
A recursive skeletonization factorization based on

strong admissibility

Victor Minden˚ Kenneth L. Ho: Anil Damle; Lexing Ying§

January 10, 2017

Abstract

We introduce the strong recursive skeletonization factorization (RS-S), a new approximate matrix
factorization based on recursive skeletonization for solving discretizations of linear integral equations
associated with elliptic partial differential equations in two and three dimensions (and other matrices with
similar hierarchical rank structure). Unlike previous skeletonization-based factorizations, RS-S uses a
simple modification of skeletonization, strong skeletonization, which compresses only far-field interactions.
This leads to an approximate factorization in the form of a product of many block unit-triangular matrices
that may be used as a preconditioner or moderate-accuracy direct solver, with dramatically reduced rank
growth. We further combine the strong skeletonization procedure with alternating near-field compression
to obtain the hybrid recursive skeletonization factorization (RS-WS), a modification of RS-S that exhibits
reduced storage cost in many settings. Under suitable rank assumptions both RS-S and RS-WS exhibit
linear computational complexity, which we demonstrate with a number of numerical examples.

1 Introduction

Given a kernel function Kpzq, we consider the integral equation

apxqupxq ` bpxq

ż

Ω

Kpx´ yqcpyqupyq dy “ fpxq, x P Ω Ă Rd (1)

in dimension d “ 2 or 3. Here, apxq, bpxq, and cpyq are given functions that typically represent material
parameters, fpxq is some known right-hand side, and upxq is the unknown function to be determined.

We focus in this paper on the case where Kpzq is associated with some underlying elliptic partial dif-
ferential equation (i.e., it is the Green’s function or its derivative). For optimal complexity of our methods
the kernel Kpzq should not exhibit significant oscillation away from the origin, though this is not strictly
necessary to apply the basic machinery. In this setting, (1) remains rather general and includes problems
such as the Laplace equation, the Lippmann-Schwinger equation, and the Helmholtz equation in the low- to
moderate-frequency regime. Further, while we concentrate on the case where upxq is scalar-valued, extension
to the vector-valued case (e.g., the Stokes or elasticity equations) is straightforward.

˚Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305 (vminden@stanford.
edu). Funding: Stanford Graduate Fellowship in Science & Engineering and U.S. Department of Energy Computational
Science Graduate Fellowship (grant number DE-FG02-97ER25308).

:Department of Mathematics, Stanford University, Stanford, CA 94305. Current address: TSMC Technology Inc., 2851
Junction Ave., San Jose, CA 95134. (klho@alumni.caltech.edu). Funding: National Science Foundation Mathematical
Sciences Postdoctoral Research Fellowship (grant number DMS-1203554).

;Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720 (damle@berkeley.edu). Funding:
National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship (grant number DMS-1606277).

§Department of Mathematics and Institute for Computational and Mathematical Engineering, Stanford University, Stan-
ford, CA 94305 (lexing@math.stanford.edu). Funding: National Science Foundation (grant number DMS-1521830) and
U.S. Department of Energy Advanced Scientific Computing Research program (grant number DE-FC02-13ER26134 and DE-
SC0009409).

1

ar
X

iv
:1

60
9.

08
13

0v
2

 [
m

at
h.

N
A

]
 6

 J
an

 2
01

7

vminden@stanford.edu
vminden@stanford.edu
klho@alumni.caltech.edu
damle@berkeley.edu
lexing@math.stanford.edu

D1 ě D
D

D D

D

Figure 1: Given two boxes in R2 each with sidelength D and with corresponding DOF sets B1 and B2,
in the strong admissibility setting the associated off-diagonal blocks KB1B2

and KB2B1
are assumed to be

numerically low rank as long as the boxes are separated by a distance of at least D. In contrast, in the weak
admissibility setting the boxes need only be non-overlapping.

Discretization of (1) using typical approaches such as collocation, the Nyström method, or the Galerkin
method leads to a linear system with N degrees of freedom (DOFs)

Ku “ f, (2)

where the entries of the matrix K P CNˆN are dictated by the kernel Kpzq and the discretization scheme.
For example, in the case where our domain is the unit square Ω “ r0, 1s2 a simple Nyström approximation
to the integral using a regular grid with

?
N points in each direction yields the discrete system

rapxiq ` wisui `
bpxiq

N

ÿ

i‰j

Kpxi ´ xjqcpxjquj “ fpxiq, i “ 1, . . . , N, (3)

where the discrete solution tuiu « tupxiqu approximates the continuous solution on the grid and each term
wiui corresponds to some discretization of diagonal entries of K. Because Kpzq is frequently singular at the
origin, this discretization may be more involved than that of the off-diagonal entries. While more complicated
and higher-order discretization schemes exist, (3) illustrates the key feature that off-diagonal entries of K are
given essentially by kernel interactions between distinct points in space. In this paper we develop a method
exploiting this fact and its consequences to efficiently solve (2).

1.1 Background and previous work

Because K in (2) is dense and generally large in practice, traditional direct factorizations of K such as the LU
factorization are typically too expensive due to the associated OpN3q time complexity and OpN2q storage
cost.

Given the availability of fast schemes for applying K such as fast multipole methods (FMMs) [11,14,15,33],
iterative methods such as the conjugate gradient method (CG) [20] form a tempting alternative to direct
methods. For first-kind integral equations or problems where apxq, bpxq, or cpxq exhibit high contrast,
however, convergence is typically slow leading to a lack of robustness. In other words, while each iteration is
relatively fast, the number of iterations necessary to attain reasonable accuracies can be unreasonably large.

The above considerations have led to the development of a plethora of alternative methods for solving
(2) approximately by exploiting properties of the kernel Kpzq and the underlying physical structure of the
problem. In particular, such methods take advantage of the fact that K exhibits hierarchical block low-rank
structure.

A large body of work pioneered by Hackbusch and collaborators on the algebra of H-matrices (and H2-
matrices) provides an important and principled theoretical framework for obtaining linear or quasilinear
complexity when working with matrices exhibiting such structure [17–19]. Inside the asymptotic scaling of
this approach, however, lurk large constant factors that hamper practical performance, particularly in the
3D case.

The H-matrix literature classifies matrices with hierarchical block low-rank structure into two categories
based on which off-diagonal blocks of the matrix are compressed. Given a quadtree or octree data structure

2

partitioning the domain into small boxes, let B1 and B2 be sets of DOFs corresponding to distinct boxes
at the same level of the tree each with sidelength D. For strongly-admissible hierarchical matrices, the off-
diagonal block KB1B2

is compressed only if B1 and B2 are well-separated as in the FMM — that is, if B1 and
B2 are separated by a distance of at least D as in fig. 1. In contrast, weakly-admissible hierarchical matrices
compress not only well-separated interactions but also interactions corresponding to DOFs in adjacent boxes.
The inclusion of nearby interactions under weak admissibility typically increases the required approximation
rank, but it also affords a much simpler geometric and algorithmic structure.

A number of more recent methods have been developed for hierarchically rank-structured matrices with
the aim of more efficient practical performance based on weakly-admissible rank structure. Examples in-
clude algorithms for hierarchical semi-separable (HSS) matrices [4, 5, 32], hierarchical off-diagonal low-rank
(HODLR) matrices [1, 24], and methods based on recursive skeletonization (RS) [12, 21, 25], among other
related schemes [3, 6]. In general, methods based strictly on weak admissibility require allowing ranks of
off-diagonal blocks to grow non-negligibly with N to attain a fixed target accuracy. This has led to the
development of more involved methods such as the hierarchical interpolative factorization (HIF) of Ho &
Ying [22] and the method of Corona et al. [8], which combine RS with additional compression steps based
on geometric considerations to obtain greater efficiency at the cost of a more complicated algorithm.

There has been much less work on improved algorithms for solving (2) based directly on strong-admissibility.
The stand-out example is the recent “inverse fast multipole method” (IFMM) of Coulier et al. and Am-
bikasaran & Darve [2, 9], which assumes a general H2-matrix is given and provides a framework for ap-
proximately applying the inverse operator in the language of the FMM. Further, a factorization based on
block elimination and strong admissibility has been recently introduced by Sushnikova & Oseledets [31] for
the “sparse analogue” of our integral equation setting (that is, discretizations of elliptic partial differential
equations).

1.2 Contributions

Based on the RS process of Martinsson & Rokhlin [25] in the block-elimination form of Ho & Ying [22], we
introduce strong skeletonization, an extension of skeletonization for the strong admissibility setting. Using
this in a recursive fashion like the original RS factorization, we develop the strong recursive skeletonization
factorization, an approximate factorization of K into the product of many block unit-triangular matrices and
a block diagonal matrix with time complexity linear in the number of DOFs, under suitable rank-scaling
assumptions. Using low-accuracy approximations to off-diagonal blocks yields an effective preconditioner for
iterative methods applied to (2), whereas at higher accuracies the resulting factorization can be used as a
direct solver.

Like the IFMM [9, Appendix C], our factorization uses a bottom-up traversal of the quadtree or octree
decomposition of space to compress well-separated interactions on a level-by-level basis. This allows effi-
cient on-the-fly construction of a nested “skeleton” basis for representing far-field interactions at different
levels during the factorization process, in contrast to the typical recursive H-matrix inversion algorithm.
Using skeletonization to maintain problem structure and exploit accelerated compression techniques (see
section 3.2), we obtain what may be thought of as a multiplicative analogue of the FMM, using the same
strong admissibility structure. This gives a factorization of K or K´1 with simple constituent factors that is
easy to understand and implement.

As an extension to our approach, we combine the original weak-admissibility-based skeletonization pro-
cess with our strong-admissibility-based skeletonization and introduce the hybrid recursive skeletonization
factorization, which uses additional compression steps like HIF or the method of Corona et al. but does
so without the need for spatial geometry beyond the boxes of the tree decomposition. This additional
compression reduces memory usage for practical performance gains in many cases.

3

2 Preliminaries

In the remainder of this paper we adopt the following notation. For a positive integer N , the index set
t1, 2, . . . , Nu is denoted by rN s. We write matrices or matrix-valued functions in the sans serif font (e.g.,
A P CNˆN) but make no such distinction for vectors (e.g., x P CN). Given a vector or matrix, the norms }x}
or }A} refer to the standard Euclidean vector norm and corresponding induced matrix norm, respectively.
The math-calligraphic font is used to indicate index sets (e.g., I “ ti1, i2, . . . , iru with each ij a positive
integer) that we use to index blocks of a matrix (e.g., AIJ “ ApI,J q P C|I|ˆ|J |, using MATLAB R© notation).
Therefore, each index set has an implicit ordering, though we use the term “set” as opposed to “vector” to
avoid conflation. Because we are working with matrices discretizing integral equations, indices in an index
set are typically associated with points in Rd (e.g., Nyström or collocation points or centroids of elements).
As such, we will use the more general term “DOF sets” to refer to both the index set B and the corresponding
points txiuiPB in Rd. Finally, to denote ordered sets of positive integers that are not associated with points
in the domain nor used to index matrices we use the math-script font (e.g., L).

2.1 Block-structured elimination

We begin with a brief review of block-structured elimination and its efficiency, which is central to the
skeletonization algorithm.

