a

r

)1− 2(1− r)

1 +
exp( 2πi

3 )
Ξ(3δ(1−P 2

a )(t−t∗Sph))
+ exp

(−2πi
3

)
Ξ
(

3δ(1− P 2
a )(t− t∗Sph)

)
.312

To determine the time where the bean becomes fully dry, we substitute R = 0 into (66) to obtain, in our313
original timescale, that314

(70) tdry
Sph = t∗Sph +

1

3δ(1− P 2
a )
.315

Therefore, to leading order, the time for a spherical coffee bean to dry out completely is tdry
Sph ≈ 3.495, or316

about 925 seconds in dimensional units. Figure 2(a) shows a comparison between the Cartesian and spherical317
asymptotic approximations of R(t).318

2.4. Comparison of Asymptotic Approximations with Numerical Results. We now compare319
these asymptotic approximations with the numerical solution of the PDE system (1)-(3), considering the320
drying front R(t) in particular. We solve the the PDE system (1)-(3) in MATLAB using the method of lines321
and a second-order central finite difference scheme in space. We use a stiff adaptive ODE solver in time,322
namely the MATLAB function ode15s, to achieve convergence. As we can see in Figure 2(b), the general323
shape of the dimensional drying front R(t) agrees reasonably well with the dimensional drying front seen in324
the numerical solution, especially as R(t) → 0. However, we also see that the drying time in the numerical325

solution is larger than the predicted tdry
Sph from asymptotic results. This is to be expected, as the asymptotic326

results used were for when the Stefan number 1
δ → +∞. Therefore, for a smaller (but still large) Stefan327

number, we expect the drying time to be longer. Additionally, these approximations for the drying front328
R(t) assume T ∗ ≡ 1. Because T ∗(t) is less than unity in the numerical simulations, this will cause the drying329
front to be slower than the asymptotic approximation, which can explain why the numerical solution takes330
longer to dry out the entire bean.331
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Fig. 2. Comparison of predictions of the drying front position R(t) for the variable temperature regime. (a) Predictions

RCart(t) from (61) and RSph(t) from (67). (b) Spherical predictions RSph(t) from (67), shown in dash-dot red, and numerical
solutions of (1)-(8), shown in black. All predictions in (b) are shown in dimensional units.

3. Asymptotics of the Multiphase Model with Constant Temperature. In Section 2, we have332
given an analysis of the leading-order equations governing Region i, Region ii, and the transition layer.333
However, the numerical solutions indicate the thermal timescale of the multiphase model is much smaller334
than the vapour diffusive timescale. In consequence, it seems reasonable to examine a reduced model where335
the coffee bean is at the externally imposed roasting temperature throughout. Additionally, many of the336
leading-order equations can be solved explicitly if the temperature is spatially uniform and this helps in337
interpreting the behaviour of the moisture content and vapour pressure. Therefore, we are motivated from338
a physical and an asymptotics point of view to consider a reduced model with T ≡ 1.339

In this section, we assume that T ≡ 1 throughout the bean, which this means that the transition region340
is created immediately (i.e. t∗ = 0) and the system of PDEs (1)-(2) become341

(71)
∂S

∂t
= − 1

ε2
(1− P )S(1− σS),342

343

(72)
∂

∂t
[(1− σS)P ] =

1

δε2
(1− P )S(1− σS) +∇ · (P∇P ) ,344

with boundary conditions345

(73) P
∣∣
r=1

= Pa,
∂P

∂r

∣∣∣∣
r=0

= 0,346

and initial conditions347

(74) S(r, 0) = 1, P (r, 0) = 1.348

Formally, we will consider the asymptotics of this system in the limit as ε → 0+. We will take δ = O(1)349
except where significant simplification is found by taking δ � 1, and all other parameters are assumed to be350
O(1).351

3.1. Asymptotics in Region i. In Region i, we have that P = 1 to leading order. In fact, we note352
that P, S ≡ 1 is the exact solution in Region i, as these constant solutions satisfy both PDEs, the initial353
conditions, and the symmetry condition in P at r = 0. It is important to note that, since we assume that354
Region i is never in contact with the surface of the bean, the boundary condition at r = 1 does not apply.355

3.2. Asymptotics of the Transition Layer. As in Section 2, we introduce the scaling r = R(t) + εr̂356
to examine the behaviour as S transitions from 1 to 0. Again, we can expand P and S as asymptotic series357
as ε→ 0:358

(75) S = S0(r̂, t) + εS1(r̂, t) +O(ε2), P = 1 + εP1(r̂, t) +O(ε2).359
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Fig. 3. Numerical solution of the ODE (77). The left panel shows the solution S0(r̂) and the right panel shows its spatial
derivative ∂S0

∂r̂
. For uniqueness, we pick a constant of integration so that S0(r̂) has an inflection point at r = 0.

