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Abstract

We show that every algorithm for testing n-variate Boolean functions for monotonicity
must have query complexity Ω̃(n1/4). All previous lower bounds for this problem were
designed for non-adaptive algorithms and, as a result, the best previous lower bound for
general (possibly adaptive) monotonicity testers was only Ω(log n). Combined with the
query complexity of the non-adaptive monotonicity tester of Khot, Minzer, and Safra (FOCS
2015), our lower bound shows that adaptivity can result in at most a quadratic reduction
in the query complexity for testing monotonicity.

By contrast, we show that there is an exponential gap between the query complex-
ity of adaptive and non-adaptive algorithms for testing regular linear threshold functions
(LTFs) for monotonicity. Chen, De, Servedio, and Tan (STOC 2015) recently showed that
non-adaptive algorithms require almost Ω(n1/2) queries for this task. We introduce a new
adaptive monotonicity testing algorithm which has query complexity O(log n) when the
input is a regular LTF.

http://arxiv.org/abs/1511.05053v1


1 Introduction

The Boolean function f : {0, 1}n → {0, 1} is monotone iff f(x) ≤ f(y) for all x � y, where
� is the bitwise partial order on the Boolean hypercube {0, 1}n (i.e., x � y iff xi ≤ yi for all
i ∈ [n]). Conversely, the function f is ǫ-far from monotone for some ǫ > 0 if for every monotone
function g : {0, 1}n → {0, 1}, there are at least ǫ2n points x ∈ {0, 1}n such that f(x) 6= g(x). An
ǫ-tester for monotonicity is a bounded-error randomized algorithm that distinguishes monotone
functions from those that are ǫ-far from monotone. The tester has oracle access to the function
f . It is non-adaptive if its queries do not depend on the oracle’s responses to the previous
queries; otherwise, it is adaptive.

The study of the monotonicity testing problem was initiated in 1998 by Goldreich, Gold-
wasser, Lehman, and Ron [14], who introduced the natural edge tester for monotonicity. This
tester selects edges x � y of the hypercube {0, 1}n uniformly at random and verifies that
f(x) ≤ f(y) on each of these edges. In the journal version of the paper [14], they showed
that this tester has query complexity O(n/ǫ), proved that their analysis of the algorithm was
tight, and asked: are there any other ǫ-testers for monotonicity with significantly smaller query
complexity?

1.1 Previous work on monotonicity testing

In 2002, Fischer et al. [13] showed that every non-adaptive tester for monotonicity has query
complexity Ω(log n).1 This immediately implies an Ω(log log n) lower bound for the more general
class of adaptive testers for monotonicity. Since then, stronger lower bounds were established for
more restricted classes of algorithms, like 1-sided non-adaptive algorithms [13] and even more
limited pair testers [4]—algorithms that select pairs x � y of inputs from some distribution
over the comparable pairs of inputs in the hypercube and check that f(x) ≤ f(y) on each
selected pair. Algorithms and strong lower bounds were also introduced for the related problem
of testing monotonicity of functions with non-Boolean ranges [11, 2, 7]. However, there was no
further progress on Goldreich et al.’s original question for more than a decade, until a recent
outburst of activity.

In 2013, Chakrabarty and Seshadhri [6] showed that there are indeed testers for monotonicity
with query complexity asymptotically smaller than that of the edge tester. They introduced a
pair tester with query complexity Õ(n7/8ǫ−3/2). Chen, Servedio and Tan [9] further developed
these ideas to obtain a pair tester with query complexity Õ(n5/6ǫ−4). Khot, Minzer, and
Safra [15] showed that a directed version of Talagrand’s isoperimetric inequality yields a pair
tester with query complexity Õ(

√
n/ǫ2). The authors [1] used this inequality to develop a

quantum tester for monotonicity with query complexity Õ(n1/4ǫ−1/2).
On the lower bound side, Chen, Servedio and Tan [9] established a lower bound of Ω̃(n1/5)

queries for all non-adaptive testers for monotonicity. This lower bound was later improved to
almost Ω(

√
n) by Chen, De, Servedio and Tan [8]. These recent developments essentially give a

complete answer to the question of Goldreich et al. for non-adaptive algorithms: there exists a
non-adaptive tester for monotonicity with query complexity that is quadratically smaller than
that of the edge tester, and this gap is best possible.

1.2 Our results

Despite all the recent progress on monotonicity, our understanding of the query complexity
of adaptive testers for monotonicity remains far from complete. The best lower bound for

1Throughout the paper, we assume that ǫ = Θ(1) in the lower bound settings.
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the problem is Ω(log n), which follows directly from the non-adaptive lower bound of Chen et
al. [9]. This lower bound leaves open the possibility that there exist testers for monotonicity
with query complexity that is exponentially smaller than that of the edge tester or of any other
non-adaptive tester for monotonicity. Our main result eliminates this possibility.

Theorem 1. There exists an absolute constant ǫ > 0 such that any (adaptive) randomized
algorithm that ǫ-tests whether an n-variate Boolean function f is monotone makes Ω̃(n1/4)
queries to f .

Theorem 1 shows that the query complexity of any tester for monotonicity (adaptive or not)
is at most a quartic factor better than that of the edge tester, and that adaptivity can result in
at most a quadratic reduction in the query complexity for the monotonicity testing problem.

The proof of Theorem 1 is established by considering random functions known as Tala-
grand’s random DNFs. These monotone functions have previously appeared in many differ-
ent contexts—including DNF approximation [20], hardness amplification [3], and learning the-
ory [16]—and are of particular interest because of their extremal noise sensitivity properties [18].
We use the same noise sensitivity properties to show that Talagrand’s random DNF with

√
n

random input variables negated is Ω(1)-far from monotone with high probability, and that a ran-
domized algorithm with small query complexity cannot reliably distinguish original Talagrand’s
random DNFs from this modified version.

Our approach represents a notable departure from previous lower bounds for the monotonic-
ity testing problem, in that all the previous lower bounds [13, 9, 8] were obtained by considering
linear threshold functions (LTFs)—Boolean functions of the form f(x) = sgn(

∑
i∈[n]wixi − θ)

with appropriate weight w1, . . . , wn ∈ R and threshold θ ∈ R parameters. In fact, the previous
lower bounds for monotonicity testing were obtained by considering a special class of LTFs
known as regular LTFs. An LTF is τ -regular when the magnitude of each weight wi is bounded

by |wi| ≤ τ ·
√∑

j∈[n]w
2
j . Regular LTFs have been studied in the context of approximating [10],

learning [19], and testing [17] LTFs; the lower bounds in [9, 8] are obtained by showing that
non-adaptive algorithm with small query complexity cannot reliably distinguish O( 1√

n
)-regular

LTFs that are monotone from those that are far from monotone.
Chen, De, Servedio, and Tan [8] asked if their approach could be generalized to obtain

polynomial lower bounds on the query complexity of adaptive testers for monotonicity. We
answer this question in the negative, by showing that there does exist an adaptive algorithm
with logarithmic query complexity that can ǫ-test monotonicity when its input is promised to
be a regular LTF.

Theorem 2. Fix ǫ > 0 and τ > 0. There is an adaptive algorithm A with query complexity2

Oǫ,τ (1) + log n that, given oracle access to the n-variate Boolean function f ,

1. Always accepts when f is a monotone τ√
n
-regular LTF, and

2. Rejects with probability at least 1
2 when f is a τ√

n
-regular LTF that is ǫ-far from monotone.

Combined with the lower bound of Chen et al. [8], Theorem 2 shows that there are natural
classes of functions for which adaptivity can reduce the query complexity of monotonicity testers
by an exponential amount. By the standard reduction between adaptive and non-adaptive
algorithms, this is best possible.

The proof of Theorem 2 is obtained by introducing a new adaptive tester for monotonicity.
The algorithm is quite natural: it selects pairs of inputs x, y ∈ {0, 1}n independently at random

2 In fact, we can restrict A to only query the value of the function on inputs from the middle layers of
the hypercube, so it also ǫ-tests truncated regular LTFs for monotonicity. See Definition 7 for the definition of
truncation, and Section 5.4 for more details.
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until it finds a pair for which f(x) 6= f(y), then it performs a random binary search between x
and y to identify an edge (z, z′) of the hypercube on which f(z) 6= f(z′). The algorithm accepts
if and only if f is monotone on this edge. To the best of our knowledge, this algorithm is the
first randomized adaptive tester for monotonicity on the hypercube to be analyzed. (See, for
example, the discussions in [15, §1.5] and in [5].)

