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1 ANOVA-MOP: ANOVA DECOMPOSITION FOR MULTIOBJECTIVE
2 OPTIMIZATION∗

3 MOHAMMAD TABATABAEI†, ALBERTO LOVISON‡, MATTHIAS TAN§, MARKUS HARTIKAINEN†,

4 AND KAISA MIETTINEN†

Abstract. Real-world optimization problems may involve a number of computationally expensive5
functions with a large number of input variables. Metamodel-based optimization methods can reduce6
the computational costs of evaluating expensive functions, but this does not reduce the dimension of the7
search domain nor mitigate the curse of dimensionality effects. The dimension of the search domain can8
be reduced by functional ANOVA decomposition involving Sobol’ sensitivity indices. This approach al-9
lows ranking decision variables according to their impact on the objective function values. On the basis10
of the sparsity of effects principle, typically only a small number of decision variables significantly affects11
an objective function. Therefore, neglecting the variables with the smallest impact should lead to an12
acceptably accurate and simpler metamodel for the original problem. This appealing strategy has been13
applied only to single-objective optimization problems so far. Given a high-dimensional optimization14
problem with multiple objectives, a method called anova-mop is proposed for defining a number of inde-15
pendent low-dimensional subproblems with a smaller number of objectives. The method allows to define16
approximated solutions for the original problem by suitably combining the solutions of the subproblems.17
The quality of the approximated solutions and both practical and theoretical aspects related to decision18
making are discussed.19

Key words. Multiple criteria optimization, Sensitivity analysis, Metamodeling, Dimensionality re-20
duction, Pareto optimality, Decision making21

AMS subject classifications. 90C29, 90C5922

1. Introduction. Multiobjective optimization problems (MOPs) arise in many23

application domains such as engineering and finance. Their characteristic is the co-24

existence of a number of typically conflicting objective functions. Real-world MOPs25

may contain black-box functions requiring computationally expensive and/or time-26

consuming experiments and/or simulations [55]. Because of the conflict among the27

objectives, MOPs do not usually have a unique optimal solution but several so-called28

Pareto optimal solutions. Mathematically, such solutions are incomparable and in-29

volve different trade-offs among the objectives. Typically, it is the task of a decision30

maker (DM) to identify a preferred solution to be implemented.31

As discussed, e.g., in [38, 39, 40], multiobjective optimization methods are clas-32

sified into interactive and non–interactive methods, and also according to the role of33

the DM. In non–interactive methods, the preference information of the DM either is34

not available or it is given only before or after the solution process. E.g., in a pos-35

teriori methods, a representative set of Pareto optimal solutions is generated to be36

analyzed by the DM. On the other hand, in interactive methods, the DM is asked to37

specify her/his preference information iteratively during the solution process: (s)he38

can exhamine the solutions generated on the basis of her/his preferences and can39
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revise them according to the updated understanding. The interaction with the DM40

is continued until (s)he finds the most preferred solution. An example of preference41

information is a reference point involving aspiration levels representing desirable42

values for objective functions and it is employed, e.g., in the reference point method43

[64].44

When a problem has black box objective functions, their behavior is unknown,45

excluding basic regularity hypotheses. In such cases, heuristic methods may lead to46

satisfactory solutions, but cannot guarantee convergence in a global and local sense.47

Indeed, if the dimension of the decision space is high, a satisfactory exploration48

can only be obtained with an exponentially large number of function evaluations.49

This can be computationally costly even if function evaluations are computation-50

ally inexpensive and becomes virtually impossible if function evaluations involve51

complex simulations, as e.g., in fluid dynamics. Therefore, large regions of the fea-52

sible set may remain unexplored and important parts of the set of Pareto optimal53

solutions may remain undetected even after thousands of function evaluations. This54

phenomenon is known as the curse of dimensionality [66].55

An example of a real-world MOP involving many decision variables and objec-56

tive functions is the design and optimization of a car restraint system [69]. Assessing57

the safety of a car requires several tests estimating different types of injuries suffered58

by the occupants or by pedestrians in case of an accident. Actually, the New Car As-59

sessment Programme (NCAP) tests have tens of injury indicators. The aim of the60

designers is to have as low injury indicators as possible, or at least go under a prede-61

fined threshold. Once the design process has reached a configuration close enough62

to the set of Pareto optimal solutions, improving an objective function value may63

impair some other objective function values. Therefore, bringing all the objective64

functions simultaneously under desired thresholds may be an overwhelming task.65

Once an accurate virtual model of a car, occupants and driving situations has been66

prepared involving aerodynamics, mechanics and biomechanics, it is virtually im-67

possible to get some useful insight in the problem because of the many interdepen-68

dencies. Thus, making a reliable prediction on the model behavior under decision69

variable changes requires decision support.70

The paradigmatic problem described above suggests a possible strategy for tack-71

ling the dimensionality issues. Indeed, the restraint system is built by combining72

subunits that were originally designed to act separately on specific regions of the73

car, i.e., to mitigate the severity of different injures possibly occurring in an accident.74

When these modules are put together, they can interact and produce some extra side75

effects on each other. Nevertheless, the side effects are likely to be of secondary76

importance, therefore it seems possible to disassemble a high-dimensional problem77

with many objectives by grouping together subunits related to similar tasks with-78

out losing effects of primal importance. This decomposition leads to a collection of79

smaller and almost independent subproblems that are tractable with computation-80

ally effective optimization methods, as the domains of the subproblems are easier81

to be explored. Furthermore, it should be easier to get insight on the behavior of82

objective functions as decision variables are varied in their ranges.83

In this paper, we propose a method called anova-mop for defining essentially84

independent low-dimensional multiobjective subproblems starting from a multiob-85

jective optimization problem with many decision variables and objective functions.86

The method is suitable for computationally expensive problems, and can be applied87

either as a non–interactive or an interactive method. In the latter case, when solving88

computationally expensive MOPs, the DM does not need to wait for a long time to89
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see solutions corresponding to her/his preferences. Indeed, at each iteration with a90

DM, (s)he provides his/her preferences in the form of a reference point for a small91

number of objective functions rather all of them at the same time. After solving92

the subproblems (with appropriate optimization algorithms), we describe how to93

re-assemble the solutions to build an approximated solution for the original high-94

dimensional problem. Finally, we discuss the trade–off between the dimensionality95

reduction and the accuracy of the approximation.96

2. Background.97

2.1. Multiobjective optimization. Without loss of generality we consider a real98

vector-valued function f defined on a d-dimensional unit hypercube:99

f : S = [0,1]d −→R
k , x = (x1, . . . ,xd)> 7−→ (f 1(x), . . . , f k(x))>,100101

and denote by102

minimize
x∈S

{f 1(x), . . . , f k(x)},(1)103
104

the associated multiobjective optimization problem (MOP) with k objective functions.105

The set S is called a feasible set in the decision space and x1, . . . ,xd are called decision106

variables or inputs. The space R
k is called an objective space and the scalar-valued107

components f 1, . . . , f k of f are called objective functions or outputs.108

We say that the point x ∈ S (correspondingly f(x)) dominates y ∈ S (f(y)) if for all109

` = 1, . . . , k, f `(x) ≤ f `(y) and for some 1 ≤ h ≤ k, f h(x) < f h(y). Furthermore, a point110

x ∈ S is called a Pareto optimum for problem (1), if there does not exist another point111

x ∈ S which dominates x. If k > 1, usually there are many Pareto optima forming a112

Pareto optimal set in the decision space, denoted by P ⊆ S. The image of P is a Pareto113

frontier denoted by F = f(P ) ⊆R
k .114

2.2. Multiobjective decomposition. One way to deal with high-dimensional115

MOPs is decomposition, i.e., partitioning decision variables and objective functions116

to form a finite number of lower-dimensional subproblems. For computationally in-117

expensive MOPs, decomposition has been studied e.g., in [2, 8, 10, 12, 15, 26, 27,118

35, 46, 61, 71]. In [14], comprehensive theoretical results related to multiobjective119

decomposition are provided. Decision making in the context of computationally120

inexpensive multiobjective decomposition has been studied in [13].121

In engineering design, to solve high-dimensional computationally expensive MOPs,122

multiobjective optimization methods may integrate decomposition approaches such123

as concurrent subspace optimization [52], collaborative optimization [5], integrated124

system synthesis [53] and analytical target cascading [24]. For example, the inte-125

gration of the weighted sum method within the collaborative optimization approach126

and the linear physical programming and the collaborative optimization approach127

have been studied in [59] and [36], respectively. The integration of multiobjective128

optimization methods and the concurrent subspace optimization approach has been129

considered e.g., in [18, 19, 20]. As mentioned in [68], the final output of these meth-130

ods based on the concurrent subspace optimization approach is only one solution. To131

generate a set of solutions, the methods should be rerun with different initial start-132

ing points. For more details see e.g., [27, 29, 28, 30, 43, 51, 56, 58, 60, 67, 71, 70].133

