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ANOVA-MOP: ANOVA DECOMPOSITION FOR MULTIOBJECTIVE
OPTIMIZATION®

MOHAMMAD TABATABAEI!, ALBERTO LOVISONY, MATTHIAS TANS, MARKUS HARTIKAINEN',
AND KAISA MIETTINENT

Abstract. Real-world optimization problems may involve a number of computationally expensive
functions with a large number of input variables. Metamodel-based optimization methods can reduce
the computational costs of evaluating expensive functions, but this does not reduce the dimension of the
search domain nor mitigate the curse of dimensionality effects. The dimension of the search domain can
be reduced by functional ANOVA decomposition involving Sobol” sensitivity indices. This approach al-
lows ranking decision variables according to their impact on the objective function values. On the basis
of the sparsity of effects principle, typically only a small number of decision variables significantly affects
an objective function. Therefore, neglecting the variables with the smallest impact should lead to an
acceptably accurate and simpler metamodel for the original problem. This appealing strategy has been
applied only to single-objective optimization problems so far. Given a high-dimensional optimization
problem with multiple objectives, a method called aANova-mor is proposed for defining a number of inde-
pendent low-dimensional subproblems with a smaller number of objectives. The method allows to define
approximated solutions for the original problem by suitably combining the solutions of the subproblems.
The quality of the approximated solutions and both practical and theoretical aspects related to decision
making are discussed.

Key words. Multiple criteria optimization, Sensitivity analysis, Metamodeling, Dimensionality re-
duction, Pareto optimality, Decision making
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1. Introduction. Multiobjective optimization problems (MOPs) arise in many
application domains such as engineering and finance. Their characteristic is the co-
existence of a number of typically conflicting objective functions. Real-world MOPs
may contain black-box functions requiring computationally expensive and/or time-
consuming experiments and/or simulations [55]. Because of the conflict among the
objectives, MOPs do not usually have a unique optimal solution but several so-called
Pareto optimal solutions. Mathematically, such solutions are incomparable and in-
volve different trade-offs among the objectives. Typically, it is the task of a decision
maker (DM) to identify a preferred solution to be implemented.

As discussed, e.g., in [38, 39, 40], multiobjective optimization methods are clas-
sified into interactive and non—-interactive methods, and also according to the role of
the DM. In non—-interactive methods, the preference information of the DM either is
not available or it is given only before or after the solution process. E.g., in a pos-
teriori methods, a representative set of Pareto optimal solutions is generated to be
analyzed by the DM. On the other hand, in interactive methods, the DM is asked to
specify her/his preference information iteratively during the solution process: (s)he
can exhamine the solutions generated on the basis of her/his preferences and can
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revise them according to the updated understanding. The interaction with the DM
is continued until (s)he finds the most preferred solution. An example of preference
information is a reference point involving aspiration levels representing desirable
values for objective functions and it is employed, e.g., in the reference point method
[64].

When a problem has black box objective functions, their behavior is unknown,
excluding basic regularity hypotheses. In such cases, heuristic methods may lead to
satisfactory solutions, but cannot guarantee convergence in a global and local sense.
Indeed, if the dimension of the decision space is high, a satisfactory exploration
can only be obtained with an exponentially large number of function evaluations.
This can be computationally costly even if function evaluations are computation-
ally inexpensive and becomes virtually impossible if function evaluations involve
complex simulations, as e.g., in fluid dynamics. Therefore, large regions of the fea-
sible set may remain unexplored and important parts of the set of Pareto optimal
solutions may remain undetected even after thousands of function evaluations. This
phenomenon is known as the curse of dimensionality [66].

An example of a real-world MOP involving many decision variables and objec-
tive functions is the design and optimization of a car restraint system [69]. Assessing
the safety of a car requires several tests estimating different types of injuries suffered
by the occupants or by pedestrians in case of an accident. Actually, the New Car As-
sessment Programme (NCAP) tests have tens of injury indicators. The aim of the
designers is to have as low injury indicators as possible, or at least go under a prede-
fined threshold. Once the design process has reached a configuration close enough
to the set of Pareto optimal solutions, improving an objective function value may
impair some other objective function values. Therefore, bringing all the objective
functions simultaneously under desired thresholds may be an overwhelming task.
Once an accurate virtual model of a car, occupants and driving situations has been
prepared involving aerodynamics, mechanics and biomechanics, it is virtually im-
possible to get some useful insight in the problem because of the many interdepen-
dencies. Thus, making a reliable prediction on the model behavior under decision
variable changes requires decision support.

The paradigmatic problem described above suggests a possible strategy for tack-
ling the dimensionality issues. Indeed, the restraint system is built by combining
subunits that were originally designed to act separately on specific regions of the
car, i.e., to mitigate the severity of different injures possibly occurring in an accident.
When these modules are put together, they can interact and produce some extra side
effects on each other. Nevertheless, the side effects are likely to be of secondary
importance, therefore it seems possible to disassemble a high-dimensional problem
with many objectives by grouping together subunits related to similar tasks with-
out losing effects of primal importance. This decomposition leads to a collection of
smaller and almost independent subproblems that are tractable with computation-
ally effective optimization methods, as the domains of the subproblems are easier
to be explored. Furthermore, it should be easier to get insight on the behavior of
objective functions as decision variables are varied in their ranges.

In this paper, we propose a method called anova-mor for defining essentially
independent low-dimensional multiobjective subproblems starting from a multiob-
jective optimization problem with many decision variables and objective functions.
The method is suitable for computationally expensive problems, and can be applied
either as a non-interactive or an interactive method. In the latter case, when solving
computationally expensive MOPs, the DM does not need to wait for a long time to
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see solutions corresponding to her/his preferences. Indeed, at each iteration with a
DM, (s)he provides his/her preferences in the form of a reference point for a small
number of objective functions rather all of them at the same time. After solving
the subproblems (with appropriate optimization algorithms), we describe how to
re-assemble the solutions to build an approximated solution for the original high-
dimensional problem. Finally, we discuss the trade—off between the dimensionality
reduction and the accuracy of the approximation.

2. Background.

2.1. Multiobjective optimization. Without loss of generality we consider a real
vector-valued function f defined on a d-dimensional unit hypercube:

£:5=00,11" >R, x=(x1,....,x0)" — (f1(x),..., f*x))T,
and denote by

(1) minimize {fl(x),...,fk(x)},

x€S

the associated multiobjective optimization problem (MOP) with k objective functions.
The set S is called a feasible set in the decision space and xy,...,x,; are called decision
variables or inputs. The space R is called an objective space and the scalar-valued
components f1,..., fX of f are called objective functions or outputs.

We say that the point x € S (correspondingly f(x)) dominates y € S (f(y)) if for all
C=1,....k, f’x) < f(y) and for some 1 < h <k, f"(x) < f"(y). Furthermore, a point
X € S is called a Pareto optimum for problem (1), if there does not exist another point
x € S which dominates X. If k > 1, usually there are many Pareto optima forming a
Pareto optimal set in the decision space, denoted by P C S. The image of P is a Pareto
frontier denoted by F = f(P) C R.

2.2. Multiobjective decomposition. One way to deal with high-dimensional
MOPs is decomposition, i.e., partitioning decision variables and objective functions
to form a finite number of lower-dimensional subproblems. For computationally in-
expensive MOPs, decomposition has been studied e.g., in [2, 8, 10, 12, 15, 26, 27,
35, 46, 61, 71]. In [14], comprehensive theoretical results related to multiobjective
decomposition are provided. Decision making in the context of computationally
inexpensive multiobjective decomposition has been studied in [13].

In engineering design, to solve high-dimensional computationally expensive MOPs,
multiobjective optimization methods may integrate decomposition approaches such
as concurrent subspace optimization [52], collaborative optimization [5], integrated
system synthesis [53] and analytical target cascading [24]. For example, the inte-
gration of the weighted sum method within the collaborative optimization approach
and the linear physical programming and the collaborative optimization approach
have been studied in [59] and [36], respectively. The integration of multiobjective
optimization methods and the concurrent subspace optimization approach has been
considered e.g., in [18, 19, 20]. As mentioned in [68], the final output of these meth-
ods based on the concurrent subspace optimization approach is only one solution. To
generate a set of solutions, the methods should be rerun with different initial start-
ing points. For more details see e.g., [27, 29, 28, 30, 43, 51, 56, 58, 60, 67, 71, 70].
These methods do not study the theoretical connections between the solutions of
subproblems and the original problem.
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A common assumption among the above mentioned methods (for both computa-
tionally inexpensive and expensive MOPs) is that a given problem has already been
decomposed and information of the connections among the subproblems is avail-
able. When dealing with computationally expensive functions, the mathematical
closed forms of objective functions are typically not available [50, 55]. This means
that for a given input, one should conduct time-consuming experiments and/or sim-
ulations to get output. Therefore, obtaining information (without proper techniques
and strategies) which results in decomposing the original problem can be very de-
manding and time-consuming or impossible. As mentioned earlier, in this paper, we
introduce a method to obtain information to decompose high-dimensional, compu-
tationally expensive MOPs and form lower-dimensional simpler subproblems.

