
ANALYSIS OF CARRIER’S PROBLEM
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Abstract. A computational and asymptotic analysis of the solutions of Carrier’s problem is
presented. The computations reveal a striking and beautiful bifurcation diagram, with an infinite
sequence of alternating pitchfork and fold bifurcations as the bifurcation parameter tends to zero.
The method of Kuzmak is then applied to construct asymptotic solutions to the problem. This
asymptotic approach explains the bifurcation structure identified numerically, and its predictions of
the bifurcation points are in excellent agreement with the numerical results. The analysis yields a
novel and complete taxonomy of the solutions to the problem, and demonstrates that a claim of
Bender & Orszag [3] is incorrect.
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1. Introduction. In 1970, G. F. Carrier [5, eq. (3.5)] introduced the following
singular perturbation problem

ε2y′′ + 2(1− x2)y + y2 = 1, y(−1) = y(1) = 0, (1.1)

where 0 < ε � 1, and a prime represents d/dx. This remarkably beautiful and
complex problem is discussed in more detail in the textbooks of Carrier & Pearson
[6, p. 197] and Bender & Orszag [3, p. 464]. We briefly review their discussion.

Since (1.1) is singularly perturbed, we expect the solution to comprise an outer
solution valid for 1 − |x| � ε combined with possible boundary layers near x = ±1.
Näıvely setting ε = 0 gives the leading-order outer solution as

yout = x2 − 1±
√

1 + (1− x2)2. (1.2)

For neither choice of sign does yout satisfy the boundary conditions at x = ±1, so there
are indeed boundary layers. In the boundary layer near x = −1 we set x = −1 + εX,
y(x) = yin(X) to give

d2yin
dX2

+ y2in = 1, yin(0) = 0. (1.3)

In order to match with the outer solution, yin must tend to ±1 as X →∞. Bender &
Orszag show that there are no solutions tending to 1, so that the minus sign must be
chosen in the outer approximation (1.2). On the other hand, there are two solutions
of (1.3) which tend to −1 at infinity, namely

yin = −1 + 3 sech2

(
± X√

2
+ tanh−1

(√
2

3

))
. (1.4)
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Fig. 1.1. The four asymptotic solutions with ε2 = 0.00223, generated using the outer approxi-
mation (1.2) and the boundary layer approximations (1.4).

Similarly there are two possible boundary layer solutions near x = 1. Thus it seems
that a matched asymptotic analysis has produced four independent solutions of the
equation. As Bender & Orszag say, “it is a glorious triumph of boundary layer theory
that all four solutions actually exist and are extremely well approximated by the
leading-order uniform approximation” generated from (1.2) and (1.4). These uniform
approximations are shown in Figure 1.1.

However, the story does not end there. Bender & Orszag show that it is also
possible to have a solution with an internal layer near x = 0. Writing x = εX,
y(x) = yin(X) gives

d2yin
dX2

+ 2yin + y2in = 1, (1.5)

with the spike solution

yin = 3
√

2 sech2(2−1/4X +A)− 1−
√

2, (1.6)

where we have matched with the outer solution by requiring that yin → −1 −
√

2 as
|X| → ∞. The constant A (corresponding to a translation in the centre of the spike)
is left undetermined in [3], although it is shown in [15] that it must be zero. Since
this internal spike solution can be combined with any combination of boundary layers
at x = ±1, we have generated another four solutions to (1.1).

One might ask whether it is possible to have more than one internal spike. Bender
& Orszag claim that “for a given positive value of ε there are 4(N + 1) solutions to
(1.1) which have from 0 to N internal boundary layers at definite locations, where N
is a finite number depending on ε”.
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There seems to have been remarkably little work following up on this claim.
MacGillivray et al. [15] considered the solutions with two spikes in detail. They showed
that the spikes must be symmetrically placed about x = 0, and that the separation
between them is O(ε log ε). In view of the rather intricate asymptotic analysis in [15],
it is perhaps not surprising that no attempt has been made to analyze the three spike
solutions.

On the other hand, the asymptotic dependence of the maximum number of spikes
Mmax on ε has been determined. Ai [1] showed that Mmax is O(1/ε), and subsequently
Wong and Zhao [17] showed that

Mmax ∼
⌊
K

ε

⌋
,

where K ≈ 0.4725 and bxc is the greatest integer less than or equal to x. Wong and
Zhao also showed that the number of solutions of (1.1) is between 4Mmax − 3 and
4Mmax.

We also note that Kath has developed a general method which gives a qualitative
understanding of the number and type of solutions to equations such as (1.1) in terms
of slowly varying phase planes [10]. Kath’s conclusions are similar to those of Bender
and Orszag.

In this paper we investigate the claim of Bender & Orszag, both numerically and
asymptotically.

We first apply a powerful new algorithm for computing bifurcation diagrams,
deflated continuation [9], to Carrier’s problem. This computation reveals a striking
and intricate bifurcation diagram, with new solutions coming into existence via an
apparently infinite sequence of alternating pitchfork and fold bifurcations as ε → 0.
Furthermore, its results suggest that the claim of Bender & Orszag is incorrect: for
each fixed value of ε, the number of solutions is divisible by 2, but is not always
a multiple of 4. (However, the proportion of values of ε for which the number of
solutions is not divisible by 4 shrinks rapidly as ε→ 0.)

We then apply the method of Kuzmak [12] to construct asymptotic solutions to
(1.1) with a large number of internal spikes. This method is a generalisation of both
the method of multiple scales and the WKB method, producing a solution in the
form of a slowly modulated fast oscillation. The frequency and amplitude of the fast
oscillation are allowed to vary slowly with position (as in the WKB method), but the
underlying oscillator is nonlinear, so that the oscillations are not simply harmonic. We
will find that this asymptotic approach is able to capture very well the bifurcations
identified numerically, providing a more-or-less complete asymptotic description of
the solutions of (1.1).