These methods do not study the theoretical connections between the solutions of134

subproblems and the original problem.135
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A common assumption among the above mentioned methods (for both computa-136

tionally inexpensive and expensive MOPs) is that a given problem has already been137

decomposed and information of the connections among the subproblems is avail-138

able. When dealing with computationally expensive functions, the mathematical139

closed forms of objective functions are typically not available [50, 55]. This means140

that for a given input, one should conduct time-consuming experiments and/or sim-141

ulations to get output. Therefore, obtaining information (without proper techniques142

and strategies) which results in decomposing the original problem can be very de-143

manding and time-consuming or impossible. As mentioned earlier, in this paper, we144

introduce a method to obtain information to decompose high-dimensional, compu-145

tationally expensive MOPs and form lower-dimensional simpler subproblems.146

2.3. Metamodeling and curse of dimensionality. An important element in the147

anova-mop method is the use of metamodels for the objective functions. Metamod-148

els are approximating functions defined by using, e.g., polynomial splines, Gaussian149

processes, neural networks, Fourier expansions and many other methods. They are150

also known as response surfaces [4, 66] when used for approximating physical ex-151

periments and as surrogate models or predictors [48] when applied to computer sim-152

ulations. Typically, they are used for relieving the computational cost of complex153

simulations and the resources (or time) costs of physical experiments. (For more154

details, see, e.g., [1, 16, 17, 65, 72] and [55] for a survey.)155

Although metamodels can reduce the cost of function evaluations, the intrinsic156

complexity in high-dimensional decision and objective spaces is not affected, i.e.,157

the curse of dimensionality is not tamed. Indeed, guaranteeing global convergence158

towards optima is exponentially complex with respect to the dimension of the deci-159

sion space, even for single objective optimization (see, e.g., [32, 49]). When we say160

that the complexity of a problem grows exponentially with the number of decision161

variables, we mean that the exploration of a d-dimensional hypercube by means of a162

full factorial design with m levels (i.e., discretizing each variable range to m equally-163

spaced sections) in each variable requires md points [3].164

Furthermore, the exploration and representation of the Pareto frontier also suf-165

fers from the high dimension of the objective space. The Pareto frontier is usually a166

(k − 1)-dimensional object [31]. Even if it is approximated with a satisfactory accu-167

racy, it is impossible to visualize it in the Euclidean space R
k when k > 4.168

2.4. Sparsity of effects, reducibility and decomposability. If possible, the di-169

mensions of the problem could be decreased by reducing the number of variables170

and objectives. We assume that the problem designers have not introduced spurious171

objectives that increase the problem complexity without bringing essential informa-172

tion. As objectives are usually in conflict with each other, especially close to the173

Pareto optimal points, we assume that there are no redundant objective functions.174

As far as decision variables are concerned, the situation is different. Indeed,175

along with the curse of dimensionality, there is a complementary phenomenon known176

as the sparsity of effects principle ([3], [66, p.173]). It states that in typical cases, i.e.,177

for commonly encountered real-world functions, there are only a limited number of178

decision variables that are responsible for the largest part of a function variation.179

Roughly we can say that 80% of the variance of a function is due to 20% of the deci-180

sion variables. This 80− 20 empirical rule, popular for a wide range of phenomena,181

is also known as the Pareto principle [44]. In this paper, we assume this principle182

holds, i.e., that a large fraction of the decision variables of each objective function183

can be neglected without losing essential information. From now on, we adopt this184
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Figure 1: (a) Incidence matrix M. (b) A decomposition corresponding to M in (a).

assumption.185

If we can neglect 80% of the decision variables in each objective function, we186

have a large probability that many variables can be neglected in all the objectives at187

the same time. This leads to the definition of an approximated MOP with the same188

number of objectives but with a smaller number of decision variables. We call such189

problems reducible.190

On the other hand, e.g., in the example of the car restraint system, a variable191

that is not important for one objective can be very important for another objective.192

So if every variable is important for at least one objective function there are no neg-193

ligible variables in the whole problem. This hinders the possibility of reducing the194

number of variables overall, but enables grouping objectives that depend strongly195

on the same variables. In that case, essentially independent blocks of objectives and196

variables can appear, transforming the original high-dimensional problem to a col-197

lection of lower-dimensional subproblems. We call such problems decomposable.198

In the literature, the possibility of exploiting decomposition in multiobjective199

optimization has been explored for at least thirty years (see, e.g., [2, 15, 26, 27, 71]).200

Comprehensive mathematical results and a literature review are provided in [13, 14].201

Usually, a decomposition is given a priori along with the problem definition. How-202

ever, this is not usually possible when objective functions are based on physical203

experiments or complex computer simulations. In the next section, by means of204

ANOVA, we propose a method to detect the possible decomposable or reducible205

structure in black box functions. We start by giving some definitions.206

Definition 1. Let the incidence matrix M = [m`i ], with 1 ≤ ` ≤ k and 1 ≤ i ≤ d,207

be defined as m`i = 1, if function f ` does depend on variable xi and m`i = 0, if function208

f ` does NOT depend on variable xi . If m`i = 0, the variable xi is called inactive for the209

objective f `. Otherwise, it is active.210

Definition 2. If there exists at least one index i, 1 ≤ i ≤ d such that m`i = 0 for all211

` ∈ {1, . . . , k}, problem (1) is said to be reducible.212

Figure 1(a) depicts the incidence matrixM for a MOP with k = 8 and d = 8, where the213

rows correspond to objective functions and the columns to decision variables. The214

black and white squares represent matrix entries with values 1 and 0, respectively.215

We first define composition and then the decomposability of problems.216
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Definition 3. Let f(1) : [0,1]d1 →R
k1 and f(2) : [0,1]d2 →R

k2 . The function217

218

f(1) ⊗ f(2) : [0,1]d1+d2 −→R
k1+k2 , f(1) ⊗ f(2)(x1, . . . ,xd1+d2

) :=219 (
f

(1)
1 (x1, . . . ,xd1

), . . . , f (1)
k1

(x1, . . . ,xd1
), f (2)

1 (xd1+1, . . . ,xd1+d2
), . . . , f (2)

k2
(xd1+1, . . . ,xd1+d2

)
)>

220
221

is called the composition of f(1) and f(2).222

Definition 4. Problem (1) is decomposable if, after a reordering of variables and223

objectives, there exist two subproblems with f(1) and f(2) such that f = f(1) ⊗ f(2).224

The following proposition is straightforward.225

Proposition 5. A problem is decomposable if and only if226

1. there exist two subsets of indices D1,D2 ⊆ {1, . . . ,d} and O1,O2 ⊆ {1, . . . , k} such227

thatD1∪D2 = {1, . . . ,d} andD1∩D2 = ∅ andO1∪O2 = {1, . . . , k} andO1∩O2 = ∅.228

2. m`i , 0 if and only if (`, i) ∈O1 ×D1 or (`, i) ∈O2 ×D2.229

Remark 6. M is reducible if it has a full column of zeroes and it is decomposable230

if rows and columns can be reordered such that the matrix becomes block-diagonal. To231

be decomposable the number of blocks must be at least two. To each block corresponds a232

subproblem of the original MOP, with a smaller number of variables and objectives. As233

shown in Figure 1(b), e.g., the first subproblem contains the objective functions f 1, f 4 and234

f 7 and involves the decision variables x3,x6 and x8. To find the blocks of the decomposition235

we consider the matrix M as the incidence matrix of a directed bipartite graph with two236

lists of d and k nodes, where there exists a connection from the node i of the first list to237

the node ` of the second list if m`i = 1. The matrix has two or more blocks if the graph has238

two or more connected components. The connected components of the graph are found by239

a breadth first search.240

Proposition 7. To be decomposable, problem (1) must have at least k + d − 2 entries241

with value 0 in M.242

Let us assume that we have a decomposable MOP as in Definition 4 and let243

d1,2 = card(D1,2) and k1,2 = card(O1,2). After reordering the variables we can assume244

that D1 = {1, . . . ,d1} and D2 = {d1 + 1, . . . ,d} and O1 = {1, . . . , k1} and O2 = {k1 + 1, . . . , k}.245

We denote y = (x1, . . . ,xk1
) and z = (xk1+1, . . . ,xk), such that x = (y,z) ∈ [0,1]d . Let π1,2 :246

R
k →R

k1,2 be canonical projections, i.e., π1(f 1, . . . , f k) = (f 1, . . . , f k1 ) andπ2(f 1, . . . , f k) =247

(f k1+1, . . . , f k). We can then denote subproblems with f(1) and f(2) as follows:248

f(1) : [0,1]d1 −→R
k1 ,

y 7−→ π1(f(y,z)),

f(2) : [0,1]d2 −→R
k2 ,

z 7−→ π2(f(y,z)),
249

250

where y ∈ [0,1]d1 and z ∈ [0,1]d2 are vectors, f 1, . . . , f k1 being independent of z and251

f k1+1, . . . , f k independent of y.252

There is a straightforward relation between the Pareto optimal sets and frontiers253

of the original MOP and those of the subproblems with f(1) and f(2). The following254

result has been partially presented in [14].255

Theorem 8. Let us denote the sets of Pareto optima in the decision and objective256

spaces of the first and the second subproblems by P1,2 and F1,2, respectively. Then, P =257

P1 × P2 ⊆ [0,1]d1+d2 = [0,1]d and F = F1 × F2 ⊆ R
k1+k2 = R

k , where × stands for the258

Cartesian product.259
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Proof. Let us assume that x = (y,z) ∈ P1 × P2 is not a Pareto optimum for f. Then260

x must be dominated by a different point x ∈ P , i.e., f `(x) ≤ f `(x) for all `, 1 ≤ ` ≤ k,261

and there exists h such that f h(x) < f h(x). The index h must be either in D1 or in D2.262

Without loss of generality we assume that h ∈ D1. Then y < P1, which contradicts263

with the assumption. So, we must have P1 × P2 ⊆ P . Similarly, we assume that x ∈ P264

but not x = (y,z) ∈ P1 × P2. Then, without loss of generality, we say that y < P1.265

Therefore, there exists y ∈ [0,1]d1 dominating y, i.e., for some 1 ≤ h ≤ k, we have266

f h(y) < f h(y), and f `(y) ≤ f `(y) for all the remaining ` ∈ D1. Thus (y,z) dominates267

(y,z) = x for f, therefore, x is not a Pareto optimum for f, which is a contradiction.268