Let A P CNˆN be an N ˆ N matrix and suppose rN s “ I Y J Y K is a partition of the index set of A
such that both AIK “ 0 and AKI “ 0, i.e., we have the block structure

A “

»

—

—

–

AII AIJ

AJI AJJ AJK

AKJ AKK

fi

ffi

ffi

fl

,

up to permutation. Assuming that the block AII is invertible, the DOFs I can be decoupled as follows.
First, define the matrices L and U as

L ”

»

—

—

–

I

´AJIA
´1
II I

I

fi

ffi

ffi

fl

, U ”

»

—

—

–

I ´A´1
IIAIJ

I

I

fi

ffi

ffi

fl

. (4)

with the same block partitioning as A. Then, applying these operators on the left and right of A yields

LAU “

»

—

—

–

AII

SJJ AJK

AKJ AKK

fi

ffi

ffi

fl

, (5)

where SJJ “ AJJ ´AJIA
´1
IIAIJ is the only nonzero block of the resulting matrix that has been modified.

We say that SJJ is related to AJJ through a Schur complement update. Note that, while we choose here
to write block-elimination in its simplest form, in practice it can be numerically advantageous to work with
a factorization of AII as is done by Ho & Ying [22] as opposed to inverting the submatrix directly. Either
way, the cost of computing SJJ is Op|I|3 ` |I| ¨ |J |2q.

2.2 Compression via the interpolative decomposition

Another key linear algebra tool of which we will make heavy use is the interpolative decomposition [7].

4

Figure 2: Considering the DOFs B interior to the brown box on the left, the near-field DOFs N are those
interior to the blue boxes and the far-field DOFs F are those interior to the red boxes. Note that not all
boxes in the far-field are shown. On the right, we draw a “proxy surface” Γ (the dashed circle) around the
DOFs B such that the far-field F can be further decomposed into DOFs belonging to boxes inside the proxy
surface, O (still red) and DOFs belonging to boxes outside the proxy surface, P.

Definition 1 Given both a matrix AIJ P C|I|ˆ|J | with rows indexed by I and columns indexed by J and
a tolerance ε ą 0, an ε-accurate interpolative decomposition (ID) of AIJ is a partitioning of J into DOF
sets associated with so-called skeleton columns S Ă J and redundant columns R “ J zS and a corresponding
interpolation matrix T such that

}AIR ´ AIST} ď ε }AIJ } ,

or equivalently, assuming AIJ “ r AIR AIS s,

›

›

›
AIJ ´ AISr T I s

›

›

›
ď ε }AIJ } .

In other words, the redundant columns are approximated as a linear combination of the skeleton columns to
within the prescribed relative accuracy, leading to a low-rank factorization of AIJ .

Note that, while the ID error bound can be attained trivially by taking S “ J , it is desirable to keep |S|
as small as possible. The typical algorithm to compute an ID uses a strong rank-revealing QR factorization
as detailed by Gu & Eisenstat [16], though in practice a standard greedy column-pivoted QR tends to be
sufficient. In either case, the computational complexity is Op|I| ¨ |J |2q.

3 The strong recursive skeletonization factorization (RS-S)

We work in the context of a given tree decomposition of the domain (quadtree or octree) such that each
leaf-level box of the tree contains a bounded number of DOFs independent of N . When the tree is uniformly
refined (i.e., each box has either 0 or 2d children and all leaf boxes are at the same level), it is straight-
forward to use the strong admissibility criterion illustrated in fig. 1 to identify which pairs of boxes are
strongly-admissible and which are not, as in fig. 2: given a box, the near-field region for that box is the
region corresponding to adjacent boxes at the same level of tree, and the far-field region is the remainder of
the domain. The case where the tree is not uniformly refined is similar, though we will illustrate our method
with uniform trees in what follows.

3.1 Strong skeletonization

Given a matrix A P CNˆN indexed by points in our domain, we begin by selecting DOFs B corresponding
to a leaf-level box at the finest level of the tree.

5

Letting N and F be the sets of near- and far-field DOFs as in fig. 2 (left), an appropriate permutation
P gives the block structure

P˚AP “

»

—

—

–

ABB ABN ABF

ANB ANN ANF

AFB AFN AFF

fi

ffi

ffi

fl

.

By assumption, the blocks ABF and AFB corresponding to the far-field interactions of B are numerically
low-rank and thus compressible. Given some tolerance ε, we partition B into its redundant and skeleton
DOFs B “ RY S via the ID

»

–

AFB

A˚BF

fi

fl “

»

–

AFR AFS

A˚RF A˚SF

fi

fl «

»

–

AFS

A˚SF

fi

fl r T I s, (6)

which yields a skeleton set S and interpolation matrix T that can be used to represent both the columns of
AFB and the rows of ABF , i.e., AFR « AFST and ARF « T˚ASF . Note that in (6) we have assumed for
clarity of exposition that the redundant DOFs R are ordered first within B such that no further permutation
is necessary. We now partition blocks of P˚AP according to this ID to obtain

P˚AP «

»

—

—

—

—

—

–

ARR ARS ARN T˚ASF

ASR ASS ASN ASF

ANR ANS ANN ANF

AFST AFS AFN AFF

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Because of the explicit linear dependence between far-field blocks of the matrix, the redundant DOFs
R can now be decoupled from the far-field DOFs F using elementary block row and column operations.
Defining the elimination matrices

UT ”

»

—

—

—

—

—

–

I ´T˚

I

I

I

fi

ffi

ffi

ffi

ffi

ffi

fl

, LT ”

»

—

—

—

—

—

–

I

´T I

I

I

fi

ffi

ffi

ffi

ffi

ffi

fl

,

we see that application of these operators on the left and right gives

UT

»

—

—

—

—

—

–

ARR ARS ARN T˚ASF

ASR ASS ASN ASF

ANR ANS ANN ANF

AFST AFS AFN AFF

fi

ffi

ffi

ffi

ffi

ffi

fl

LT «

»

—

—

—

—

—

–

XRR XRS XRN

XSR ASS ASN ASF

XNR ANS ANN ANF

AFS AFN AFF

fi

ffi

ffi

ffi

ffi

ffi

fl

,

where the modified nonzero blocks marked with X correspond to some mixing of the second row and column,
respectively, with the first row and column as a consequence of the elimination.

Using XRR as a pivot block to eliminate the other blocks in the first row and column (i.e., performing
block elimination as in section 2.1 with I “ R, J “ S Y N , and K “ F) we define the corresponding

6

matrices L and U as in (4) to obtain

LUTP
˚APLTU «

»

—

—

—

—

—

–

XRR

XSS XSN ASF

XNS XNN ANF

AFS AFN AFF

fi

ffi

ffi

ffi

ffi

ffi

fl

” Z pA;Bq , (7)

whereupon we see that the redundant DOFs R are now completely decoupled from the rest of the problem.
We refer to this process as strong skeletonization of A with respect to the DOFs B, as it is a direct

modification of the skeletonization procedure of Martinsson & Rokhlin [25] for the strong admissibility
setting using the multiplicative formulation of Ho & Ying [22]. We note that, while ID-based compression
of far-field interactions has been used in the context of kernel-independent FMMs [26, 30], its use for the
construction of (approximate) direct solvers is novel.

For a purely notational convenience, we will define the left and right skeletonization operators V and W
as

V ” PU´1
T L´1, W ” U´1L´1

T P˚, (8)

with the understanding that these matrices will always be stored and used in the factored form given for
efficiency. In particular, recall that the block unit-triangular matrices U, UT and so on may be inverted by
toggling the sign of the nonzero off-diagonal block. With this shorthand we obtain

Z pA;Bq « V´1AW´1, (9)

a more compact representation of Z pA;Bq in (7).

3.2 The use of a proxy surface

For optimal complexity it is desirable to avoid computation with blocks indexed by F in the construction
of Z pA;Bq, since |F | is in general large. By design, the only part of computing Z pA;Bq that involves blocks
indexed by F is constructing the ID, that is, finding the partition B “ RY S and the interpolation matrix
T in (6). For simplicity, we will drop the block A˚BF in this section and explain how the subblock AFB can
be compressed in an indirect way that is more efficient than operating on AFB directly. The “transpose” of
these ideas can be used for the full stacked matrix including A˚BF .

For concreteness, consider the case where A ” K is a discretization such as (3) with bpxq ” cpxq ” 1 and
the 2D Laplace kernel Kpzq “ ´ 1

2π logp}z}q. In this case, entries of AFB are given (up to a factor of 1{N ,
which we drop in our discussion) directly by Kpxi ´ xjq for xi P F and xj P B.

Suppose Γ is a circle (or sphere in 3D) enclosing the DOF set B with radius normalized to a multiple
of 5/2 the sidelength of the corresponding box. As in fig. 2 (right), we partition the far-field DOFs of B as
F “ O Y P, where

P ” ti P F | i is contained in a box entirely outside of Γu

and O ” FzP, i.e., O is the set of indices corresponding to the square of boxes containing the proxy surface
in the figure.

Define φipxq ” Kpxi ´ xq for xi P P such that φipxjq is the “incoming” harmonic field generated at
xj P B by a source at xi. Because the DOFs in B are contained in the closed region with boundary Γ and the
DOFs in P are contained in the complementary region, we may (under mild assumptions [27]) use a form of
Green’s identity to write φipxjq for any xj P B in terms of a density ψipyq on Γ as

φipxjq “

ż

Γ

ψipyqKpxj ´ yq dy, (10)

7

where ψipyq depends on xi but not on xj .
Because φipxjq “ Kpxi ´ xjq for xi P P Ă F and xj P B, the left-hand side of (10) is an entry of AFB.

The right-hand side is a so-called “single-layer” representation of this entry. Discretizing this representation
by replacing the analytic integral over Γ with numerical integration using np points y1, . . . , ynp

, we see that,
up to discretization error,

AFB “

»

–

AOB

APB

fi

fl «

»

–

I

MPΓ

fi

fl

»

–

AOB

GΓB

fi

fl , (11)

where GΓB has entries Kpxj ´ yiq for xj P B and MPΓ is the matrix that approximately maps GΓB to APB
via a discretization of (10) for each xi P P. We do not give an explicit form of MPΓ, as we need only be
assured of its existence for what follows.

The proxy trick for accelerated compression, which is heavily employed in the literature [7, 8, 12, 13, 21,
22, 25, 26, 30, 33], makes use of two key observations regarding (11). Firstly, if np ! |P| (for example, if we
take np “ Op1q and N to be large), then it is relatively inexpensive to compute the ID

»

–

AOB

GΓB

fi

fl “

»

–

AOR AOS

GΓR GΓS

fi

fl «

»

–

AOS

GΓS

fi

fl

”

T I
ı

. (12)

Furthermore, because Γ is in the far-field of B, |S| should be small by assumption. Secondly, using the
discrete Green’s identity represented by MPΓ, combining (11) and (12) yields

AFB «

»

–

I

MPΓ

fi

fl

»

–

AOS

GΓS

fi

fl

”

T I
ı

« AFS

”

T I
ı

,

i.e., the partitioning B “ RYS and interpolation matrix T in (12) also give an ID of AFB. We caution that
the amplification of the approximation error in this ID depends on }MPΓ}, among other factors, but note
that this does not appear to be an issue in practice (see section 4).