Noting that temperature is constant (implying that T1 ≡ 0 and T ∗ ≡ 1), the equation (42) for Υ(S0) reduces360
to Υ(S0) ≡ 1

δ − σ. From (37), this gives us361

(76)
∂P1

∂r̂
=

(
1

δ
− σ

)
R′(t)(1− S0),362

and from (43), gives us the first-order non-linear autonomous ODE:363

(77)
∂S0

∂r̂
= −S0(1− σS0)

√
2

(
1

δ
− σ

)[
1− σ
σ

log

(
1− σ

1− σS0

)
+ log

(
1

S0

)]
.364

with matching conditions S0 → 0 as r̂ → +∞ and S0 → 1 as r̂ → −∞. It is important to note a few key365
points about equation (77). Firstly, it is not explicitly solvable. Secondly, due to translational invariance, we366
require an additional constraint for uniqueness. This can be achieved, for example, by assuming the unique367
inflection point of S0 occurs at r = 0. With this additional constraint, we numerically solve (77) and plot368
the results in Figure 3.369

3.3. Asymptotics in Region ii. In Region ii, we have, from (71), that S = 0 at O(ε−2), which again370
causes a cascading effect in the asymptotic expansion of (71). Similar to what was done in Section 2, we371
find that S is exponentially small in Region ii and is given by372

(78) S =

{
(1− σ) exp

[
1

ε2

(
t−
ˆ t

0

P (r, s)ds

)]
+ σ

}−1

.373

Additionally, by neglecting exponentially small S, (72) becomes374

(79)
∂P

∂t
= ∇ · (P∇P ) .375

From (76), our boundary and initial conditions become376

(80) P
∣∣∣
r=1

= Pa, P
∣∣∣
r→R(t)

→ 1,
∂P

∂r

∣∣∣
r→R(t)

→
(

1

δ
− σ

)
R′(t), R(0) = 1.377

This problem has a similarity solution in Cartesian co-ordinates, as will be shown in Section 3.3.1, although378
it cannot be explicitly solved. However, we can also examine the physically relevant large Stefan-number379
limit by letting δ → 0+, as was done in Section 2.3. By rescaling time with τ = δt and considering the380
asymptotic series P ∼ P0(r, τ) + δP1(r, τ) +O(δ2), (79)-(80) become381

(81) ∇ · (P0∇P0) = 0, P0

∣∣∣
r=1

= Pa, P0

∣∣∣
r→R(τ)

→ 1,
∂P0

∂r

∣∣∣
r→R(τ)

→ R′(t), R(0) = 1.382
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Solving (81) like in Section 2, we determine that in Cartesian co-ordinates,383

(82) P0(r, t) =

√
P 2
a + (1− r)

√
1− P 2

a

δt
, R(t) = 1−

√
(1− P 2

a )δt,384

and in spherical co-ordinates,385

(83)

P̃0(r, t) =

√√√√√√1−
(

1− P 2
a

r

)1− 2(1− r)

1 +
exp( 2πi

3 )
Ξ(3(1−P 2

a )δt) +
Ξ(3(1−P 2

a )δt)

exp( 2πi
3 )

,
R(t) =

1

2

(
1−

exp
(

2πi
3

)
Ξ (3(1− P 2

a )δt)
−

Ξ
(
3(1− P 2

a )δt
)

exp
(

2πi
3

) )
,

386

where Ξ(χ) = 3

√
2
√
χ(χ− 1)− 2χ+ 1.387

3.3.1. Determining R(t) in Cartesian Co-ordinates using Similarity Solutions. One might388
consider using a similarity solution to solve the system (79)-(80) in Cartesian coordinates without the as-389
sumption that δ � 1. To do this, we let P = h(η), where η = 1−r√

t
. Substituting this transformation into390

(79) gives391

(84) (h(η)h′(η))
′
+
η

2
h′(η) = 0,392

and (80) becomes393

(85) h(0) = Pa, h(λ) = 1, h′(λ) =
λ (1− δσ)

2δ
.394

Here, η = λ corresponds to the moving boundary R(t). Thus, our drying front based on the Cartesian395
similarity solution, is given by396