2.3. Metamodeling and curse of dimensionality. An important element in the
aNovAa-Mopr method is the use of metamodels for the objective functions. Metamod-
els are approximating functions defined by using, e.g., polynomial splines, Gaussian
processes, neural networks, Fourier expansions and many other methods. They are
also known as response surfaces [4, 66] when used for approximating physical ex-
periments and as surrogate models or predictors [48] when applied to computer sim-
ulations. Typically, they are used for relieving the computational cost of complex
simulations and the resources (or time) costs of physical experiments. (For more
details, see, e.g., [1, 16, 17, 65, 72] and [55] for a survey:.)

Although metamodels can reduce the cost of function evaluations, the intrinsic
complexity in high-dimensional decision and objective spaces is not affected, i.e.,
the curse of dimensionality is not tamed. Indeed, guaranteeing global convergence
towards optima is exponentially complex with respect to the dimension of the deci-
sion space, even for single objective optimization (see, e.g., [32, 49]). When we say
that the complexity of a problem grows exponentially with the number of decision
variables, we mean that the exploration of a d-dimensional hypercube by means of a
full factorial design with m levels (i.e., discretizing each variable range to m equally-
spaced sections) in each variable requires m? points [3].

Furthermore, the exploration and representation of the Pareto frontier also suf-
fers from the high dimension of the objective space. The Pareto frontier is usually a
(k — 1)-dimensional object [31]. Even if it is approximated with a satisfactory accu-
racy, it is impossible to visualize it in the Euclidean space RF when k > 4.

2.4. Sparsity of effects, reducibility and decomposability. If possible, the di-
mensions of the problem could be decreased by reducing the number of variables
and objectives. We assume that the problem designers have not introduced spurious
objectives that increase the problem complexity without bringing essential informa-
tion. As objectives are usually in conflict with each other, especially close to the
Pareto optimal points, we assume that there are no redundant objective functions.

As far as decision variables are concerned, the situation is different. Indeed,
along with the curse of dimensionality, there is a complementary phenomenon known
as the sparsity of effects principle ([3], [66, p.173]). It states that in typical cases, i.e.,
for commonly encountered real-world functions, there are only a limited number of
decision variables that are responsible for the largest part of a function variation.
Roughly we can say that 80% of the variance of a function is due to 20% of the deci-
sion variables. This 80 — 20 empirical rule, popular for a wide range of phenomena,
is also known as the Pareto principle [44]. In this paper, we assume this principle
holds, i.e., that a large fraction of the decision variables of each objective function
can be neglected without losing essential information. From now on, we adopt this
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Figure 1: (a) Incidence matrix M. (b) A decomposition corresponding to M in (a).

assumption.

If we can neglect 80% of the decision variables in each objective function, we
have a large probability that many variables can be neglected in all the objectives at
the same time. This leads to the definition of an approximated MOP with the same
number of objectives but with a smaller number of decision variables. We call such
problems reducible.

On the other hand, e.g., in the example of the car restraint system, a variable
that is not important for one objective can be very important for another objective.
So if every variable is important for at least one objective function there are no neg-
ligible variables in the whole problem. This hinders the possibility of reducing the
number of variables overall, but enables grouping objectives that depend strongly
on the same variables. In that case, essentially independent blocks of objectives and
variables can appear, transforming the original high-dimensional problem to a col-
lection of lower-dimensional subproblems. We call such problems decomposable.

In the literature, the possibility of exploiting decomposition in multiobjective
optimization has been explored for at least thirty years (see, e.g., [2, 15, 26, 27, 71]).
Comprehensive mathematical results and a literature review are provided in [13, 14].
Usually, a decomposition is given a priori along with the problem definition. How-
ever, this is not usually possible when objective functions are based on physical
experiments or complex computer simulations. In the next section, by means of
ANOVA, we propose a method to detect the possible decomposable or reducible
structure in black box functions. We start by giving some definitions.

DEeriNITION 1. Let the incidence matrix M = [mf], withl1 <€ <kand1 <i<d,
be defined as mf =1, if function f¢ does depend on variable x; and m‘f = 0, if function
ft does NOT depend on variable x;. If mf = 0, the variable x; is called inactive for the
objective fg. Otherwise, it is active.

DerINITION 2. If there exists at least one index i, 1 < i < d such that mf =0 for all
Cefl,...,k}, problem (1) is said to be reducible.

Figure 1(a) depicts the incidence matrix M for a MOP with k = 8 and d = 8, where the
rows correspond to objective functions and the columns to decision variables. The
black and white squares represent matrix entries with values 1 and 0, respectively.
We first define composition and then the decomposability of problems.


semometa
Text Box

semometa
Text Box


Derintrion 3. Let £1):[0,1]% — Rkt and £2) :[0,1]%2 — Rk2. The function
f) (2. [0, 1]d1+d2 — Rhi+hky £ ®f(2)(x1:---:xd1+d2) =

) T
. (xd1+1r---rxd1+d2))

1 1 2 2
(fl( Wt Xy e e X S g1 Ky ) f

is called the composition of f1) and £(2).

DeriNiTION 4. Problem (1) is decomposable if, after a reordering of variables and
objectives, there exist two subproblems with £1) and £?) such that f = 1) @ £(2),

The following proposition is straightforward.

ProrosiTiON 5. A problem is decomposable if and only if
1. there exist two subsets of indices D1,D, C{1,...,d} and O1,0, C{1,...,k} such
that D{UD, ={1,...,d} and DyND, =0 and O;UO0, ={1,...,k} and O;NO, = 0.
2. mf = 0 if and only if (€,i) € Oy x Dy or (€,i) € O, x D;.

Remark 6. M is reducible if it has a full column of zeroes and it is decomposable
if rows and columns can be reordered such that the matrix becomes block-diagonal. To
be decomposable the number of blocks must be at least two. To each block corresponds a
subproblem of the original MOP, with a smaller number of variables and objectives. As
shown in Figure 1(b), e.g., the first subproblem contains the objective functions f', f* and
f7 and involves the decision variables x3, xs and xg. To find the blocks of the decomposition
we consider the matrix M as the incidence matrix of a directed bipartite graph with two
lists of d and k nodes, where there exists a connection from the node i of the first list to
the node € of the second list if mf = 1. The matrix has two or more blocks if the graph has
two or more connected components. The connected components of the graph are found by
a breadth first search.

ProrositioN 7. To be decomposable, problem (1) must have at least k + d — 2 entries
with value 0 in M.

Let us assume that we have a decomposable MOP as in Definition 4 and let
dyp =card(D; ;) and k; , = card(Oj ). After reordering the variables we can assume
that D] = {1,...,d1} and D2 = {dl + 1,,d} and Ol = {1,...,k1} and Oz = {k1 + 1,,k}
We denote y = (xy,..., X, ) and z = (x, 41,...,Xk), such that x = (y,z) € [0, 14, Let ;5 :
R¥ — R¥1.2 be canonical projections, i.e., t; (f1,..., f5) = (f1,..., ff)and 7, (f1,..., f5)
(f+1,..., f¥). We can then denote subproblems with f(!) and £?) as follows:

f1:[0,1]" — R, £2):10,1]2 — R*,
y— 7 (£(y,2)), z — 12(£(Y, ),

where § € [0,1]% and % € [0,1]%2 are vectors, f,..., fX being independent of z and
fl+l . fkindependent of y.

There is a straightforward relation between the Pareto optimal sets and frontiers
of the original MOP and those of the subproblems with f(!) and £(). The following
result has been partially presented in [14].

TueoreM 8. Let us denote the sets of Pareto optima in the decision and objective
spaces of the first and the second subproblems by P, , and F ,, respectively. Then, P =
Py x Py C [0,1]%1%%2 = [0,1] and F = Fy x F, C R\*k2 = RK, where x stands for the
Cartesian product.
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Proof. Let us assume that x = (y,z) € P; X P, is not a Pareto optimum for f. Then
x must be dominated by a different point X € P, i.e., f{(X) < f¢(x) forall ¢, 1 <€ <k,
and there exists h such that fh(i) < fh(x). The index h must be either in D; or in D,.
Without loss of generality we assume that & € D;. Then y ¢ P;, which contradicts
with the assumption. So, we must have P| x P, C P. Similarly, we assume that x € P
but not x = (y,z) € P, x P,. Then, without loss of generality, we say that y ¢ P;.
Therefore, there exists § € [0,1]% dominating y, i.e., for some 1 < h < k, we have
@) < f(y), and fE(g) < f¢(y) for all the remaining ¢ € D;. Thus (i,z) dominates
(y,z) =x for {, therefore, x is not a Pareto optimum for f, which is a contradiction. O

2.5. Sensitivity analysis with functional ANalysis Of VAriance. So far, we
have assumed that information about active and inactive variables is known a priori.
However, no complete knowledge of the functional behavior of the objectives is usu-
ally available, unless they are given in an explicit closed form. On the contrary, we
often have to deal with black box functions. Therefore, we need a systematic method
for determining how sensitive an objective function is to variables.