By using these ideas or modifications thereof to obtain the ID (6) as opposed to using a rank-revealing
QR on the far-field blocks directly, the complexity of compression now depends on the number of proxy
points np and not on the total number of points in the domain and is thus substantially reduced. To apply
this acceleration, we require only a way to evaluate kernel interactions with Γ and that the entries of APB
satisfy a Green’s identity. While we have discussed only the Laplace kernel, the same trick holds for, e.g.,
the Stokes, or elasticity kernel. A more thorough discussion of the use of a proxy surface can be found in
Ho & Ying [22], which discusses the case of more general apxq and bpxq in (1).

3.3 Algorithm and complexity

We turn now to a 1D sketch of our factorization approach using strong skeletonization. Suppose we wish
to solve an integral equation over the unit line segment Ω “ r0, 1s using the trapezoid rule to construct
the matrix K. Partitioning Ω into eight subintervals with corresponding DOF sets Bi for i “ 1, . . . , 8, we
consider the first DOF set B1 and its corresponding near-field DOFs N1 and far-field DOFs F1. This gives
a block partitioning and labeling of K as in fig. 3 (top-left). We use the strong skeletonization algorithm of
section 3.1 to decouple redundant DOFs in B1 to approximately obtain the new matrix

Z pK;B1q “

»

—

—

—

—

—

–

XR1R1

XS1S1 XS1N1
KS1F1

XN1S1 XN1N1
KN1F1

KF1S1 KF1N1
KF1F1

fi

ffi

ffi

ffi

ffi

ffi

fl

(13)

8

as in (9). We call the redundant DOFs R1 inactive, because they no longer play an active role in our
factorization procedure. In contrast, any DOFs that have not yet been decoupled will be referred to as
active.

Moving on to the next set of DOFs B2 with near-field DOFs N2 and far-field DOFs F2, we observe that
most of the nonzero entries of the matrix Z pK;B1q are unchanged from their original value in K, see fig. 3
(top-right). It is therefore reasonable to perform strong skeletonization of this new matrix with respect to
B2 and expect compression of the corresponding far-field interactions. This renders the redundant DOFs R2

inactive and yields the new matrix

Z pK;B1,B2q ” Z pZ pK;B1q ;B2q ,

where we define Z pK; I1, I2, . . . , Ikq to be the result of skeletonizing K with respect to the DOFs I1, skele-
tonizing the result with respect to I2, and so on. In successive steps of strong skeletonization we skeletonize
Z pK;B1,B2q with respect to the DOFs B3 through B8 as in fig. 3 (bottom).

After skeletonization with respect to B8, the matrix Z pK;B1,B2, . . . ,B8q has many diagonal blocks corre-
sponding to completely decoupled redundant DOF sets Ri for i “ 1, . . . , 8 as well as many blocks correspond-
ing to interactions between the remaining active skeleton DOF sets Si. We construct a new partitioning of
Ω into 4 subintervals and define the DOF sets

B9 ” S1 Y S2, B10 ” S3 Y S4, B11 ” S5 Y S6, B12 ” S7 Y S8. (14)

Permuting Z pK;B1,B2, . . . ,B8q such that these DOF sets are contiguous with the inactive DOF sets Ri
for i “ 1, . . . , 8 permuted to the end for visualization purposes, we obtain a matrix as in fig. 4 (left), at
which point, we may skeletonize successively with respect to B9 through B12. It is not possible to again
double the size of a subinterval and expose any further compressible blocks, so we stop. The final matrix
Z pK;B1,B2, . . . ,B12q can be permuted to a block-diagonal matrix with small blocks defined by the DOF
sets Ri for i “ 1, . . . , 12 and the DOF set S9 Y S10 Y S11 Y S12. This block-diagonal structure can then be
exploited to efficiently solve the linear system (2).

3.3.1 The general case: first level

Having given the flavor of our approach in 1D, we flesh out the details for the more general case. Suppose
the integral equation (1) is discretized over Ω Ă Rd for d “ 2 or 3. Given a tree decomposition of the
domain such that each leaf box contains a constant number of unknowns, we number the levels of the tree
starting from the finest level p` “ 1q up to the root level p` “ Lq. We require a fixed but arbitrary bottom-up
level-by-level traversal of the tree and order the boxes accordingly such that a box at level 1 is ordered before
any box at level 2 and so on. This ordering on all boxes of the tree induces corresponding orderings on the
boxes within each level of the tree, L` for ` “ 1, . . . , L. For example, in the case of a regular grid with
2dpL´`q boxes at level ` we obtain the orderings

L1 “

!

1, 2, . . . , 2dpL´1q
)

,

L2 “

!

2dpL´1q ` 1, 2dpL´1q ` 2, . . . , 2dpL´1q ` 2dpL´2q
)

,

and so on. We do not require a regular grid of discretization points, but use a regular grid in all figures
for illustration. Note in particular that this implies leaf boxes may belong to levels other than ` “ 1 in the
general case.

Beginning at level ` “ 1, we select the first leaf box and label the corresponding DOFs as B1 with near-
field DOFs N1 and far-field DOFs F1. We decouple and render inactive redundant DOFs in B1 through
strong skeletonization to obtain

V´1
1 KW´1

1 « Z pK;B1q

9

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

Figure 3: We partition the 1D domain Ω into eight subintervals and block the corresponding matrix K
accordingly. Identifying the DOFs B1 (brown), N1 (blue), and F1 (red) in the top-left figure, we skeletonize
with respect to B1. Using the same color scheme for box, near-field, and far-field DOFs in the top-right
figure, we see that some redundant DOFs have been completely decoupled from the rest and some blocks of
the matrix have been modified through Schur complement updates (blocks marked with “X”). We proceed
to skeletonize with respect to the DOFs B2, and then B3 (bottom-left figure) all the way through to B8

(bottom-right figure). Below each matrix, we show only the remaining active DOFs at that step, i.e., we do
not show the redundant DOFs corresponding to decoupled diagonal blocks.

with Z pK;B1q as in (13) and V1 and W1 the left and right skeletonization operators corresponding to B1 as
in (8).

Selecting the next box with corresponding DOFs B2, we define the DOF sets N2 and F2 as

N2 ” tactive DOFs in the near-field of B2u,

F2 ” tactive DOFs in the far-field of B2u,

so as to avoid unnecessary further computation with the inactive DOFs indexing the first block row and
column of Z pK;B1q. To efficiently perform strong skeletonization of A “ Z pK;B1q with respect to the DOFs

10

B9 B10 B11 B12

(inactive DOFs)

B9

B10

B11

B12

Ω

B9 B10 B11 B12

(inactive DOFs)

B9

B10

B11

B12

Ω

Figure 4: After skeletonization with respect to the DOFs B8 in fig. 3, we permute all decoupled redundant
DOF sets R1, . . . ,R8 to the end and define the next-level DOF sets B9, . . . ,B12 as in (14) such that blocks
of the matrix in the left figure correspond to aggregating blocks from the previous level. Using the same
color scheme as in fig. 3, in skeletonizing with respect to B9, we see that blocks of interactions between B9

(brown) and N9 (blue) have modifications from Schur complement updates (marked with “X”) from the
previous level. We continue to skeletonize with respect to DOF sets at this level up through to B12 (right
figure), decoupling additional redundant DOFs as we go.

B2, it is necessary to assume that the blocks AB2F2 and AF2B2 are still compressible. Note that this is not
immediate, as these blocks need not be original blocks of K. In particular, if B2 Ă N1 and F2XN1 ‰ H, then
the block XN1N1

in (13) includes updated interactions between B2 and F2 XN1, which has the potential to
increase the numerical rank of said interactions. This is illustrated in fig. 5.

Note that, drawing the proxy surface Γ around B2, it is still true due to geometric considerations that
the interactions AP2B2 between B2 and far-field points P2 contained in boxes outside of Γ are unchanged
and, therefore, the accelerated compression scheme in section 3.2 using a proxy surface is still justified.

Theorem 3.1 Skeletonization with respect to the DOFs Bi does not modify interactions between Bj and Pj
for j ě i. That is, if A “ Z pK;B1,B2, . . . ,Biq , then

»

–

APjBj

A˚BjPj

fi

fl “

»

–

KPjBj

K˚BjPj

fi

fl .

Proof Suppose D is the sidelength of the box with corresponding DOFs Bi and consider skeletonizing A
with respect to Bi. As in (13), we see the only updated interactions between active DOFs are between Si
and Ni. However, by definition of Pj we know that Bj and Pj correspond to DOF sets separated by at least
two boxes of sidelength D1 ě D due to the fact that j ě i and our ordering corresponds to a bottom-up
traversal of the tree. Therefore, since the near-field DOFs Ni span a distance of no more than 3D in each
axial direction, either Pj XpSiYNiq “ H or Bj XpSiYNiq “ H, which implies skeletonization with respect
to Bi did not modify interactions between Bj and Pj .

With the above in mind, we skeletonize A with respect to B2 and obtain

V´1
2 AW´1

2 « Z pA;B2q “ Z pK;B1,B2q

11

B1

B2

B3

S1

B2

B3

Figure 5: Left: Because the DOF sets B2 and B3 are both in the near-field of B1, skeletonization with respect
to B1 leads to updated interactions between B2 and B3 as a subblock of XN1N1

in (13). Right: Considering
now the next box, we see the DOF set B3 is in the far-field of B2, so the previous Schur complement update
has led to modified far-field interactions that must be compressed when skeletonizing with respect to B2.
However, interactions between B2 and DOFs corresponding to boxes outside the proxy surface Γ are still
unmodified due to geometric considerations as guaranteed by theorem 3.1.

with

Z pA;B2q “

»

—

—

—

—

—

—

—

—

–

XR1R1

XR2R2

XS2S2 XS2N2
AS2F2

XN2S2 XN2N2
AN2F2

AF2S2 AF2N2 AF2F2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the DOFs R2 have been made inactive as well. We note that, while the nonzero entries in the last
block row and block column are unmodified from what they were in A “ Z pK;B1q, this does not necessarily
mean they are unmodified from what they were in K. For example, consider that in fig. 5 we have S1 Ă N2

and B3 Ă F2, but skeletonization with respect to B1 led to modified interactions between S1 and B3.
Proceeding as in the 1D case, we loop over each box at level ` “ 1, identify its corresponding DOFs Bi

and active near- and far-field DOFs Ni and Fi, and perform strong skeletonization using the proxy trick
to capture interactions with Pi implicitly. This process can be seen in fig. 6, where the subfigures show all
active DOFs at various times during the skeletonization at level ` “ 1 of a regular discretization over the
unit square. Supposing that there are r boxes at level ` “ 1 (i.e., L1 “ t1, 2, . . . , ru “ rrs), and defining
rrs1 ” tr, r ´ 1, . . . , 1u as the reversal of rrs, the resulting matrix at this point is

Z pK;B1,B2, . . . ,Brq «
`

V´1
r . . .V´1

2 V´1
1

˘

K
`

W´1
1 W´1

2 . . .W´1
r

˘

”

¨

˝

ź

iPrrs1

V´1
i

˛

‚K

¨

˝

ź

iPrrs

W´1
i

˛

‚.
(15)

Note that in Z pK;B1,B2, . . . ,Brq each redundant DOF set Ri is completely decoupled from the rest of
the problem, but each skeleton DOF set Si remains coupled to all other skeleton DOFs.