2. Numerical analysis and computational results. The central task of bi-
furcation theory is to determine how the number of solutions to an equation changes
as a parameter is varied. The main algorithm used to compute this is the combina-
tion of arclength continuation and branch switching, as invented by Keller in 1977
[11] and implemented in popular software packages such as AUTO [7]. This algo-
rithm is mature and highly successful, but has a significant drawback: it can only
compute that part of the bifurcation diagram connected to the initial data, i.e. it
computes connected components of the bifurcation diagram and cannot “jump” from
one disconnected component to another. Unfortunately, the bifurcation diagram for
Carrier’s problem is indeed disconnected: from any initial datum branch switching
discovers at most four solutions, as we will see shortly. Since we already know from
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Fig. 2.1. Bifurcation diagram for Carrier’s equation (1.1) as a function of the singular pertur-
bation parameter ε. The diagram should be read from right to left, as ε→ 0. For large ε, there are
two solutions; as ε → 0, the system undergoes alternating pitchfork and fold bifurcations (vertical
lines). Green circles denote fold bifurcations; red circles denote pitchfork bifurcations; blue circles
refer to solutions shown in the panels.
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the analysis of Section 1 that at least eight solutions exist for moderate values of ε,
branch switching along ε→ 0 offers only a limited insight into the solutions of (1.1).

In recent work, Farrell, Beentjes & Birkisson have developed an entirely new al-
gorithm for computing bifurcation diagrams, called deflated continuation [9]. One of
the central advantages of deflated continuation is that it is capable of computing dis-
connected bifurcation diagrams, such as that arising in Carrier’s problem1. The main
weakness of branch switching is that it relies on identifying critical points at which
different branches meet; this is what renders it incapable of discovering branches that
do not meet the known data at any point. In contrast, deflated continuation relies
instead on a deflation technique for eliminating known solutions from consideration.
Suppose N regular solutions y1, y2, . . . , yN are known to a discretization of (1.1).
Deflation constructs a new problem residual for Newton’s method with the property
that no initial guess will converge to y1, y2, . . . , yN . By guaranteeing that Newton’s
method will not converge to known solutions, deflation enables the discovery of un-
known branches, even if those branches are not connected to the known data. For
more details, see Farrell et al. [9].

Equation (1.1) was discretized with 5 × 104 standard piecewise linear finite ele-
ments using FEniCS [14] and PETSc [2]. We applied deflated continuation to this
discretization from ε =

√
1/2 to ε = 1/20, with a continuation step of 10−5 in ε2.

Deflation was applied using the H1 norm. All nonlinear systems were solved with
Newton’s method and all arising linear systems were solved with LU factorization.
Once deflated continuation had completed, arclength continuation was applied back-
wards in ε from the solutions found at ε = 1/20. The intricate bifurcation diagram
computed in this way is shown in Figure 2.1.

The algorithm discovers two solutions to (1.1) for ε =
√

1/2 from the initial guess
y(x) = 1; at ε = 1/20, 36 solutions were found. The system undergoes an initial
pitchfork bifurcation at ε ≈ 0.4689, and subsequently alternates between fold and
pitchfork bifurcations. At each bifurcation, two new solutions come into existence,
and thus there are regions of the diagram for which the claim of Bender & Orszag that
the number of solutions is divisible by 4 does not hold. These regions are precisely
the gaps between each fold bifurcation and its subsequent pitchfork. However, these
gaps tend to zero as ε→ 0.

The diagram is highly fragmented; no connected component comprises more than
four solutions, which is why branch switching applied to this problem can never dis-
cover more than four solutions from any single initial datum. We observe that each
connected component is characterized by the number of interior maxima M . The
lowest component comprises a single branch that undergoes no bifurcations, and cor-
responds to M = 0; this branch exists for all ε and is shown in panel 1 of Figure 2.1.
The next component (M = 1) also exists for all ε, and is shown in panel 2 of Figure
2.1. After the pitchfork bifurcation it comprises three solutions, one with an interior
spike but no boundary spikes, one with no interior spike but a boundary spike on the
left (as in Figure 1.1(b)), and one with no interior spike but a boundary spike on the
right (as in Figure 1.1(c)).

The other components do not exist for large ε, and come into existence at fold
bifurcations as ε is reduced (panels 3 and 4 of Figure 2.1). Between each fold and
its subsequent pitchfork bifurcation, the two solutions are symmetric with n local
maxima; both begin with y′(−1) > 0. In one of these solutions the maxima are more

1The other central advantage is that deflated continuation scales to very large discretizations,
which is more relevant to partial differential equations than ordinary differential equations.
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Fig. 2.2. The two solutions for M = 2 at ε2 = 0.07, between the first fold (at ε2 ≈ 0.08135)
and its subsequent pitchfork (at ε2 ≈ 0.05509). The maxima in (a) are more concentrated towards
the centre, whereas (b) has maxima near the boundaries.

concentrated near x = 0, whereas in the other there are maxima near x = ±1. This is
illustrated in Figure 2.2 for M = 2 and Figure 2.3 for M = 3. The symmetry-breaking
pitchfork bifurcation occurs on the branch where the maxima are concentrated near
x = 0 close to (but not exactly at) the value of ε for which y′(±1) = 0. The new
branches consist of solutions where one maximum leaves the centre and approaches
one of the boundaries. This is illustrated in the middle row of panels of Figure 2.1
for M = 2 and Figure 2.4 for M = 3. As ε→ 0, the symmetric solution with maxima
concentrated near the centre tends to a solution with M interior spikes; the symmetric
solution with maxima near x = ±1 tends to a solution with 2 boundary layer spikes
and M−2 interior spikes; the solutions emanating from the pitchfork bifurcation tend
to solutions with 1 boundary layer spike and M − 1 interior spikes. This is illustrated
in the bottom row of panels of Figure 2.1 for M = 2 and Figure 2.5 for M = 3.