Detecting which variables are important and which are not, is called global sen-
sitivity analysis, and one of the most widely used methods is the functional ANOVA
decomposition [47], where ANOVA stands for ANalysis Of VAriance.

Let us consider a single objective function in (1), f¢ (1 < ¢ < k) and denote it by
g:[0,1)% > R, g(x) = g(x1,...,%7) := fE(x1,...,x4). As suggested by Sobol’ and Welch'
we adopt sensitivity indices, main effects and interactions to assess the sensitivity of
an objective function to individual variables or to combinations of variables. This
analysis is built upon an ANOVA-type decomposition of g. It is a statistically based,
hierarchically ordered, finite expansion of g. It is analogous to Taylor and Fourier
expansions in the sense that the first terms of the expansion should be simple in
form and offer a reasonable approximation of the original function under suitable
conditions. Given that the terms in the expansion are computed by averaging, the
considered form of the feasible set D = [0,1]? simplifies definitions and computa-
tions, without being restrictive.

We assume that g is square integrable and denote the overall mean of g(x) by
g0 = I[O,l]d g(x)dx = J[o,l]d g(x1,...,x4)dx1...dxz. Sobol’” shows that there exists a

unique decomposition

(3) glx1,--rxq) = go+&1(x1) + -+ ga(xa)+

main effects

+81,2(%1,X0) + -+ + &a—1,a(Xg-1,%X4) +. ..

(2" order) interactions

-t Z Sityis(Xipse s X ) o+ g1 a(X1,00,Xg0)-
1<y <ip<<ig<d

(st order) interactions

where the component functions g;, ; have a zero mean, i.e.,

1
(4) f gl-l’__.’,-s(xil,...,xis)dxi =0, for any i= il,...,is,
0

ISee [47] for a summary. For the exposition of this topic we follow [48]. See also [11, 54, 57]
7
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and the components are L?-orthogonal, i.e., if (i, ..., i) # (ji,..., j;), then

(5) f gil’m’is(xil,...,xis)gjlw’jt(xh,...,x]-t)dxl...dxd =0.
(0,1}

The components g;  ; are defined iteratively, starting from the main effects:

1 1
(6) gi(x) ::fo L Qoo X)X — 0

and proceeding with the interaction effects of variables x; and x;:

1 1
(7) gi,j(xzvxj):j0 L g(xy,. ., xg)dx_;,j) — 8o — &i(xi) — &(x)),

where dx_; denotes integration over all variables except x; and dx_; ;) denotes inte-
gration over all variables except x; and x;. The main effect of x; represents the mean
behavior of the function g when x; is varied and all the other variables are averaged.
Interactions as g; ;, on the other hand, represent what happens to ¢ when x; and x;
are varied accordingly or conversely, and the other variables are averaged. The plots
of main effects and interactions are usually very informative, at least in a qualitative
sense.

We obtain quantitative indicators of sensitivity by computing variance based in-
dices from the expansion (3). Total variance V and partial variances V;  ; are defined

aS2

(8) V:=Var(g)= j

gz(x)dx —gg, Vipii 1= f gizy_“’i‘(xil,...,xis)dxil cedxg
[0,1]¢ (VR

By squaring and integrating both sides of (3), because of orthogonality (5), we obtain
V= Z?:I Vi + lei<jsd Vij+--+Vy 4, and can define sensitivity indices of the sth
order of g to the variables x; ,..., x; , as

‘/iln-uis

\va
(9) Sil,...,is = v (Si = Vl, sensitivity index of the first order).

We define the total sensitivity to x; as the sum of all sensitivity indices involving it as
Ti=Si+YjxiSij+ - +512,..4-

Example 9. To illustrate the ANOVA method, let us consider the function f(x1,x;) :=

2
X X . 3x 1 2 . x . .. L.
5> -7+ sm(Tl) + 35(x2 = 5) sm(S—}) —4x2). As the function is in a closed form, it is

possible to explicitly compute the main effects and interactions. We have fy = —-0.91, and
fi(x1) and f,(x;) are plotted in Figure 2(b) and (c). It seems that the ANOVA expansion
truncated at the first order, i.e., fo + fi(x1) + f2(x2) is a very good approximation. The
remainder f) »(x,v) = f(x,v) = (fo + f1(x1) + fa(x2)) is plotted in (d). The total variance,
the partial variances, the sensitivity indices and the total sensitivity indices are reported
in Table 1.

It is clear that when T; = 0, x; does not affect g and the corresponding entry

m'f in the incidence matrix is 0. Otherwise, we set mf = 1. So, we have described a

2In this subsection, g means g to the power 2. Note that we do not have to subtract the squared mean
of g, ....i; because the mean is zero (4).
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V and V; S; T;

F(x1,x2) 3.57615 1.
fi(x7) 2.95382 0.825977 | 0.826211
£ (x2) 0.621495 0.173789 | 0.174023

fi2(x1,%5) | 0.00083535 | 0.000233589

Table 1: Variances and indices of Example 9.
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Figure 2: Illustration of Example 9. (a) Plot of the function f. (b-c) Plots of the main effects
fi(x1)+ fo and fo(x3) + fo (dark line — red in the online version) and values obtained as the
other variable is varied. (d) Plot of the interaction of the second order f »(x,), equal to
f(x1,x2)—(fo + f1(x1) + f2(x2)) (color available online).

method for computing an incidence matrix and, thus, for deciding whether a MOP
is decomposable at least if it is possible to compute exactly the integrals in (6), (7)
and (8).

The integrals can be too difficult to compute exactly or the incidence matrix may
not have enough zeroes to be decomposable. Nevertheless, there exist effective and
affordable numerical estimates for T;s and often a large part of the entries of the
incidence matrix can be small (in a suitable sense). We need therefore a method

9
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for dealing with MOPs which are not exactly decomposable but only approximately
decomposable.

2.6. Sensitivity matrix. In general, there is no evident reason why a particular
entry of the incidence matrix M should be zero. Therefore, we cannot exclude a
priori the possibility that M could be fully non-zero.

Nevertheless, according to the already mentioned sparsity of effects principle, de-
cision variables do not usually have the same impact on the values of the objective
functions, and the Pareto principle may hold. In other words, there may be a small
number of decision variables that are responsible for the largest part of the effects
observed and thus, it is reasonable to neglect the remaining variables. Neglecting the
variables with a limited impact on the objective functions values leads to an auxiliary
approximated problem which is decomposable.

Next we review a selection of numerical methods for estimating the total sensi-
tivity indices T; in (9). As already mentioned, computing T;s is a matter of estimating
integrals over the domain S. This can usually be approached in one of the follow-
ing ways. Integrals can be estimated by the Monte Carlo method [21, 41, 54], which
usually is reliable and universally applicable, although it requires large samples of
function evaluations. Because this may not be affordable for computationally ex-
pensive functions, one can use Latin Hypercube Sampling which samples at specific
points to allow a faster convergence of the integrals when compared to random sam-
ples [37].

Alternatively, a moderately large sample of function evaluations can be em-
ployed to construct metamodels for the objective functions. There are many methods
for selecting the points to evaluate the objective functions. While most are of a space-
filling type, there are methods that adapt to the function complexity (see [33, 34] for a
summary). Then integrals of the metamodels can be estimated again by Monte Carlo
or, if the metamodels have a suitable formulation, integrated analytically with a neg-
ligible computational cost. This is the case of the Polynomial Chaos method [57, 63]
where an objective function is expanded in a series with a basis of orthogonal poly-
nomials. This method has also been applied to robust multiobjective optimization
[45]. Independently of the method chosen, the estimated total sensitivity indices Tf

are collected in a sensitivity matrix SM := [Tl-g], ¢ef{l,....,k}and i€ {l,...,d}.
3. The anova-mor method.

3.1. Approximated problem. To develop the anova-mor method, we consider
the sensitivity matrix SM and we fix a threshold value 6 > 0.