(86) RSS(t) = 1− λ
√
t.397

We note that our choice of η allows us to automatically satisfy the initial condition R(0) = 1 and we can398
determine from this equation when the bean will be completely dry, i.e. when RSS(t) = 0. This gives us399

tdry
SS = 1

λ2 . As (84) is not explicitly solvable, it is necessary to numerically solve this boundary value problem400
in order to determine λ. Using the shooting method, with the typical values Pa = 0.0879, δ = 0.1011, and401
σ = 0.0842, we find that λ ≈ 0.3152, implying that tdry

SS ≈ 10.06, or about 2664 seconds in dimensional units.402

With less than a 1% relative error to tdry
SS , we conclude that t

dry
Cart ≈ 9.964, as described in (63), is a very good403

approximation to the drying time computed from the similarity solution. Figure 4(a) shows a comparison404
of the drying front RSS(t) with the Cartesian drying front determined previously via asymptotic methods,405
namely, RCart(t) given in (61).406

3.4. Comparison of Asymptotic Approximations with Numerical Results. Comparing the407
various asymptotic approximations with the numerical solutions of (71)-(74), we can see in Figure 4(b) that408
the general shape of the dimensional drying front R(t) agrees well with the dimensional drying front seen409
in the numerical solution. Because we have assumed that T ∗ ≡ 1, we no longer have differences induced410
by varying the temperature that were seen Section 2. Therefore, it is expected that the drying front R(t)411
determined via asymptotics fits closer to the numerics. We see, like in Section 2, that the drying time412
predicted by the numerical solution is larger than tdry

Sph determined from asymptotic results in (70). However,413
this is to be expected; a large (but finite) Stefan number would cause the drying time to be longer than the414
time produced by the limit δ → 0+. This is confirmed by comparing the drying front in the full numerical415
solution with the drying front obtained by solving (79)-(80) numerically. Indeed, by allowing ε → 0+, we416
only observe significant discrepancies between these two drying fronts near the surface and the centre of the417
bean. This is to be expected, as the transition layer will be on a semi-infinite region in both of these cases418
and will have different behaviour due to the boundary conditions.419
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Fig. 4. Comparison of predictions of the drying front position R(t) for the constant temperature regime. (a) Cartesian

predictions RSS(t) from (86) and RCart(t) from (82). (b) Spherical predictions RSph(t) from (83), shown in dash-dot red, and
numerical solutions of (71)-(74), shown in black, and of (79)-(80), shown in dashed blue. All predictions in (b) are shown in
dimensional units.

4. Discussion. In this paper, we have extended results of the “simplified” form of the multiphase model420
presented in [6] via asymptotic methods, in order to better understand the qualitative features of the coffee421
bean roasting process. Motivated by previous numerical results, we considered the limit ε→ 0+, representing422
the situation where the rate of vapour transport by Darcy flow is much smaller than the evaporation rate.423
The asymptotic analysis showed that the solution could be divided into two main regions and a transition424
layer. The entire bean was in the first region until a time t∗, when a thin transition layer appears at the425
surface of the bean. This transition layer then propagated into the bean creating a second main region426
between it and the surface of the bean. This asymptotic limit is different from what has been studied427
previous in drying models, since the rigid cellulose structure of the solid coffee bean creates a large build-up428
of vapour pressure that drives the vapour to the external environment. The analysis shows that a narrow429
drying front, represented by the transition layer, is crucial to the drying process in this limit.430

In the first region, the vapour pressure is in equilibrium with the steam table pressure and the moisture431
content of the bean remains at its initial value, with heat flow governed by the heat equation. In the432
thin transition region, the moisture content changes rapidly from its initial value to a small value. Here,433
evaporation dominates and the temperature and vapour pressure remain spatially uniform. Finally, in the434
second main region, there is almost no water and therefore no evaporation. The problem in this second region435
consists of diffusion equations for the heat and vapour flow with coupling through the matching conditions,436
similar to a Stefan problem, at the transition layer.437

Numerical simulations suggest that the externally applied roasting temperature is attained globally fairly438
quickly; hence, the case where temperature is fixed at the roasting temperature was considered. This also439
allowed the coupled Stefan problem to be reduced to a single Stefan problem, which could then be solved440
via similarity solutions or large Stefan number asymptotics. The leading order expressions are shown to441
agree well with the dynamics of the drying front found from numerical simulations, under both spherical442
and planar geometries.443