2.5. Sensitivity analysis with functional ANalysis Of VAriance. So far, we269

have assumed that information about active and inactive variables is known a priori.270

However, no complete knowledge of the functional behavior of the objectives is usu-271

ally available, unless they are given in an explicit closed form. On the contrary, we272

often have to deal with black box functions. Therefore, we need a systematic method273

for determining how sensitive an objective function is to variables.274

Detecting which variables are important and which are not, is called global sen-275

sitivity analysis, and one of the most widely used methods is the functional ANOVA276

decomposition [47], where ANOVA stands for ANalysis Of VAriance.277

Let us consider a single objective function in (1), f ` (1 ≤ ` ≤ k) and denote it by278

g : [0,1]d →R, g(x) = g(x1, . . . ,xd) := f `(x1, . . . ,xd). As suggested by Sobol’ and Welch1279

we adopt sensitivity indices, main effects and interactions to assess the sensitivity of280

an objective function to individual variables or to combinations of variables. This281

analysis is built upon an ANOVA-type decomposition of g. It is a statistically based,282

hierarchically ordered, finite expansion of g. It is analogous to Taylor and Fourier283

expansions in the sense that the first terms of the expansion should be simple in284

form and offer a reasonable approximation of the original function under suitable285

conditions. Given that the terms in the expansion are computed by averaging, the286

considered form of the feasible set D = [0,1]d simplifies definitions and computa-287

tions, without being restrictive.288

We assume that g is square integrable and denote the overall mean of g(x) by289

g0 :=
∫

[0,1]d g(x)dx =
∫

[0,1]d g(x1, . . . ,xd)dx1 . . .dxd . Sobol’ shows that there exists a290

unique decomposition291
292

(3) g(x1, . . . ,xd) = g0 + g1(x1) + · · ·+ gd(xd)︸                  ︷︷                  ︸
main effects

+293

+ g1,2(x1,x2) + · · ·+ gd−1,d(xd−1,xd)︸                                    ︷︷                                    ︸
(2nd order) interactions

+ . . .294

· · ·+
∑

1≤i1<i2<···<is≤d
gi1,...,is (xi1 , . . . ,xis )︸                                  ︷︷                                  ︸

(sth order) interactions

+ · · ·+ g1,...,d(x1, . . . ,xd).295

296

where the component functions gi1,...,is have a zero mean, i.e.,297 ∫ 1

0
gi1,...,is (xi1 , . . . ,xis )dxi = 0, for any i = i1, . . . , is,(4)298

299

1See [47] for a summary. For the exposition of this topic we follow [48]. See also [11, 54, 57]
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and the components are L2-orthogonal, i.e., if (i1, . . . , is) , (j1, . . . , jt), then300

(5)
∫

[0,1]d
gi1,...,is (xi1 , . . . ,xis )gj1,...,jt (xj1 , . . . ,xjt )dx1 . . .dxd = 0.301

The components gi1,...,is are defined iteratively, starting from the main effects:302

(6) gi(xi) :=
∫ 1

0
. . .

∫ 1

0
g(x1, . . . ,xd)dx−i − g0,303

and proceeding with the interaction effects of variables xi and xj :304

(7) gi,j (xi ,xj ) :=
∫ 1

0
. . .

∫ 1

0
g(x1, . . . ,xd)dx−(i,j) − g0 − gi(xi)− gj (xj ),305

where dx−i denotes integration over all variables except xi and dx−(i,j) denotes inte-306

gration over all variables except xi and xj . The main effect of xi represents the mean307

behavior of the function g when xi is varied and all the other variables are averaged.308

Interactions as gi,j , on the other hand, represent what happens to g when xi and xj309

are varied accordingly or conversely, and the other variables are averaged. The plots310

of main effects and interactions are usually very informative, at least in a qualitative311

sense.312

We obtain quantitative indicators of sensitivity by computing variance based in-313

dices from the expansion (3). Total variance V and partial variances Vi1,...,is are defined314

as2315

(8) V := V ar(g) =
∫

[0,1]d
g2(x)dx− g2

0 , Vi1,...,is :=
∫

[0,1]s
g2
i1,...,is

(xi1 , . . . ,xis )dxi1 . . .dxis .316

By squaring and integrating both sides of (3), because of orthogonality (5), we obtain317

V =
∑d
i=1Vi +

∑
1≤i<j≤d Vi,j + · · · + V1,...,d , and can define sensitivity indices of the sth318

order of g to the variables xi1 , . . . ,xis , as319

(9) Si1,...,is :=
Vi1,...,is
V

(
Si :=

Vi
V
, sensitivity index of the first order

)
.320

We define the total sensitivity to xi as the sum of all sensitivity indices involving it as321

Ti = Si +
∑
j,i Si,j + · · ·+ S1,2,...,d .322

Example 9. To illustrate the ANOVA method, let us consider the function f (x1,x2) :=323
x1
2 −

x2
1

4 + sin
(

3x1
7

)
+ 1

30 (x2 − 5)2 sin
(
x1
50 − 4x2

)
. As the function is in a closed form, it is324

possible to explicitly compute the main effects and interactions. We have f0 � −0.91, and325

f1(x1) and f2(x2) are plotted in Figure 2(b) and (c). It seems that the ANOVA expansion326

truncated at the first order, i.e., f0 + f1(x1) + f2(x2) is a very good approximation. The327

remainder f1,2(x,y) = f (x,y) − (f0 + f1(x1) + f2(x2)) is plotted in (d). The total variance,328

the partial variances, the sensitivity indices and the total sensitivity indices are reported329

in Table 1.330

It is clear that when Ti = 0, xi does not affect g and the corresponding entry331

m`i in the incidence matrix is 0. Otherwise, we set m`i = 1. So, we have described a332

2In this subsection, g2 means g to the power 2. Note that we do not have to subtract the squared mean
of gi1 ,...,is because the mean is zero (4).
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V and Vi Si Ti
f (x1,x2) 3.57615 1.
f1(x1) 2.95382 0.825977 0.826211
f2(x2) 0.621495 0.173789 0.174023

f1,2(x1,x2) 0.00083535 0.000233589

Table 1: Variances and indices of Example 9.

-3 -2 -1 0 1 2 3

-6

-4

-2

0

2

x1

f 0
+
f 1
(x
1
)

(a) (b)

-3 -2 -1 0 1 2 3

-6

-4

-2

0

2

x2

f 0
+
f 2
(x
2
)

(c) (d)

Figure 2: Illustration of Example 9. (a) Plot of the function f . (b-c) Plots of the main effects
f1(x1) + f0 and f2(x2) + f0 (dark line – red in the online version) and values obtained as the
other variable is varied. (d) Plot of the interaction of the second order f1,2(x,y), equal to
f (x1,x2)− (f0 + f1(x1) + f2(x2)) (color available online).

method for computing an incidence matrix and, thus, for deciding whether a MOP333

is decomposable at least if it is possible to compute exactly the integrals in (6), (7)334

and (8).335

The integrals can be too difficult to compute exactly or the incidence matrix may336

not have enough zeroes to be decomposable. Nevertheless, there exist effective and337

affordable numerical estimates for Tis and often a large part of the entries of the338

incidence matrix can be small (in a suitable sense). We need therefore a method339
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for dealing with MOPs which are not exactly decomposable but only approximately340

decomposable.341

2.6. Sensitivity matrix. In general, there is no evident reason why a particular342

entry of the incidence matrix M should be zero. Therefore, we cannot exclude a343

priori the possibility that M could be fully non-zero.344

Nevertheless, according to the already mentioned sparsity of effects principle, de-345

cision variables do not usually have the same impact on the values of the objective346

functions, and the Pareto principle may hold. In other words, there may be a small347

number of decision variables that are responsible for the largest part of the effects348

observed and thus, it is reasonable to neglect the remaining variables. Neglecting the349

variables with a limited impact on the objective functions values leads to an auxiliary350

approximated problem which is decomposable.351

Next we review a selection of numerical methods for estimating the total sensi-352

tivity indices Ti in (9). As already mentioned, computing Tis is a matter of estimating353

integrals over the domain S. This can usually be approached in one of the follow-354

ing ways. Integrals can be estimated by the Monte Carlo method [21, 41, 54], which355

usually is reliable and universally applicable, although it requires large samples of356

function evaluations. Because this may not be affordable for computationally ex-357

pensive functions, one can use Latin Hypercube Sampling which samples at specific358

points to allow a faster convergence of the integrals when compared to random sam-359

ples [37].360

Alternatively, a moderately large sample of function evaluations can be em-361

ployed to construct metamodels for the objective functions. There are many methods362

for selecting the points to evaluate the objective functions. While most are of a space-363

filling type, there are methods that adapt to the function complexity (see [33, 34] for a364

summary). Then integrals of the metamodels can be estimated again by Monte Carlo365

or, if the metamodels have a suitable formulation, integrated analytically with a neg-366

ligible computational cost. This is the case of the Polynomial Chaos method [57, 63]367

where an objective function is expanded in a series with a basis of orthogonal poly-368

nomials. This method has also been applied to robust multiobjective optimization369

[45]. Independently of the method chosen, the estimated total sensitivity indices T `i370

are collected in a sensitivity matrix SM := [T `i ], ` ∈ {1, . . . , k} and i ∈ {1, . . . ,d}.371

3. The anova-mop method.372

3.1. Approximated problem. To develop the anova-mop method, we consider373

the sensitivity matrix SM and we fix a threshold value δ > 0.374

Definition 10. Let δ > 0. The function fδ : [0,1]d →R
k :375

(10) x`i :=

xi if T `i ≥ δ,
1
2 if T `i < δ,

f
`
δ(x1, . . . ,xd) := f `(x`1, . . . ,x

`
d),376

is referred to as the approximated function of f, while the corresponding MOP377

(11) minimize
x∈S

{f 1
δ(x), . . . , f

k
δ(x)},378

is the approximated problem (MOP) of (1).379

In other words, for every objective function f `, 1 ≤ ` ≤ k, we consider as active380

variables only those xi for which T `i ≥ δ. The remaining variables are fixed as 1
2 .381
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Figure 3: (a) An example of a total sensitivity matrix (SM). The bar shows the range of the
total sensitivity indices. (b) A reduced incidence matrix Mδ corresponding to a threshold
value δ = 0.25.