DEeriNITION 10. Let 6 > 0. The function fs5:[0,1]7 - Rk:

o |x ifT! >0, v -
(10) xf ::{ll ;Tl‘?<6 fé(xl,...,xd)::fg(xf,...,xd),
2 i ’

is referred to as the approximated function of f, while the corresponding MOP

(11) minimize {f y(x), .., Fo(x)],

x€S

is the approximated problem (MOP) of (1).

In other words, for every objective function fg, 1 < ¢ < k, we consider as active

variables only those x; for which Tf > 6. The remaining variables are fixed as 3.
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Figure 3: (a) An example of a total sensitivity matrix (SM). The bar shows the range of the
total sensitivity indices. (b) A reduced incidence matrix My corresponding to a threshold
value 6 = 0.25.

The choice of setting the neglected variables to the midpoint 3 of the range is non-
restrictive and any point in the range [0,1] can be chosen in (10). In what follows,
we write f instead of fy if there is no ambiguity. The incidence matrix M; for the
approximated problem is then My := [m'f]gi with mf =1 if Tig > 0 and m‘f =0 if

T! <.

3.2. 6-reducible and 0-decomposable problems. Let a MOP be given with sen-
sitivity matrix SM. It is clear that larger threshold values 6 imply approximated
problems with a sparser incidence matrix My, because more variables are neglected

in the approximated objective functions f_g If M; is sparse enough, the correspond-
ing approximated problem is reducible or decomposable.

DeriNniTION 11. Let f, 9O, f, SM and Mg be as above. We say that problem (1) is o-
reducible if the incidence matrix Mg is reducible and the problem is 5-decomposable if
My is decomposable.

It is obvious that the threshold 0 cannot be larger than a certain value

: ¢
(12) “= A }Eﬁ’.‘.,d”} )
because with higher values some of the objective functions will have no active vari-
ables. In that case, some of the objective functions will be excluded and we do not
want this to happen.

Figure 3(b) illustrates a reduced incidence matrix M obtained from the sensitiv-
ity matrix SM in Figure 3(a) with 6 = 0.25. (For example, for f3, T]-3, j=3,4,6,8, are
smaller than the threshold.) Therefore, in the corresponding approximated prob-
lem, the decision variables Xj, j=3,4,6,8, are treated as inactive for f3 and fixed to
%. Once the reduced incidence matrix M; is formed, the decomposability is assessed
by using a decomposition method such as [6]. If My has too many active entries to
be decomposable, the threshold value ¢ is raised and My is recomputed. If neces-
sary, the value of ¢ is raised again until the matrix obtained is sparse enough to be
decomposable allowing to define the approximated problem f.

It is not needed to test infinite values of 6. Indeed, it is sufficient to sort in
an increasing order the values of the sensitivity indices Tf for all £ € {1,...,k} and

jef{l,...,d} and test the values of 6 from the (n+k — 2)th position to the largest
among the values smaller than w. This is because of Proposition 7 and the reason
explained above.
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Thus, by raising sufficiently the value of the threshold we are likely to obtain
a decomposable approximated problem, amenable to our analysis. Therefore, the
question now is how much in accuracy we lose by gaining in decomposability.

3.3. e-approximations of Pareto optimal sets and frontiers. Animportant ques-
tion in any optimization involving metamodels is how good the approximations of
the optimal sets obtained by optimizing the approximated functions are. There is
a (usually tacit) assumption that the operations of optimizing and approximating
do commute, but this holds only if the functions behave well (in a suitable sense).
Indeed, theoretical results of convergence can only be achieved by assuming some
regularity of the functions, usually in the form of the existence of a global Lipschitz
constant.

DeriNiTION 12. We say that f is an e-approximation of f, if and only if|f(x) —f(x)| <
e forallx €[0,1]%.
In what follows, we assume that we have sampled the feasible set with N points

{x", n=1,...,N}, and that the maximum radius of a ball not containing sample points
is p := maXyep p=1,.,N X —X,| > 0.

Tueorem 13. Let f : D — R be globally Lipschitz with constant L > 0. Let f be
an interpolation with the same or a smaller Lipschitz constant, defined on the dataset
{(x", f(x")), n=1,...,N}. Then f is an e-approximation for f with € = 2Lp.

Proof. For every x € D there exists x,, such that [x —x,| < p. Thus |]_’

f &)
[F00) = £ () + £ () = ()] < [0 = F ()] + 1 () = £ ()] < L =] + L - xn| (L
L)|x —x,| < 2Lp, because for any interpolating method f(x,) = f(xn).3

o +

Under the given hypothesis, the Pareto optimal set of problem (1) can be approxi-
mated by the Pareto optimal set of the approximated problem. We give below more
precise definitions and results.

DEerINITION 14 Following [25, 62], for a tolerance € > 0, x e-dominates y if and
only if for all € € { k), f(x) < fi(y) + €, and there exists an index € € {1,...,k} such
that fC(x) < fl(y)

DeriNiTION 15. Let P < [0,1]4 be the Pareto optimal set for problem (1). For € > 0,
the set P € [0,1]4 is called a Pareto optimal set approximation (or an e-Pareto optimal
set), if and only if for all x € S, there exist X € P such that X e-dominates x [42]. The image

P) of the Pareto optimal set approximation is called a Pareto frontier approximation
(or an e-Pareto frontier ) for [42].

Turorem 16. If f is an e-approximation for f, then the Pareto optimal set for f is an
e-Pareto optimal set for (1).

Proof. Let x € P, then f( ) < f(x) + € because f is an e-approximation of f. If x is
not a Pareto optimum for f, then there exists X € P such that X dominates x. Thus X
e-dominates x for f. ]

Remark 17. The converse also is true, i.e., the Pareto optimal set P is an e-approximation
of the Pareto optimal set of the approximated MOP, because the above proof works also
swapping the roles of f and f.

30ne should note that not all metamodels have controllable Lipschitz constants. However, one can
define such metamodels, e.g., considering a Delaunay tessellation of the domain based on the sample
points, and using linear interpolations on the simplices.
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f2

(a) f (b) f

Figure 4: (a) Pareto frontier (the thick curve — orange in the online version) and the Pareto
frontier approximation (the dark dot — red online) for a bi-objective optimization problem.
The light strips (green online) represent the tolerance zone of width 2¢, where the Pareto
frontier should be located for the e-approximation to be acceptable. (b) If the functional
dependence is not enough weak to be neglected, the Pareto frontier violates the tolerance
zone. Pareto optimal sets are traced by singular continuation [31, 32] (color available online).

A straightforward consequence of the previous theorem and remark is that if (1) is
5-decomposable and the approximation is an e-approximation, then P has a special
form of the Cartesian product of the Pareto optimal sets of the subproblems, and P
is e-dominated by the Cartesian product. In particular, the Pareto frontier f(P) is
contained in a set of a special form.

CoroLLARY 18. If problem (1) is 5-decomposable and £y is an e-approximation of f
with €,0 > 0, then the Pareto frontier of problem (1) is contained in a tolerance zone:

U {(ul,uz) : ('ul —f(l)(y)| < 2€, Uy >f(2)(z)—26) or (|u2 —f(z)(z)| < 2€,u >f(1)(y) - 26)}.

yep)
zep(?

Remark 19. For bi-objective 0-decomposable problems with continuous objective func-
tions, the Pareto frontier approximation is a single solution because of the Weierstrass the-
orem. In non-degenerate cases, the Pareto frontier is a curve. In the assumption of Corol-
lary 18, the tolerance zone is the union of two orthogonal half-infinite strips of width 2e,
as illustrated in Figure 4(a). In (b), the approximated problem is not e-accurate, and the
Pareto frontier violates the tolerance zone.

3.4. 6-Decomposability versus e-accuracy through Lipschitz constants. We
know that for having a sufficiently large number of zero entries in the incidence
matrix My to guarantee the 5-decomposability of a problem we must use large val-
ues of 6. Nevertheless, large values of 6 mean that when building the decomposable
problem we have to neglect variables with not so small sensitivity indices. There-
fore, a 6-decomposition may not be an e-approximation. One may ask whether there
is any quantitative relation between 6 and €? In other words, is it possible to choose
0 small enough for getting an e-approximation?

If the sensitivity index Tig is smaller than a prescribed 6, this does not automat-
ically imply that the variations of f¢ corresponding to the variable x; are uniformly
small. As Tf is obtained by averaging, it is possible that arbitrarily large differences

FE() = £ ()

the domain). This means that a function must oscillate quite wildly, i.e., must have
13

occur (it suffices that such differences occur in small regions of
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a large, if existing, Lipschitz constant. Therefore, a relation between 6 and € can be
obtained by assuming the existence of a Lipschitz constant for f. We exhibit such a
relation and prove it for a simple case.