3.3.2 The general case: subsequent levels

Having finished level ` “ 1 of the tree, we step up to the next level of the spatial hierarchy, wherein boxes
are twice as large in each axial direction. Similar to our definitions of Fi and Ni, for a level ` ą 1 we define

12

Figure 6: Considering an integral equation discretized uniformly over the 2D domain Ω “ r0, 1s2, we display
the active DOFs at the point of skeletonization with respect to B1 (top-left), B2 (top-right), B3 (bottom-left),
and B64 (bottom-right). When skeletonizing with respect to Bi (brown DOFs) the near-field DOFs Ni are
colored blue and the far-field DOFs Oi corresponding to boxes inside the proxy surface are colored red. Note
that the full set of far-field DOFs Fi includes not just the red DOFs but also all gray DOFs.

13

Figure 7: After skeletonizing with respect to B64 at the end of fig. 6, we skeletonize with respect to B65,
the set of DOFs corresponding to the first larger box at the next level (left). Proceeding to skeletonize with
respect to each box through to B80, the last box at this level, we see that further compression has been
attained as the number of remaining active DOFs has been reduced substantially (right). All DOFs are
colored as in fig. 6.

the DOFs Bi of a box to be any active DOFs geometrically contained in that box, that is, if

Ci ” tj | box j is a child box of box iu ,

then Bi ”
Ť

jPCi
Sj (i.e., it is the union of the skeleton DOFs of its child boxes). With this definition in tow

we state the following corollary of theorem 3.1.

Corollary 3.2 Suppose r is the number of the last DOF set at level ` ě 1. Then, at the beginning of level
`` 1, all far-field interactions between active DOFs at level `` 1 are unmodified from their initial values in
K. That is, if A “ Z pK;B1,B2, . . . ,Brq , then

»

–

AFjBj

A˚BjFj

fi

fl “

»

–

KFjBj

K˚FjBj

fi

fl

for all j ą r.

Theorem 3.2 tells us that, while one might fear that Schur complement updates would propagate beyond
interactions between Bj and Oj and thus require increasing the size of the proxy surface, the opposite is in
fact true: at the beginning of a level, interactions with all of Fj are unmodified. Therefore, our argument
in section 3.2 for the use of a proxy surface still holds and it is straightforward to loop over each box on
level ` “ 2 and perform strong skeletonization with respect to the corresponding DOFs Bi, as is visualized
in fig. 7. We repeat level-by-level for ` “ 3, 4, . . . , L´ 2, noting that at level ` “ L´ 1 all boxes are adjacent
and thus all sets of active far-field DOFs are empty so compression of this form is not possible.

3.3.3 The final factorization

Supposing that the last set of DOFs at level ` “ L ´ 2 is Bn, the matrix A “ Z pK;B1,B2, . . . ,Bnq has the
same form as (15), albeit with more factors. Defining Bt to be the set of all active DOFs remaining at this
level of the tree, a last permutation to order the DOFs Bt contiguously yields the block-diagonal matrix

14

D ”

»

—

—

—

—

—

–

XR1R1

. . .

XRnRn

ABtBt

fi

ffi

ffi

ffi

ffi

ffi

fl

« P˚t

¨

˝

ź

iPrns1

V´1
i

˛

‚K

¨

˝

ź

iPrns

W´1
i

˛

‚Pt.

Rearranging, we obtain an approximate factorization as

F ”

¨

˝

ź

iPrns

Vi

˛

‚PtDP
˚
t

¨

˝

ź

iPrns1

Wi

˛

‚« K, (16)

which we refer to as the strong recursive skeletonization factorization (RS-S) of K. The process of computing
F is summarized in algorithm 1.

Note that an approximate factorization of K´1 may be obtained directly as

F´1 “

¨

˝

ź

iPrns

W´1
i

˛

‚PtD
´1P˚t

¨

˝

ź

iPrns1

V´1
i

˛

‚« K´1, (17)

though the approximation error will in general increase by a factor of the condition number of K. Further,
in the case where K is positive definite, we have for all i that Vi “ W˚

i . This means that, assuming
our approximation is accurate enough that D still admits a square-root D1{2, we may obtain a generalized
square-root F1{2 with F “ F1{2pF1{2q˚ as

F1{2 ”

¨

˝

ź

iPrns

Vi

˛

‚PtD
1{2,

which differs from any generalized square-root K1{2 of K (e.g., the Cholesky factor) by a unitary matrix in
the ideal case (ε “ 0).

In this setting, we may also compute an approximate log-determinant of K using the fact that log |D| «
log |K|, which is useful for applications in statistics [28].

3.3.4 Complexity

As written, algorithm 1 applies to an arbitrary tree decomposition of space, i.e., some regions of space may
be more refined than others in an adaptive fashion. To compute meaningful complexity bounds, however, it
is necessary to impose some structure on the tree. As is standard, we assume a tree with L “ OplogNq levels
in d dimensions is given such that each leaf box contains at most a constant number of DOFs independent of
N . Letting k` denote the maximum of |Si| over all DOF sets corresponding to boxes on level ` and assuming
k` ď k``1 for all `, we obtain the following complexity result.

Theorem 3.3 Under the above assumptions and assuming further that a constant number of points is used
to discretize the proxy surface Γ, we have that the cost tf of constructing the RS-S factorization F according
to algorithm 1 and the cost ts of applying F or F´1 are given, respectively, as

tf “ OpNq `
L´2
ÿ

`“1

Op2dpL´`qk3
` q, ts “ OpNq `

L´2
ÿ

`“1

Op2dpL´`qk2
` q.

The memory requirement is trivially mf “ Optsq.

15

1: // Initialize

2: A :“ K
3: for ` :“ 1 to L´ 2 do
4: for each box i P L` do
5: // Identify relevant DOFs for strong skeletonization

6: rBi,Ni,Fis :“ tactive DOFs in box/near-field/far-fieldu
7: // Perform strong skeletonization with respect to DOFs

8: A :“ Z pA;Biq « V´1
i AW´1

i

9: end for
10: end for
11: // Store middle block diagonal matrix and permutation

12: D :“ P˚t APt
13: Output: F as in (16)

Algorithm 1: The strong recursive skeletonization factorization (RS-S)

Proof Let k0 “ 1 for convenience. Note that, for a DOF set Bi corresponding to a box at level `, we have
|Bi| “ Opk`´1q, |Ni| “ Opk`´1q, and |Oi| “ Opk`´1q, since for leaf boxes the number of DOFs is bounded by
a constant and for non-leaf boxes the DOFs are given by aggregating skeleton DOFs of child boxes at the
previous level.

Because the proxy surface Γ is discretized with a constant number of points, the first matrix in (12) used
to compute an ID for the skeletonization with respect to Bi is of size Op|Oi|q ˆ Op|Bi|q. This implies that
the cost of skeletonizing with respect to the DOFs Bi corresponding to a box at level ` is Opk3

` q using the
complexity result in section 2.1.

Finally, at each level `, there are at most 2dpL´`q boxes, which gives the stated complexity for tf using
the fact that 2dL “ OpNq. The complexity for ts follows a similar argument, noting that all the block
unit-triangular matrices can be trivially inverted.

For kernel functions Kpzq such as we consider here, i.e., relatively non-oscillatory Green’s functions arising
from elliptic PDEs, standard multipole-type estimates [14,15] can typically be used to show far-field interac-
tion blocks KBiFi have ranks depending only weakly on N . As previously mentioned in section 3.3.1, however,
algorithm 1 involves compressing also far-field interaction blocks that have received Schur complement up-
dates to some of their entries from earlier steps of skeletonization. For such entries, multipole estimates
no longer directly apply, but ample numerical experimentation seem to indicate similar rank behavior (see
section 4) and thus it is common to assume that updated blocks of this nature still exhibit multipole-like
rank behavior [8, 9, 22]. Proceeding under this assumption, we obtain a more explicit complexity estimate.

Corollary 3.4 Suppose that for any fixed tolerance ε we have k` “ Op`qq in theorem 3.3 for some q ą 0,
i.e., the skeleton sets grow only as some power of the level index ` and kL´2 “ Oplogq Nq. Then the RS-S
factorization cost tf , apply/solve cost ts, and memory requirement mf scale as

tf “ OpNq, ts “ OpNq, mf “ OpNq,

with constants depending on the tolerance ε and dimension d.

Note that the construction of the initial tree decomposition of space requires an additional upfront cost
of OpN logNq, but in practice this cost is negligible compared to the factorization itself.

3.4 Extension: hybrid skeletonization

Algorithmically, the RS-S factorization has much in common with the RS factorization [22,25]. The key dis-
tinction between the two is exactly what is meant by “skeletonization”. In section 3.1, the strong skeletoniza-
tion process we describe is used to compress far-field interactions (e.g., KBF), leading to ranks essentially

16

independent of N under our assumptions. In contrast, in the traditional skeletonization procedure both the
far-field and the near-field are compressed, i.e., blocks such as KBBc with Bc “ N Y F . As a consequence,

the skeleton set grows with the rank of the near-field interactions, which typically goes as OpN
d´1
d q at the

top levels as has been illustrated in previous work [21]. After sparse elimination analogous to the strong
case, we are left with

rUT
rP˚ArPrLT “

»

—

—

–

XRR

XSS ASBc

ABcS ABcBc

fi

ffi

ffi

fl

” rZ pA;Bq .

Defining the notation

rV ” rPrU´1
T , rW ” rL´1

T
rP˚ (18)

analogously to (8), we obtain rZ pA;Bq « rV´1A rW´1. We refer to this near-field compression and subsequent
decoupling as weak skeletonization to distinguish it from its strong counterpart.

While strong skeletonization typically leads to asymptotically more efficient factorizations than weak
skeletonization due to the higher rank of near-field interactions compared to far-field interactions, it suffers
from a higher storage cost. This is because, in contrast to the weak case, strong skeletonization requires an
additional step to explicitly decouple redundant DOFs from their near-field, and the corresponding block
elimination operators must be stored. To decrease the constant factor in the asymptotic storage cost of
strong skeletonization, we can combine both weak and strong skeletonization in alternating fashion to obtain
the hybrid recursive skeletonization factorization (RS-WS) in algorithm 2.

Using exactly the same tree decomposition as before, we begin by looping over each box at the bottom
level ` “ 1 and performing weak skeletonization with respect to the corresponding DOF sets rBi for i P L1,
where here we use a tilde to explicitly mark that we are performing weak skeletonization as in (18). Assuming
|L1| “ r, this yields

rZ
´

K; rB1, rB2, . . . , rBr
¯

«

¨

˝

ź

iPL 1
1

rV´1
i

˛

‚K

¨

˝

ź

iPL1

rW´1
i

˛

‚.