The choice of setting the neglected variables to the midpoint 1
2 of the range is non-382

restrictive and any point in the range [0,1] can be chosen in (10). In what follows,383

we write f instead of fδ if there is no ambiguity. The incidence matrix Mδ for the384

approximated problem is then Mδ :=
[
m`i

]
`,i

with m`i = 1 if T `i ≥ δ and m`i = 0 if385

T `i < δ.386

3.2. δ-reducible and δ-decomposable problems. Let a MOP be given with sen-387

sitivity matrix SM. It is clear that larger threshold values δ imply approximated388

problems with a sparser incidence matrix Mδ, because more variables are neglected389

in the approximated objective functions f `. If Mδ is sparse enough, the correspond-390

ing approximated problem is reducible or decomposable.391

Definition 11. Let f, δ, f, SM and Mδ be as above. We say that problem (1) is δ-392

reducible if the incidence matrix Mδ is reducible and the problem is δ-decomposable if393

Mδ is decomposable.394

It is obvious that the threshold δ cannot be larger than a certain value395

(12) ω = min
`=1,...,k

max
j=1,...,d

(T `j ),396

because with higher values some of the objective functions will have no active vari-397

ables. In that case, some of the objective functions will be excluded and we do not398

want this to happen.399

Figure 3(b) illustrates a reduced incidence matrixMδ obtained from the sensitiv-400

ity matrix SM in Figure 3(a) with δ = 0.25. (For example, for f 3, T 3
j , j = 3,4,6,8, are401

smaller than the threshold.) Therefore, in the corresponding approximated prob-402

lem, the decision variables xj , j = 3,4,6,8, are treated as inactive for f 3 and fixed to403
1
2 . Once the reduced incidence matrix Mδ is formed, the decomposability is assessed404

by using a decomposition method such as [6]. If Mδ has too many active entries to405

be decomposable, the threshold value δ is raised and Mδ is recomputed. If neces-406

sary, the value of δ is raised again until the matrix obtained is sparse enough to be407

decomposable allowing to define the approximated problem fδ.408

It is not needed to test infinite values of δ. Indeed, it is sufficient to sort in409

an increasing order the values of the sensitivity indices T `j for all ` ∈ {1, . . . , k} and410

j ∈ {1, . . . ,d} and test the values of δ from the (n + k − 2)th position to the largest411

among the values smaller than ω. This is because of Proposition 7 and the reason412

explained above.413
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Thus, by raising sufficiently the value of the threshold we are likely to obtain414

a decomposable approximated problem, amenable to our analysis. Therefore, the415

question now is how much in accuracy we lose by gaining in decomposability.416

3.3. ε-approximations of Pareto optimal sets and frontiers. An important ques-417

tion in any optimization involving metamodels is how good the approximations of418

the optimal sets obtained by optimizing the approximated functions are. There is419

a (usually tacit) assumption that the operations of optimizing and approximating420

do commute, but this holds only if the functions behave well (in a suitable sense).421

Indeed, theoretical results of convergence can only be achieved by assuming some422

regularity of the functions, usually in the form of the existence of a global Lipschitz423

constant.424

Definition 12. We say that f is an ε-approximation of f, if and only if
∣∣∣f(x)− f(x)

∣∣∣ <425

ε for all x ∈ [0,1]d .426

In what follows, we assume that we have sampled the feasible set with N points427

{xn, n = 1, . . . ,N }, and that the maximum radius of a ball not containing sample points428

is ρ := maxx∈D,n=1,...,N |x− xn| > 0.429

Theorem 13. Let f : D → R be globally Lipschitz with constant L > 0. Let f be430

an interpolation with the same or a smaller Lipschitz constant, defined on the dataset431

{(xn, f (xn)), n = 1, . . . ,N }. Then f is an ε-approximation for f with ε = 2Lρ.432

Proof. For every x ∈ D there exists xn such that |x− xn| ≤ ρ. Thus
∣∣∣f (x)− f (x)

∣∣∣ =433 ∣∣∣f (x)− f (xn) + f (xn)− f (x)
∣∣∣ ≤ ∣∣∣f (x)− f (xn)

∣∣∣ + |f (x)− f (xn)| ≤ L |x− xn|+ L |x− xn| = (L+434

L) |x− xn| ≤ 2Lρ, because for any interpolating method f (xn) = f (xn).3435

Under the given hypothesis, the Pareto optimal set of problem (1) can be approxi-436

mated by the Pareto optimal set of the approximated problem. We give below more437

precise definitions and results.438

Definition 14. Following [25, 62], for a tolerance ε > 0, x ε-dominates y if and439

only if for all ` ∈ {1, . . . , k}, f `(x) ≤ f `(y) + ε, and there exists an index ¯̀ ∈ {1, . . . , k} such440

that f ¯̀(x) < f ¯̀(y) + ε.441

Definition 15. Let P ⊂ [0,1]d be the Pareto optimal set for problem (1). For ε > 0,442

the set P ⊂ [0,1]d is called a Pareto optimal set approximation (or an ε-Pareto optimal443

set), if and only if for all x ∈ S, there exist x ∈ P such that x ε-dominates x [42]. The image444

f(P ) of the Pareto optimal set approximation is called a Pareto frontier approximation445

(or an ε-Pareto frontier ) for [42].446

Theorem 16. If f is an ε-approximation for f, then the Pareto optimal set for f is an447

ε-Pareto optimal set for (1).448

Proof. Let x ∈ P , then f(x) < f(x) + ε because f is an ε-approximation of f. If x is449

not a Pareto optimum for f, then there exists x ∈ P such that x dominates x. Thus x450

ε-dominates x for f.451

Remark 17. The converse also is true, i.e., the Pareto optimal set P is an ε-approximation452

of the Pareto optimal set of the approximated MOP, because the above proof works also453

swapping the roles of f and f.454

3One should note that not all metamodels have controllable Lipschitz constants. However, one can
define such metamodels, e.g., considering a Delaunay tessellation of the domain based on the sample
points, and using linear interpolations on the simplices.
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f1

f2

f1

f2

(a) (b)

Figure 4: (a) Pareto frontier (the thick curve — orange in the online version) and the Pareto
frontier approximation (the dark dot — red online) for a bi-objective optimization problem.
The light strips (green online) represent the tolerance zone of width 2ε, where the Pareto
frontier should be located for the ε-approximation to be acceptable. (b) If the functional
dependence is not enough weak to be neglected, the Pareto frontier violates the tolerance
zone. Pareto optimal sets are traced by singular continuation [31, 32] (color available online).

A straightforward consequence of the previous theorem and remark is that if (1) is455

δ-decomposable and the approximation is an ε-approximation, then P has a special456

form of the Cartesian product of the Pareto optimal sets of the subproblems, and P457

is ε-dominated by the Cartesian product. In particular, the Pareto frontier f(P ) is458

contained in a set of a special form.459

Corollary 18. If problem (1) is δ-decomposable and fδ is an ε-approximation of f460

with ε,δ > 0, then the Pareto frontier of problem (1) is contained in a tolerance zone:461 ⋃
y∈P (1)

z∈P (2)

{
(u1,u2) :

(∣∣∣∣u1 − f
(1)

(y)
∣∣∣∣ < 2ε, u2 > f

(2)
(z)− 2ε

)
or

(∣∣∣∣u2 − f
(2)

(z)
∣∣∣∣ < 2ε,u1 > f

(1)
(y)− 2ε

)}
.462

Remark 19. For bi-objective δ-decomposable problems with continuous objective func-463

tions, the Pareto frontier approximation is a single solution because of the Weierstrass the-464

orem. In non-degenerate cases, the Pareto frontier is a curve. In the assumption of Corol-465

lary 18, the tolerance zone is the union of two orthogonal half-infinite strips of width 2ε,466

as illustrated in Figure 4(a). In (b), the approximated problem is not ε-accurate, and the467

Pareto frontier violates the tolerance zone.468

3.4. δ-Decomposability versus ε-accuracy through Lipschitz constants. We469

know that for having a sufficiently large number of zero entries in the incidence470

matrix Mδ to guarantee the δ-decomposability of a problem we must use large val-471

ues of δ. Nevertheless, large values of δ mean that when building the decomposable472

problem we have to neglect variables with not so small sensitivity indices. There-473

fore, a δ-decomposition may not be an ε-approximation. One may ask whether there474

is any quantitative relation between δ and ε? In other words, is it possible to choose475

δ small enough for getting an ε-approximation?476

If the sensitivity index T `i is smaller than a prescribed δ, this does not automat-477

ically imply that the variations of f ` corresponding to the variable xi are uniformly478

small. As T `i is obtained by averaging, it is possible that arbitrarily large differences479 ∣∣∣∣∣f `i (
x

(1)
i

)
− f `i

(
x

(2)
i

)∣∣∣∣∣ occur (it suffices that such differences occur in small regions of480

the domain). This means that a function must oscillate quite wildly, i.e., must have481
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a large, if existing, Lipschitz constant. Therefore, a relation between δ and ε can be482

obtained by assuming the existence of a Lipschitz constant for f. We exhibit such a483

relation and prove it for a simple case.484

Lemma 20. Let g : [0,1]→R be Lipschitz continuous with constant L > 0. If Var(g) <485