There are two further remarks to make regarding these observations. The first
is that the number of interior maxima M does not change through the bifurcations;
hence our observation that each disconnected component is characterized by M . One
consequence of this is that the four solutions we can generate by choosing different
combinations of boundary layers (1.4) for a given number of interior spikes are not
all on the same component of the bifurcation diagram. For example, in Figure 1.1,
solutions (b) and (c) are connected in the bifurcation diagram, but lie on a different
component to solutions (a) and (d), which are themselves on different components.

The second is that close to the bifurcations the oscillations fill the domain. Thus a
boundary layer analysis in which there are a finite number of interior spikes separated
from boundary layers by a spike-free outer region will never be able to capture the
bifurcations. To capture the bifurcations we need to generate asymptotic solutions in
which the interior spikes go all the way to the boundary.

Deflated continuation has successfully revealed an enormous amount of informa-
tion regarding the solutions to (1.1), but it does not explain why the bifurcation
diagram possesses this structure or predict the locations of the alternating fold and
pitchfork bifurcations. Using the intuition we have gained from the numerical results,
we now turn to asymptotic methods to see if we can predict these features analytically.

3. Asymptotic analysis.
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Fig. 2.3. The two solutions for M = 3 at ε2 = 0.028, between its originating fold (at ε2 ≈
0.02953) and its subsequent pitchfork (at ε2 ≈ 0.02466). The maxima in (a) are more concentrated
towards the centre, whereas (b) has maxima near the boundaries. Compare to Figure 2.2, the
corresponding diagram for M = 2.
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Fig. 2.4. The four solutions for M = 3 at ε2 = 0.023, after its pitchfork bifurcation at
ε2 ≈ 0.02466. The two symmetric solutions (a) and (b) lie on the same branch as 2.3a and 2.3b
respectively. The branches (c) and (d) have bifurcated from (a) and are characterized by one of the
interior maxima approaching the boundary. Compare to the middle row of panels of Figure 2.1, the
corresponding solutions for M = 2.
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Fig. 2.5. The four solutions for M = 3 at ε2 = 0.00223. The solutions are labeled as in 2.4.
The symmetric solution with maxima near the centre has M interior layers; the symmetric solution
with maxima near the boundary has 2 boundary layers and M − 2 interior layers; the asymmetric
branches have 1 boundary layer and M − 1 interior layers. Compare to the bottom row of panels of
Figure 2.1, the corresponding diagram for M = 2.

3.1. Asymptotic approximation using Kuzmak’s method. To be able to
predict the bifurcations we have seen in solutions of (1.1) we need to be able to
generate asymptotic solutions in which the interior spikes fill the domain, that is,
solutions which are rapidly oscillating. We construct such asymptotic solutions using
the method of Kuzmak [12].

We need to allow the frequency of the oscillation to vary slowly. Thus (as in the
WKB method) we define the fast scale as X = φ(x)/ε, where the function φ(x) is to
be determined. We then look for solutions y(x,X), treating the slow scale x and the
fast scale X as independent. We remove the indeterminacy this generates, and avoid
secular terms in X, by imposing exact periodicity in X with period 1.

From the chain rule we have

dy

dx
= yx +

φ′

ε
yX ,

d2y

dx2
= yxx +

2φ′

ε
yxX +

φ′′

ε
yX +

(φ′)2

ε2
yXX ,
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where φ′ = dφ/dx, and a subscript denotes partial differentiation. Thus equation
(1.1) becomes

(φ′)2yXX + ε(2φ′yxX + φ′′yX) + ε2yxx + 2(1− x2)y + y2 = 1. (3.1)

We now pose a series expansion in powers of ε:

y ∼ y0 + εy1 + · · · .

At leading order this gives

(φ′)2
∂2y0
∂X2

+ 2(1− x2)y0 + y20 = 1, (3.2)

with y0 periodic in X, with period 1. If (3.2) were a linear equation then the solutions
would be exponentials and our asymptotic method would simply be the WKB method.
The fact that (3.2) is nonlinear means the fast oscillator is not simply harmonic, and
we have to work a little bit harder to describe the oscillations.

Multiplying (3.2) by 2∂y0/∂X and integrating gives

(φ′)2
(
∂y0
∂X

)2

+ 2(1− x2)y20 +
2

3
y30 = 2y0 +A(x),

where the constant of integration, A, depends on the slow scale x. Separating the
variables and integrating again gives

± φ′
∫ y0

0

dy

(A(x) + 2y − 2(1− x2)y2 − 2y3/3)1/2
= X + µ(x). (3.3)

The relevant values of A(x) are those for which the cubic in the denominator has
three real roots, Y0 < Y1 < Y2, say. The cubic is positive for values Y1 < y < Y2.
Periodicity of y0 in X is achieved by integrating the positive square root from Y1 to
Y2 and then the negative square root from Y2 to Y1. Setting the period equal to unity
therefore implies

φ′ =

(
2

∫ Y2

Y1

dy

(A(x) + 2y − 2(1− x2)y2 − 2y3/3)1/2

)−1
. (3.4)

Note2 that φ′ depends on A but not on µ.
We have thus far determined the leading-order solution y0 and the fast scale

of oscillation φ in terms of the two unknown slow functions A(x) and µ(x), which
correspond roughly to the slowly modulated amplitude and phase of the oscillation.
To determine these functions we need to proceed to higher orders in the asymptotic
expansion.

Equating coefficients of ε in (3.1) gives

(φ′)2
∂2y1
∂X2

+ 2(1− x2)y1 + 2y0y1 = −2φ′
∂2y0
∂x∂X

− φ′′ ∂y0
∂X

.

The homogeneous version of this equation is satisfied by both

∂y0
∂A

and
∂y0
∂µ

.