LemMma 20. Let g:[0,1] — R be Lipschitz continuous with constant L > 0. If Var(g) <
o with & > 0, then |g(b)—g(a)| < V12L5 for all a,b, 0 < a < b < 1. Equivalently,
g(x):=g9 = g(%) is an e-approximation for g with e = V12L6.

Proof. In the worst case, g is monotonically increasing (or decreasing) from a to
b, and g is growing at the maximum speed allowed by the assumption, i.e., g(x) =
g(a)+ L(x —a). If so, with gy as the mean value of g, and Var(g) the variance of g, we

have Lh |g(x) —gol2 dx < Var(g) < 8. Due to the mean value theorem, g, = jol g(x)dx =
b b
g(xo) for some xq € [0,1]. Thus, [ [g(x) - go|* dx = [ |g(x) - g(xo)I* dx =

— 3 _ 3 _\3 _ 3 _ 3
= szah|x—x0|2dx = Lz(@%_%) > LZ(hl—;), because (b+°) - % has its

minimum at xy = b# This implies that |b—a| < ,3/%25 and |g(b)—g(a)| < L(b—a) <
Vi2Ls. O

It is lengthy but not difficult to prove the following.

Tueorem 21. Let f : [0,1]> — R be Lipschitz continuous with constant L > 0 and
d-reducible. Then f 5 is an e-approximation for f, with € = /966 Var(f)L%.

3.5. The relation between decomposability and tolerance thresholds. Next
we establish, for some low-dimensional cases, the probability for a problem to be
0-decomposable given a value of 0 > 0. This gives a measure of the applicability of
ANOVA-MOP to many real life applications. Let us consider a MOP and assume that
the Pareto principle holds, i.e., globally the sensitivity indices follow a Pareto distri-
bution. This implies that, for each objective function, 20% of the decision variables
produce 80% of the variance. Recursively, this also implies that the fraction of the
20% most active decision variables among the 20% already selected is accountable
for 80% of 80% of the variance, which allows to state that 4% of the decision vari-
ables are responsible for 64% of the variance, and so on. This can be summarized by
saying that a fraction r, 0 < r < 1, of the most relevant decision variables produce a

. log 1 (1) . .
fraction equal to (%) 85" of the total variance, see Figure 5(a). As a result, we can

establish a relation between the tolerance threshold 6 and the corresponding vari-
ance of the functions that we neglect when we build the approximation of problem
(1).

Let us consider a bi-objective problem with d > 2 decision variables. We as-
sume for the sake of simplicity that the objective functions are perfectly Paretian
in the sense that they follow exactly the behavior described in the previous para-
graph, i.e., given any 0 > 0, both objectives have 1 < a < d non-negligible en-
tries. According to the previous discussion, we assume that by passing to fs we

1 a
lose 100 x (1 - (%) Ogé( ¢ ))% of the total variance of each objective function. Let us

denote by r = 7 the corresponding fraction of active variables.

The probability that a bi-objective problem is 0-decomposable, when for each
objective function we have kept a active variables is given by the probability that
the selection of a active variables of the second objective function has an empty in-
tersection with a active variables of the first objective function. We have Prob =
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1
N d-2a+1 d+} Tor \I=2r\ ((1=r)2 \2d e
W :(1+ﬁ) (1—%) :((1—7’)(1722) ) (ﬂ) , by Stirling’s for-
mula. Given any r, 0 <r < %, this probability tends to zero as d — co. However, the
probability remains high for a moderately large number of d, see Figure 5(b). It is
interesting then to compute the maximum ratio r = %, i.e., the maximum variance

preserved in the approximation fs, such that the probability of picking a decom-
posable MOP is higher than 50%. This computation is reported in Figure 5(c) and
(d). E.g., we claim that for having a probability higher than 50% to randomly pick a
decomposable bi-objective problem we have to neglect at least 80% of the variables
(corresponding to 20% of the variance) for d = 10 and 88% of the variables (25% of
the variance) if d = 25. (A corresponding analysis can be carried on for 3 objectives,
although less immediately.)
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Figure 5: (a) Percentage of the variance of a “perfectly Paretian” objective function maintained
by keeping an active fraction r = % of the most representative variables. (b) Probability of -
decomposability for a bi-objective problem with a fraction r = & of active variables as d varies
from 3 to 50. (c) Maximum ratio r allowing for a 50% probability of having decomposability as
d varies. (d) Maximum variance V(r) corresponding to perfectly Paretian objective functions
allowing a 50% probability of having decomposability as d varies (color available online).

On the other hand, the probability that a bi-objective problem is o-reducible
is the probability there exists at least one common neglected variable for both the

objectives. This probability is equal to Zi;g_l(afh)(dza)/(i), which automatically is

100% if a < % and remains higher than 50% for o < 91.

This result can be generalized to any number of objective functions. Let us de-
note by A; the event that x; is active in at least one of the objectives. Then A;N---NA,
represents the fact that each variable is active in at least one objective. We want to
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compute the probability of (ﬂflzl Ai)c, which by the generalized De Morgan law be-
comes:

d

i

i=1

d c
ﬂA,- =1-Prob

i=1

(13) Prob

=1- [(f)Prob(Ai)— (i)Prob(Ai NAS)+

+(Z)pmb(AgnA;nAg)-...i(d‘_ia)pmb(Agm...mA;_a) :

We observe that the probability that the first variable is neglected for all k objec-

_ _ k k
tives is given by Prob(Ai) = (%) = (d%"‘) , and by generalizing we ob-

d1)..(d—a+1
ey — k _ 1)\ k

tain Prob(A{ N AS) = (;fd—zl))--f(dd—aajl))) - ((d szid—li( 1)) and Prob(A§ NN A7, ) =

(d=a)-~(d—a—(d-a)+1) \k _ (d-a)l K d B

( 7 (d—(d=a-1) ) = (d---(a+2)(a+1)) . Therefore, (13) becomes 1 —Prob(Ui:1 f) =

k
1 [Zf;f‘(—l)”(‘f)l’[;ﬁl% (%) ] This probability is automatically 1 for a < 4, but

remains higher than 50% for large values of «, e.g., « = 51 when k = 7. The overall
behavior is reported in Figure 6. This discussion demonstrates the applicability of

10F

0.8

06+

041

Probability of reducibility

0.2r

00k

40 60

1 of active vars

Figure 6: Probability of reducibility for a MOP with 100 decision variables and m active vari-
ables for each objective functions as the number of objectives k varies from 2 to 7. The lines
are in an increasing order of k from right to left (color available online).

ANOVA-MOP to a wide range of applications, and explains why we do not consider any
special method for cases when the column of common variables among the subprob-
lems is of non-zero size.

Nevertheless, sometimes it can happen that for achieving a desired level of de-
composability we may obtain an unacceptably inaccurate approximation of the ob-
jective functions. Then, one can consider a partially decomposable problem, but a
specific strategy should be devised to deal with non-zero interaction columns. If it
appears that the whole range of the variables in the interaction columns contains po-
tentially interesting values, it is nontrivial to develop an efficient method for solving
accurately and effectively such a partially decomposed problem. The possible advan-
tages and computational costs should be carefully studied, and this is an interesting
subject for future research.

3.6. The anova-mor algorithm. Now that we have presented the backgrounds
that the aANova-mop method is based on, we formalize it in Algorithm 1. ANova-mop
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converts the original problem into subproblems of fewer objectives and variables and
results with approximated Pareto optima and information about the approximation
quality. The method is modular and contains ingredients that can be defined with a
large flexibility. To be as general as possible, we present the algorithm for black box
functions. Naturally, the method can also be applied when dealing with other than
black box functions.

ANOVA-MOP needs a training dataset to construct metamodels for the black box
objective functions fl,...,fk. The dataset can be provided by a user or, e.g., a max-
imin Latin Hypercube Design [22] can be applied to get a dataset of n points. Alter-
natively, one can use a method that builds the metamodels and generates the dataset
simultaneously as mentioned below.

1. Build a metamodel (e.g., Gaussian processes, radial basis functions, neural

networks or splines) for each individual black box objective functions fol-
lowed by estimating the total sensitivity indices. In our implementation,
we have adopted the Bayesian Polynomial Chaos method (BPC) [57], but
ANOVA-MOP is not limited to it.
BPC generates incrementally a training dataset and builds a metamodel it-
eratively to meet some goodness-of-fit criteria mentioned in [57]. In BPC, it
is possible to choose a maximal interaction in the ANOVA decomposition,
e.g., one can compute the full expansion or limit the analysis to the main
effects. We opt for the complete expansion and use polynomials with a de-
gree p = 4. The output of the method consists of the metamodels for the
objective functions and a 95% confidence interval containing the estimated
total sensitivity indices.