δ with δ > 0, then |g(b)− g(a)| ≤ 3
√

12Lδ for all a,b, 0 < a < b < 1. Equivalently,486

g(x) := g0 = g( 1
2 ) is an ε-approximation for g with ε = 3

√
12Lδ.487

Proof. In the worst case, g is monotonically increasing (or decreasing) from a to488

b, and g is growing at the maximum speed allowed by the assumption, i.e., g(x) =489

g(a) + L(x − a). If so, with g0 as the mean value of g, and Var(g) the variance of g, we490

have
∫ b
a
|g(x)− g0|2 dx ≤ Var(g) < δ. Due to the mean value theorem, g0 =

∫ 1
0 g(x)dx =491

g(x0) for some x0 ∈ [0,1]. Thus,
∫ b
a
|g(x)− g0|2 dx =

∫ b
a
|g(x)− g(x0)|2 dx =492

= L2
∫ b
a
|x − x0|2 dx = L2

(
(b−x0)3

3 − (a−x0)3

3

)
≥ L2 (b−a)3

12 , because (b−x0)3

3 − (a−x0)3

3 has its493

minimum at x0 = b+a
2 . This implies that |b − a| ≤ 3

√
12δ
L2 and |g(b)− g(a)| ≤ L(b − a) ≤494

3
√

12Lδ.495

It is lengthy but not difficult to prove the following.496

Theorem 21. Let f : [0,1]2 → R be Lipschitz continuous with constant L > 0 and497

δ-reducible. Then f δ is an ε-approximation for f , with ε = 6
√

96δVar(f )L4.498

3.5. The relation between decomposability and tolerance thresholds. Next499

we establish, for some low-dimensional cases, the probability for a problem to be500

δ-decomposable given a value of δ > 0. This gives a measure of the applicability of501

anova-mop to many real life applications. Let us consider a MOP and assume that502

the Pareto principle holds, i.e., globally the sensitivity indices follow a Pareto distri-503

bution. This implies that, for each objective function, 20% of the decision variables504

produce 80% of the variance. Recursively, this also implies that the fraction of the505

20% most active decision variables among the 20% already selected is accountable506

for 80% of 80% of the variance, which allows to state that 4% of the decision vari-507

ables are responsible for 64% of the variance, and so on. This can be summarized by508

saying that a fraction r, 0 ≤ r ≤ 1, of the most relevant decision variables produce a509

fraction equal to ( 4
5 )

log 1
5

(r)
of the total variance, see Figure 5(a). As a result, we can510

establish a relation between the tolerance threshold δ and the corresponding vari-511

ance of the functions that we neglect when we build the approximation of problem512

(1).513

Let us consider a bi-objective problem with d > 2 decision variables. We as-514

sume for the sake of simplicity that the objective functions are perfectly Paretian515

in the sense that they follow exactly the behavior described in the previous para-516

graph, i.e., given any δ > 0, both objectives have 1 ≤ α ≤ d non-negligible en-517

tries. According to the previous discussion, we assume that by passing to fδ we518

lose 100 ×
(
1− ( 4

5 )
log 1

5
( αd )

)
% of the total variance of each objective function. Let us519

denote by r = α
d the corresponding fraction of active variables.520

The probability that a bi-objective problem is δ-decomposable, when for each521

objective function we have kept α active variables is given by the probability that522

the selection of α active variables of the second objective function has an empty in-523

tersection with α active variables of the first objective function. We have P rob =524
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(d−αα )
(dα)

�
(
1 + α

d−2α

)d−2α+ 1
2
(
1− αd

)d+ 1
2 =

(
(1− r)

(
1−r

1−2r

)1−2r
)n (

(1−r)2

1−2r

) 1
2d

, by Stirling’s for-525

mula. Given any r, 0 < r < 1
2 , this probability tends to zero as d →∞. However, the526

probability remains high for a moderately large number of d, see Figure 5(b). It is527

interesting then to compute the maximum ratio r = α
d , i.e., the maximum variance528

preserved in the approximation fδ, such that the probability of picking a decom-529

posable MOP is higher than 50%. This computation is reported in Figure 5(c) and530

(d). E.g., we claim that for having a probability higher than 50% to randomly pick a531

decomposable bi-objective problem we have to neglect at least 80% of the variables532

(corresponding to 20% of the variance) for d = 10 and 88% of the variables (25% of533

the variance) if d = 25. (A corresponding analysis can be carried on for 3 objectives,534

although less immediately.)535
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Figure 5: (a) Percentage of the variance of a “perfectly Paretian” objective function maintained
by keeping an active fraction r = α

d of the most representative variables. (b) Probability of δ-
decomposability for a bi-objective problem with a fraction r = α

d of active variables as d varies
from 3 to 50. (c) Maximum ratio r allowing for a 50% probability of having decomposability as
d varies. (d) Maximum variance V (r) corresponding to perfectly Paretian objective functions
allowing a 50% probability of having decomposability as d varies (color available online).

On the other hand, the probability that a bi-objective problem is δ-reducible536

is the probability there exists at least one common neglected variable for both the537

objectives. This probability is equal to
∑d−α−1
h=0

( α
α−h

)(d−α
h

)/(d
α

)
, which automatically is538

100% if α < d
2 and remains higher than 50% for α ≤ 91.539

This result can be generalized to any number of objective functions. Let us de-540

note byA1 the event that x1 is active in at least one of the objectives. ThenA1∩· · ·∩Ad541

represents the fact that each variable is active in at least one objective. We want to542
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compute the probability of
(⋂d

i=1Ai
)c

, which by the generalized De Morgan law be-543

comes:544
545

(13) P rob


 d⋂
i=1

Ai


c = 1− P rob

 d⋃
i=1

Aci

 = 1−
[(
d
1

)
P rob

(
Ac1

)
−
(
d
2

)
P rob

(
Ac1 ∩A

c
2
)
+546

+
(
d
3

)
P rob

(
Ac1 ∩A

c
2 ∩A

c
3
)
− · · · ±

(
d

d −α

)
P rob

(
Ac1 ∩ · · · ∩A

c
d−α

)]
.547

548

We observe that the probability that the first variable is neglected for all k objec-549

tives is given by P rob
(
Ac1

)
=

( (d−1)...(d−α)
d(d−1)...(d−α+1)

)k
=

(
d−α
d

)k
, and by generalizing we ob-550

tain P rob
(
Ac1 ∩A

c
2

)
=

( (d−2)···(d−α−1)
d(d−1)···(d−α+1)

)k
=

( (d−α)(d−α−1)
d(d−1)

)k
and P rob

(
Ac1 ∩ · · · ∩A

c
d−α

)
=551 ( (d−α)···(d−α−(d−α)+1)

d···(d−(d−α−1))

)k
=

( (d−α)!
d···(α+2)(α+1)

)k
. Therefore, (13) becomes 1− P rob

(⋃d
i=1A

c
i

)
=552

1−
[∑d−α

r=1 (−1)r−1(d
r

)∏r−1
h=0

(
d−α−h
d−h

)k]
. This probability is automatically 1 for α < d

k , but553

remains higher than 50% for large values of α, e.g., α = 51 when k = 7. The overall554

behavior is reported in Figure 6. This discussion demonstrates the applicability of
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Figure 6: Probability of reducibility for a MOP with 100 decision variables and m active vari-
ables for each objective functions as the number of objectives k varies from 2 to 7. The lines
are in an increasing order of k from right to left (color available online).

555
anova-mop to a wide range of applications, and explains why we do not consider any556

special method for cases when the column of common variables among the subprob-557

lems is of non-zero size.558

Nevertheless, sometimes it can happen that for achieving a desired level of de-559

composability we may obtain an unacceptably inaccurate approximation of the ob-560

jective functions. Then, one can consider a partially decomposable problem, but a561

specific strategy should be devised to deal with non-zero interaction columns. If it562

appears that the whole range of the variables in the interaction columns contains po-563

tentially interesting values, it is nontrivial to develop an efficient method for solving564

accurately and effectively such a partially decomposed problem. The possible advan-565

tages and computational costs should be carefully studied, and this is an interesting566

subject for future research.567

3.6. The anova-mop algorithm. Now that we have presented the backgrounds568

that the anova-mop method is based on, we formalize it in Algorithm 1. anova-mop569
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converts the original problem into subproblems of fewer objectives and variables and570

results with approximated Pareto optima and information about the approximation571

quality. The method is modular and contains ingredients that can be defined with a572

large flexibility. To be as general as possible, we present the algorithm for black box573

functions. Naturally, the method can also be applied when dealing with other than574

black box functions.575

anova-mop needs a training dataset to construct metamodels for the black box576

objective functions f 1, . . . , f k . The dataset can be provided by a user or, e.g., a max-577

imin Latin Hypercube Design [22] can be applied to get a dataset of n points. Alter-578

natively, one can use a method that builds the metamodels and generates the dataset579

simultaneously as mentioned below.580

1. Build a metamodel (e.g., Gaussian processes, radial basis functions, neural581

networks or splines) for each individual black box objective functions fol-582

lowed by estimating the total sensitivity indices. In our implementation,583

we have adopted the Bayesian Polynomial Chaos method (BPC) [57], but584

ANOVA-MOP is not limited to it.585

BPC generates incrementally a training dataset and builds a metamodel it-586

eratively to meet some goodness-of-fit criteria mentioned in [57]. In BPC, it587

is possible to choose a maximal interaction in the ANOVA decomposition,588

e.g., one can compute the full expansion or limit the analysis to the main589

effects. We opt for the complete expansion and use polynomials with a de-590

gree p = 4. The output of the method consists of the metamodels for the591

objective functions and a 95% confidence interval containing the estimated592

total sensitivity indices.593

2. For decomposition, we use the implementation of Chen [6]. In this method,594

one can set the number of subproblems, the maximum number of common595

variables between subproblems and the minimum number of active vari-596

ables within each subproblem.597

3. anova-mop can be applied as a non-interactive or as an interactive method.598

The former case requires a multiobjective optimization method while the599

latter uses a single objective method, denoted by solver. In Section 4 we600

adopt respectively RVEA [7] and DIRECT [23]. We use RVEA because it is601

a general purpose solver designed for problems with more than three objec-602

tives. However, these are only examples and any appropriate solver can be603

applied.604

If anova-mop is used as an interactive method, it resembles the reference point605

method [64, 38], where an achievement scalarizing function (ASF) involving a refer-606

ence point consisting of aspiration levels z = (z1, . . . , zk)T , specified by the DM is em-607

ployed. As mentioned earlier, aspiration levels represent desirable objective function608

values. We consider the (ASF) [64] of the form ASF(x, z) = max
i∈O

(wi(f i(x)− zi)), where609

wi ≥ 0 for i = 1, . . . k are non-negative fixed weights which set a direction where z is610

projected onto the Pareto frontier. The weights can be used to normalize objectives.611