Organization. We discuss the proofs of Theorems 1 and 2 at a high-level in Section 3, after
introducing preliminary facts and terminology. The complete proofs follow in Sections 4 and 5,
respectively.

2 Preliminaries

2.1 Probability Theory

We use standard concentration inequalities.

Lemma 3 (Hoeffding’s inequality). Let w ∈ R
n be any real-valued vector. Then for any t > 0,

when X1, . . . ,Xn are independent random variables taking the values +1 and −1 with probability
1
2 each,

Pr

[∣∣∣
∑

i∈[n]
wiXi

∣∣∣ > t

]
≤ 2e

− t2

2‖w‖2
2 ,

where ‖w‖2 =
√∑

i∈[n]w
2
i is the ℓ2-norm.

Lemma 4 (Bernstein’s inequality). Consider a set of n independent random variables X1, . . . ,Xn,
where −1 ≤ Xi ≤ 1 for all i. Let X =

∑
i∈[n]Xi. Then, for all 0 < t < Var[X], we have

Pr
[∣∣X − E[X]

∣∣ > t
]
≤ 2e

− t2

4Var[X] .

We also use an anti-concentration inequality that follows directly from the Berry–Esséen
theorem. (See, e.g., [19].)

Lemma 5 (Berry–Esséen corollary). Fix τ > 0. Let w ∈ R
n be any real-valued vector that

satisfies maxj |wj | ≤ τ‖w‖2. Then for any a < b ∈ R, when X1, . . . ,Xn are independent
random variables taking the values +1 and −1 with probability 1

2 each,

Pr

[
a ≤

∑

i∈[n]
wiXi ≤ b

]
≤ b− a

‖w‖2
+ 2τ.

2.2 Property testing lower bounds

Theorem 1 is established via a standard lemma concerning the general setting where P and N
are two disjoint families of n-variate Boolean functions, an algorithm is given oracle access to
a function f ∈ P ∪ N , and its task is to determine whether f ∈ P or f ∈ N . The following
lemma is essentially folklore—see, e.g., [12] for usage in property testing and [21] for a related
lemma. We include a short proof for completeness.

Lemma 6. Let Yes and No be probability distributions on n-variate Boolean functions satisfying

Pr
f∼Yes

[
f ∈ P

]
= 1 and Pr

g∼No

[
g ∈ N

]
= Ω(1).
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If q is a positive integer such that for any sequences x1, . . . , xq ∈ {0, 1}n and b1, . . . , bq ∈ {0, 1},

Pr
f∼Yes

[
∀i : f(xi) = bi

]
≤ (1 + o(1)) Pr

g∼No

[
∀i : g(xi) = bi

]
+ o(2−q), (1)

then any randomized algorithm that decides whether f ∈ P or f ∈ N makes Ω(q) queries to f .

Proof. LetA be a randomized decision tree that distinguishes P fromN . Denote p = Prg∼No

[
g ∈

N
]
= Ω(1). With a constant number of repetitions of A, we may assume that A accepts any

function f ∈ P with probability at least 1 − p/2, and accepts each g ∈ N with probability at
most 1/3. Then,

Pr
f∼Yes

[
A accepts on f

]
≥ 1− p

2
and Pr

g∼No

[
A accepts on g

]
≤ (1− p) +

p

3
= 1− 2p

3
,

Assume towards a contradiction that A makes at most q queries. As A is a probability distri-
bution on deterministic decision trees, there exists a decision tree D of depth at most q such
that

Pr
f∼Yes

[
D accepts on f

]
− Pr

g∼No

[
D accepts on g

]
≥ p

6
. (2)

Without loss of generality, we may assume that every leaf of D is at depth exactly q. Let
L denote the set of leaves of D. Each leaf ℓ ∈ L is characterized by two sequences x1, . . . , xq ∈
{0, 1}n and b1, . . . , bq ∈ {0, 1} such that D ends its work in ℓ on f iff f(xi) = bi for all i. Let
L1 ⊆ L be the set of leaves on which D accepts. Then, by (1),

Pr
f∼Yes

[
D accepts on f

]
=
∑

ℓ∈L1

Pr
f∼Yes

[
D terminates in ℓ on f

]

≤
(
1 + o(1)

) ∑

ℓ∈L1

Pr
g∼No

[
D terminates in ℓ on g

]
+ o
(
|L1|2−q

)

= Pr
g∼No

[
D accepts on g

]
+ o(1),

contradicting (2). Hence, A makes Ω(q) queries.

The following operation is often useful in lower bounds on monotonicity on the hypercube.
It essentially reduces monotonicity testing on the whole hypercube to monotonicity testing on
its middle layers.

Definition 7. For δ > 0, the δ-truncation of the function f : {0, 1}n → {0, 1} is the function
Truncateδ(f) defined by

x 7→





0, if |x| < n
2 − δ

√
n;

f(x), if n
2 − δ

√
n ≤ |x| ≤ n

2 + δ
√
n;

1, if |x| > n
2 + δ

√
n;

When f is monotone, then Truncateδ(f) is also monotone. Furthermore, for every ǫ > 0,
there exists δ > 0 such that Truncateδ(f) is ǫ

2 -far from monotone whenever f is ǫ-far from
monotone. Note that it only makes sense to query Truncateδ(f) on the inputs x ∈ {0, 1}n
satisfying |x| = n

2 ± O(
√
n), since otherwise the response is known in advance. We call such

inputs nearly balanced.
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2.3 Linear Threshold Functions

In studying linear threshold functions, it is more convenient to assume that the function is of
the form f : {−1, 1}n → {−1, 1}.
Definition 8 (LTF). The function f : {−1, 1}n → {−1, 1} is a linear threshold function (al-
ternatively: LTF, or halfspace) with associated weights w1, . . . , wn ∈ R and threshold θ if it
satisfies

f(x) = sgn

( n∑

i=1

wixi − θ

)

for every x ∈ {−1, 1}n where sgn is the sign function defined by sgn(x) = 1[x ≥ 0].

Definition 9 (Regular LTFs). The LTF f : {−1, 1}n → {−1, 1}n is τ -regular if it can be

represented with a set of weights w1, . . . , wn that satisfy maxi∈[n] |wi| ≤ τ ·
√∑n

i=1 w
2
i .

2.4 Noise Sensitivity and Talagrand’s Random DNFs

Let B(n, δ) be the probability distribution on the subsets of [n], in which each element is included
in the subset independently with probability δ.

Definition 10. The noise sensitivity of a function f : {0, 1}n → {0, 1} at noise rate δ is

NSδ(f) = Pr
x∼{0,1}n, S∼B(n,δ)

[
f(x) 6= f(xS)

]
,

where xS denotes the input string x with the variables in S flipped.

Talagrand’s random DNF on n variables [22] is a disjunction of 2
√
n independent random

clauses of size
√
n.3 More precisely, let C be the uniform probability distribution on functions

C : [
√
n] → [n]. We identify each C in C with the Boolean function fC : {0, 1}n → {0, 1} given

by fC(x) =
∧

a∈[√n] xC(a). Talagrand’s random DNF f is then defined as

f(x) =
∨

j∈[2
√
n]

fCj (x),

where each clause Cj is independently sampled from C. Let us denote the distribution of n-
variate Talagrand’s random DNF by Tal.

One of the particularly useful characteristics of Talagrand’s random DNF is that it is one
of the most noise-sensitive monotone functions, as shown by the following result.4

Theorem 11 (Mossel-O’Donnell [18]). Talagrand’s random DNF f satisfies NS1/
√
n(f) = Ω(1)

with probability Ω(1).

3 High-level overview and intuition

3.1 The Bisection Algorithm and Regular LTFs

The intuition behind the proofs of Theorems 1 and 2 is best described by first examining the
previous non-adaptive query complexity lower bounds of Chen et al. [9, 8]. In these lower
bounds, two distributions DYes and DNo over a finite set of weights are defined under the two
constraints that

3 Talagrand’s original definition was for random CNF s. However, DNFs are more convenient than CNFs for
our intended applications, and all the results about CNFs easily carry over to the DNF case by duality.

4 Mossel and O’Donnell only postulate the existence of one such function f . However, Theorem 11 easily
follows from the equation before the Proof of Theorem 3 in Section 4 of [18].
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1. Every weight in the support of DYes is non-negative, and

2. A weight w ∼ DNo is negative with constant probability.

Two distributions Yes and No over n-variate LTFs are defined by drawing weights w1, . . . , wn

independently at random from the distributions DYes and DNo, respectively, and then by letting

f(x1, . . . , xn) = sgn(w1x1 + · · · +wnxn).