Having now decoupled some number of DOFs via weak skeletonization without modifying any nonzero
off-diagonal blocks, it is now possible to loop again over L1, this time performing strong skeletonization

with respect to each set of active DOFs Bi on the level. With A “ rZ
´

K; rB1, rB2, . . . , rBr
¯

, this gives

Z pA;B1,B2, . . . ,Brq «

¨

˝

ź

iPL 1
1

V´1
i

˛

‚

¨

˝

ź

iPL 1
1

rV´1
i

˛

‚K

¨

˝

ź

iPL1

rW´1
i

˛

‚

¨

˝

ź

iPL1

W´1
i

˛

‚.

We repeat this process of weak skeletonization followed by strong skeletonization at each level. A final step
of permutation leads to the RS-WS factorization F « K with

F ”

»

–

ź

`PrL´2s

˜

ź

iPL`

rVi

¸˜

ź

iPL`

Vi

¸

fi

flPtDP
˚
t

»

–

ź

`PrL´2s1

¨

˝

ź

iPL 1
`

Wi

˛

‚

¨

˝

ź

iPL 1
`

rWi

˛

‚

fi

fl , (19)

which is analogous to (16) but more cumbersome notationally due to the need to loop over the boxes on
each level twice. We remark that, as a modification to the above, it is possible to perform a final step of
weak skeletonization at level ` “ L ´ 1 even though subsequent strong skeletonization is not possible, and
this is what we do in practice.

17

1: // Initialize

2: A :“ K
3: for ` :“ 1 to L´ 2 do
4: for each box i P L` do
5: // Identify relevant DOFs for weak skeletonization

6:

”

rBi, rBci
ı

:“ tactive DOFs in box/complementu

7: // Perform weak skeletonization with respect to DOFs

8: A :“ rZ
´

A; rBi
¯

« rV´1
i A rW´1

i

9: end for
10: for each box i P L` do
11: // Identify relevant DOFs for strong skeletonization

12: rBi,Ni,Fis :“ tactive DOFs in box/near-field/far-fieldu
13: // Perform strong skeletonization with respect to DOFs

14: A :“ Z pA;Biq « V´1
i AW´1

i

15: end for
16: end for
17: // Store middle block diagonal matrix and permutation

18: D :“ P˚t APt
19: Output: F as in (19)

Algorithm 2: The hybrid recursive skeletonization factorization (RS-WS)

4 Numerical results

To evaluate the performance of the RS-S and RS-WS factorizations, we implemented a number of examples
in MATLAB R© on top of the FLAM library (https://github.com/klho/FLAM/). Our research code is
available at https://github.com/victorminden/strong-skel/. We use adaptive quadtrees and octrees
as appropriate, refining until the number of DOFs per leaf box is bounded by nocc “ Op1q. Diagonal blocks
of D were factored using the Cholesky decomposition for positive definite K and the LU decomposition
otherwise.

The primary quantities of interest for our examples (where applicable) are given in the following legend:

• ε: tolerance parameter for all IDs;

• N : total number of DOFs;

• tf : wall clock time to construct the factorization F, in seconds;

• ts: wall clock time to solve Fx “ b for x, in seconds;

• mf : memory required to store F, in GB;

• ea: estimate of }K´ F}{}K};

• es: estimate of }I´ KF´1} ě }K´1 ´ F´1}{}K´1};

• ni: number of iterations to solve (2) using CG to a tolerance of 10´12 on the relative residual norm,
where the right-hand side b is given up to scaling by b “ Kx for x a vector with normally-distributed
entries.

We estimate the operator errors using the power method [10, 23] to a tolerance of 10´2 in the relative
error. For this and for CG, the matrices K and K˚ were applied via the fast Fourier transform or a kernel-
independent fast multipole method as appropriate.

18

https://github.com/klho/FLAM/
https://github.com/victorminden/strong-skel/

All computations were performed in MATLAB R© R2015b on a 64-bit Linux server with Intel R© Xeon R©

E7-8890 v3 CPUs at 2.50 GHz using up to 72 cores through BLAS multithreading, where the number of
cores at any time was chosen adaptively by MATLAB R©.

4.1 Example 1: unit square in 2D

We begin with a simple 2D example on the unit square Ω “ r0, 1s2. Taking apxq ” 0, bpxq ” cpyq ” 1, and
Kpzq ” ´ 1

2π logp}z}q in (1), we discretize the resulting first-kind volume integral equation using piecewise-

constant collocation on a uniform
?
N by

?
N grid such that Kij “

1
NKpxi ´ xjq for i ‰ j. The diagonal

entries Kii are approximated adaptively using the dblquad function in MATLAB R© for simplicity such that

Kii «

ż h{2

´h{2

ż h{2

´h{2

Kpx´ yq dx dy,

where h ” 1{
?
N . Note that this is essentially a Nyström method, but viewing it as piecewise-constant

collocation makes sense of the modified diagonal. The order of accuracy of this quadrature is not high
compared to other more accurate quadratures based on the idea of local corrections near the singularity, but
its simplicity makes it a good candidate for illustrating our approach.

We compare four different skeletonization-based approaches to factorizing K: the (weak) recursive skele-
tonization factorization (RS) [22, 25], the hierarchical interpolative factorization (HIF) [22], and the strong
and hybrid recursive skeletonization factorizations introduced in section 3 (RS-S and RS-WS). Since it is
based strictly on near-field compression, we expect RS to exhibit fundamentally different asymptotic scaling,
whereas the other three methods should all exhibit essentially linear scaling under our rank assumptions. All
cases were run across a range of N for tolerances ε “ 10´6 and ε “ 10´9, with results visualized in fig. 8 and
corresponding data given in tables 1 and 2. For HIF and RS, we used an occupancy parameter nocc “ 64,
whereas for RS-S and RS-WS, we used nocc “ 256, hand-tuned in each case for optimal performance. For
all methods we used np “ 64 proxy points to discretize the proxy surface.

In this 2D example, we see that all methods remain relatively competitive in terms of factorization time
tf for both tolerances. Looking at the plots of solve time ts, we see that, while all methods seem to scale
as OpN logNq or OpNq, for ε “ 10´9, RS-S is significantly („ 4X to 10X) slower than the other methods.
Since ts decreases drastically when using RS-WS (where we add additional levels of weak skeletonization) we
hypothesize that the jump in solve time for RS-S is due to caching and the increased size of the subblocks
comprising factors of F for RS-S as compared to the other methods. This belief is reinforced by the scaling
plots for the memory mf , in which we see that, in 2D, memory usage for RS-S tends to be the highest,
followed by RS, RS-WS, and HIF. We note as well the sizable difference in mf between RS-S and RS-WS,
which shows that hybrid skeletonization is effective at reducing memory usage in this setting.

Looking at table 2, we see that the forward error ea of the approximate operator is roughly Opεq. This
seems to indicate that the relative operator-norm error of the factorization is well-controlled by the relative
error in the IDs of off-diagonal blocks, which is difficult to prove for factorizations based on skeletonization.
The bound es on the error for the inverse operator exhibits similar behavior, though we lose accuracy due
to ill-conditioning of K. Finally, while at these accuracy levels we may use F as a moderate-accuracy direct
solver, these factorizations perform exceedingly well when used as preconditioners for CG, as exhibited
by the small number of iterations ni required to attain a relative residual norm of 10´12. Note that the
unpreconditioned method fails to converge within 100 iterations.

4.2 Example 2: unit cube in 3D

We turn now to the 3D analogue of Example 1, a first-kind volume integral equation on the unit cube
Ω “ r0, 1s3 with apxq ” 0, bpxq ” cpyq ” 1 and Kpzq ” 1

4π}z} in (1). As before, we use piecewise-constant

collocation on a regular grid with adaptive quadrature for the diagonal entries. In the interest of constructing
efficient preconditioners or low-precision direct solvers, we consider the tolerance levels ε “ 10´3 and ε “ 10´6

with results visualized in fig. 9 and corresponding data given in tables 3 and 4. For ε “ 10´3 we used the

19

10
5

10
6

10
7

10
8

N

10
1

10
2

10
3

10
4

10
5

F
ac
to
r
ti
m
e
(s
)

RS

HIF

RS-WS

RS-S

10
5

10
6

10
7

10
8

N

10
-1

10
0

10
1

10
2

10
3

S
ol
ve

ti
m
e
(s
)

10
5

10
6

10
7

10
8

N

10
-1

10
0

10
1

10
2

10
3

M
em

or
y
(G

B
)

10
5

10
6

10
7

10
8

N

10
1

10
2

10
3

10
4

10
5

F
ac
to
r
ti
m
e
(s
)

10
5

10
6

10
7

10
8

N

10
-1

10
0

10
1

10
2

10
3

S
ol
ve

ti
m
e
(s
)

10
5

10
6

10
7

10
8

N

10
-1

10
0

10
1

10
2

10
3

M
em

or
y
(G

B
)

Figure 8: Wall clock factor times tf and solve times ts and memory usage mf from Example 1 are shown
for ε “ 10´6 (top row) and ε “ 10´9 (bottom row). Each plot follows the top-left legend, with additional
reference scaling curves OpN3{2q and OpNq (left subplots), and OpN logNq and OpNq (center and right
subplots). Corresponding data are given in table 1.

20

T
ab

le
1
:

T
im

in
g

a
n

d
m

em
o
ry

re
su

lt
s

fo
r

E
x
a
m

p
le

1

R
S

H
IF

R
S
-S

R
S
-W

S

ε
N

t f
t s

m
f

t f
t s

m
f

t f
t s

m
f

t f
t s

m
f

1
0
´
6

5
1
2
2

9
.1

e`
1

1
.1

e`
0

1
.1

e`
0

1
.3

e`
2

9
.5

e´
1

6
.1

e´
1

1
.2

e`
2

1
.4

e`
0

2
.5

e`
0

1
.3

e`
2

6
.2

e´
1

8
.3

e´
1

1
0
2
4
2

4
.3

e`
2

4
.9

e`
0

4
.7

e`
0

5
.4

e`
2

3
.2

e`
0

2
.5

e`
0

4
.9

e`
2

5
.7

e`
0

1
.0

e`
1

5
.1

e`
2

2
.5

e`
0

3
.3

e`
0

2
0
4
8
2

1
.9

e`
3

2
.1

e`
1

2
.0

e`
1

2
.3

e`
3

1
.3

e`
1

9
.8

e`
0

1
.9

e`
3

2
.2

e`
1

4
.2

e`
1

2
.1

e`
3

1
.1

e`
1

1
.3

e`
1

4
0
9
6
2

7
.7

e`
3

9
.6

e`
1

7
.7

e`
1

8
.9

e`
3

5
.8

e`
1

3
.8

e`
1

7
.8

e`
3

1
.1

e`
2

1
.7

e`
2

8
.8

e`
3

4
.5

e`
1

5
.2

e`
1

1
0
´
9

5
1
2
2

1
.2

e`
2

1
.4

e`
0

1
.5

e`
0

1
.8

e`
2

8
.8

e´
1

8
.5

e´
1

1
.3

e`
2

1
.7

e`
0

2
.7

e`
0

1
.3

e`
2

7
.2

e´
1

1
.0

e`
0

1
0
2
4
2

7
.0

e`
2

6
.1

e`
0

7
.4

e`
0

7
.8

e`
2

3
.6

e`
0

3
.5

e`
0

5
.3

e`
2

3
.9

e`
1

1
.1

e`
1

5
.8

e`
2

2
.9

e`
0

4
.2

e`
0

2
0
4
8
2

3
.8

e`
3

3
.2

e`
1

3
.5

e`
1

3
.3

e`
3

1
.5

e`
1

1
.4

e`
1

2
.3

e`
3

1
.4

e`
2

4
.4

e`
1

2
.5

e`
3

1
.9

e`
1

1
.7

e`
1

4
0
9
6
2

2
.2

e`
4

1
.4

e`
2

1
.6

e`
2

1
.3

e`
4

5
.8

e`
1

5
.7

e`
1

9
.3

e`
3

5
.7

e`
2

1
.8

e`
2

1
.1

e`
4

9
.7

e`
1

6
.9

e`
1

T
a
b

le
2
:

A
cc

u
ra

cy
re

su
lt

s
fo

r
E

x
a
m

p
le

1

R
S

H
IF

R
S
-S

R
S
-W

S

ε
N

e a
e s

n
i

e a
e s

n
i

e a
e s

n
i

e a
e s

n
i

1
0
´
6

5
1
2
2

2
.5

e´
0
7

3
.2

e´
0
4

3
2
.9

e´
0
7

5
.8

e´
0
4

3
4
.0

e´
0
8

4
.0

e´
0
4

3
3
.0

e´
0
7

7
.0

e´
0
4

3
1
0
2
4
2

7
.3

e´
0
7

3
.6

e´
0
4

3
3
.8

e´
0
7

5
.0

e´
0
4

3
4
.2

e´
0
8

6
.0

e´
0
4

3
3
.0

e´
0
7

1
.6

e´
0
3

3
2
0
4
8
2

1
.2

e´
0
6

5
.2

e´
0
4

3
5
.1

e´
0
7

9
.7

e´
0
4

3
4
.4

e´
0
8

7
.9

e´
0
4

3
3
.0

e´
0
7

1
.9

e´
0
3

3
4
0
9
6
2

1
.3

e´
0
6

9
.2

e´
0
4

3
6
.0

e´
0
7

1
.0

e´
0
3

3
5
.0

e´
0
8

1
.6

e´
0
3

3
3
.1

e´
0
7

2
.0

e´
0
3

3

1
0
´
9

5
1
2
2

1
.7

e´
1
0

3
.1

e´
0
7

2
3
.6

e´
1
0

5
.3

e´
0
7

2
2
.7

e´
1
1

3
.3

e´
0
7

2
1
.5

e´
1
0

1
.1

e´
0
6

2
1
0
2
4
2

6
.8

e´
1
0

4
.5

e´
0
7

2
1
.9

e´
1
0

5
.6

e´
0
7

2
2
.7

e´
1
1

5
.5

e´
0
7

2
1
.9

e´
1
0

1
.7

e´
0
6

2
2
0
4
8
2

7
.6

e´
1
0

5
.6

e´
0
7

2
8
.5

e´
1
0

9
.7

e´
0
7

2
2
.9

e´
1
1

7
.8

e´
0
7

2
3
.0

e´
1
0

2
.5

e´
0
6

2
4
0
9
6
2

7
.9

e´
1
0

1
.5

e´
0
6

2
9
.5

e´
1
0

9
.9

e´
0
7

2
3
.0

e´
1
1

1
.5

e´
0
6

2
2
.2

e´
1
0

3
.5

e´
0
6

2

21

10
4

10
6

10
8

N

10
1

10
2

10
3

10
4

10
5

10
6

F
ac
to
r
ti
m
e
(s
)

RS

HIF

RS-WS

RS-S

10
4

10
6

10
8

N

10
-1

10
0

10
1

10
2

10
3

10
4

S
ol
ve

ti
m
e
(s
)

10
4

10
6

10
8

N

10
-1

10
0

10
1

10
2

10
3

10
4

M
em

or
y
(G

B
)

10
4

10
6

10
8

N

10
1

10
2

10
3

10
4

10
5

10
6

F
ac
to
r
ti
m
e
(s
)

10
4

10
6

10
8

N

10
-1

10
0

10
1

10
2

10
3

10
4

S
ol
ve

ti
m
e
(s
)

10
4

10
6

10
8

N

10
-1

10
0

10
1

10
2

10
3

10
4

M
em

or
y
(G

B
)

Figure 9: Wall clock factor times tf and solve times ts and memory usage mf from Example 2 are shown
for ε “ 10´3 (top row) and ε “ 10´6 (bottom row). Each plot follows the top-left legend, with additional
reference scaling curves OpN2q and OpNq (left subplots), and OpN4{3q and OpNq (center and right subplots).
Corresponding data are given in table 3. Note that in several cases the curves for RS-S and RS-WS lie nearly
on top of each other.

occupancy parameter nocc “ 64 for all octrees, whereas for ε “ 10´6 we used nocc “ 512 for RS-S and
RS-WS and nocc “ 64 for RS and HIF. To discretize the proxy surface, we choose np “ 512 points randomly
distributed on the sphere.

Contrary to the 2D case, we immediately observe the difference in scaling between RS and the other
methods considered for each of tf , ts, and mf . Further, for ε “ 10´3 we see that HIF, RS-S, and RS-WS all
scale approximately like OpNq with a clear trade-off between factorization time and memory usage — RS-S
gives the smallest tf but the largest mf of the three, the opposite is true for HIF, and RS-WS is somewhere
between RS and HIF. In particular, note that the memory usage for RS-WS is less than for RS-S, as desired.

For ε “ 10´6, we see that tf for RS-S and RS-WS is markedly less than for HIF. We believe that some of
this overhead is due to auxiliary data structures and functions associated with the more complicated geometry
exploited in HIF, and could therefore potentially be reduced via more sophisticated implementations. For
all three, however, we see scaling of tf that appears better than OpN2q but not quite OpNq as would be
predicted under our assumptions. One possibility is boundary effects: essentially, we are perhaps not yet in
the asymptotic regime because

(a) boxes at the boundary of Ω have smaller sets of near- and far-field DOFs than do interior boxes, and
are therefore cheaper to skeletonize, and,

(b) the number of interior boxes is relatively small in 3D for small N .

Another possibility is simply that our assumption on rank behavior is incorrect at ε “ 10´6 for this example.
Unfortunately, distinguishing between these cases requires larger tests than are currently feasible due to
memory constraints.

22

T
ab

le
3
:

T
im

in
g

a
n

d
m

em
o
ry

re
su

lt
s

fo
r

E
x
a
m

p
le

2

R
S

H
IF

R
S
-S

R
S
-W

S

ε
N

t f
t s

m
f

t f
t s

m
f

t f
t s

m
f

t f
t s

m
f

1
0
´
3

3
2
3

2
.2

e`
1

5
.5

e´
1

5
.5

e´
1

3
.5

e`
1

1
.7

e´
1

1
.8

e´
1

3
.3

e`
1

2
.3

e´
1

3
.8

e´
1

4
.6

e`
1

2
.0

e´
1

2
.7

e´
1

6
4
3

6
.4

e`
2

1
.2

e`
1

1
.0

e`
1

4
.9

e`
2

1
.3

e`
0

1
.8

e`
0

3
.5

e`
2

1
.9

e`
0

3
.8

e`
0

5
.2

e`
2

1
.9

e`
0

2
.6

e`
0

1
2
8
3

2
.4

e`
4

2
.3

e`
2

1
.9

e`
2

6
.4

e`
3

1
.3

e`
1

1
.8

e`
1

3
.4

e`
3

2
.8

e`
1

3
.5

e`
1

5
.2

e`
3

2
.8

e`
1

2
.5

e`
1

2
5
6
3

–
–

–
8
.9

e`
4

1
.3

e`
2

1
.6

e`
2

3
.2

e`
4

2
.4

e`
2

3
.0

e`
2

5
.0

e`
4

2
.7

e`
2

2
.1

e`
2

1
0
´
6

3
2
3

5
.1

e`
1

1
.6

e`
0

1
.5

e`
0

2
.1

e`
2

7
.7

e´
1

8
.5

e´
1

8
.1

e`
1

7
.3

e´
1

2
.1

e`
0

6
.3

e`
1

7
.7

e´
1

1
.6

e`
0

6
4
3

2
.4

e`
3

4
.0

e`
1

3
.1

e`
1

7
.3

e`
3

8
.9

e`
0

1
.3

e`
1

1
.2

e`
3

5
.7

e`
0

2
.1

e`
1

1
.2

e`
3

5
.0

e`
0

1
.5

e`
1

1
2
8
3

1
.1

e`
5

7
.2

e`
2

5
.8

e`
2

2
.2

e`
5

1
.2

e`
2

1
.8

e`
2

1
.5

e`
4

5
.0

e`
1

2
.2

e`
2

1
.5

e`
4

3
.7

e`
1

1
.6

e`
2

2
5
6
3

–
–

–
–

–
–

2
.0

e`
5

4
.5

e`
2

2
.2

e`
3

2
.0

e`
5

3
.2

e`
2

1
.6

e`
3

T
a
b

le
4
:

A
cc

u
ra

cy
re

su
lt

s
fo

r
E

x
a
m

p
le

2

R
S

H
IF

R
S
-S

R
S
-W

S

ε
N

e a
e s

n
i

e a
e s

n
i

e a
e s

n
i

e a
e s

n
i

1
0
´
3

3
2
3

2
.3

e´
0
4

2
.3

e´
0
2

6
3
.1

e´
0
4

2
.3

e´
0
2

6
9
.1

e´
0
5

1
.2

e´
0
2

5
1
.9

e´
0
4

8
.8

e´
0
2

7
6
4
3

3
.3

e´
0
4

4
.5

e´
0
2

7
3
.6

e´
0
4

5
.4

e´
0
2

6
1
.1

e´
0
4

2
.5

e´
0
2

6
2
.3

e´
0
4

1
.0

e´
0
1

8
1
2
8
3

1
.1

e´
0
3

1
.2

e´
0
1

8
1
.2

e´
0
3

8
.3

e´
0
2

8
1
.2

e´
0
4

4
.3

e´
0
2

6
3
.0

e´
0
4

9
.7

e´
0
2

9
2
5
6
3

–
–

–
3
.2

e´
0
3

2
.0

e´
0
1

1
1

1
.3

e´
0
4

9
.0

e´
0
2

7
7
.9

e´
0
4

3
.4

e´
0
1

1
1

1
0
´
6

3
2
3

1
.8

e´
0
7

4
.3

e´
0
5

3
1
.2

e´
0
7

2
.8

e´
0
5

2
2
.0

e´
0
8

1
.8

e´
0
5

2
2
.2

e´
0
7

1
.6

e´
0
4

3
6
4
3

3
.2

e´
0
7

7
.1

e´
0
5

3
2
.4

e´
0
7

9
.2

e´
0
5

3
3
.1

e´
0
8

2
.7

e´
0
5

2
2
.7

e´
0
7

1
.9

e´
0
4

3
1
2
8
3

6
.2

e´
0
7

1
.7

e´
0
4

3
3
.5

e´
0
7

1
.7

e´
0
4

3
4
.0

e´
0
8

4
.0

e´
0
5

3
4
.7

e´
0
7

3
.9

e´
0
4

3
2
5
6
3

–
–

–
–

–
–

4
.5

e´
0
8

8
.2

e´
0
5

3
8
.0

e´
0
7

5
.9

e´
0
4

3

23

As in the 2D case, table 4 shows that the approximate relative operator-norm error ea seems relatively
well-controlled by ε, though we observe small growth in N . Similarly, the bound es on the relative error for
the inverse operator again loses a few digits compared to ea due to conditioning. For ε “ 10´3 the number
of CG iterations to convergence grows with N , albeit slowly. For ε “ 10´6, however, ni remains stable.