By solving the problem612

(14) minimize
x∈S

ASF(x,z)613

with an appropriate single objective solver, we get a (weak) Pareto optimum best614

reflecting the preferences. (To avoid weak Pareto optimality, one can add an aug-615

mentation term to ASF, see e.g., [38].)616

As discussed in [9], to accomplish cognitively demanding tasks, one requires a617
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sufficient ability to hold information as it is processed. For a high number of ob-618

jective functions, the DM may find that providing corresponding reference points619

iteratively may impose a heavy cognitive load. This is the motivation for applying620

anova-mop in an interactive way, where the DM gives aspiration levels to subsets of621

the original objectives, one subproblem at a time, leading to reducing the cognitive622

load. In what follows, we discuss how subproblems of anova-mop are utilized to623

interact with the DM.624

Once the m subproblems have been formed, they are considered one by one.625

The DM is informed which objectives are included in each subproblem. For the626

ath subproblem, the DM is asked to specify corresponding aspiration levels and an627

ASF is formulated with objective functions of that subproblem. The corresponding628

reference point is denoted by za∗. The ath subproblem (which is derived from (14))629

(15) minimize
xa∈Sa

ASF(xa,za∗) Sa := [0,1]da630

is solved and the solution shown to the DM. The interaction with the DM is con-631

tinued until the most preferred solution for the objectives in the ath subproblem is632

found. This is repeated for all subproblems. The following theorem shows that the633

solutions obtained with the subproblems form a preferred solution to problem (1).634

Theorem 22. Suppose the incidence matrix M can be decomposed into m subprob-635

lems. Let za∗, for a = 1, . . . ,m, be a reference point given by the DM for the ath subprob-636

lem (15) and denote by xa∗ an optimal solution. Then x∗ = (x1∗, . . . ,xm∗) ∈ argmin
x∈S

ASF(x,z∗),637

where z∗ = (z1∗, . . . ,zm∗).638

Proof. We show that639

ASF(x∗,z∗) ≤ ASF(x,z∗), for all x ∈ S.(16)640641

Suppose ASF(x∗,z∗) = (wh(f h(x∗) − z∗h)). Then, there exists an index e such that h ∈642

Oe. The optimal solution of the eth subproblem is xe∗. This means that (wh(f h(x∗) −643

z∗h)) = max
j∈Oe

(wj (f j (xe∗,xe) − ze∗j )). For all xe ∈ Se, we have max
j∈Oe

(wj (f j (xe∗,xe) − ze∗j )) ≤644

max
j∈Oe

(wj (f j (xe,xe)− ze∗j )).645

On the other hand, max
j∈Oe

(wj (f j (xe,xe)− ze∗j )) ≤ max
a=1,...,n

(max
b∈Oa

(wb(f b(xa,xa)− zab))) for646

all xe ∈ Se. Since, max
a=1,...,n

(max
b∈Oa

(wb(f b(xa,xa)−zab))) = ASF(x,z∗), inequality (16) results.647

One should remember that if the functions involved are computationally expensive,648

the possibility of using metamodels reduces the waiting time set on the DM for ob-649

taining solutions corresponding to her/his preferences.650

4. Benchmarks. In what follows, we demonstrate how anova-mop can be ap-651

plied. 4 By writing k × d = (k1 × d1)⊗ . . .⊗ (kn × dn) we mean decomposing a problem652

with k objectives and d variables to n subproblems with ki objectives and di variables.653

We consider two problems defined by algebraic functions. This allows us to know654

in advance which are the subproblems composing the full problem and perform ex-655

haustive searches in the feasible sets. This naturally cannot be done with expensive656

black box functions but enables a transparent demonstration of the capabilities of657

the method.658

4The code for anova-mop is publicly available at http://www.mit.jyu.fi/optgroup/desdeo.html
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Algorithm 1 anova-mop

Input: Let f : [0,1]d → R
k be a black box vector function in (1). The user has an

option of selecting a threshold value δ.
1: Find a training dataset, apply a metamodeling technique to build the metamod-

els f̃ for f and estimate the total sensitivity indices. Alternatively, employ BPC
[57], which finds the dataset, builds the metamodels and estimates the total sen-
sitivity indices.

2: Perform the ANOVA analysis on f̃ and build the k × d sensitivity matrix SM.
3: Define a sorted list E = {e1, . . . , ed·k} of all the entries of SM in an increasing order.
4: Determine ω according to (12) and find the maximum r such that er ≤ω.
B Here ω is also a valid value for δ because the entries equal to δ remain active.

5: Extract the list ∆ by picking the elements of E from the (d + 1)-th to ω, i.e.,
∆ := {ed+1, . . . , er }. B We need at least d entries equal to zero for having

reducibility and d + k − 2 for decomposability.

6: if δ has been chosen by the user then
7: Build the reduced incidence matrix Mδ.
8: else B Pick the smallest value of δ for which Mδ is reducible or decomposable, if

existing.

9: repeat
10: Pick as tolerance value δ the smallest element in ∆.
11: Build the reduced incidence matrix Mδ.
12: Remove δ from ∆.
13: until Mδ is reducible or decomposable or ∆ is empty.
14: end if
15: if Mδ is decomposable then

16: Decompose problem with fδ in approximated subproblems with f
(1)
, . . . ,f

(m)

as described in Remark 6.
17: Solve the subproblems separately by calling solver, which returns the sets of

Pareto optima P
(1)
, . . . , P

(m)
and corresponding Pareto frontiers F

(1)
, . . . ,F

(m)

18: Build the Pareto optimal set approximation for (1) P := P
(1) × · · · × P (m)

:

P =
{(
x

(1)
1 , . . . ,x

(1)
d1
,x

(2)
1 , . . . ,x

(m−1)
dm−1

,x
(m)
1 , . . . ,x

(m)
dm

) ∣∣∣∣ x(1) ∈ P (1)
, . . . ,x(m) ∈ P (m)

}
and, analogously, the corresponding Pareto frontier approximation F := F

(1) ×
· · · ×F(m)

.
19: else if Mδ is reducible then
20: Solve the approximated reduced problem fδ by calling solver, which returns

the sets of solutions P and F.
21: else
22: Set P = F = ∅. B The method is not applicable

23: end if
24: Select randomly a validation sample V :=

{
x(1), . . . ,x(v)

}
⊆ P and estimate the ap-

proximation quality ε of the solutions found as follows

(17) ε 'max
x∈V

∥∥∥f(x)− fδ(x)
∥∥∥∞ = max

ν=1,...,v
max
`=1,...,k

∣∣∣∣f ` (x(ν)
)
− f `δ

(
x(ν)

)∣∣∣∣ .
25: return

(
P ,F,V ,ε

)
.
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To demonstrate the capabilities of the anova-mop method, we repeat the fol-659

lowing for both the problems:660

1. We perform an almost exhaustive search in the feasible set of the original661

problem by using a full factorial design of experiment if the dimension of662

the decision space is moderate or by using a large random sample if the663

dimension is large. We then evaluate all these points with the original func-664

tions, and extract the nondominated subset which is considered as the exact665

Pareto frontier of the problem denoted by Fexh.666

2. We apply the multiobjective optimization method RVEA on the original667

problem. This serves as a comparison for the anova-mop method.668

3. We start applying the anova-mop algorithm by defining the metamodels669

and following Algorithm 1 to obtain subproblems. For the decomposition,670

we apply the Chen method by setting the number of subproblems to 2 for671

problem (18) and to 4 for the high dimensional problem in Section 4.2.672

4. We run RVEA separately on each subproblem to obtain
(
P (ι),F(ι)

)
, ι = 1, . . . ,m,673

where m is the number of subproblems.674

5. We build the Cartesian products of the Pareto optimal sets of the subprob-675

lems P = P (1) × · · ·×P (m) and the Pareto frontiers F = F(1) × · · ·×F(m). They are676

the approximated Pareto optimal set and frontier obtained, respectively.677

6. We estimate the width of the 2ε-strips considered in Corollary 18 and Re-678

mark 19 by computing a set-wise distance between the “exact” Pareto fron-679

tier Fexh defined in step 1 and the candidate Pareto frontier Fcand obtained in680

steps 2 and 5 as loss(Fexh,Fcand) := maxp∈Fexh minq∈Fcand max`=1,...,k max
{
q` − p` ,0

}
.681

In particular, we estimate ε ' loss
(
Fexh,F

)
. Since F is the Cartesian product682

of the Pareto frontiers of the subproblems, F = F(1) × · · · × F(m), the global683

loss equals the maximum of the losses computed for the subproblems sepa-684

rately, i.e., loss
(
Fexh,F

(1) × · · · ×F(m)
)