2. For decomposition, we use the implementation of Chen [6]. In this method,
one can set the number of subproblems, the maximum number of common
variables between subproblems and the minimum number of active vari-
ables within each subproblem.

3. ANOvA-MOP can be applied as a non-interactive or as an interactive method.
The former case requires a multiobjective optimization method while the
latter uses a single objective method, denoted by soLver. In Section 4 we
adopt respectively RVEA [7] and DIRECT [23]. We use RVEA because it is
a general purpose solver designed for problems with more than three objec-
tives. However, these are only examples and any appropriate solver can be
applied.

If aNova-MoP is used as an interactive method, it resembles the reference point

method [64, 38], where an achievement scalarizing function (ASF) involving a refer-

ence point consisting of aspiration levels Z = (zy,...,Z;)", specified by the DM is em-

ployed. As mentioned earlier, aspiration levels represent desirable objective function

values. We consider the (ASF) [64] of the form ASF(x,z) = m%x(w; (fi(x)—z;)), where
1€

w; > 0 for i = 1,...k are non-negative fixed weights which set a direction where Z is
projected onto the Pareto frontier. The weights can be used to normalize objectives.
By solving the problem
(14) minimize ASF(x,z)
xeS

with an appropriate single objective solver, we get a (weak) Pareto optimum best
reflecting the preferences. (To avoid weak Pareto optimality, one can add an aug-
mentation term to ASF, see e.g., [38].)

As discussed in [9], to accomplish cognitively demanding tasks, one requires a
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sufficient ability to hold information as it is processed. For a high number of ob-
jective functions, the DM may find that providing corresponding reference points
iteratively may impose a heavy cognitive load. This is the motivation for applying
ANOVA-MOP in an interactive way, where the DM gives aspiration levels to subsets of
the original objectives, one subproblem at a time, leading to reducing the cognitive
load. In what follows, we discuss how subproblems of anova-mop are utilized to
interact with the DM.

Once the m subproblems have been formed, they are considered one by one.
The DM is informed which objectives are included in each subproblem. For the
a'" subproblem, the DM is asked to specify corresponding aspiration levels and an
ASF is formulated with objective functions of that subproblem. The corresponding
reference point is denoted by z*". The a'” subproblem (which is derived from (14))

(15) minir;lize ASF(x*,z%) $%:=[0,1]%

x7e54
is solved and the solution shown to the DM. The interaction with the DM is con-
tinued until the most preferred solution for the objectives in the a'" subproblem is
found. This is repeated for all subproblems. The following theorem shows that the
solutions obtained with the subproblems form a preferred solution to problem (1).

TueOREM 22. Suppose the incidence matrix M can be decomposed into m subprob-
lems. Let Z%, for a =1,...,m, be a reference point given by the DM for the a'" subprob-

lem (15) and denote by X** an optimal solution. Then x* = (xl*,. ., X"™) € argmin ASF(x,z")
x€eS

S

zZ,...,7™).

wherez" =(z%,...,2

Proof. We show that
(16) ASF(x*,z") < ASF(x,z"), forallxeS.

Suppose ASF(x*,Z*) = (wy(f"(x*) —2;)). Then, there exists an index e such that h €

O,. The optimal solution of the eth subproblem is x**. This means that (wh(fh(x*) -

z;)) = max(wj(f/(x*,x°) - z¢")). For all x° € §°, we have max(w;(f/(x*,x°) —z{)) <
€ €

j€O, I j€O, I
r];;%):(wj(ff(xe,f) -z7").
On the other hand, max(wj(fj(xe,)_(e) —2%)) < max (max(wp(f?(x%x%) -z;))) for
j€O, U a=1,..,n beO,
all x¢ € S¢. Since, max (rbn%x(wb(fb(x“,g“)—ii))) = ASF(x,Zz"), inequality (16) results.0
a=1,...,n ve

a

One should remember that if the functions involved are computationally expensive,
the possibility of using metamodels reduces the waiting time set on the DM for ob-
taining solutions corresponding to her/his preferences.

4. Benchmarks. In what follows, we demonstrate how aNnova-MoP can be ap-
plied. * By writing k xd = (k; xd;)®...® (k, x d,,) we mean decomposing a problem
with k objectives and d variables to n subproblems with k; objectives and d; variables.
We consider two problems defined by algebraic functions. This allows us to know
in advance which are the subproblems composing the full problem and perform ex-
haustive searches in the feasible sets. This naturally cannot be done with expensive
black box functions but enables a transparent demonstration of the capabilities of
the method.

4The code for ANOVA-MOP is publicly available at http://www.mit. jyu.fi/optgroup/desdeo.html
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Algorithm 1 aNova-moP

Input: Let f:[0,1]9 — R¥ be a black box vector function in (1). The user has an
option of selecting a threshold value 6.

Find a training dataset, apply a metamodeling technique to build the metamod-
els f for f and estimate the total sensitivity indices. Alternatively, employ BPC
[57], which finds the dataset, builds the metamodels and estimates the total sen-
sitivity indices.

2: Perform the ANOVA analysis on f and build the k x d sensitivity matrix SM.
3: Define a sorted list E = {ey,..., 4.} of all the entries of SM in an increasing order.
4: Determine w according to (12) and find the maximum r such that ¢, < w.

> Here w is also a valid value for 6 because the entries equal to 6 remain active.
Extract the list A by picking the elements of E from the (d + 1)-th to w, i.e.,
A= {ed+1,...,er}. > We need at least d entries equal to zero for having
reducibility and d+k—-2 for decomposability.

6: if 6 has been chosen by the user then

10:
11:
12:
13:
14:
15:

16:

17:

18:

19:
20:

21:
22:
23:
24:

25:

Build the reduced incidence matrix Mj.
else > Pick the smallest value of & for which Mgy is reducible or decomposable, if
existing.
repeat
Pick as tolerance value 6 the smallest element in A.
Build the reduced incidence matrix Ms.
Remove 6 from A.
until M; is reducible or decomposable or A is empty.
end if

if M is decomposable then
Decompose problem with fs in approximated subproblems with f(l),...,f(m)

as described in Remark 6.

Solve the subproblems separately by calling soLver, which returns the sets of
1 pim (1 zim

..o F
Build the Pareto optimal set approximation for (1) P := P

(m)
P= {(xgl),...,x{(ill),x(lz),...,xfim_l),x(lm),...,xfim))’ xM eﬁ(l),...,x(’”) eﬁ(m)}

and corresponding Pareto frontiers F
(1)
X

Pareto optima P

.x P :
m—1 m

and, analogously, the corresponding Pareto frontier approximation F := Y«

o B

else if M is reducible then ~

Solve the approximated reduced problem fs by calling soLver, which returns
the sets of solutions P and F.
else

Set ﬁ = ? =0. > The method is not applicable
end if
Select randomly a validation sample V := {x(l),...,x(”)} C P and estimate the ap-
proximation quality € of the solutions found as follows

xeV

(17) €=~ max”f(x) —fé(x)Hw = vr:r%i).(’v max |f€ (x(")) —fs (X(V)) .

return (ﬁ,f, Vv, e).
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To demonstrate the capabilities of the anova-mop method, we repeat the fol-
lowing for both the problems:

1. We perform an almost exhaustive search in the feasible set of the original
problem by using a full factorial design of experiment if the dimension of
the decision space is moderate or by using a large random sample if the
dimension is large. We then evaluate all these points with the original func-
tions, and extract the nondominated subset which is considered as the exact
Pareto frontier of the problem denoted by F,..

2. We apply the multiobjective optimization method RVEA on the original
problem. This serves as a comparison for the anova-mop method.

3. We start applying the anova-mor algorithm by defining the metamodels
and following Algorithm 1 to obtain subproblems. For the decomposition,
we apply the Chen method by setting the number of subproblems to 2 for
problem (18) and to 4 for the high dimensional problem in Section 4.2.

4. We run RVEA separately on each subproblem to obtain (P(‘),F(‘)), 1=1,...,m,
where m is the number of subproblems.

5. We build the Cartesian products of the Pareto optimal sets of the subprob-
lems P = P(!) x...x PU") and the Pareto frontiers F = F!) x ... x F"). They are
the approximated Pareto optimal set and frontier obtained, respectively.

6. We estimate the width of the 2e-strips considered in Corollary 18 and Re-
mark 19 by computing a set-wise distance between the “exact” Pareto fron-
tier F,,;, defined in step 1 and the candidate Pareto frontier F,,; obtained in

steps 2 and 5 as 1oss (Fexy, Feand) := Maxper, , Minger,, , MaXe=1,. x Max {qe -t 0}.
In particular, we estimate € ~ loss (Fexh,l_c). Since F is the Cartesian product

of the Pareto frontiers of the subproblems, F=FDx...x FiM the global
loss equals the maximum of the losses computed for the subproblems sepa-

7 : RF — Rk is the projection from the objective space to the subspace of
the objective functions of the i-th subproblem.