4.3 Example 3: unit sphere in 3D

As a final example, we move to a more complicated 3D geometry. Letting Gpzq “ 1
4π}z} , we take apxq ” ´1{2,

and bpxq ” cpxq ” 1 on the unit sphere Ω “ S2 to obtain the second-kind boundary integral equation

´
1

2
upxq `

ż

S2

BG

Bny
px´ yqupyq dy “ fpxq, x P S2, (20)

where our kernel is the normal derivative of the Green’s function for the Laplace equation in 3D. This
corresponds to a double-layer potential solution representation for the interior Dirichlet Laplace problem on
the unit sphere, that is, taking

wpxq ”

ż

S2

BG

Bny
px´ yqupyq dy (21)

we have ∆wpxq “ 0 for x inside the unit ball and wpxq “ fpxq on S2.
While it possible to build a periodic quadtree on a 2D parameterization of S2, we treat the discretization

of the sphere as points in R3 and use an octree. We use a centroid collocation scheme to discretize (20),
wherein we represent S2 as a collection of flat triangles and treat all near-field interactions using fourth-
order tensor-product Gauss-Legendre quadrature, where we define near-field interactions as interactions
between triangles separated by a distance less than the average triangle diameter. Note that this leads to an
unsymmetric matrix K. We choose the occupancy parameter nocc “ 256 and np “ 512 random proxy points
as in Example 2.

Timing and memory results for ε “ 10´3 and ε “ 10´6 can be seen in fig. 10 with corresponding data
for RS-S and RS-WS in table 5. For ε “ 10´3, all quantities behave definitively linearly as expected, with
RS-WS again offering a trade-off between runtime and memory usage. For ε “ 10´6, however, we actually
observe sublinear scaling of tf with N , which clearly indicates non-asymptotic behavior. Further, looking
at mf we see that memory usage is not significantly lessened with RS-WS for this example due to the fact
that near-field compression is only mildly effective at this precision level.

In table 6 we provide ea and es for this example as well as a new quantity, ep. The explanation of this
is as follows. First, we choose 16 random sources tyju with }yj} “ 2 and construct the harmonic field

vpxq ”
ÿ

j

Gpx´ yjqqj ,

where each qj is a standard normal random variable. Taking the boundary data fpxq in (20) to be vpxq on
S2, the analytic solution to the interior Laplace boundary value problem is exactly vpxq from uniqueness.
Numerically, we may use (21) to reconstruct v̂pxq « vpxq. Taking 16 random targets tzju with }zj} “ 1{2, we
compute the relative error ep between tvpzjqu and tv̂pzjqu. These results show that both RS-S and RS-WS
both solve the integral equation (20) up to discretization error. We do not provide preconditioning results
for this example, as the linear operator is well-conditioned even without preconditioning.

5 Conclusions

By modifying the recursive skeletonization process of Martinsson & Rokhlin [25] to operate directly on
strongly-admissible structure (i.e., perform only far-field compression), we obtain a new factorization, RS-S,
that is useful for solving integral equations in R2 and R3 both as a medium-accuracy direct solver and as an

24

10
4

10
6

10
8

N

10
1

10
2

10
3

10
4

10
5

10
6

F
ac
to
r
ti
m
e
(s
)

RS-WS

RS-S

10
4

10
6

10
8

N

10
-2

10
-1

10
0

10
1

10
2

10
3

S
ol
ve

ti
m
e
(s
)

10
4

10
6

10
8

N

10
-1

10
0

10
1

10
2

10
3

M
em

or
y
(G

B
)

10
4

10
6

10
8

N

10
1

10
2

10
3

10
4

10
5

10
6

F
ac
to
r
ti
m
e
(s
)

10
4

10
6

10
8

N

10
-2

10
-1

10
0

10
1

10
2

10
3

S
ol
ve

ti
m
e
(s
)

10
4

10
6

10
8

N

10
-1

10
0

10
1

10
2

10
3

M
em

or
y
(G

B
)

Figure 10: Wall clock factor times tf and solve times ts and memory usage mf from Example 3 are shown
for ε “ 10´3 (top row) and ε “ 10´6 (bottom row). Each plot follows the top-left legend, with additional
reference scaling curves OpN logNq and OpNq. Corresponding data are given in table 3. Note that in the
last subplot the curves for RS-S and RS-WS lie nearly on top of each other.

Table 5: Timing and memory results for Example 3

RS-S RS-WS

ε N tf ts mf tf ts mf

10´3

81920 2.2e`2 1.5e´1 1.1e`0 3.3e`2 3.9e´1 6.3e´1
327680 7.8e`2 5.3e´1 4.2e`0 1.2e`3 1.4e`0 2.2e`0
1310720 3.0e`3 2.2e`0 1.7e`1 5.0e`3 5.6e`0 7.8e`0
5242880 1.1e`4 8.1e`0 6.7e`1 2.1e`4 2.0e`1 2.6e`1

10´6

81920 5.5e`2 3.6e´1 3.2e`0 7.8e`2 9.4e´1 2.9e`0
327680 2.0e`3 9.5e´1 1.1e`1 3.0e`3 3.7e`0 9.5e`0
1310720 6.5e`3 3.4e`0 3.8e`1 1.1e`4 1.4e`1 3.4e`1
5242880 2.0e`4 1.3e`1 1.4e`2 3.6e`4 5.4e`1 1.2e`2

25

Table 6: Accuracy results for Example 3

RS-S RS-WS

ε N ea es ep ea es ep

10´3

81920 2.2e´04 2.2e´04 4.0e´04 6.2e´04 6.8e´04 4.8e´04
327680 4.3e´04 4.3e´04 2.2e´04 9.7e´04 9.8e´04 2.6e´04
1310720 7.5e´04 7.5e´04 1.6e´04 1.4e´03 1.4e´03 2.3e´04
5242880 1.1e´03 1.1e´03 1.6e´04 1.9e´03 1.9e´03 2.3e´04

10´6

81920 6.9e´07 6.9e´07 3.8e´04 1.0e´06 1.0e´06 3.7e´04
327680 1.3e´06 1.3e´06 1.8e´04 1.9e´06 1.9e´06 1.8e´04
1310720 1.7e´06 1.7e´06 9.0e´05 2.8e´06 2.8e´06 8.9e´05
5242880 2.2e´06 2.2e´06 4.4e´05 3.9e´06 3.9e´06 4.4e´05

excellent preconditioner for iterative methods. As a high-accuracy direct solver, the performance of RS-S in
3D is less practical due to memory requirements, though 2D performance remains competitive. We further
offer a modification of our approach, RS-WS, which gives a trade-off between runtime complexity and storage
complexity through additional levels of compression.

We apply both factorizations to a number of examples to evaluate performance according to a number of
metrics. While we focus in this paper on solving integral equations, the linear algebraic machinery developed
can be applied much more broadly for general structured matrices (e.g., kernelized covariance matrices [28]).

Compared to other skeletonization-based methods for obtaining linear or nearly-linear complexity factor-
izations such as HIF [22] or the method of Corona et al. [8] (for 2D problems), our approach is competitive,
but more importantly is simpler to implement. In particular, these previous methods based on near-field
compression have obtained better runtime complexity at the cost of increased algorithmic complexity by
introducing additional geometric information beyond the tree decomposition of space. By working directly
with strong admissibility, this becomes unnecessary. For 3D problems, we also observe better runtime per-
formance than HIF, see fig. 9.

In contrast to the IFMM of Coulier et al. [9] and Ambikasaran & Darve [2], which provides a fast
method for solving integral equations based on exploiting strong admissibility through a telescoping additive
decomposition, our method takes the form of a multiplicative factorization. This gives greater flexibility in
that we may compute approximate generalized square-roots or log-determinants — essentially, we get the
benefit of having a true (albeit approximate) triangular factorization. Further, building on the skeletonization
framework allows accelerated compression throughout our algorithm due to the use of a proxy surface as
described in section 3.2.

The most pressing direction for future research is understanding the rank behavior of far-field blocks
that have been subject to Schur complement updates through the skeletonization process as discussed in
section 3.3.1. The efficiency of our factorizations hinges on these blocks remaining low-rank as the algorithm
progresses, which seems to be more-or-less true in our numerical experiments. Another direction of future
research is understanding the additional approximation error introduced through the use of a proxy surface
in section 3.2. In particular, while it follows from the discussion of section 3.2 that an exact ID using proxy
points leads to an exact compression of the far-field interactions, it is not immediately evident how tight a
bound on the relative error in an approximate ID might be attainable when the IDs are no longer exact and
when the discrete approximation to Green’s identity is used.

Finally, due to the simple tree structure, RS-S and RS-WS are both easily parallelizable. For example,
on a regular 2D grid we may use a four-coloring of the boxes on each level as in fig. 11. In this case, we
may perform strong skeletonization with respect to the DOF sets of each brown leaf box in parallel, then
similarly for each blue leaf box and so on. This ordering should also, in principle, allow for adaptation of
fast factorization-updating algorithms such as we described in earlier work [29].

26

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 4 1 2 3 4 1 2

3 4 1 2 3 4 1 2

Figure 11: To parallelize RS and RS-WS efficiently, a four-coloring of the domain (shown) can be used such
that no box is colored the same as its neighbors. All boxes of a given color may be skeletonized independently.
The 3D case is similar, albeit requiring more colors.

Acknowledgments

The authors thank the referees for valuable feedback, particularly on strengthening the statement of the-
orem 3.4. V.M. would also like to thank A. Benson, R. Estrin, Y. Li, B. Nelson, N. Skochdopole, and X.
Suo for useful comments on early drafts of this manuscript, as well as Stanford University and the Stanford
Research Computing Center for providing computational resources and support that have contributed to
these research results.

References

[1] S. Ambikasaran and E. Darve, An OpN logNq fast direct solver for partial hierarchically semi-
separable matrices, SIAM Journal of Scientific Computing, 57 (2013), pp. 477–501, doi:10.1007/s10915-
013-9714-z, http://dx.doi.org/10.1007/s10915-013-9714-z.

[2] S. Ambikasaran and E. Darve, The Inverse Fast Multipole Method, ArXiv e-prints, (2014),
arXiv:1407.1572.

[3] J. Bremer, A fast direct solver for the integral equations of scattering theory on pla-
nar curves with corners, Journal of Computational Physics, 231 (2012), pp. 1879 – 1899,
doi:http://dx.doi.org/10.1016/j.jcp.2011.11.015, http://www.sciencedirect.com/science/article/
pii/S002199911100670X.

[4] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver
for HSS representations via sparse matrices, SIAM Journal on Matrix Analysis and Appli-
cations, 29 (2007), pp. 67–81, doi:10.1137/050639028, http://dx.doi.org/10.1137/050639028,
arXiv:http://dx.doi.org/10.1137/050639028.