= maxι=1,...,m loss
(
π(ι) (Fexh) ,F(ι)

)
, where685

π(ι) : Rk → R
kι is the projection from the objective space to the subspace of686

the objective functions of the ι-th subproblem.687

7. We compare this value with the value obtained in the anova-mop method,688

i.e., we extract a random subset V ⊆ P of the points in the approximated689

Pareto frontier and evaluate the original functions on these points. Then690

we consider as a possible estimate for ε the infinity norm of the difference691

between the approximated value and the exact value on these points, as de-692

fined in (17).693

8. We compare the results of RVEA on the un-decomposed problem and on the694

decomposed problem in terms of the loss computed at the previous step and695

the number of function evaluations used in the two cases.696

4.1. δ-decomposable problem. We consider the following five-objective parametrized697

optimization problem 5× 5 ' (3× 3)⊗ (2× 2) with λ = 1.3:698

(18) minimize
x∈[−λ,λ]5

{f 1(x), . . . , f 5(x)} where x = (x1, . . . ,x5) and699
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700

f 1(x) = g1(x) +γg4(x), g1(x) =
∣∣∣(x1,x2,x3)T − P T1

∣∣∣2 , P1 = (1,1,1)T ,701

f 2(x) = g2(x) +γg5(x), g2(x) =
∣∣∣(x1,x2,x3)T − P T2

∣∣∣2 , P2 = (1,−1,−1)T ,702

f 3(x) = g3(x) +γ(g4(x) + g5(x)), g3(x) =
∣∣∣(x1,x2,x3)T − P T3

∣∣∣2 , P3 = (1,1,−1)T ,703

f 4(x) = g4(x) +γg1(x), g4(x) =
∣∣∣(x4,x5)T − P T4

∣∣∣2 , P4 = (1,−1)T ,704

f 5(x) = g5(x) +γ(g1(x) + g2(x)), g5(x) =
∣∣∣(x4,x5)T − P T5

∣∣∣2 , P5 = (−1,1)T ,705706

with γ = 7.000×10−3. The BPC method managed to build metamodels by generating707

iteratively a sequence of points, stopping with 47 points, when a suitable goodness–708

of–fit criterion was fulfilled [57]. BPC also estimated the total sensitivity matrix SM709

given below based on which we form the incidence matrix M as710

SM =


0.333 0.333 0.333 0.001 0.001
0.333 0.333 0.333 0.001 0.001
0.333 0.333 0.333 0.001 0.001
0.001 0.001 0.001 0.499 0.499
0.001 0.001 0.001 0.499 0.499

 , M =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .711

By taking as δ any value 0.001 < δ ≤ 0.333, we obtain the reduced incidence matrix712

Mδ and a corresponding auxiliary decomposable problem fδ as follows:713

(19) Mδ =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

 , fδ(x) := f
(1) ⊗ f

(2)
(x) =


f 1(x1,x2,x3,0,0)
f 2(x1,x2,x3,0,0)
f 3(x1,x2,x3,0,0)
f 4(0,0,0,x4,x5)
f 5(0,0,0,x4,x5)

 ,714

where f(1) and f(2) are the following three- and bi-objective subproblems:715

minimize
(x1,x2,x3)∈[−λ,λ]3

f
(1)

(x1,x2,x3) :=

 f
1(x1,x2,x3,0,0)
f 2(x1,x2,x3,0,0)
f 3(x1,x2,x3,0,0)

 ,(20)716

minimize
(x4,x5)∈[−λ,λ]2

f
(2)

(x4,x5) :=
(
f 4(0,0,0,x4,x5)
f 5(0,0,0,x4,x5)

)
.(21)717

718

Figure 7(a) and (b) depict the Pareto frontiers of these subproblems, respectively.719

According to Theorem 8, the set of Pareto optima for fδ = f
(1) ⊗ f

(2)
is the Cartesian720

product of the sets of Pareto optima for subproblems (20) and (21).721

In other words, all the solutions of problem (19) are obtained by joining a so-722

lution (x1,x2,x3) of subproblem (20) and a solution (x4,x5) of subproblem (21). The723

Pareto optimal set of (19) serves as an approximation for the Pareto optimal set of724

problem (18).725

4.1.1. Approximation quality. Before applying anova-mop, we estimate the qual-726

ity of the decomposed problem, represented by ε, and test whether the claim of727

Corollary 18 is compatible with such an estimated value. Given the moderate com-728

plexity of the problem we can execute an almost exhaustive exploration of the do-729

main, i.e., we set Aexh to be a full factorial in 5 dimensions with 20 levels for each730
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f4

f5

(a) (b)

Figure 7: (a) Pareto frontier of subproblem (20). (b) Pareto frontier of subproblem (21) (color
available online).

variable. Then # {Aexh} = 205 and we evaluate the objective functions at the points in731

Aexh, denoting Bexh = f(Aexh). We extract the “exact” Pareto optimal set (Pexh,Fexh) :=732

ND (Aexh,Bexh), where with ND(A,B) we denote the operation of removing the dom-733

inated solutions from (A,B), where A ⊂ [−λ,λ]d is any sample and B = f (A).734

4.1.2. anova-mop test. Next, we analyze the behavior of RVEA [7], when ap-735

plied to the original problem versus the application of RVEA coupled with anova-736

mop. We select analogous settings compared to the dimensions of the problems and737

compare the results in terms of accuracy and computational costs. In particular, we738

set 3dim as the population size and 10 as the number of generations. We estimate739

the method performance by computing the previous set-wise distance between Fexh740

and the optimal set obtained. We compute also the number of function evaluations741

required by the three methods. When we use anova-mop, we must consider the com-742

putational overhead, i.e., the function evaluations required to build the metamodels743

used for the decomposition, here 47 function evaluations, and the evaluations per-744

formed to validate the optimal set found on the metamodel fδ, here depending on745

the optimization results.746

1. We run RVEA on problem (18). We call P1 the final Pareto optimal set ob-747

tained and F1 the corresponding Pareto frontier (even though evolutionary748

algorithms cannot guarantee optimality).749

2. We run RVEA separately on the two subproblems and generate the Pareto750

optimal set for the whole problem as the Cartesian product of the Pareto751

optimal sets found in the separate subproblems and validate the function752

values. We call P2 and F2 these Pareto optimal set and frontiers, respectively.753

We summarize the results in Table 2, where754

loss1

(
Fexh,F

(1)
i

)
:= max

p∈Fexh
min
q∈F(1)

i

max
`=1,2,3

max
(
q` − p` ,0

)
,(22)755

loss2

(
Fexh,F

(2)
i

)
:= max

p∈Fexh
min
q∈F(2)

i

max
`=4,5

max
(
q`−3 − p` ,0

)
,(23)756

losstot (Fexh,Fi) := max
p∈Fexh

min
q∈Fi

max
`=1,...,5

max
(
q` − p` ,0

)
,(24)757

758
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Dataset loss1

(
Fexh,F

(1)
i

)
loss2

(
Fexh,F

(2)
i

)
losstot (Fexh,Fi) Nevals

(P1,F1) 0.3509 0.11132 0.97362 35 × 10 = 2430

(P2,F2) 0.537 0.7275 0.7275 47+(33 + 32)× 10
+ 247= 654

Table 2: Summary of the results of the comparison for the first example.

and we observe that only when F = F(1) ×F(2) then

losstot (Fexh,Fi) = max
(
loss1

(
Fexh,F

(1)
i

)
, loss2

(
Fexh,F

(2)
i

))
,

which is only the case for the Pareto optimal sets obtained by anova-mop . We notice759

that the accuracy of the Pareto optimal sets is comparable in the two cases while760

the number of function evaluations is sensibly smaller when the decomposition is761

used, while keeping the settings of the algorithm scaled to the problem dimension.762

Therefore, we can claim that the main scope of the method, i.e., mitigating the effects763

of the curse of dimensionality, is accomplished.764

In the case of expensive functions, we could not have explored exhaustively the765

problem domain and could not estimate the width of the tolerance zone as we did.766

In that case, we could estimate ε by evaluating the original functions on a random767

subset V of the Pareto optimal set approximation and by computing the maximum768

difference between the values of f and of fδ on V . In our case, we can compute this769

value on the entire set P because it is still of a moderate size and our functions are770

inexpensive and get ε 'maxx∈P
∥∥∥f(x)− fδ(x)