2In the WKB method φ′ would be independent of A.
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Thus, by the Fredholm alternative, in order for there to be a solution for y1 we have
the solvability conditions

2φ′
∫ 1

0

∂2y0
∂x∂X

∂y0
∂A

dX + φ′′
∫ 1

0

∂y0
∂X

∂y0
∂A

dX = 0, (3.5)

2φ′
∫ 1

0

∂2y0
∂x∂X

∂y0
∂µ

dX + φ′′
∫ 1

0

∂y0
∂X

∂y0
∂µ

dX = 0. (3.6)

These equations are our differential equations for A and µ as functions of x.
To enable us to write down these differential equations explicitly, let us define the

function Y (X,x,Φ, A) by

Φ

∫ Y

Y1(A,x)

dy

c(A, x, y)1/2
= X, 0 < X < X∗(A, x,Φ) (3.7)

X∗(A, x,Φ) + Φ

∫ Y2(A,x)

Y

dy

c(A, x, y)1/2
= X, X∗(A, x,Φ) < X < 2X∗(A, x,Φ),(3.8)

and the function Φ(A, x) by

Φ(A, x) =

(
2

∫ Y2(A,x)

Y1(A,x)

dy

c(A, x, y)1/2

)−1
, (3.9)

where

c(A, x, y) = A+ 2y − 2(1− x2)y2 − 2

3
y3, (3.10)

X∗(A, x,Φ) = Φ

∫ Y2(A,x)

Y1(A,x)

dy

c(A, x, y)1/2
. (3.11)

Then y0 = Y (X+µ(x), x,Φ(A(x), x), A(x)). Note that (3.9) gives X∗(A, x,Φ(x,A)) =
1/2 as we would expect, since Φ(A(x), x) = φ′ was chosen to make the period 1 in X.
We now have

∂2y0
∂x∂X

=
∂2Y

∂x∂X
+

∂2Y

∂Φ∂X

(
∂Φ

∂x
+A′

∂Φ

∂A

)
+

∂2Y

∂A∂X
A′ +

∂2Y

∂X2
µ′,

∂y0
∂A

=
∂Y

∂A
+
∂Y

∂Φ

∂Φ

∂A
,

∂y0
∂µ

=
∂Y

∂X
,

φ′′ =
∂Φ

∂x
+A′

∂Φ

∂A
,

and the solvability conditions are

2Φ

∫ 1

0

(
∂2Y

∂x∂X
+

∂2Y

∂Φ∂X

(
∂Φ

∂x
+A′

∂Φ

∂A

)
+

∂2Y

∂A∂X
A′ +

∂2Y

∂X2
µ′
)(

∂Y

∂A
+
∂Y

∂Φ

∂Φ

∂A

)
dX

+

(
∂Φ

∂x
+A′

∂Φ

∂A

)∫ 1

0

∂Y

∂X

(
∂Y

∂A
+
∂Y

∂Φ

∂Φ

∂A

)
dX = 0, (3.12)

2Φ

∫ 1

0

(
∂2Y

∂x∂X
+

∂2Y

∂Φ∂X

(
∂Φ

∂x
+A′

∂Φ

∂A

)
+

∂2Y

∂A∂X
A′ +

∂2Y

∂X2
µ′
)
∂Y

∂X
dX

+

(
∂Φ

∂x
+A′

∂Φ

∂A

)∫ 1

0

(
∂Y

∂X

)2

dX = 0. (3.13)
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Because of periodicity, any terms which are exact derivatives in X will integrate to
zero. Moreover, Y and its derivatives with respect to x, Φ and A are even, while YX
and derivatives with respect to x, Φ and A are odd. Thus in fact equation (3.12)
reduces to

µ′ = 0, (3.14)

so that µ is in fact constant. Since Y is periodic in X with period 1 we may take
µ ∈ [0, 1) without loss of generality. Equation (3.13) can be written as

Φ
∂Y 2

X

∂x
+ Φ

(
∂Φ

∂x
+A′

∂Φ

∂A

)
∂Y 2

X

∂Φ
+ ΦA′

∂Y 2
X

∂A
+

(
∂Φ

∂x
+A′

∂Φ

∂A

)
Y 2
X = 0, (3.15)

where

Y 2
X =

∫ 1

0

(
∂Y

∂X

)2

dX.

Remarkably, eqn (3.15) is simply

Φ
dY 2

X

dx
+

dΦ

dx
Y 2
X =

d

dx

(
ΦY 2

X

)
= 0, (3.16)

so that

ΦY 2
X = constant = k, (3.17)

say. Now, since

Φ2

(
∂Y

∂X

)2

= A+ 2Y − 2(1− x2)Y 2 − 2

3
Y 3,

ΦY 2
X =

1

Φ

∫ 1

0

(
A+ 2Y − 2(1− x2)Y 2 − 2

3
Y 3

)
dX

= 2

∫ Y2(A,x)

Y1(A,x)

(
A+ 2y − 2(1− x2)y2 − 2

3
y3
)1/2

dy = k. (3.18)

This is an implicit solution for A(x), and is equivalent to equation (54) in [17], which
was determined by other means. In fact, it is nothing more than the principle of
adiabatic invariance [13], which states that a trajectory can be approximated by
moving slowly from one closed orbit to another as x varies (closed in terms of the fast
scale X when treating x as constant) in such a way that the enclosed area remains
constant. We see that equation (3.16) follows directly from (3.6) once we realise that
∂y0/∂µ = ∂y0/∂X.

In Fig. 3.1 we show A as a function of x for integer values of k between 1 and 15.
For 0 < k < k1 ≈ 6.78823 the solution (3.18) is valid in the whole domain −1 < x < 1.
However, we will see in §3.2 that for k > k1 there are turning points at x = ±x∗ at
which Φ = 0. For |x| > x∗ the solution will cease to be oscillatory and will instead be
described by the outer solution (1.2). Thus values 0 < k < k1 correspond to solutions
in which the spikes fill the domain, while values k > k1 correspond to solutions in
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-1.0 -0.5 0.0 0.5 1.0

-2

0

2

4

6

8

14

15

Fig. 3.1. A as a function of x for different values of k. The upper and lower curves are A1(x)
and A2(x) respectively. For 0 < k < k1 ≈ 6.78823 the solution A(x) stays between A1 and A2 for
all −1 < x < 1. For k > k1 there are turning points at x = ±x∗ at which A(±x∗) = A1(±x∗).