Since DYes and DNo are over finite domains (of size independent of n), the resulting function f
is always an O( 1√

n
)-regular LTF [8, Claim B.2]. Furthermore, the functions drawn from DYes

are always monotone, and the functions drawn from DNo are Ω(1)-far from monotone with large
probability [8, Theorem B.9]. Thus, we have the following consequence:

Theorem 12 (Chen–De–Servedio–Tan [8]). For each δ > 0, there exist ǫ, τ = Θ(1) such
that Ω(n1/2−δ) non-adaptive nearly balanced queries are required to ǫ-test τ√

n
-regular LTFs for

monotonicity.

Regular LTFs are used in the proofs of [9, 8] because with suitable weight distributions DYes

and DNo, appropriate central limit theorems can be used to bound the query complexity of
non-adaptive algorithms. Regular LTFs, however, also have one other notable characteristic:
when a O( 1√

n
)-regular LTF is far from monotone, then a constant fraction of the edges x � y

of the hypercube on which f(x) 6= f(y) are edges where f(x) > f(y) and are thus witnesses to
the non-monotonicity of f .

This observation suggests a natural approach for testing monotonicity of regular LTFs: draw
an edge x � y uniformly at random from the set of edges where f(x) 6= f(y), and test whether f
is monotone on this edge. While we unfortunately do not know of any query-efficient algorithm
for drawing edges from this distribution, we do know of one way to at least guarantee that we
return some edge x � y on which f(x) 6= f(y) using a logarithmic number of queries when f
is not too biased. A simple way to do this is described in the bisection algorithm below. In
this algorithm, for x, y ∈ {0, 1}n, Hybrid(x, y) denotes the set of inputs z ∈ {0, 1}n that satisfy
zi = xi for every index i ∈ [n] where xi = yi.

Algorithm 1 Bisection algorithm

1: Draw x, y ∈ {0, 1}n uniformly and independently at random until f(x) = 0 and f(y) = 1.
2: If O(1/ǫ) pairs are drawn without satisfying the condition, accept.
3: while |Hybrid(x, y)| > 2 do

4: Draw z ∈ Hybrid(x, y) uniformly at random.
5: If f(z) = 0, update x← z.
6: Otherwise if f(z) = 1, update y ← z.
7: end while

8: If x � y, accept; otherwise reject.

The proof of Theorem 2 is completed by showing that a slight variant of this algorithm
does indeed identify a non-monotone edge with constant probability when the input function
is a regular LTF that is far from monotone. Specifically, we consider the random process on
subsets of [n] defined by the bisection algorithm and show that with constant probability, after
log n − Θ(1) iterations of the while loop, the set {i ∈ [n] : xi 6= yi} has cardinality O(1) and
contains some coordinates with negative weights. The details are in Section 5.
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3.2 Noise Sensitivity and Polynomial Lower Bound

Theorem 2 shows that we need other functions than regular LTFs to prove a polynomial lower
bound for adaptive monotonicity testing. To find such functions, we can start by identifying
functions that are far from monotone but for which the bisection algorithm rejects only with
small probability.

On a function f : {0, 1}n → {0, 1}, the bisection algorithm ends its work in an edge xy of
the hypercube, where f(x) 6= f(y). Let us say in this case that the algorithm ends its work
in variable i, where i is the only variable where x and y differ. Thus, on each f , the bisection
algorithm defines the corresponding output probability distribution on the variables in [n]. Our
first observation is that negating some input variables of a function does not affect the output
probability distribution of the bisection algorithm.

Proposition 13. For each f : {0, 1}n → {0, 1} and S ⊆ [n], the output probability distributions
on [n] defined by the bisection algorithm on the functions f and g(x) = f(xS) are identical.

Proof. Let
(x1, y1), (x2, y2), . . . , (xt, yt)

be a transcript of the bisection algorithm on the function f . That is, (xi, yi) is the value of x
and y before the ith iteration of the loop in Algorithm 1. Then,

(xS1 , y
S
1 ), (x

S
2 , y

S
2 ), . . . , (x

S
t , y

S
t )

is an equiprobable transcript of the bisection algorithm on the function g, which ends its work
in the same variable.

Our next observation is that if we have a monotone function with large noise sensitivity,
then negating a (small) random subset of the variables yields a function that that is far from
monotone with high probability.

Lemma 14. Let f : {0, 1}n → {0, 1} be a monotone function and 0 < δ < 1 be a real number.
Assume NSδ(f) = Ω(1). Then, with probability Ω(1) over the choice of S ∼ B(n, δ), the function
g(x) = f(xS) is Ω(1)-far from being monotone.

Proof. By the definition of noise sensitivity,

Pr
x∼{0,1}n, S∼B(n,δ)

[
f(x) 6= f(xS)

]
= Ω(1).

By Markov’s inequality, with probability Ω(1) over the choice of S ∼ B(n, δ), we have

Pr
x∼{0,1}n

[
f(x) 6= f(xS)

]
= Ω(1). (3)

Let g(x) = f(xS) be defined for such an S, and let D(g) denote the number of inputs on which
we have to modify the value of g in order to make it monotone. We aim to estimate D(g).

Write x = (y, z) with y ∈ {0, 1}[n]\S and z ∈ {0, 1}S . For each y, consider the function
gy(z) = g(y, z). We have D(g) ≥ ∑y D(gy). Next, each gy is anti-monotone. This implies

D(gy) ≥ min{g−1
y (0), g−1

y (1)}. We can lower bound the latter quantity by the number of pairs

{z, zS} satisfying gy(z) 6= gy(z
S). Summing over all y, we get that D(g) is at least the number

of pairs {x, xS} satisfying f(x) 6= f(xS). By (3), g is Ω(1)-far from being monotone.

These observations, along with Theorem 11, show that there are indeed functions that are
far from monotone but are rejected by the bisection algorithm with only a small probability.
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Proposition 15. There exists a boolean function g : {0, 1}n → {0, 1} that is Ω(1)-far from being
monotone, but such that the bisection algorithm rejects g with probability only O(1/

√
n).

Proof. Let f be a monotone functions satisfying NS1/
√
n(f) = Ω(1). By Theorem 11, a Ta-

lagrand random DNF satisfies this condition with probability Ω(1). Let pi be the output
probability of variable i ∈ [n] defined by the bisection algorithm on f . Let S ∼ B(n, 1/√n).
Then,

ES

[∑

i∈S
pi

]
=

1√
n
.

By Markov’s inequality, and using Lemma 14, there exists S such that the function g(x) = f(xS)
is Ω(1)-far from being monotone, and

∑
i∈S pi = O(1/

√
n). By Proposition 13, the latter sum

is exactly equal to the rejection probability of the bisection algorithm on the function g.

This result shows that there are functions obtained by negating some variables in a Tala-
grand random DNF that are Ω(1)-far from monotone, but such that the bisection algorithm
requires Ω(

√
n) queries to detect that it is non-monotone. The proof of Theorem 1 uses a very

different approach—after all, there is no direct analogue of Proposition 13 that can hold for
all adaptive algorithms—but the underlying ideas are the same. We show that for any set of
q ≪ n1/4 queries, the distribution of the values returned by the monotone and the non-monotone
Talagrand random DNFs are very similar. After that, we can apply Lemma 6 to complete the
proof. The high-level intuition is as follows. Consider two queries x, y ∈ {0, 1}n. On the one
hand, if x and y are far from each other, then, due to noise sensitivity, the values of f(x) and
f(y) are essentially independent. Hence, adaptivity does not help here. On the other hand, if
x and y are close, they are likely to miss the set S of negated input variables. More precisely,
since there are at most q2 ≪ √n pairs of close inputs, a random set S of

√
n elements will avoid

all of them with high probability. For all the details, see Section 4.

4 Polynomial Lower Bound

In this section, we prove Theorem 1. Throughout this section we use B = B(n, 1/√n) to denote
the probability distribution on subsets of [n] where each element is included in the subset
independently with probability 1/

√
n. Following the discussion in Section 3.2, let us define the

distribution Tal
± of Talagrand’s random non-monotone DNFs as the following distribution on

n-variate Boolean functions

Tal
± =

{
x 7→ f(xS)

∣∣ f ∼ Tal, S ∼ B
}
.