Despite several simplifications made in obtaining asymptotic solutions in each of the regions of the coffee444
bean, a reasonable agreement between the asymptotic approximations and the numerical solution of the445
multiphase model as described in [6] has been obtained. This suggests that the asymptotics found here446
accurately capture the qualitative behaviour of the coffee bean roasting process, and provide an acceptable447
compromise between a simpler heat transfer model (such as those presented in [5]) and more complicated448
multiphase models. The asymptotic results presented in this paper can be extended in order to determine the449
asymptotic dynamics of related heat and mass transfer models. The complete multiphase model described450
in [6] incorporates variable porosity, and by using similar methods to those shown here, one might determine451
the leading-order behaviour of the multiphase model with variable porosity. Additionally, the analysis on452
more complicated geometries, such as non-radially symmetric perturbations of a slab or sphere, may lead to453
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destabilising the “drying front” observed in simpler geometries. Similarly, one might use the general asymp-454
totic results for the multiphase model discussed here to guide the development of relevant solid mechanics455
models, which take into account the structural properties of the coffee bean and allow for variations in coffee456
quality due to structural deformations which may occur during heating and roasting. Asymptotic results457
may also guide in the development of more complicated models involving many more chemical reactions, as458
well as in understanding taste and aromatic properties of the final product.459

Appendix A. Derivation of the Multiphase Model. Here, we will derive the multiphase model460
(71)-(8) discussed in this paper, starting with equations (42)-(49) in [6]. Using the rescalings461

(87) S = σŜ, T = T̂ , pv = pST (1)P̂ , t =
φ

D3pST (1)
t̂ ,462

and defining the parameters463

ε =

√
D3

√
1 + T

φ
, δ =

pST (1)α2

σ(1 + T )
, β =

B2T

1 + T
,(88)464

A1 =
σφ

α1C1(1− φ)T
, A2 = γA1, A3 =

φ(ζ1(1− φ) + ζ3φ)

D3pST (1)α1C1(1− φ)
, A4 =

φσ(ζ2 − ζ3)

ζ1(1− φ) + ζ3φ
,(89)465

466

the model of [6] becomes (dropping hats)467

∂S

∂t
= − 1

ε2
Iv,(90)468

∂

∂t

[
(1 + T )P (1− σS)

1 + T T

]
= −1

δ

∂S

∂t
+∇ ·

[
(1 + T )P∇P

1 + T T

]
,(91)469

∂T

∂t
+A1

∂

∂t
[S(1 + T T )] = A2

∂S

∂t
+A3∇ · [(1 +A4S)∇T ] .(92)470

471

Here, the rescaled evaporation rate Iv and the rescaled steam table pressure PST (T ) are given by472

(93) Iv = S(1− σS)(PST − P )

√
1 + T

1 + T T
and PST (T ) = exp

(
β(T − 1)

1 + T T

)
.473

We note that in [6], the initial saturation value was defined as S0. This notation means something different474
in the analysis of this paper, so we have therefore changed the notation of the initial saturation to be denoted475
as σ. The boundary conditions we impose on the PDE system (1)-(3) are the symmetry conditions at the476
centre of the bean477

(94) ∇T · n = 0, ∇P · n = 0 at r = 0,478

as well as the heat transfer condition479

(95) ∇T · n = ν

(
1− σS
1− σ

)(
1 +A4

1 +A4S

)
(1− T ) at r = 1,480

where481

(96) ν =
Nuvζ3φ(1− σ)

(ζ1(1− φ) + ζ3φ)(1 +A4)
.482

Previously, the model introduced in [6] imposes a Dirichlet condition in P at the surface of the bean.483
We will instead impose a different boundary condition for P in order to prevent condensation from occurring484
at the surface of the bean. This can be achieved by imposing that P equals the steam table pressure for485
temperatures below the evaporating temperature, i.e.486

(97) P
∣∣
r=1

=

{
PST (T ), T < Ta,

Pa, T ≥ Ta.
487
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Here, Pa := 1+T
pST (1) and Ta := P−1

ST (Pa). We will also make the assumption that the switching between the488

boundary condition for P only occurs at one critical time, namely, t∗. We define t∗ as the time when the489
surface temperature equals the evaporation temperature Ta, i.e. as the solution to the equation T (1, t∗) = Ta.490
Finally, we impose the initial conditions corresponding to uniform initial moisture content, room temperature,491
and equilibrium steam table pressure, i.e.492

(98) S(r, 0) = 1, T (r, 0) = 0, P (r, 0) = PST (0).493
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