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 3.2. The function Y (X,x,Φ(x,A(x)), A(x) for k = 5 at x = 0 (bottom), 0.2, 0.4, 0.6, 0.8,
and 1 (top). Because of the leading-order nonlinearity in (1.1), the underlying oscillator (3.2) is
nonlinear, so that the form of the oscillation (and not just the amplitude) varies with position.
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which there is an interior region near x = 0 containing spikes, separated from the
boundary layers by the spike-less outer solution.

In Fig. 3.2 we show Y as a function of X when k = 5 and A is given by (3.18),
for x = 0, 0.2, 0.4, 0.6, 0.8, 1. This illustrates the fact that the form of the oscillation
varies with position, which is due to the leading-order nonlinearity in (1.1), which
causes the underlying oscillator (3.2) to be nonlinear.

We have now determined the leading-order solution, up to the imposition of the
boundary conditions. To summarise, we have

y0 = Y

(
φ(x)

ε
+ µ, x,Φ(x,A(x)), A(x)

)
, φ′(x) = Φ(A(x), x), (3.19)

where Y (X,x,Φ, A) is the function given by (3.7)-(3.8) and

Φ =

(
2

∫ Y2(A,x)

Y1(A,x)

dy

(A+ 2y − 2(1− x2)y2 − 2y3/3)1/2

)−1
,

k = 2

∫ Y2(A,x)

Y1(A,x)

(
A+ 2y − 2(1− x2)y2 − 2

3
y3
)1/2

dy,

where µ and k are constants to be determined by the boundary conditions. Note that
we can choose φ(0) = 0 without loss of generality.

3.2. Turning Points. Before we investigate the imposition of the boundary
conditions to determine the remaining unknown constants, we first discuss in more
detail the turning points that may appear in the solution. These occur whenever
φ′(x) = 0, i.e. Φ(A(x), x) = 0. Looking at (3.9), we see this will happen when
Y0 → Y1, that is, the left-most roots of c(y) coalesce. (We might also expect something
strange to happen when the right-most roots of c(y) coalesce, that is, when Y1 → Y2.
In that case, however, because the range of integration in (3.9) shrinks to zero at
the same rate at which the integrand blows up, Φ remains finite. The case Y1 → Y2
corresponds to the limit in which the constant k → 0.)

Thus, at the turning point, we have a double root of c, so that there is a simulta-
neous root of c and ∂c/∂y. Such a double root occurs when A = A1(x) or A = A2(x)
where

A1(x) =
2

3

(
5− 9x2 + 6x4 − 2x6 + 2(2− 2x2 + x4)3/2

)
,

A2(x) =
2

3

(
5− 9x2 + 6x4 − 2x6 − 2(2− 2x2 + x4)3/2

)
.

When A(x) = A1(x) the left most roots of c(y) coalesce (Y0 → Y1). At A(x) = A2(x)
the right most roots of c(y) coalesce (Y1 → Y2). The functions A1(x) and A2(x) form
the upper and lower boundaries in Fig. 3.1 respectively.

The limiting value of k for which there are no turning points in [−1, 1] and the
oscillations are present all the way to the boundary is given by A(1) = A1(1), that is,
it is the value of k for which the turning points lie at x = ±1. We find this is

k = k1 ≈ 6.78823.

For k > k1 there will be an interior region between the two turning points x = ±x∗
in which the solution is rapidly oscillating (i.e. in which there are spikes), separated
from the boundary layers by the spike-less outer solution (1.2).
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3.3. Boundary conditions. Let us now seek to determine the remaining un-
known constants k and µ by imposing the boundary conditions on our asymptotic
solution. We first look for solutions in which there are no turning points, that is, in
which the Kuzmak approximation we have derived is valid all the way to the boundary.
The conditions y(−1) = y(1) = 0 imply

Y

(
φ(±1)

ε
+ µ,±1,Φ(±1, A(±1)), A(±1)

)
= 0. (3.20)

Now, the function Y (X,±1,Φ(±1, A(±1)), A(±1)) has two zeros in the unit cell 0 <
X < 1 (see Fig. 3.2). Let us denote the smaller by X0; the larger is then given by
1−X0. Then, at leading order, (3.20) gives

φ(1)

ε
+ µ = n±X0,

φ(−1)

ε
+ µ = m±X0, (3.21)

where n, m ∈ Z. These are two equations for the two unknown constants k and µ.
Eliminating φ(1), noting that φ(1) = −φ(−1), gives the four possibilities

n+m = 2µ, 2µ, −2X0 + 2µ, 2X0 + 2µ, (3.22)

corresponding to choosing the signs in (3.21) as +−, −+, ++ and −− respectively.
In the first two cases (which give a symmetric solution) we must have µ = 0 (corre-
sponding to a solution with a minimum at the origin) or µ = 1/2 (corresponding to a
solution with a maximum at the origin). We first analyse these symmetric solutions,
and their associated bifurcations, before returning to consider the non-symmetric so-
lutions.

3.4. Symmetric Solutions. We consider here solutions in which µ = 0 or
µ = 1/2. In this case equations (3.21) reduce to

φ(1)

ε
= n±X0 and

φ(1)

ε
= n+

1

2
±X0, (3.23)

respectively. We need to find the values of k for which one of these equations is
satisfied.

We show in Figure 3.3 the curves

n±X0 (black) and n+
1

2
±X0 (blue)

as a function of k for n in the range 20 to 24. The noses of these curves correspond to
the value of k at which Y = YX = 0 at x = ±1, which means that A(±1) = 0. This
corresponds to

k = k0 =
16× 33/4π3/2

5Γ(1/4)2
≈ 3.08997.