We define two distributions for a sufficiently large constant δ > 0:

Yes = {Truncateδ(f) | f ∼ Tal} and No =
{
Truncateδ(f) | f ∼ Tal

±}.

In view of Lemma 6, Theorem 11 and Lemma 14, it suffices to show that for all q = O(n1/4 log−2 n),
nearly balanced input strings x1, . . . , xq ∈ {0, 1}n and Boolean outcomes b1, . . . , bq ∈ {0, 1}, we
have

Pr
f∼Tal

[
∀i : f(xi) = bi

]
≤ (1 + o(1)) Pr

g∼Tal
±

[
∀i : g(xi) = bi

]
+ o(2−q). (4)
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4.1 Proof of Theorem 1

Let us denote by X = {x1, . . . , xq} the set of input strings. All of them are nearly balanced. In
this section, we often identify strings in {0, 1}n with the corresponding subsets of [n].

For a fixed sequence of values b1, . . . , bq, the set X can be naturally divided into

X0 =
{
xi | i ∈ [q], bi = 0

}
and X1 =

{
xi | i ∈ [q], bi = 1

}
.

Let J = [2
√
n] be the set of indices of the clauses in Talagrand’s random DNF. Recall that a

function f from the Tal distribution is given by

f(x) =
∨

j∈J
Cj(x),

where (Cj) ∼ CJ is a sequence of random clauses. We call the sequence (Cj) compliant with
respect to the shift T ⊆ [n] iff the corresponding function f satisfies ∀i ∈ [q] : f(xTi ) = bi.
We denote the set of such sequences by MT . The set M∅ corresponds to the events on the
left-hand side of (4), andMS for S ∼ B corresponds to the right-hand side.

For T ⊆ [n], we partition the setMT in accordance to when a clause in the sequence (Cj)
first satisfies each particular input x ∈ X1. Formally, for each sequence τ = (τx) ∈ JX1 , we
defineMT

τ as the set of sequences (Cj) ∈ MT satisfying

• for each x ∈ X0, we have fCj(x
T ) = 0 for all j ∈ J ;

• for each x ∈ X1, we have fCj(x
T ) = 0 for all j < τx, and fCτx

(xT ) = 1.
(5)

This clearly partitions the setMT into disjoint subsets.
The conditions imposed by (5) on different Cj are independent, thus, we can decompose

MT
τ into the following Cartesian product:

MT
τ =

∏

j∈J
MT

τ,j, (6)

whereMT
τ,j is the projection ofMT

τ onto the jth component of the sequence. Let, for j ∈ J ,

X1,j = {x ∈ X1 | τx = j} and X0,j = X0 ∪ {x ∈ X1 | j < τx}.
Thus, for each j, we have C ∈ MT

τ,j if and only if fC(x
T ) = 1 for all x ∈ X1,j and fC(x

T ) = 0
for all x ∈ X0,j .

We say that a sequence τ is good if

∀j ∈ J, ∀x, y ∈ X1,j : |x ∩ y| ≥ n

2
− n3/4, (7)

Otherwise, we call it bad. We treat these two cases separately.

Lemma 16. We have

Pr
(Cj)∼CJ

[
exists bad τ such that (Cj) ∈ M∅

τ

]
= o(2−q). (8)

Proof. It is easy to see that any (Cj) satisfying the condition in (8) also satisfies

∃j ∈ J, ∃x, y ∈ X :
(
|x ∩ y| < n

2
− n3/4

)
∧
(
fCj (x) = fCj(y) = 1

)
. (9)

By the union bound, the probability that (Cj) satisfies (9) is at most

2
√
nq2

(
n
2 − n3/4

n

)√
n

= q2
(
1− 2n−1/4

)√n
≤ q2e−2n1/4

= q2e−Ω(log2 n) · 2−q = o(2−q).
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Let us now consider good τ . In order to prove (4), it suffices to show that

∏

j∈J

∣∣M∅
τ,j

∣∣ ≤
(
1 + o(1)

)∏

j∈J

∣∣MS
τ,j

∣∣ (10)

with probability 1− o(1) over the choice of S ∼ B. Indeed, using (6), we get from (10) that

∑

τ is good

∣∣M∅
τ

∣∣ ≤
(
1 + o(1)

) ∑

τ is good

E
S∼B

[
|MS

τ |
]

≤
(
1 + o(1)

)
E

S∼B

[
|MS |

]
=
(
1 + o(1)

)
· |CJ | Pr

g∼Tal
±

[
∀i : g(xi) = bi

]
.

Hence, using also Lemma 16, we get

Pr
f∼Tal

[
∀i : f(xi) = bi

]
=

1

|CJ |

( ∑

τ is good

∣∣M∅
τ

∣∣+
∑

τ is bad

∣∣M∅
τ

∣∣
)

≤
(
1 + o(1)

)
Pr

g∼Tal
±

[
∀i : g(xi) = bi

]
+ o(2−q).

Let us consider (10) now. The set of indices J breaks down into two parts J = J1 ∪ J0,
where

J1 = {τx | x ∈ X1} and J0 = J \ J1.
We prove (10) for the indices in J1 and J0 independently. Indices in J0 are easier to analyse
because for them we have X1,j = ∅. On the other hand, we need a rather careful estimate since

|J0| ≈ 2
√
n. Indices in J1 are harder to analyse because for them, in general, both X1,j and X0,j

are non-empty. But since |J1| ≤ q < n1/4, a less accurate estimate suffices.
For J1, we have the following lemma, which is proven in Section 4.3.

Lemma 17. Assume τ is good. Then, for a set S ∼ B, with probability 1− o(1), we have

∏

j∈J1
|M∅

τ,j | ≤
(
1 + o(1)

) ∏

j∈J1
|MS

τ,j |. (11)

For J0, we have the following lemma, which we prove in Section 4.4:

Lemma 18. A set S ∼ B satisfies the following property with probability 1 − o(1): For any
subset X ′ ⊆ X, we have

Pr
C∼C

[
∃x ∈ X ′ : fC(x) = 1

]
≥
(
1−O(n−1/4 log3/2 n)

)
Pr
C∼C

[
∃x ∈ X ′ : fC(xS) = 1

]
. (12)

Assume S satisfies (11) and (12). For j ∈ J0, let pj and p′j denote the probability in the
left- and right-hand sides of (12), respectively, when X ′ = X0,j . By the union bound, and since
all x ∈ X are nearly balanced,

p′j ≤
∑

x∈X0,j

Pr
[
fC(x

S) = 1
]
≤ |X0,j |

( n
2 +O(

√
n)

n

)√
n

= O(q2−
√
n).

Thus,

|M∅
τ,j |

|MS
τ,j |

=
1− pj
1− p′j

≤
1−

(
1−O(n−1/4 log3/2 n)

)
p′j

1− p′j
= 1+O

(
n−1/4 log3/2 n · q2−

√
n
)
= 1+o

(
2−

√
n
)
.

(13)
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Hence, taking the product of (13) over all j ∈ J0, we get that, with probability 1− o(1), a set
S ∼ B satisfies:

∏

j∈J0

|M∅
τ,j|

|MS
τ,j|
≤
(
1 + o(2−

√
n)
)2√n

= 1 + o(1).

Multiplying this by (11), we obtain (10).

4.2 A Simple Lemma

In this section, we prove a simple lemma that will be used in the proofs of both Lemmata 17
and 18. Let γ = ω(

√
n). Define a graph G on the vertex set X defined in Section 4.1, where

two vertices x and y are connected iff |x ∩ y| ≥ n/2− γ.

Lemma 19. For every non-empty connected subset A of vertices of G, we have
∣∣∣∣
⋂

x∈A
x

∣∣∣∣ ≥
n

2
−O

(
|A|γ

)
and

∣∣∣∣
⋃

x∈A
x

∣∣∣∣ ≤
n

2
+O

(
|A|γ

)
. (14)

Proof. We prove the first equality in (14), the second one being similar. The proof is by
induction on the size of A. The base case |A| = 1 follows from the fact that x ∈ X is nearly
balanced.

For the inductive step, take a vertex y ∈ A such that A \ {y} is connected. Let z be a
neighbour of y in A \ {y}. By the inductive hypothesis,

∣∣∣∣
⋂

x∈A\{y}
x

∣∣∣∣ ≥
n

2
−O

(
(|A| − 1)γ

)
.

Also, ∣∣∣∣
⋂

x∈A\{y}
x

∣∣∣∣−
∣∣∣∣
⋂

x∈A
x

∣∣∣∣ ≤ |z| − |z ∩ y| = O(γ),

since z is nearly balanced and |y ∩ z| ≥ n/2 − γ. Combining the last two inequalities, we
obtain (14).