7. We compare this value with the value obtained in the anova-mor method,
i.e., we extract a random subset V C P of the points in the approximated
Pareto frontier and evaluate the original functions on these points. Then
we consider as a possible estimate for € the infinity norm of the difference
between the approximated value and the exact value on these points, as de-
fined in (17).

8. We compare the results of RVEA on the un-decomposed problem and on the
decomposed problem in terms of the loss computed at the previous step and
the number of function evaluations used in the two cases.

4.1. 5-decomposable problem. We consider the following five-objective parametrized
optimization problem 5x5 ~(3x3)®(2x2) with A =1.3:

(18) minimize {f!(x),..., f>(x)}  where  x=(x;,...,x5) and
xe[-A,AL5
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F1%) = g1(x) + yga(x), g0 =) =P, R=L1)T,
£2(x) = £2(%) + g5 (%), £ = (L) =P, P=(1,-1,-1)T,
F3%) = g3(%) + y(ga(x) + g5(x)),  g3(x) = |(x1,%2,%3) —P3T2: Py=(1,1,-1)7,
FA3) = ga(x) + 781 (%), @) =|exs)" =", Py=(1-1)T,
P =g@+r@@+ o), g® =) P, P=(-1,1)7,

with ¥ = 7.000x1073. The BPC method managed to build metamodels by generating
iteratively a sequence of points, stopping with 47 points, when a suitable goodness—
of-fit criterion was fulfilled [57]. BPC also estimated the total sensitivity matrix SM
given below based on which we form the incidence matrix M as

0.333 0.333 0.333 0.001 0.001 1
0.333 0.333 0.333 0.001 0.001 1
SM =(0.333 0.333 0.333 0.001 0.001}, M=|1
0.001 0.001 0.001 0.499 0.499 1
0.001 0.001 0.001 0.499 0.499 1

— e e
— e e e
— e e e
— e e e

By taking as o any value 0.001 < 6 < 0.333, we obtain the reduced incidence matrix
M, and a corresponding auxiliary decomposable problem f; as follows:

fl(x11x21x3’010)
fz(xl,X2,X3,0,0)
(x)=| f2(x1,%2,%3,0,0) |,
f4(0r 0, O,x4,x5)
f5(0,0,0,x4,x5)

(19) M;=

OO ko
[ s G S
—__0 oo
—_—_0 oo

-~

=%}

=

»

Nab

1l

-

1
1
1
0
0

where f(1) and f(?) are the following three- and bi-objective subproblems:

1 f1(x1,%2,x3,0,0)
(20) minimize 3f (X],Xz,Xg,) = fz(xl,xz,x3, 0, 0) ,
(x1,x2,x3)€[-A,A] F3(x1,%2,x3,0,0)
. =2 £4(0,0,0,x4,X5) )
21 minimize f (x4,x5):= .
( ) (X4,X5)E[—/\,/\]2 ( 4 5) ( fs(ol Or Or x41 XS)
Figure 7(a) and (b) depict the Pareto frontiers of these subproblems, respectively.
According to Theorem 8, the set of Pareto optima for fs = i ®f(2) is the Cartesian

product of the sets of Pareto optima for subproblems (20) and (21).

In other words, all the solutions of problem (19) are obtained by joining a so-
lution (x7,x,,x3) of subproblem (20) and a solution (x4, x5) of subproblem (21). The
Pareto optimal set of (19) serves as an approximation for the Pareto optimal set of
problem (18).

4.1.1. Approximation quality. Before applying aANova-MoP, we estimate the qual-
ity of the decomposed problem, represented by €, and test whether the claim of
Corollary 18 is compatible with such an estimated value. Given the moderate com-
plexity of the problem we can execute an almost exhaustive exploration of the do-
main, i.e., we set A,y to be a full factorial in 5 dimensions with 20 levels for each

21
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f; A

fs |

f2

f1 T~ - fs
(a) (b)

Figure 7: (a) Pareto frontier of subproblem (20). (b) Pareto frontier of subproblem (21) (color
available online).

variable. Then #{A,,;,} = 20> and we evaluate the objective functions at the points in
A,xp, denoting By, = f(A,yy,). We extract the “exact” Pareto optimal set (P,yp, Foypy) :=
ND (Agyn Bex), where with ND(A, B) we denote the operation of removing the dom-
inated solutions from (A, B), where A C [-A, A]¥ is any sample and B = f(A).

4.1.2. anova-mor test. Next, we analyze the behavior of RVEA [7], when ap-
plied to the original problem versus the application of RVEA coupled with aNnova-
mor. We select analogous settings compared to the dimensions of the problems and
compare the results in terms of accuracy and computational costs. In particular, we
set 341" as the population size and 10 as the number of generations. We estimate
the method performance by computing the previous set-wise distance between F,,;,
and the optimal set obtained. We compute also the number of function evaluations
required by the three methods. When we use ANova-mop, we must consider the com-
putational overhead, i.e., the function evaluations required to build the metamodels
used for the decomposition, here 47 function evaluations, and the evaluations per-
formed to validate the optimal set found on the metamodel fs, here depending on
the optimization results.

1. We run RVEA on problem (18). We call P; the final Pareto optimal set ob-
tained and F; the corresponding Pareto frontier (even though evolutionary
algorithms cannot guarantee optimality).

2. We run RVEA separately on the two subproblems and generate the Pareto
optimal set for the whole problem as the Cartesian product of the Pareto
optimal sets found in the separate subproblems and validate the function
values. We call P, and F, these Pareto optimal set and frontiers, respectively.

We summarize the results in Table 2, where

22 loss (F ,FU)):: max min max max(gf — €,0,
(22) 1\ Lexhr L'; peFei(hqumszgg x(q P )

(2) . -3 (
23 I (F ,F. ):: -p%,0),
(23 0852 Texh T peten, qr? ;(% s max(q P )

i

24 10sS;p¢ (Forp, F;) := max min max max ¢ _ 5,0,
( ) tot( exh 1) peE o eF; (=105 (q p )

22
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Dataset 10551(pexh,pﬁ") lossz(PExh,Ff”) 1055101 (Fopr F;) Nevals

(P, F1) 0.3509 0.11132 0.97362 35% 10 = 2430
3 2

(P,, E,) 0.537 0.7275 0.7275 | 47+(37+37)x 10
+ 247= 654

Table 2: Summary of the results of the comparison for the first example.

and we observe that only when F = F(!) x F(2) then

losssot (Fexn, Fi) = max(lossl (Fexh, Ffl)), loss, (Fexh, F:Z))),

which is only the case for the Pareto optimal sets obtained by anova-mor . We notice
that the accuracy of the Pareto optimal sets is comparable in the two cases while
the number of function evaluations is sensibly smaller when the decomposition is
used, while keeping the settings of the algorithm scaled to the problem dimension.
Therefore, we can claim that the main scope of the method, i.e., mitigating the effects
of the curse of dimensionality, is accomplished.

In the case of expensive functions, we could not have explored exhaustively the
problem domain and could not estimate the width of the tolerance zone as we did.
In that case, we could estimate € by evaluating the original functions on a random
subset V of the Pareto optimal set approximation and by computing the maximum
difference between the values of f and of f5 on V. In our case, we can compute this
value on the entire set P because it is still of a moderate size and our functions are
inexpensive and get € ~ max, 5 ”f(x) - fg)(x)”Oo = 0.054045.