Also shown in Figure 3.3 (green) are the curves φ(1)/ε for ε = 0.01 + 0.004j with
j ranging from −2 to 4. For a given value of ε, the intersections between the cor-
responding green curve and the black and blue curves give solutions of (3.23), and
therefore correspond to symmetric solutions of (1.1). We see that as ε decreases there
is a succession of fold bifurcations as a new pair of intersection points appears near
k = k0.
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4.0 4.5 5.0 5.5 6.0 6.5
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0.0092

0.0096
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0.0104

0.0108

0.0112

0.0116

Fig. 3.3. The curves n ±X0 (black) and n + 1/2 ±X0 (blue) as a function of k for n in the
range 20 to 24. Also shown are the curves φ(1)/ε for values of ε indicated (green). The intersections
between these curves give symmetric solutions of the problem.

Initially, as ε decreases, one of the two new intersection points moves to the
left and one to the right. However, the left-moving point soon reaches the nose of
the blue/black curve, after which both intersection points move to the right, in the
direction of increasing k. Eventually both approach the limiting value k = k1, at which
point a turning point appears near the boundary, and another analysis takes over, since
the boundary conditions should not then be applied to the Kuzmak solution. After
the turning point appears these solutions transition into solutions whose oscillations
do not encompass the whole domain, but are restricted some smaller interval.

In Figure 3.6 we show the figure analogous to Fig. 3.3 for ε = 0.0335. We illustrate
the four intersection points, along with the corresponding asymptotic approximation
of the solutions.

3.4.1. Maximum number of spikes. The number of maxima in each solution
is the number of complete periods in X, which is

φ(1)− φ(−1)

ε
=

2φ(1)

ε
.

Since φ(1) is monotonically decreasing in k (see Fig. 3.3), the largest value of φ(1)
occurs for k = k0. This gives

2φ(1) ≈ 0.472537.

Thus the maximum number of spikes is⌊
0.472537

ε

⌋
where bxc denotes the largest integer less than x, in agreement with the results of
[17].
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3.4.2. Proportion of solutions with oscillations filling the domain. The
description in the introduction indicated that we might gradually add spikes into
the interior of the domain until there is no room to fit any more. Thus we might
have expected that the proportion of solutions containing turning points (i.e. the
proportion containing some spike-free region) should tend to 1 as ε → 0. However,
minimum number of spikes which may be present in a solution which does not have
turning points is given by the minimum value of⌊

2φ(1)

ε

⌋
for k0 < k < k1, which occurs when k = k1, and is⌊

0.415

ε

⌋
.

Only for solutions with fewer spikes will the oscillations not fill the domain. Thus the
proportion of solutions which do not have turning points is approximately 0.12 in the
limit as ε→ 0.

3.4.3. Position of the fold bifurcations. The fold bifurcation is not exactly
at the nose of the blue or black curve in Fig. 3.3, though it approaches it as ε → 0.
At the bifurcation point the green and blue/black curves are tangent, so that

1

ε

dφ(1)

dk
= −dX0

dk
, (3.24)

which must be satisfied at the same time as

2φ(1)

ε
= n− 2X0 (3.25)

(minus sign because the tangency is on the lower branch of the blue/black curve).
Equations (3.24) and (3.25) form two equations for k and ε as a function of n.

We can approximate (3.24), (3.25) in the limit of small ε (large n), taking advan-
tage of the fact that the bifurcation point is close to k = k0. Setting k = k0 + δ we
have

X2
0 ∼ aδ + · · · where a =

dX2
0

dk

∣∣∣∣
k=k0

.

Equation (3.24) gives

− a1/2

2δ1/2
∼ 1

ε

dφ(1)

dk

∣∣∣∣
k=k0

,

so that

δ ∼ aε2

4

(
dφ(1)

dk

∣∣∣∣
k=k0

)−2
Since

φ(1) ∼ φ(1)|k=k0 + δ
dφ(1)

dk

∣∣∣∣
k=k0

+ · · · .
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Fig. 3.4. The values of ε at the fold bifurcations, as a function of n. Equations (3.24) and
(3.25) are valid in the limit ε → 0, corresponding to n → ∞. The first value of n for which a
tangency point exists is n = 4, which corresponds to the third fold bifurcation. Crosses indicate
numerical results, circles the asymptotic approximation.

equation (3.25) now gives

2 φ(1)|k=k0
ε

+
aε

2

(
dφ(1)

dk

∣∣∣∣
k=k0

)−1
∼ n+ aε

(
dφ(1)

dk

∣∣∣∣
k=k0

)−1
Thus

ε ∼
2 φ(1)|k=k0

n+ aε
2

(
dφ(1)/dk|k=k0

)−1 ∼ 2 φ(1)|k=k0
n+

aφ(1)|k=k0

n

(
dφ(1)/dk|k=k0

)−1
≈ 0.472537

n− 0.8344
n

. (3.26)

In Figure 3.4 we show the values of ε at the fold bifurcations as a function of n.
The first value of n for which a tangency point exists is n = 4, which corresponds to
the third fold bifurcation. Although the asymptotic approximation is valid as n→∞,
the agreement with the numerical solution is remarkably good even at small n.

3.5. Non-symmetric solutions. Let us now return to consider the other so-
lutions of (3.21). From (3.22) we see that for non-symmetric solutions we must have
µ = ±X0 (modulo 1) or µ = 1/2±X0 (modulo 1). In each case we find n = −m. For
µ = ±X0 we find that (3.21) becomes

φ(1)

ε
= n. (3.27)

Similarly, for µ = 1/2±X0 we find that (3.21) becomes

φ(1)

ε
= n− 1/2. (3.28)
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Fig. 3.5. The values of ε at the pitchfork bifurcations, as a function of n. Equation (3.29) is
valid in the limit ε → 0, corresponding to n → ∞. Crosses indicate numerical results, circles the
asymptotic approximation.

Using Fig. 3.3 to illustrate these solutions, we see that they correspond to the inter-
section points between the green curves φ(1)/ε and the horizontal lines n and n−1/2.
The value of µ then corresponds to the vertical distance from this intersection point
to the nearest black curve (modulo 1). Each intersection point gives two asymmetric
solutions, corresponding to the two values µ = ±X0 in case (3.27) or µ = 1/2 ±X0

in case (3.28).
In Figure 3.7 we show these intersection points and corresponding µ values for

ε = 0.0335. There are two intersection points, each corresponding to two solutions.
The corresponding asymptotic approximation of the solutions is also illustrated.