4.3 Proof of Lemma 17

As we only work with J1 in this section, let, for T ⊆ [n],

MT
1
=
∏

j∈J1
MT

j .

This is the projection ofMT from Section 4.1 onto the indices in J1. For j ∈ J1, let us denote

yj =
⋂

x∈Xj,1

x, and zj =
⋃

x∈Xj,1

x.

Using Lemma 19 with γ = n3/4, we get

n

3
≤ n

2
−O(qn3/4) ≤ |yj| ≤

n

2
+O

(
n3/4

)
and |zj | ≤

n

2
+O

(
|X1,j |n3/4

)
,

if n is large enough. We impose the following constraints on S ∼ B:

|S| = O(
√
n), |S∩yj| ≤

√
n

2
+O

(
n1/4

√
log n

)
and |S \zj | ≥

√
n

2
−O

(
|X1,j |n1/4

√
log n

)

(15)
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for all j ∈ J1. For S \ zj, we have

E
[
|S \ zj |

]
≥
√
n

2
−O

(
|X1,j |n1/4

)
and Var

[
|S \ zj |

]
≤ √n.

And similar estimates can be obtained for S∩yj. Applying Bernstein’s inequality and the union
bound, we get that a set S ∼ B satisfies (15) with probability 1 − o(1) if the O factors in (15)
are large enough. In the remaining part of this section, we assume that S satisfies (15).

For each (Cj) ∈ M∅
1
, we have Cj(a) ∈ yj for each j ∈ J1 and a ∈ [

√
n]. Also, for each j ∈ J1

and x ∈ X0,j , there exists a ∈ [
√
n] such that Cj(a) /∈ x. We call the smallest such a the pivotal

index corresponding to j and x. We call Cj(a) the corresponding pivotal element.
Let Sj be an arbitrary subset of S ∩ yj of size

|Sj| = max{0, |S ∩ yj| − |S \ zj |} = O
(
|X1,j |n1/4

√
log n

)
. (16)

We define two auxiliary subsets of CJ1 .

• A sequence (Cj) ∈ M∅
1
is called half-restricted if all its pivotal elements lie outside of S.

Denote the set of half-restricted (Cj) by HS .

• A sequence (Cj) ∈ HS is called restricted if for all j ∈ J1 and a ∈ [
√
n] we have Cj(a) /∈ Sj.

Denote the set of restricted (Cj) by RS .

Lemma 17 follows from the following three claims.

Claim 20. We have
∣∣MS

1

∣∣ ≥
∣∣RS

∣∣.

Proof. This is achieved by shifting : moving elements from S ∩ yj to S \ zj. More precisely, let
πj : S ∩ yj \ Sj → S \ zj be any injective mapping. It exists due to (16). Define a mapping
π : RS →MS

1
as π : (Cj) 7→ (C ′

j), where

C ′
j(a) =

{
πj(Cj(a)), if Cj(a) ∈ S ∩ yj \ Sj ;

Cj(a), if Cj(a) ∈ yj \ S.

It is clearly an injective mapping. Also, its image is a subset ofMS
1
since,

• C ′
j(a) ∈ xS for each j ∈ J1, a ∈ [

√
n] and x ∈ X1,j; and

• for each pivotal element Cj(a) corresponding to j ∈ J1 and x ∈ X0,j, we have C ′
j(a) =

Cj(a) /∈ xS, ensuring fC′
j
(xS) = 0.

Claim 21. With probability 1− o(1) over the choice of S ∼ B, we have |M∅
1
| ≤

(
1+ o(1)

)∣∣HS
∣∣.

Proof. For each i ∈ [n], let di denote the number of sequences (Cj) ∈M∅
1
for which i is a pivotal

element. Since each (Cj) has at most q2 pivotal elements, we see that

∑

i∈[n]
di ≤ |M∅

1
|q2 = o

(
|M∅

1
|√n

)
.

In particular, ES∼B
[∑

i∈S di

]
= o(|M∅

1
|). By Markov’s inequality, with probability 1− o(1), we

have
∑

i∈S di = o(|M∅
1
|), implying the claim.

Claim 22. We have |HS| ≤
(
1 + o(1)

)
|RS |.
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Proof. In this case, it is easier to consider each j ∈ J1 independently. Again, the conditions for
different j are independent, hence,

|RS | =
∏

j∈J1
|RS

j |, and |HS | =
∏

j∈J1
|HS

j |,

where RS
j and HS

j are the projections of RS and HS onto the jth component. We prove that

|HS
j | ≤ e

O(n−1/4
√
logn|X1,j |)|RS

j |, (17)

which implies the claim, since then

|HS|
|RS | ≤ e

O
(
n−1/4

√
logn

∑
j∈J1

|X1,j |
)

≤ e
O(n−1/4

√
logn·q) = 1 + o(1).

Let HS
j,k denote the subset of C ′ ∈ HS

j such that for exactly k values of a ∈ [
√
n], we have

C ′(a) ∈ Sj. In particular, RS
j = HS

j,0, and HS
j =

⋃
kHS

j,k. We say that a clause C ∈ RS
j is in

relation with a clause C ′ ∈ HS
j,k iff C(a) = C ′(a) whenever C ′(a) /∈ Sj.

Clearly, each clause C ∈ RS
j is in relation with at most

(√n
k

)
|Sj|k clauses in HS

j,k. Next,

we claim that if we take a clause C ′ ∈ HS
j,k and substitute each C ′(a) ∈ Sj with an element of

yk \ S, we get a clause C ∈ RS
j . First, any C ′(a) that was changed was not a pivotal element

of C ′ since Sj ⊆ S and C ′ ∈ HS
j . Next, a new element C(a) can become a pivotal element of

C, but it lies outside of S, so, nonetheless, C ∈ RS
j . Hence, each clause C ′ ∈ HS

j,k is in relation

with at least |yj \ S|k clauses in RS
j . Using double counting,

|HS
j,k|
|RS

j |
≤
(√n

k

)
|Sj|k

|yj \ S|k
≤ nk/2/k! ·

(
O(|X1,j |n1/4

√
log n)

)k
(
Ω(n)

)k =
1

k!

(
O
( |X1,j |

√
log n

n1/4

))k

.

Hence,
|HS

j |
|RS

j |
≤ 1 +

∑

k≥1

1

k!

(
O
( |X1,j |

√
log n

n1/4

))k

= e
O(n−1/4

√
logn|X1,j |).

4.4 Proof of Lemma 18

As in Section 4.1, we treat pairs of inputs that are far from each other separately. Let a
parameter γ = Θ(

√
n log n) be specified later. Define the graph G as in Section 4.2. Let

G1, . . . , Gκ be the connected components of G, and

zk =
⋂

x∈Gk

x.

Using Lemma 19, we get that

|zk| ≥
n

2
−O(qγ) ≥ n

2
−O(n3/4).

We impose the following constraints on S ∼ B:

|S| = O(
√
n), |S ∩x| ≥

√
n

2
−O

(
n1/4

√
log n

)
, and |S \zk| ≤

√
n

2
+O

(
n1/4

√
log n

)
(18)
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for all x ∈ X and k ∈ [κ]. By Bernstein’s inequality again, if the O factors are chosen appro-
priately, a set S ∼ B satisfies (18) with probability 1− o(1).

Let us assume up to the end of the section that a subset S satisfying (18) is fixed. We say a
clause C is positive with respect to the shift T ∈ {∅, S} iff fC(x

T ) = 1 for some x ∈ X ′. Denote
the set of such clauses by PT .

In this section, we are also going to treat a clause C : [
√
n]→ [n] as a multiset. For example,

if A ⊆ [n], we denote by C∩A the partial function from [
√
n] to [n], defined by (C∩A)(a) = C(a)

for all a ∈ [
√
n] such that C(a) ∈ A, and not defined for the remaining a. We call such functions

partial clauses. A partial clause C \ A is defined similarly. The size of a partial clause is the
size of its domain. We say that a partial clause is contained in A ⊆ [n] if its range is contained
in A.

Claim 23. We have

Pr
C∼PS

[
|C ∩ S| ≥ Ω(log n)

]
≤ 1

n
.

Proof. This holds because |C ∩ S| approximately follows a Poison distribution. Indeed, for a
non-negative integer k, let

PS
k =

{
C ∈ PS

∣∣ |C ∩ S| = k
}
.