∥∥∥∞ = 0.054045.771

4.2. High-dimensional δ-decomposable problem. Next we consider the fol-772

lowing parametrized 12 × 10 ' (3 × 3) ⊗ (3 × 3) ⊗ (2 × 2) ⊗ (4 × 2) problem involving773

twelve variables with S = [−λ,λ]12, where λ = 1.3. We minimize ten objectives of774
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component functions defined as follows with γ = 7.000× 10−3:775

f 1(x) = g1(x) +γg4(x), g1(x) =
∣∣∣(x1,x2,x3)T − P T1

∣∣∣2 , P1 = (1,1,1)T ,776

f 2(x) = g2(x) +γg5(x), g2(x) =
∣∣∣(x1,x2,x3)T − P T2

∣∣∣2 , P2 = (1,−1,−1)T ,777

f 3(x) = g3(x) +γ(g4(x) + g6(x)), g3(x) =
∣∣∣(x1,x2,x3)T − P T3

∣∣∣2 , P3 = (1,1,−1)T ,778

f 4(x) = g4(x) +γ(g1(x) + g7(x)), g4(x) =
∣∣∣(x4,x5,x6)T − P T4

∣∣∣2 , P4 = (−1,−1,−1)T ,779

f 5(x) = g5(x) +γ(g2(x) + g8(x)), g5(x) =
∣∣∣(x4,x5,x6)T − P T5

∣∣∣2 , P5 = (−1,1,−1)T ,780

f 6(x) = g6(x) +γ(g3(x) + g9(x)), g6(x) =
∣∣∣(x4,x5,x6)T − P T6

∣∣∣2 , P6 = (−1,−1,1)T ,781

f 7(x) = g7(x) +γ(g2(x) + g5(x)), g7(x) =
∣∣∣(x7,x8)T − P T7

∣∣∣2 , P7 = (1,−1)T ,782

f 8(x) = g8(x) +γ(g1(x) + g4(x) + g9(x)), g8(x) =
∣∣∣(x7,x8)T − P T8

∣∣∣2 , P8 = (−1,1)T ,783

f 9(x) = g9(x) +γ(g3(x) + g6(x) + g8(x)), g9(x) =
12∑
i=9

sin(xi) +
12∑
i=9

cos(xi)784

f 10(x) = g10(x) +γ(g4(x) + g5(x)), g10(x) =
12∑
i=9

sin(−xi) +
12∑
i=9

cos(−xi).785

786

This problem is defined as a weak perturbation, controlled by the small param-787

eter γ , of the composition of the following low-dimensional subproblems:788

(x1,x2,x3) 7→ (g1(x), g2(x), g3(x)), (x4,x5,x6) 7→ (g4(x), g5(x), g6(x)),789

(x7,x8) 7→ (g7(x), g8(x)), (x9,x10,x11,x12) 7→ (g9(x), g10(x)).790791

A sample of 104 points seems sufficiently accurate to perform the sensitivity792

analysis revealing the underlying structure of the weakly correlated subproblems.793

Because of the high dimension of the problem, we cannot consider a full factorial794

for building a reference Pareto optimal set. Therefore, we simply use a large random795

sample RSexh (# {RSexh} = 106) of points in the feasible set, evaluate the objective796

functions and extract the nondominated set, i.e., (Pexh,Fexh) = ND (RSexh,f (RSexh)),797

# {Pexh} = 359701. We proceed by comparing the results of RVEA for the original798

problem and the results of applying RVEA separately to the subproblems formed799

by anova-mop . We consider 10 generations for a starting dataset of 1000 points,800

such that the total number of function evaluations for solving the original problem801

is 10000. The nondominated set (P1,F1) contains 7473 points.802

We apply then anova-mop and get four subproblems. We run 10 generations803

for each subproblem starting from a dataset of 250, 250, 100, 500 points, respec-804

tively, given that their decision space dimensions are 3, 3, 2 and 4, respectively. The805

total number of function evaluations is then (250 + 250 + 100 + 500) × 10 = 11000.806

The nondominated sets contain, respectively, 220, 245, 98 and 26 points and we call807

them
(
P2,1,F2,1

)
, . . . ,

(
P2,4,F2,4

)
, respectively. We proceed by evaluating the quality808

of the solutions found by the two instances of RVEA. For the decomposed problem809

we consider separately the loss for the subproblems and take the maximum loss as810

a global indicator of the performance. As can be seen in Table 3, the loss between811

the nondominated sets and their corresponding canonical projections of Fexh is con-812

siderably small. It means that ANOVA-MOP has managed to provide nondominated813

solutions close enough to Fexh.814
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dataset loss(Fexh,dataset) Nevals
(P1,F1) loss(Fexh,F1) = 1.8978 105

(P2,1,F2,1) loss(π(1)(Fexh),F2,1) = 0.222087 2500
(P2,2,F2,2) loss(π(2)(Fexh),F2,2) = 0.249897 2500
(P2,3,F2,3) loss(π(3)(Fexh),F2,3) = 0.0866798 1000
(P2,4,F2,4) loss(π(4)(Fexh),F2,4) = 0.301691 5000

Table 3: Summary of comparison for the second example.

As for the previous benchmark, we denote by π(ι) : Rk → R
kι the canonical pro-815

jection on the subspace of the objective function values of the ιth subproblem. There-816

fore, based on Table 3, the performance of the decomposed approach is 0.3 to be817

compared with 1.9, which comes from the original problem while the number of818

function evaluation is approximately the same. This means that with a fixed num-819

ber of function evaluations, ANOVA-MOP has obtained solutions closer to the true820

Pareto frontier in comparison with the ones obtained by RVEA. We recall that this821

value of the loss can be used as an estimate of the thickness ε of the tolerance zone822

in Corollary 18.823

We further give another estimate of ε by computing the maximum difference824

between the values of f and of fδ on a random subset V of the Pareto optimal set825

approximation as ε 'maxx∈V
∥∥∥f(x)− fδ(x)

∥∥∥∞ = 0.130699.826

4.3. Using anova-mop as an interactive method. As discussed in Section 3.6,827

when using anova-mop as an interactive method, the solution obtained is the most828

preferred solution for the DM. In what follows, we demonstrate how this solution829

can be obtained by considering the problem discussed in Subsection 4.2.830

We first informed the DM that the problem was decomposed into 4 subprob-831

lems and then told which objective functions were in the first subproblem. The832

DM provided the first reference point z1∗
1 = (7,5,3)T . The corresponding ASF prob-833

lem including metamodels was solved. The solution f
1∗
1 = (4.5308,1.0639,1.0921)T834

obtained was shown to him. He wanted to iterate and gave a new reference point835

z1∗
2 = (2,1.0639,1.0921)T to improve the value of the first objective function. The836

corresponding solution f
1∗
2 = (2.0458,2.0461,2.0749)T was shown to the DM, who837

accepted it and thus the first subproblem was solved.838

For the second subproblem, the DM provided a reference point z2∗
1 = (4,2.5,6)T .839

The DM accepted the solution f
2∗
1 = (2.0708,2.0708,2.07)T . The solution process840

continued to the third subproblem. The DM provided a reference point z3∗
1 = (5,6)T841

and obtained the solution f
3∗
1 = (2.0553,2.094)T . Here he wanted to improve the842

first objective value and provided a reference point z3∗
2 = (1,5)T . The corresponding843

solution f
3∗
2 = (1.0735,4.5764)T was accepted.844

As far as the fourth subproblem is concerned, the DM gave a reference point845

z4∗
1 = (2,6)T . The solution f

4∗
1 = (1.1332,4.1547)T was shown to him and he pro-846

vided z4∗
2 = (1.1332,3)T to improve the second objective function value. The solution847

obtained f
4∗
2 = (2.2508,3.7472)T was satisfactory for the DM, therefore the process848

terminated.849

Thanks to the decomposition, the DM could concentrate on two or three objec-850
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tive functions at a time. Because of this, it was easier to follow the changes in the851

solutions obtained after having specified a reference point and the solution process852

was not cognitively as demanding as when dealing with all objective functions si-853

multaneously. Visualizations are also easy to analyze in these low dimensions.854

Finally, the solution to the original problem is composed by joining the solutions855

of the subproblems. We recall that the composition of the values of such a solution856

is only an approximation of the real function values, therefore the composition of857

the decision variables must be evaluated on the original functions and proposed to858

the DM for his/her final decision. Here, the final approximated solution f and the859

solution f evaluated with the original objective functions are:860

f = (2.0458,2.0461,2.0749,2.0708,2.0708,2.0700,1.0735,4.5764,2.2508,3.7472)T ,861

f = (2.0319,2.0319,2.0460,2.0390,2.0633,2.0472,1.0460,4.5280,2.2396,3.7325)T .862863

Based on (17), we have, ε 'maxx∈V
∥∥∥f(x)− fδ(x)

∥∥∥∞ = 0.0484.864

5. Conclusions. In this paper, we have developed a metamodel-based method865

called anova-mop to solve computationally expensive multiobjective optimization866

problems with high-dimensional decision and objective spaces. In this method, first867

a metamodel for each individual objective function is built. Total sensitivity indices868

are then estimated. Then, a set of thresholds is considered by using these indices.869

Each threshold leads to identifying a set of active decision variables which have in-870

fluence on the objective function values. By increasing the threshold, the number871

of active variables changes. The threshold is increased until the objective functions872

with the same active variables can be grouped into a low-dimensional subproblem in873

the decision and objective spaces, or at least the number of decision variables of the874

original problem is decreased. This leads to decomposing the original problem into875

a limited number of simpler subproblems with low-dimensional decision and objec-876

tive spaces. The solutions of the subproblems are composed with a Cartesian prod-877

uct to obtain an approximated Pareto optimal set for the original high-dimensional878

problem.879

anova-mop can be applied as an interactive or a non-interactive method to solve880

computationally expensive MOPs with any number of objective functions. As an in-881

teractive method, due to the decomposition, in each step of the interaction with a882

DM, (s)he focuses on a lower number of objective functions at a time rather than all883

objective functions simultaneously and eventually finds a preferred solution. As a884

non-interactive method, a representative set of Pareto optima can be obtained and885

subproblems can be solved by parallel computing. This boosts the solution process886

considerably. In both interactive and non-interactive cases, since inactive variables887

are neglected in the subproblems, the dimensions of the decision spaces in the sub-888

problems are reduced. This allows applying any appropriate optimization method889

for low-dimensional problems.890

An interesting situation occurs when we do not wish to raise the tolerance thresh-891

old until the problem becomes decomposable, e.g., because we need to preserve the892

accuracy of the approximation. In this case it is possible to define subproblems with893

a lower dimension but with some common decision variables. It is clear that if these894

variables are fixed to any value, the remaining decision variables and the objective895

functions will represent independent subproblems. Thus, it seems promising to ex-896

tend anova-mop to such, more general situations. This will be the subject of future897

research.898
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