[5] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 603–
622, doi:10.1137/S0895479803436652, http://dx.doi.org/10.1137/S0895479803436652.

[6] Y. Chen, A fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimensions,
Advances in Computational Mathematics, 16 (2002), pp. 175–190, doi:10.1023/A:1014450116300, http:
//dx.doi.org/10.1023/A%3A1014450116300.

[7] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compression of low rank
matrices, SIAM Journal on Scientific Computing, 26 (2005), pp. 1389–1404.

[8] E. Corona, P.-G. Martinsson, and D. Zorin, An OpNq direct solver for integral equa-
tions on the plane, Applied and Computational Harmonic Analysis, 38 (2015), pp. 284

27

http://dx.doi.org/10.1007/s10915-013-9714-z
http://dx.doi.org/10.1007/s10915-013-9714-z
http://dx.doi.org/10.1007/s10915-013-9714-z
http://arxiv.org/abs/1407.1572
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2011.11.015
http://www.sciencedirect.com/science/article/pii/S002199911100670X
http://www.sciencedirect.com/science/article/pii/S002199911100670X
http://dx.doi.org/10.1137/050639028
http://dx.doi.org/10.1137/050639028
http://arxiv.org/abs/http://dx.doi.org/10.1137/050639028
http://dx.doi.org/10.1137/S0895479803436652
http://dx.doi.org/10.1137/S0895479803436652
http://dx.doi.org/10.1023/A:1014450116300
http://dx.doi.org/10.1023/A%3A1014450116300
http://dx.doi.org/10.1023/A%3A1014450116300

– 317, doi:http://dx.doi.org/10.1016/j.acha.2014.04.002, http://www.sciencedirect.com/science/

article/pii/S1063520314000529.

[9] P. Coulier, H. Pouransari, and E. Darve, The inverse fast multipole method: using a fast approxi-
mate direct solver as a preconditioner for dense linear systems, ArXiv e-prints, (2015), arXiv:1508.01835.

[10] J. D. Dixon, Estimating extremal eigenvalues and condition numbers of matrices, SIAM Journal on Nu-
merical Analysis, 20 (1983), pp. 812–814, doi:10.1137/0720053, http://dx.doi.org/10.1137/0720053,
arXiv:http://dx.doi.org/10.1137/0720053.

[11] W. Fong and E. Darve, The black-box fast multipole method, Journal of Computational Physics, 228
(2009), pp. 8712 – 8725, doi:http://dx.doi.org/10.1016/j.jcp.2009.08.031, http://www.sciencedirect.
com/science/article/pii/S0021999109004665.

[12] A. Gillman, P. Young, and P.-G. Martinsson, A direct solver with OpNq complexity for integral
equations on one-dimensional domains, Frontiers of Mathematics in China, 7 (2012), pp. 217–247,
doi:10.1007/s11464-012-0188-3, http://dx.doi.org/10.1007/s11464-012-0188-3.

[13] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains, Acta Numerica, 18 (2009), pp. 243–275,
doi:10.1017/S0962492906410011, http://journals.cambridge.org/article_S0962492906410011.

[14] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of computational
physics, 73 (1987), pp. 325–348.

[15] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation
in three dimensions, Acta Numerica, 6 (1997), pp. 229–269, doi:10.1017/S0962492900002725, http:

//journals.cambridge.org/article_S0962492900002725.

[16] M. Gu and S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization,
SIAM Journal on Scientific Computing, 17 (1996), pp. 848–869, doi:10.1137/0917055.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108, doi:10.1007/s006070050015, http://dx.doi.org/10.

1007/s006070050015.

[18] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Computing, 69
(2002), pp. 1–35, doi:10.1007/s00607-002-1450-4, http://dx.doi.org/10.1007/s00607-002-1450-4.

[19] W. Hackbusch and B. Khoromskij, A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems, Computing, 64 (2000), pp. 21–47, http://dl.acm.org/citation.cfm?id=

333825.333827.

[20] M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of
Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[21] K. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive skeletoniza-
tion, SIAM Journal on Scientific Computing, 34 (2012), pp. A2507–A2532, doi:10.1137/120866683,
http://dx.doi.org/10.1137/120866683, arXiv:http://dx.doi.org/10.1137/120866683.

[22] K. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: Integral equations,
Communications on Pure and Applied Mathematics, (2015), doi:10.1002/cpa.21577, http://dx.doi.
org/10.1002/cpa.21577.

[23] J. Kuczyski and H. Woniakowski, Estimating the largest eigenvalue by the power and
Lanczos algorithms with a random start, SIAM Journal on Matrix Analysis and Applica-
tions, 13 (1992), pp. 1094–1122, doi:10.1137/0613066, http://dx.doi.org/10.1137/0613066,
arXiv:http://dx.doi.org/10.1137/0613066.

28

http://dx.doi.org/http://dx.doi.org/10.1016/j.acha.2014.04.002
http://www.sciencedirect.com/science/article/pii/S1063520314000529
http://www.sciencedirect.com/science/article/pii/S1063520314000529
http://arxiv.org/abs/1508.01835
http://dx.doi.org/10.1137/0720053
http://dx.doi.org/10.1137/0720053
http://arxiv.org/abs/http://dx.doi.org/10.1137/0720053
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2009.08.031
http://www.sciencedirect.com/science/article/pii/S0021999109004665
http://www.sciencedirect.com/science/article/pii/S0021999109004665
http://dx.doi.org/10.1007/s11464-012-0188-3
http://dx.doi.org/10.1007/s11464-012-0188-3
http://dx.doi.org/10.1017/S0962492906410011
http://journals.cambridge.org/article_S0962492906410011
http://dx.doi.org/10.1017/S0962492900002725
http://journals.cambridge.org/article_S0962492900002725
http://journals.cambridge.org/article_S0962492900002725
http://dx.doi.org/10.1137/0917055
http://dx.doi.org/10.1007/s006070050015
http://dx.doi.org/10.1007/s006070050015
http://dx.doi.org/10.1007/s006070050015
http://dx.doi.org/10.1007/s00607-002-1450-4
http://dx.doi.org/10.1007/s00607-002-1450-4
http://dl.acm.org/citation.cfm?id=333825.333827
http://dl.acm.org/citation.cfm?id=333825.333827
http://dx.doi.org/10.1137/120866683
http://dx.doi.org/10.1137/120866683
http://arxiv.org/abs/http://dx.doi.org/10.1137/120866683
http://dx.doi.org/10.1002/cpa.21577
http://dx.doi.org/10.1002/cpa.21577
http://dx.doi.org/10.1002/cpa.21577
http://dx.doi.org/10.1137/0613066
http://dx.doi.org/10.1137/0613066
http://arxiv.org/abs/http://dx.doi.org/10.1137/0613066

[24] P.-G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, Journal of
Scientific Computing, 38 (2009), pp. 316–330, doi:10.1007/s10915-008-9240-6, http://dx.doi.org/10.
1007/s10915-008-9240-6.

[25] P.-G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two
dimensions, J. Comput. Phys., 205 (2005), pp. 1–23, doi:10.1016/j.jcp.2004.10.033, http://dx.doi.

org/10.1016/j.jcp.2004.10.033.

[26] P.-G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method in one
dimension, SIAM Journal on Scientific Computing, 29 (2007), pp. 1160–1178, doi:10.1137/060662253,
http://dx.doi.org/10.1137/060662253, arXiv:http://dx.doi.org/10.1137/060662253.

[27] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press,
2000, http://opac.inria.fr/record=b1133154.

[28] V. Minden, A. Damle, K. L. Ho, and L. Ying, Fast spatial Gaussian process maximum likelihood
estimation via skeletonization factorizations, ArXiv e-prints, (2016), arXiv:1603.08057.

[29] V. Minden, A. Damle, K. L. Ho, and L. Ying, A technique for updating hierar-
chical skeletonization-based factorizations of integral operators, Multiscale Modeling & Simula-
tion, 14 (2016), pp. 42–64, doi:10.1137/15M1024500, http://dx.doi.org/10.1137/15M1024500,
arXiv:http://dx.doi.org/10.1137/15M1024500.

[30] X. Pan, J. Wei, Z. Peng, and X. Sheng, A fast algorithm for multiscale electromagnetic problems
using interpolative decomposition and multilevel fast multipole algorithm, Radio Science, 47 (2012),
doi:10.1029/2011RS004891, http://dx.doi.org/10.1029/2011RS004891.

[31] D. A. Sushnikova and I. V. Oseledets, ”Compress and eliminate” solver for symmetric positive
definite sparse matrices, ArXiv e-prints, (2016), arXiv:1603.09133.

[32] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for
large structured linear systems of equations, SIAM Journal on Matrix Analysis and Applica-
tions, 31 (2010), pp. 1382–1411, doi:10.1137/09074543X, http://dx.doi.org/10.1137/09074543X,
arXiv:http://dx.doi.org/10.1137/09074543X.

[33] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm
in two and three dimensions, Journal of Computational Physics, 196 (2004), pp. 591–626,
doi:10.1016/j.jcp.2003.11.021, http://dx.doi.org/10.1016/j.jcp.2003.11.021.

29

http://dx.doi.org/10.1007/s10915-008-9240-6
http://dx.doi.org/10.1007/s10915-008-9240-6
http://dx.doi.org/10.1007/s10915-008-9240-6
http://dx.doi.org/10.1016/j.jcp.2004.10.033
http://dx.doi.org/10.1016/j.jcp.2004.10.033
http://dx.doi.org/10.1016/j.jcp.2004.10.033
http://dx.doi.org/10.1137/060662253
http://dx.doi.org/10.1137/060662253
http://arxiv.org/abs/http://dx.doi.org/10.1137/060662253
http://opac.inria.fr/record=b1133154
http://arxiv.org/abs/1603.08057
http://dx.doi.org/10.1137/15M1024500
http://dx.doi.org/10.1137/15M1024500
http://arxiv.org/abs/http://dx.doi.org/10.1137/15M1024500
http://dx.doi.org/10.1029/2011RS004891
http://dx.doi.org/10.1029/2011RS004891
http://arxiv.org/abs/1603.09133
http://dx.doi.org/10.1137/09074543X
http://dx.doi.org/10.1137/09074543X
http://arxiv.org/abs/http://dx.doi.org/10.1137/09074543X
http://dx.doi.org/10.1016/j.jcp.2003.11.021
http://dx.doi.org/10.1016/j.jcp.2003.11.021

	1 Introduction
	1.1 Background and previous work
	1.2 Contributions

	2 Preliminaries
	2.1 Block-structured elimination
	2.2 Compression via the interpolative decomposition

	3 The strong recursive skeletonization factorization (RS-S)
	3.1 Strong skeletonization
	3.2 The use of a proxy surface
	3.3 Algorithm and complexity
	3.3.1 The general case: first level
	3.3.2 The general case: subsequent levels
	3.3.3 The final factorization
	3.3.4 Complexity

	3.4 Extension: hybrid skeletonization

	4 Numerical results
	4.1 Example 1: unit square in 2D
	4.2 Example 2: unit cube in 3D
	4.3 Example 3: unit sphere in 3D

	5 Conclusions