We say that C ∈ PS
0 is in relation with C ′ ∈ PS

k iff C(a) = C ′(a) for all a such that C ′(a) /∈ S.

Each C ∈ PS
0 is in relation with at most

(√n
k

)
|S|k clauses in PS

k . On the other hand, let
C ′ ∈ PS

k . Then, there exists x ∈ X ′ such that C ′ ⊆ xS . Hence, C ′ is in relation with at least

|x \ S|k =
(
Ω(n)

)k
clauses in PS

0 . Using double counting,

|PS
k |
|PS

0 |
≤
(√n

k

)(
O(
√
n)
)k

(
Ω(n)

)k =

(
O(1)

)k

k!
.

This implies the claim.

Thus, we can only focus on those C that have small intersection with S. Let B be a partial
clause with B ⊆ [n] \ S and

√
n−O(log n) ≤ |B| ≤ √n. For T ∈ {∅, S}, let us denote

PT
B = {C ∈ PT | C \ S = B}.

We say B is bad if B ⊆ x∩y where x, y ∈ X ′ are vertices from different connected components
of G. Otherwise, we call B good.

Lemma 24. If B is good, then

|P∅
B | ≥

(
1−O

(
n−1/4 log3/2 n

))
|PS

B |.

Proof. Let XB = {x ∈ X ′ | B ⊆ x}. If XB is empty, then both P∅
B and PS

B are empty, and
we are done, so assume there is some x ∈ XB . Let yB =

⋂
y∈XB

y. Also, as B is good, XB is
contained in some connected component Gk of G. In particular, zk ⊆ yB.

Let D̄ ⊆ [
√
n] be the complement of the domain of B. In particular, |D̄| = O(log n). The

size of P∅
B is at least the number of functions from D̄ to x ∩ S, and the size of PS

B is at most
the number of functions from D̄ to S \ yB ⊆ S \ zk. Thus, using (18):

|P∅
B |
|PS

B |
≥
( √

n
2 −O(n1/4

√
log n)

√
n
2 +O(n1/4

√
log n)

)O(logn)

≥ 1−O(n−1/4 log3/2 n).
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Lemma 25. We have ∣∣∣∣
⋃

B is bad

PS
B

∣∣∣∣ ≤ O
( 1
n

)
|PS |.

Proof. Fix a particular pair x, y ∈ X ′ of vertices that lie in different connected components of
G. Then, for each PS

B with B ⊆ x ∩ y, and each clause C ∈ PS
B , we have C ⊆ (x ∩ y) ∪ S. On

the other hand, we may lower bound the number of clauses contained in PS by the number of
clauses contained in xS. Thus,
∣∣∣
⋃

B⊆x∩y PS
B

∣∣∣
|PS | ≤

(∣∣(x ∩ y) ∪ S
∣∣

|xS |

)√
n

≤
( n

2 −Ω(γ)
n
2 −O(

√
n)

)√
n

≤
(
1−Ω

(γ
n

))√
n

≤ e
−Ω(γ/

√
n). (19)

Taking the Θ-factor in the definition of γ sufficienly large and summing (19) over all x and y,
we obtain the lemma.

Thus, using Lemmata 24, 25 and Claim 23,

|P∅| ≥
∑

B is good

|P∅
B | ≥

(
1−O(n−1/4 log3/2 n)

) ∑

B is good

|PS
B | ≥

(
1−O(n−1/4 log3/2 n)

)
|PS |,

proving Lemma 18.

5 Testing Monotonicity of Regular LTFs

5.1 Randomized Bisection Process

The key component of the analysis of the bisection algorithm and the proof of Theorem 2 is the
analysis of randomized bisection processes, as defined below.

Definition 26 (Randomized bisection process). Fix any finite set S. The randomized bisection
process with initial set S is the sequence of random sets S0, S1, S2, . . . defined as follows. Initially,
S0 = S. For each k ≥ 1, Sk−1 is partitioned uniformly at random into two sets Ak and Bk.
Then the set Sk is chosen to be either Ak or Bk by some arbitrary (and possibly adversarial)
external process.

Lemma 27. For any δ > 0, there exists κ = κ(δ) such that with probability at least 1 − δ, the
randomized bisection process S0, S1, S2, . . . with initial set S satisfies

1

2
· |S|
2k

< |Sk| <
3

2
· |S|
2k

(20)

for every k ≤ log |S| − κ.

Proof. Let us prove the lower bound first. It is clear that the best strategy for the adversary is
to take the smallest of Ak and Bk on each step, so we may assume that the sets Sk of size less
than |Sk−1|/2 have double probability to appear, whereas the sets Sk of size more than |Sk−1|/2
never appear at all.

Using Fubini’s theorem and the Chernoff-Hoeffding bound, we obtain, for a fixed Sk−1,

E
[
|Sk|

]
=
|Sk−1|

2
− 2

∫ +∞

0
Pr
[
B <

|Sk−1|
2
− t
]
dt

≥ |Sk−1|
2
− 2

∫ +∞

0
e
−2t2/|Sk−1| dt ≥ |Sk−1|

2
−O

(√
|Sk−1|

)
,
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where B is the binomial probability distribution on |Sk−1| elements with probability 1
2 .

Since x 7→ x
2 − c

√
x is a convex function, if we unfix Sk−1, we get by Jensen’s inequality

E
[
|Sk|

]
≥ E

[
|Sk−1|

]

2
−O

(√
E
[
|Sk−1|

])
. (21)

It is clear that |Sk| ≤ |S|/2k, thus, by induction on k,

E
[
|Sk|

]
≥ |S|

2k
−

k∑

j=1

1

2k−j
·O
(√

|S|
2j−1

)
=
|S|
2k
−
√
|S|
2k

k∑

j=1

O(1)

2(k−j)/2
≥ |S|

2k
−O

(√
|S|
2k

)
. (22)

If |S|
2k

= Ωδ(1), we have

E
[
|Sk|

]
>
|S|
2k
− δ

4
· |S|
2k

.

And since |Sk| ≤ |S|/2k, we have by Markov’s inequality that

Pr
[
|Sk| ≤

1

2
· |S|
2k

]
≤ δ

2
.

The proof of the upper bound is similar. This time the adversary takes the largest of Ak

and Bk. Similarly to (21), we get

E
[
|Sk|

]
≤ E

[
|Sk−1|

]

2
+O

(√
E
[
|Sk−1|

])
.

We show by induction on k that if |S|
2k

= Ω(1), then E[|Sk|] ≤ 3
2 ·

|S|
2k
. This is done similarly

to (22):

E
[
|Sk|

]
≤ |S|

2k
+

k∑

j=1

1

2k−j
·O
(√

3|S|
2j

)
=
|S|
2k

+

√
|S|
2k

k∑

j=1

O(1)

2(k−j)/2
≤ |S|

2k
+O

(√
|S|
2k

)
.

Again, if |S|
2k

= Ωδ(1), we have E
[
|Sk|

]
< |S|

2k
+ δ

4 ·
|S|
2k
, and, since |Sk| ≥ |S|/2k,

Pr
[
|Sk| ≥

3

2
· |S|
2k

]
≤ δ

2
.

5.2 Non-Monotonicity of LTFs

Proposition 28. If f : {−1, 1}n → {−1, 1} is a non-constant LTF with weights w1, . . . , wn such
that

∑
i:wi<0 |wi| > maxiwi, then f is not monotone.

Proof. Let N = {i ∈ [n] | wi < 0} denote the set of indices with negative weights and let
η =

∑
i∈N |wi|. Let X ∈ {−1, 1}n be the subset of inputs such that for every i ∈ N , xi = 1.

There exists x ∈ X such that θ − 2η ≤ ∑i∈[n]wixi < θ. Indeed, there exists an input

x′ ∈ X with
∑

i∈[n]wix
′
i < θ (otherwise f is the constant 1 function), and an input x′′ ∈ X with∑

i∈[n]wix
′′
i ≥ θ − 2η (otherwise f is the constant −1 function). Also, maxi |wi| ≤ η, hence,

changing the value of one variable changes the value of the sum
∑

i∈[n]wixi by at most 2η.
With this choice of x, let y ∈ {−1, 1}n be defined by yi = xi for i ∈ [n] \ N and yj = −1

for every j ∈ N . Then
∑

i∈[n]wiyi ≥ θ so x � y and 1 = f(y) > f(x) = −1, hence, f is
non-monotone.
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In the proof of Theorem 2, we need to show that regular LTFs that are far from monotone
must have a large number of reasonably large negative weights. Using this lemma, we obtain
the following bound on the magnitude of the negative weights of regular LTFs that are far from
monotone.