When X0 = 0 we find µ = 0 or µ = 1/2, corresponding to a pitchfork bifurcation
at which the non-symmetric solutions bifurcate from one of the symmetric branches.

3.5.1. Position of the pitchfork bifurcations. The pitchfork bifurcation oc-
curs when the intersection point between the green and blue/black curves lies exactly
at the nose of those curves. At that point

X0 = 0 and
2φ(1)

ε
= n. (3.29)

The first equation gives k = k0 ≈ 3.08997. Then φ(1) is determined and the second
equation gives

ε = εn =
2φ(1)

n
≈ 0.472537

n
. (3.30)

In Figure 3.5 we show the values of ε at the pitchfork bifurcations as a function
of n. Although the asymptotic approximation is valid as n→∞, the agreement with
the numerical solution is remarkably good even at small n.
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From (3.26) and (3.30) we see that the separation between the fold and pitchfork
bifurcations is approximately

0.3943

n3

as n→∞, and that the proportion of values of ε for which there are 4N + 2 solutions
rather than 4N solutions therefore shrinks as 3.737ε2 as ε→ 0.

3.6. Solutions with turning points. Thus far we have analysed solutions in
which the Kuzmak approximation is valid all the way up to the boundary, which
enabled us to capture quite well the structure of the bifurcation diagram shown in
Figure 2.1. We now complete our asymptotic analysis by considering those solutions
with turning points, in which the oscillations are confined to an interior region.

Suppose there are turning points at ±x∗ (with x∗ > 0), so that A(x∗) = A1(x∗).
For |x| > x∗ the solution does not oscillate, and (outside the boundary layers) y0 is
simply given by the outer solution (1.2):

yout(x) = −1 + x2 −
√
x4 − 2x2 + 2, |x| > x∗. (3.31)

In this case k is determined (at leading order) by the condition that

∂Y

∂X
= 0 (3.32)

at x = x∗, with Y negative, so that the oscillating solution can join smoothly onto
the non-oscillating solution. Note that continuity in the solution is automatic, since
at the turning point Y = Y1 = Y0, so that Y is a root of both the cubic c(Y ) and also
its derivative. Since, from (3.7)-(3.8), ∂Y/∂X = 0 (and Y is negative) when X = 0,
equation (3.32) gives

φ(x∗)

ε
+ µ = n, −φ(x∗)

ε
+ µ = m. (3.33)

Thus we are forced to choose either µ = 0 or µ = 1/2: the central part of the solutions
is symmetric for all solutions with turning points. Note that

φ′ ∼ a

log(x− x∗) ,

for some constant a as the turning point is approached with the result that the
separation between spikes is O(ε log ε) there, in agreement with the analysis in [15]
on the two spike solution.

As described in the introduction, the outer solution (3.31) does not satisfy the
boundary conditions at x = ±1, where there are boundary layers. A uniform approx-
imation valid for |x| > x∗ is

y ∼ −1 + x2 −
√

2− 2x2 + x4 + 3 sech2

(
± (1− x)

ε
√

2
+ tanh−1

(√
2

3

))

+ 3 sech2

(
± (1 + x)

ε
√

2
+ tanh−1

(√
2

3

))
.

In Figure 3.8 we show the solutions for ε = 0.0335, for which φ(x∗)/ε may take
any integer or half-integer value up to n = 6. The discontinuity in the gradient of
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Fig. 3.6. Symmetric Solutions. The curves n ± X0 (black) and n + 1/2 ± X0 (blue) as a
function of k for n = 6, 7. The green curve is φ(1)/ε with ε = 0.0335. The intersection points,
highlighted, correspond to symmetric solutions of the problem. The lower and upper envelopes of
the individual solutions are the curves Y1(A(x), x) and Y2(A(x), x) respectively.

the solution at x = ±x∗ in these plots is due to the fact that we imposed continuity
of the derivative only at leading order in ε there, using (3.32). Full continuity of the
derivative implies

dyout
dx

=
dY

dx
=

Φ

ε

∂Y

∂X
+
∂Y

∂x
+
∂Y

∂Φ

(
∂Φ

∂x
+
∂Φ

∂A

dA

dx

)
+
∂Y

∂A

dA

dx
,
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which would introduce an O(ε) correction into equations (3.33). Each solution curve
in Figure 3.8 shows four distinct solutions overlaid, corresponding to the four combi-
nations of boundary layers at x = ±1.

These 48 solutions, together with the 8 solutions shown previously in Figures 3.6
and 3.7, make up the 56 solutions to the problem when ε = 0.0335.

4. Conclusion. The computational and asymptotic analysis we have presented
gives a novel and complete taxonomy of the solutions of Carrier’s problem (1.1).

Using deflated continuation we found a rather striking bifurcation diagram, con-
taining an apparently infinite number of mutually disconnected components. Each
component (except for the first two) contains one fold bifurcation, at which two solu-
tions of (1.1) appear, and one pitchfork bifurcation, at which a further two solutions
of (1.1) appear. Solutions on the same connected component have the same number
of interior maxima. For values of ε which do not lie between the fold and pitchfork
bifurcations of a connected component the number of solutions of (1.1) is a multiple
of 4, as claimed by Bender & Orszag [3]. However, between the fold and pitchfork
bifurcations the number of solutions is 4n+ 2 with n ∈ Z.

Our asymptotic analysis used Kuzmak’s method to construct approximate solu-
tions of (1.1). Both the fold and pitchfork bifurcation points were predicted accurately.
We found that the separation between these bifurcation points tends quickly to zero
as ε → 0, so that the proportion of values of ε for which there are 4n + 2 solutions
rather than 4n solutions tends to zero as 3.737ε2 as ε→ 0.

We gave an alternative derivation of the result of Wong and Zhao that the maxi-
mum number of internal maxima is asymptotically⌊

0.472537

ε

⌋
.