4.2. High-dimensional 0-decomposable problem. Next we consider the fol-
lowing parametrized 12 x 10 = (3 x 3)®(3 x 3) ® (2 x 2) ® (4 x 2) problem involving
twelve variables with S = [-1,1]'2, where A = 1.3. We minimize ten objectives of
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component functions defined as follows with y = 7.000 x 1073:

flo =g (x) +ygax),  gi1(x) = |(x1,x2,x3) -pf ’ P =(1,1,1)7,
£20) = £+ 7850, 0 =[x, x0x3)T ~PF [, Py=(1,-1,-1)T,
£2(0) = 830 + 7(ga(0) + g6(®), 8300 = |(xi,x0%5)T =PF [, Py=(1,1,-1)7,
£ = g2+ 7(01(0) + & (X)), ga(x0) = |(xax5,%6)T ~Pf [, Py=(-1,-1,-1)T,
F2) = gs(x) +1(ga(x) + g (X)), g5(x) = |(xax5,x0)T ~PI[P, Py =(-1,1,-1)T,
FO(x) = 860+ 7(g3(0) + (X)), g6(%) = |(xa,x5,%6)T ~PI [, Py=(-1,-1,1)T,
(%) = g0+ ¥(£20 + g5(x), g0 = |(x7,x)T =PI, Pr=(1,-1)T,
FE0) = g0+ 7(g1(0) + ga(x) + go(x)), gs(¥) = |07 %) B[, By=(-1,1)7,
12 12

£(x) = g9(%) + 7(3(x) + g6(x) + g5(X)),  go(x) = ) _sin(x;)+ ) _cos(x;)

12 = 12 =
1000 = g10(x) + ¥(84(%) + g5(%)),  gio(x) = ) _sin(—x;)+ ) _cos(—x;).

i=9 i=9

This problem is defined as a weak perturbation, controlled by the small param-
eter y, of the composition of the following low-dimensional subproblems:

(xlfoJxS) = (gl (X), gZ(x)1 gg(X)), (X4,X5,X6) = (g4(X), gS(X)1 g6(x))f
(x7,x8) > (g7(x), g8(x)), (x9,X10,X11,%12) = (g9(x), &10(x))-

A sample of 104 points seems sufficiently accurate to perform the sensitivity
analysis revealing the underlying structure of the weakly correlated subproblems.
Because of the high dimension of the problem, we cannot consider a full factorial
for building a reference Pareto optimal set. Therefore, we simply use a large random
sample RS,y (#{RS,.;) = 10°) of points in the feasible set, evaluate the objective
functions and extract the nondominated set, i.e., (Poyji, Fexy) = ND (RSexn, £ (RSeoxi)),
#{P,xn} = 359701. We proceed by comparing the results of RVEA for the original
problem and the results of applying RVEA separately to the subproblems formed
by anova-mor . We consider 10 generations for a starting dataset of 1000 points,
such that the total number of function evaluations for solving the original problem
is 10000. The nondominated set (P}, F1) contains 7473 points.

We apply then anova-mop and get four subproblems. We run 10 generations
for each subproblem starting from a dataset of 250, 250, 100, 500 points, respec-
tively, given that their decision space dimensions are 3, 3, 2 and 4, respectively. The
total number of function evaluations is then (250 + 250 + 100 + 500) x 10 = 11000.
The nondominated sets contain, respectively, 220, 245, 98 and 26 points and we call
them (Py1,F51), ..., (Py,4,F24), respectively. We proceed by evaluating the quality
of the solutions found by the two instances of RVEA. For the decomposed problem
we consider separately the loss for the subproblems and take the maximum loss as
a global indicator of the performance. As can be seen in Table 3, the loss between
the nondominated sets and their corresponding canonical projections of F,,y, is con-
siderably small. It means that ANOVA-MOP has managed to provide nondominated
solutions close enough to F,.
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dataset | loss(F,y;, dataset) Neyals

(P, Fy) | loss(Fup, F1)=1.8978 10°
(Py1,F21) | loss(tV(F ), Fpp) = 0.222087 | 2500
(Pyp, Fp5) | loss(t?)(F,yp), Fp o) = 0.249897 | 2500
(Py3,F,3) | loss(r®)(F,), Fp3) = 0.0866798 | 1000
(Py4,Fy4) | loss('®(F,y), Fp4) = 0.301691 | 5000

Table 3: Summary of comparison for the second example.

As for the previous benchmark, we denote by 1) : Rk — RK the canonical pro-
jection on the subspace of the objective function values of the i*" subproblem. There-
fore, based on Table 3, the performance of the decomposed approach is 0.3 to be
compared with 1.9, which comes from the original problem while the number of
function evaluation is approximately the same. This means that with a fixed num-
ber of function evaluations, ANOVA-MOP has obtained solutions closer to the true
Pareto frontier in comparison with the ones obtained by RVEA. We recall that this
value of the loss can be used as an estimate of the thickness € of the tolerance zone
in Corollary 18.

We further give another estimate of € by computing the maximum difference
between the values of f and of f5 on a random subset V of the Pareto optimal set
approximation as € ~ max,cy ”f(x) —fé(x)”oo =0.130699.

4.3. Using aNova-MmoP as an interactive method. As discussed in Section 3.6,
when using aANova-MoP as an interactive method, the solution obtained is the most
preferred solution for the DM. In what follows, we demonstrate how this solution
can be obtained by considering the problem discussed in Subsection 4.2.

We first informed the DM that the problem was decomposed into 4 subprob-
lems and then told which objective functions were in the first subproblem. The
DM provided the first reference point Z;* = (7,5,3)". The corresponding ASF prob-
lem including metamodels was solved. The solution ﬁ* = (4.5308,1.0639,1.0921)T
obtained was shown to him. He wanted to iterate and gave a new reference point
ié* = (2,1.0639,1.0921)T to improve the value of the first objective function. The
corresponding solution fé* = (2.0458,2.0461,2.0749)T was shown to the DM, who
accepted it and thus the first subproblem was solved.

For the second subproblem, the DM provided a reference point z;* = (4,2.5, 6)T.

=2+
The DM accepted the solution f; = (2.0708,2.0708,2.07)T. The solution process
continued to the third subproblem. The DM provided a reference point z:* = (5,6)”
and obtained the solution f?* = (2.0553,2.094)T. Here he wanted to improve the
first objective value and provided a reference point Z3* = (1,5)T. The corresponding
solution fi* =(1.0735,4.5764)T was accepted.

As far as the fourth subproblem is concerned, the DM gave a reference point

—4%
Z‘ll* = (2,6)T. The solution f; = (1.1332,4.1547)T was shown to him and he pro-
vided Zg* =(1.1332,3)T to improve the second objective function value. The solution
—4s
obtained f, = (2.2508,3.7472)T was satisfactory for the DM, therefore the process
terminated.
Thanks to the decomposition, the DM could concentrate on two or three objec-
25
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tive functions at a time. Because of this, it was easier to follow the changes in the
solutions obtained after having specified a reference point and the solution process
was not cognitively as demanding as when dealing with all objective functions si-
multaneously. Visualizations are also easy to analyze in these low dimensions.

Finally, the solution to the original problem is composed by joining the solutions
of the subproblems. We recall that the composition of the values of such a solution
is only an approximation of the real function values, therefore the composition of
the decision variables must be evaluated on the original functions and proposed to
the DM for his/her final decision. Here, the final approximated solution f and the
solution f evaluated with the original objective functions are:

f =(2.0458,2.0461,2.0749,2.0708,2.0708,2.0700,1.0735,4.5764,2.2508, 3.7472)T,
f=(2.0319,2.0319,2.0460,2.0390,2.0633,2.0472,1.0460,4.5280,2.2396, 3.7325)T.

Based on (17), we have, € ~ max,cy ||f(x) —fé(x)”Oo =0.0484.

5. Conclusions. In this paper, we have developed a metamodel-based method
called anova-moP to solve computationally expensive multiobjective optimization
problems with high-dimensional decision and objective spaces. In this method, first
a metamodel for each individual objective function is built. Total sensitivity indices
are then estimated. Then, a set of thresholds is considered by using these indices.
Each threshold leads to identifying a set of active decision variables which have in-
fluence on the objective function values. By increasing the threshold, the number
of active variables changes. The threshold is increased until the objective functions
with the same active variables can be grouped into a low-dimensional subproblem in
the decision and objective spaces, or at least the number of decision variables of the
original problem is decreased. This leads to decomposing the original problem into
a limited number of simpler subproblems with low-dimensional decision and objec-
tive spaces. The solutions of the subproblems are composed with a Cartesian prod-
uct to obtain an approximated Pareto optimal set for the original high-dimensional
problem.

ANOVA-MOP can be applied as an interactive or a non-interactive method to solve
computationally expensive MOPs with any number of objective functions. As an in-
teractive method, due to the decomposition, in each step of the interaction with a
DM, (s)he focuses on a lower number of objective functions at a time rather than all
objective functions simultaneously and eventually finds a preferred solution. As a
non-interactive method, a representative set of Pareto optima can be obtained and
subproblems can be solved by parallel computing. This boosts the solution process
considerably. In both interactive and non-interactive cases, since inactive variables
are neglected in the subproblems, the dimensions of the decision spaces in the sub-
problems are reduced. This allows applying any appropriate optimization method
for low-dimensional problems.

An interesting situation occurs when we do not wish to raise the tolerance thresh-
old until the problem becomes decomposable, e.g., because we need to preserve the
accuracy of the approximation. In this case it is possible to define subproblems with
a lower dimension but with some common decision variables. It is clear that if these
variables are fixed to any value, the remaining decision variables and the objective
functions will represent independent subproblems. Thus, it seems promising to ex-
tend aNova-moP to such, more general situations. This will be the subject of future
research.
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