Proposition 29. Fix n ≥ 1 and ǫ > 0. Let f : {−1, 1}n → {−1, 1} be a τ -regular LTF with
weights w1, . . . , wn that is ǫ-far from monotone. Assume

∑
i∈[n]w

2
i = 1 and τ ≤ ǫ

4 . Then

the set N = {i ∈ [n] | wi < 0} of indices corresponding to negative weights satisfies
∑

i∈N w 2
i ≥

ǫ2

256 ln(8/ǫ) .

Proof. Let g : {−1, 1}n → {−1, 1} be the LTF g(x) = sgn(
∑

i∈[n]\N wixi − θ) obtained by
removing the negative weights of f . Since the function g is monotone,

Pr[f(x) 6= g(x)] ≥ ǫ.

The event f(x) 6= g(x) can only occur when |∑i∈N wixi| >
∣∣∣
∑

i∈[n]\N wixi − θ
∣∣∣. So for any

t > 0,

Pr[f(x) 6= g(x)] ≤ Pr

[∣∣∣
∑

i∈[n]\N
wixi − θ

∣∣∣ ≤ t

]
+ Pr

[∣∣∣
∑

i∈N
wixi

∣∣∣ > t

]
.

Define η =
∑

i∈N w 2
i . If η > 1

2 , then we are done. So assume from now on that η ≤ 1
2 . Fix

t =
√

2η ln(8ǫ ). By Lemma 5,

Pr

[∣∣∣
∑

i∈[n]\N
wixi − θ

∣∣∣ ≤
√

2η ln(8ǫ )

]
≤ 2

√
2η ln(8ǫ )

1− η
+

ǫ

2
≤ 4
√

η ln(8ǫ ) +
ǫ

2

and by the Hoeffding bound,

Pr

[∣∣∣
∑

i∈N
wixi

∣∣∣ >
√

2η ln(8ǫ )

]
≤ 2e−

(
2η ln(

8
ǫ )
)
/2η ≤ ǫ

4
.

Putting all the inequalities together, we obtain the inequality ǫ
4 ≤ 4

√
η ln(8ǫ ), which is satisfied

if and only if η ≥ ǫ2

256 ln( 8
ǫ
)
.

Corollary 30. Fix ǫ > 0 and τ > 0. There exists n0 = n0(ǫ, τ) such that for every n ≥ n0, if
f : {−1, 1}n → {−1, 1} is a τ√

n
-regular LTF with normalized weights w1, . . . , wn (

∑
i∈[n]w

2
i = 1)

that is ǫ-far from monotone, then the set N † =
{
i ∈ [n]

∣∣∣ wi < − ǫ√
512 ln( 8

ǫ
)n

}
has cardinality

|N †| ≥ ǫ2

512τ2 ln( 8
ǫ
)
· n.

Proof. Let n0 be the minimal positive integer such that τ√
n0

< ǫ
4 . Define N = {i ∈ [n] | wi <

0}. By Proposition 29, the sum of the squares of the negative weights is bounded below by∑
i∈N w 2

i ≥ ǫ2

256 ln( 8
ǫ
)
. For every element i in N \N †, the weight wi satisfies w 2

i ≤ ǫ2

512 ln( 8
ǫ
)n

so
∑

i∈N\N† w 2
i ≤ |N \N †| · ǫ2

512 ln( 8
ǫ
)n
≤ ǫ2

512 ln( 8
ǫ
)
and

∑

i∈N†

w 2
i =

∑

i∈N
w 2
i −

∑

i∈N\N†

w 2
i ≥

ǫ2

256 ln(8ǫ )
− ǫ2

512 ln(8ǫ )
=

ǫ2

512 ln(8ǫ )
.

The regularity of f guarantees that
∑

i∈N† w 2
i ≤ |N †| τ2n and so |N †| ≥ n

τ2 · ǫ2

512 ln( 8
ǫ
)
.
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5.3 Proof of Theorem 2

Let f be any τ√
n
-regular LTF that is ǫ-far from monotone. We may assume that

∑
iw

2
i = 1.

We modify the bisection algorithm from Algorithm 1 to make the analysis easier. Define

c =
ǫ2

512τ2 ln(8ǫ )
and ζ =

ǫ√
512 ln(8ǫ )

.

Let
k =

⌊
log(cn)−max

{
log(8τζ ), κ(

1
8 )
}⌋

,

where κ is as in Lemma 27.
Consider Algorithm 2. Clearly, the algorithm never rejects a monotone function. Let us

now assume that f is ǫ-far from monotone. By Corollary 30, the set N = {i ∈ [n] | wi < − ζ√
n
}

then has cardinality |N | ≥ cn.

Algorithm 2 Modified Bisection Algorithm

1: Draw x ∈ {−1, 1}n uniformly at random.
2: Draw y ∈ {−1, 1}n uniformly at random 8/ǫ times or until f(x) 6= f(y).
3: If no y satisfying the condition f(x) 6= f(y) was found, accept.
4: Assume f(x) = −1 and f(y) = 1. Otherwise, swap x and y.
5: for k times do
6: Draw z ∈ Hybrid(x, y) uniformly at random.
7: If f(z) = −1, update x← z.
8: Otherwise if f(z) = 1, update y ← z.
9: end for

10: If |x ∩ y| > 3
2 · n

2k
, accept.

11: Query all inputs in Hybrid(x, y). Reject if a non-monotone edge found; otherwise accept.

Assume x ∈ {−1, 1}n is fixed, and y is uniformly sampled from {−1, 1}n. First, f is ǫ-far
from a constant function, hence, an y satisfying f(x) 6= f(y) will be found with probability at
least 7

8 . Next, let x △ y be the set of indices where x and y differ. By Chernoff bound, the
probability that |(x△ y) ∩N | < cn/4 is o(1). Thus, with probability at least 3

4 , after Step 4, x
and y satisfy f(x) = −1, f(y) = 1 and the set S = x△ y satisfies |S ∩N | ≥ cn/4.

Let xℓ and yℓ denote the value of x and y after the ℓth iteration of the loop in Algorithm 2.
In particular, x0 and y0 are the inputs x and y after Step 4 as in the previous paragraph.
Denote Sℓ = xℓ △ yℓ and Nℓ = N ∩ Sℓ. The sets S0, S1, S2, . . . and the sets N0, N1, N2, . . . are
randomized bisection processes with the initial sets S and N ∩ S, respectively. By Lemma 27,
with probability at least 1

4 , the sets Sk and Nk satisfy

|Sk| <
3

2
· |S|
2k
≤ O

( n

cn ζ
τ

)
= O

( τ

cζ

)

and

|Nk| >
1

2
· |N ∩ S|

2k
≥ 1

2
· cn/4
cn ζ

8τ

≥ τ

ζ
.

In turn, this implies that the sum of the weights with coordinates in Nk satisfies

∑

i∈Nk

|wi| ≥ |Nk| · min
i∈Nk

|wi| >
τ

ζ
· ζ√

n
=

τ√
n
≥ max

j
|wj |.
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Let fx,y denote the function f restricted to the set Hybrid(x, y), where x and y are as in Step 10
of the algorithm. This function is non-constant since since fx,y(x) = −1 and fx,y(y) = 1. By
Proposition 28, fx,y is a non-monotone LTF on |Sk| = O

(
τ
cζ

)
variables. Then the algorithm

rejects in Step 11 after additional 2|Sk| = 2Õ(τ3/ǫ3) queries.

5.4 Truncated Functions

In Section 5.3, we showed that the bisection algorithm efficiently ǫ-tests regular LTFs for mono-
tonicity, as specified by Theorem 2. However, in the actual lower bounds by Fischer et al. [13],
and Chen et al. [9, 8], truncated LTFs are used, as in Definition 7. In this section, we show that
if the bisection algorithm can test some class of functions for monotonicity, then it can also test
the truncated version of the same class with a modest slow-down.

Towards this goal, we argue that with probability Ωǫ(1), the bisection algorithm only queries
inputs in the middle layers of the cube, i.e., satisfying n

2 − δ
√
n ≤ |x| ≤ n

2 + δ
√
n in the notation

of Definition 7. It is easy to modify the parameters of Algorithm 2 in Section 5.3 so that the
algorithm uses Oǫ,τ,p(1)+ log n queries, always accepts a monotone function, and rejects a non-
monotone τ√

n
-regular LTF with probability at least 1 − p. Combining the two statements, we

get an algorithm that ǫ-tests truncated τ√
n
-regular LTFs for monotonicity in Oǫ,τ (log n) queries.