Moreover, we found that approximately 12% of solutions of the problem have oscil-
lations which fill the domain. The remaining 88% of solutions have oscillations in an
interior region near x = 0 separated from boundary layers by a non-oscillating outer
solution.

The methods we have used are in no way specific to (1.1). Carrier’s problem
provides a nice example, but any slowly-varying phase plane with closed orbits would
be amenable to our approach.
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[7] E. Doedel and J. P. Kernévez, AUTO: Software for continuation and bifur-
cation problems in ordinary differential equations, tech. report, California Insti-
tute of Technology, 1986.

[8] T. A Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty
Publications, 2014.

[9] P. E. Farrell, C. H. L. Beentjes, and Á. Birkisson, The computation of
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Appendix A. Parameter values of the initial bifurcations.
In the interest of completeness we tabulate the values of ε at which the first four

pitchfork and fold bifurcations occur. The solution and parameter value at which a
simple bifurcation occurs satisfy an augmented system of integro-differential equations
[16]:

F (y, v, ε) =

ε2y′′ + 2(1− x2)y + y2 − 1
ε2v′′ + 2(1− x2)v + 2yv

‖v‖2 − 1

 = 0, (A.1)

where y is the solution at the bifurcation point, v is the eigenfunction in the nullspace
of the Fréchet derivative of the equation, ε is the value of the parameter at the
bifurcation, and ‖ · ‖ denotes the L2([−1, 1]) norm.

As we wish to compute the parameter values to high accuracy, a spectral dis-
cretization was chosen to approximate the solutions of (A.1). We thus employed the
Chebfun system of Trefethen and co-workers [8, 4]. Solving (A.1) can be rather dif-
ficult, and the main art in its solution is the construction of good initial guesses for
(y, v, ε). These were computed as follows.

For each bifurcation, an initial guess (ỹ, ε̃) for the solution and parameter was
acquired from the data produced by deflated continuation. The finite element solu-
tion ỹ was evaluated at 200 Chebyshev points of the second kind and its Chebyshev
interpolant I ỹ was constructed with Chebfun. Carrier’s problem at ε = ε̃ was then
solved with this initial guess, yielding ŷ, to ensure that the first equation of (A.1)
had small residual. The differential operator was linearized at (ŷ, ε̃) to compute its
eigenfunction v̂ with eigenvalue closest to zero; this ensured that the second and third
equations had small residual. The triplet (ŷ, v̂, ε̃) was then supplied as initial guess to
the solver for (A.1). The fold bifurcations typically converged in four or five Newton
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iterations, while the pitchfork bifurcations typically converged in twenty to thirty it-
erations. In all cases Chebfun’s error estimate for the solution of (A.1) was less than
10−10; no further accuracy was possible due to the use of double precision arithmetic.

Connected Computed Asymptotic Relative
component ε estimate error

1 0.46886251 0.472537 0.007837
2 0.23472529 0.236269 0.006574
3 0.15703946 0.157512 0.003012
4 0.11798359 0.118134 0.001278

Table A.1
Computed parameter values for the first four pitchfork bifurcations. The asymptotic estimates

are those of (3.30).

Connected Computed Asymptotic Relative
component ε estimate error

2 0.28522538 0.298545 0.0467
3 0.17186970 0.173608 0.01011
4 0.12421206 0.124634 0.003397
5 0.09762446 0.0977706 0.001497

Table A.2
Computed parameter values for the first four fold bifurcations. The asymptotic estimates are

those of (3.26).

Appendix B. Approximation for large ε. For completeness we give here an
asymptotic approximation to the two solutions which continue to exist when ε is large.
Expanding y in an inverse power series in ε as

y ∼ y0 + ε−2y1 + · · · ,

gives at leading order

y′′0 = 0, y0(−1) = y0(1) = 0,

with solution y0 ≡ 0, indicating that y is not O(1) but must be rescaled in some way.
Expanding

y ∼ ε−2y0 + ε−4y1 + · · · ,

gives at leading order

y′′0 = 1, y0(−1) = y0(1) = 0,

with solution

y0 =
x2 − 1

2
.

This solution has no internal maximum, and is the continuation to large ε of the
solution in panel 1 of Fig 2.1.
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The second solution is found by expanding y as

y ∼ ε2y0 + y1 + · · · ,

to give at leading order

y′′0 + y20 = 0, y0(−1) = y0(1) = 0,

with solution

1 + x =

√
3√
2

∫ y

0

du

(y3max − u3)1/2
,

where ymax, the value of y at x = 0, satisfies

1 =

√
3√
2

∫ ymax

0

du

(y3max − u3)1/2
=

√
3π

2ymax

Γ(4/3)

Γ(5/6)
,

so that

ymax =
3πΓ(4/3)2

2Γ(5/6)2
.

This solution has one internal maximum, and is the continuation to large ε of the
solution in panel 2 of Fig 2.1.
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Fig. 3.7. Non-symmetric Solutions. The curves n ± X0 (black) and n + 1/2 ± X0 (blue)
as a function of k for n = 6, 7. The green curve is φ(1)/ε with ε = 0.0335. The intersection points
of the green curve with integer and half-integer values, highlighted, correspond to non-symmetric
solutions of the problem. The distance of these intersection points to the nearest black curve give
the (signed) value of µ. The lower and upper envelopes of the individual solutions are the curves
Y1(A(x), x) and Y2(A(x), x) respectively.
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Fig. 3.8. Solutions with turning points. The green curve is φ(x∗)/ε with ε = 0.0335 and x∗

satisfying A(x∗) = A1(x∗), shown as a function of k. The intersection points with integer and half-
integer values, highlighted, correspond to solutions of the problem. Each point gives four distinct
solutions, corresponding to the four combinations of boundary layers at x = ±1. The lower and
upper envelopes of the individual solutions are the curves Y1(A(x), x) and Y2(A(x), x) respectively.
Each solution plot shows both boundary layer possibilities at each end. For n = 6 and n = 5.5 the
turning point is in the boundary layer, with the result that our approximation there is inaccurate.