Consider the performance of Algorithm 2 on a function of the form Truncateδ(f). The
algorithm does not know the value of δ, but it knows ǫ, the distance from a non-monotone
function Truncateδ(f) to the closest monotone function. By Lemma 5, there exists β = β(ǫ) > 0
such that with probability at least ǫ

2 , the input y found on Step 2 of the algorithm satisfies

n

2
− (δ − β)

√
n ≤ |y| ≤ n

2
+ (δ − β)

√
n.

The input x also satisfies the same estimates with probability Ωǫ(1).
Let xℓ, yℓ and Sℓ be as in Section 5.3. Let also zℓ denote the input z on the (ℓ+1)st iteration

of the loop, so that either xℓ+1 or yℓ+1 equals zℓ. We consider those executions of the algorithm,
in which

max

{∣∣∣∣
∣∣zℓ ∩ Sℓ ∩ xℓ

∣∣− |Sℓ ∩ xℓ|
2

∣∣∣∣,
∣∣∣∣
∣∣zℓ ∩ Sℓ \ xℓ

∣∣− |Sℓ \ xℓ|
2

∣∣∣∣
}
≤ β(1− α)

4
αℓ√n (23)

for all ℓ ≤ k, where k = ⌈log(4√n/β)⌉ and α = 0.9 (or any other constant 1√
2
< α < 1).

We first show that (23) is satisfied for all ℓ ≤ k with probability Ωǫ(1). By induction, for
each ℓ,

|Sℓ| ≤
n

2ℓ
+

β(1 − α)

2

ℓ−1∑

i=0

αi

2ℓ−i−1

√
n ≤ n

2ℓ
+

β(1 − α)

2α− 1
αℓ√n ≤ 2 · n

2ℓ
, (24)

where the last inequality holds if n is large enough. By the Chernoff-Hoeffding bound, the
probability that (23) is satisfied for all ℓ ≤ k is at least

k∏

ℓ=0

(
1− 2 exp

(
−2

β2(1−α)2

16 α2ℓn

2 · n
2ℓ

))2

≥
( ∞∏

ℓ=0

(
1− 2e−Ωǫ

(
(2α2)ℓ

)))2

,

and the infinite product converges.
By induction again, for each ℓ ≤ k,

∣∣∣|zℓ| −
n

2

∣∣∣ < (δ − β)
√
n+

β(1− α)

2

+∞∑

ℓ=0

αℓ√n =
(
δ − β

2

)√
n.

Also, by (24), |Sk| ≤ β
2

√
n. Hence, all the inputs queried by the algorithm after the kth iteration

of the loop are also in the middle layers of the cube.
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[4] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012. Earlier:
RANDOM’10, ECCC:2010/048.

[5] C. Canonne. Open problem for february 2015. Property Testing Review (Blog post), 2015.

[6] D. Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for Boolean functions over
the hypercube. In Proc. of 45th ACM STOC, pages 411–418, 2013. arXiv:1302.4536.

[7] D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity test-
ing over hypergrids. Theory of Computing, 10:453–464, 2014. Earlier: RANDOM’13,
ECCC:2013/062.

[8] X. Chen, A. De, R. A. Servedio, and L.-Y. Tan. Boolean function monotonicity testing
requires (almost) n1/2 non-adaptive queries. In Proc. of 47th ACM STOC, pages 519–528,
2015. arXiv:1412.5657.

[9] X. Chen, R. A. Servedio, and L.-Y. Tan. New algorithms and lower bounds for monotonicity
testing. In Proc. of 55th IEEE FOCS, pages 286–295, 2014. arXiv:1412.5655.

[10] I. Diakonikolas and R. A. Servedio. Improved approximation of linear threshold functions.
Computational Complexity, 22(3):623–677, 2013. Earlier: CCC’09, arXiv:0910.3719.

[11] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved testing algorithms for monotonicity. In Proc. of 3rd RANDOM, pages 97–108.
Springer, 1999. ECCC:1999/017.

[12] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of
EATCS, 75:97–126, 2001.

[13] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proc. of 34th ACM STOC, pages
474–483, 2002.

[14] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing mono-
tonicity. Combinatorica, 20(3):301–337, 2000. Earlier: FOCS’98.

20

http://arxiv.org/abs/1503.02868
http://dx.doi.org/10.1007/s00037-012-0040-x
http://dx.doi.org/10.1109/CCC.2011.31
http://eccc.hpi-web.de/report/2011/045
http://dx.doi.org/10.1109/FOCS.2007.25
http://dx.doi.org/10.1007/s00493-012-2765-1
http://dx.doi.org/10.1007/978-3-642-15369-3_35
http://eccc.hpi-web.de/report/2010/048
http://ptreview.sublinear.info/?p=383
http://dx.doi.org/10.1145/2488608.2488660
http://arxiv.org/abs/1302.4536
http://dx.doi.org/10.4086/toc.2014.v010a017
http://dx.doi.org/10.1007/978-3-642-40328-6_30
http://eccc.hpi-web.de/report/2013/062
http://dx.doi.org/10.1145/2746539.2746570
http://arxiv.org/abs/1412.5657
http://dx.doi.org/10.1109/FOCS.2014.38
http://arxiv.org/abs/1412.5655
http://dx.doi.org/10.1007/s00037-012-0045-5
http://dx.doi.org/10.1109/CCC.2009.8
http://arxiv.org/abs/0910.3719
http://dx.doi.org/10.1007/978-3-540-48413-4_10
http://eccc.hpi-web.de/report/1999/017
http://dx.doi.org/10.1145/509907.509977
http://dx.doi.org/10.1007/s004930070011
http://dx.doi.org/10.1109/SFCS.1998.743493


[15] S. Khot, D. Minzer, and M. Safra. On monotonicity testing and Boolean isoperimetric type
theorems. In Proc. of 56th IEEE FOCS, pages 52–58, 2015. ECCC:2015/011.

[16] H. K. Lee. Learning talagrand DNF formulas. In Proc. of 23rd COLT, pages 310–311,
2010.

[17] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. A. Servedio. Testing halfspaces. SIAM
Journal on Computing, 39(5):2004–2047, 2010. Earlier: SODA’09, ECCC:2007/128.

[18] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random
Structures and Algorithms, 23(3):333–350, 2003.

[19] R. O’Donnell and R. A. Servedio. The chow parameters problem. SIAM Journal on
Computing, 40(1):165–199, 2011. Earlier: STOC’08.

[20] R. O’Donnell and K. Wimmer. Approximation by DNF: examples and counterexamples.
In Proc. of 34th ICALP, pages 195–206, 2007.

[21] A. A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385–390, 1992. Earlier: ICALP’90.

[22] M. Talagrand. How much are increasing sets positively correlated? Combinatorica,
16(2):243–258, 1996.

21

http://dx.doi.org/10.1109/FOCS.2015.13
http://eccc.hpi-web.de/report/2015/011
http://dx.doi.org/10.1137/070707890
http://eccc.hpi-web.de/report/2007/128
http://dx.doi.org/10.1002/rsa.10097
http://dx.doi.org/10.1137/090756466
http://dx.doi.org/10.1145/1374376.1374450
http://dx.doi.org/10.1007/978-3-540-73420-8_19
http://dx.doi.org/10.1016/0304-3975(92)90260-M
http://dx.doi.org/10.1007/BFb0032036
http://dx.doi.org/10.1007/BF01844850

	1 Introduction
	1.1 Previous work on monotonicity testing
	1.2 Our results

	2 Preliminaries
	2.1 Probability Theory
	2.2 Property testing lower bounds
	2.3 Linear Threshold Functions
	2.4 Noise Sensitivity and Talagrand's Random DNFs

	3 High-level overview and intuition
	3.1 The Bisection Algorithm and Regular LTFs
	3.2 Noise Sensitivity and Polynomial Lower Bound

	4 Polynomial Lower Bound
	4.1 Proof of Theorem 1
	4.2 A Simple Lemma
	4.3 Proof of Lemma 17
	4.4 Proof of Lemma 18

	5 Testing Monotonicity of Regular LTFs
	5.1 Randomized Bisection Process
	5.2 Non-Monotonicity of LTFs
	5.3 Proof of Theorem 2
	5.4 Truncated Functions


