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Abstract. Motivation to revisit the Conley index theory for discrete
multivalued dynamical systems stems from the needs of broader real
applications, in particular in sampled dynamics or in combinatorial dy-
namics. The new construction of the index in [B. Batko and M. Mrozek,
SIAM J. Applied Dynamical Systems, 15(2016), pp. 1143-1162] based
on weak index pairs, under the circumstances of the absence of index
pairs caused by relaxing the isolation property, seems to be a promising
step towards this direction. The present paper is a direct continua-
tion of [B. Batko and M. Mrozek, SIAM J. Applied Dynamical Systems,
15(2016), pp. 1143-1162] and concerns properties of the index defined
therin, namely Ważewski property, the additivity property, the homo-
topy (continuation) property and the commutativity property. We also
present the construction of weak index pairs in an isolating block.

1. Introduction

The Conley index as a topological invariant defined for isolated invariant
sets has become an important tool in the study of qualitative features of
dynamical systems. The original construction of the index by Conley and
his students in [4] concerned flows on locally compact metric spaces and was
further generalized to arbitrary metric spaces (cf. [25, 3]), multivalued flows
(cf. [18]), discrete dynamical systems (cf. [24, 19, 5, 9]), as well as discrete
multivalued dynamical systems (cf. [13]).

The interest in multivalued dynamics which admits multiple forward solu-
tions, originated in the qualitative analysis of differential equations without
uniqueness of solutions and differential inclusions [1].

It turns out that multivalued dynamics can also be fruitfully applied while
studying single valued dynamical systems, particularly in the rigorous nu-
merical analysis of differential equations and iterates of maps. A rigorous
numerical experiment, according to its nature, results in a multivalued map
which covers the underlying single valued one. One can expect some of
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2 BOGDAN BATKO

the qualitative features of the single valued dynamical system and its mul-
tivalued, reasonably tight, enclosure to be common and can be analyzed
via topological invariants such as the Conley index. Such an approach was
presented for the first time in [15] and since then applied to many concrete
problems.

The existing Conley index theory for discrete multivalued dynamical sys-
tems, originated by T. Kaczynski and M. Mrozek in 1995 (cf. [13]), uses
quite demanding definition of an isolating neigbourhood. Namely, a com-
pact set N is an isolating neighborhood of a multivalued map F if

(1) dist(InvN, bdN) > max{diamF (x) | x ∈ N},

where InvN stands for the invariant part of F in N (see Definition 2.3). A
slightly weaker but essentially similar definition is presented in [27]. Physical
experiments show that the above assertion is restrictive and in practice
finding an isolating neighborhood in the sense of (1) is difficult (cf. e.g.
[16, 17]). This limits the applicability of the theory.

Therefore, in [2] the definition of an isolating neighborhood has been
significantly generalized. Namely, instead of (1) it is required that

(2) InvN ⊂ intN,

i.e. the same condition as for single-valued maps. Such an approach, how-
ever, causes that index pairs, being the main tool in the construction of the
Conley index, are no longer useful, because isolating neighborhoods in the
sense of (2) do not guarantee their existence. Therefore, the new construc-
tion of the index was needed. The definition of the Conley index presented
in [2] is based on weak index pairs.

This paper is a direct continuation of [2] and is devoted to the properties
of the Conley index defined therin. We discuss intrinsic properties of Conley
type indices, namely Ważewski property, the additivity property, the homo-
topy (continuation) property and the commutativity property. Moreover,
we present a simple construction of a weak index pair in an isolating block.

The theory we develop may be useful among others in sampled dynamics,
i.e. in the reconstruction problem of the qualitative features of an unknown
dynamical system on the basis of a finite amount of experimental data only.
For wider discussion concerning this issue we refer to [2]. Promising results
in this direction are presented in [16, 17] and also in a recent paper [8].
In fact, in [16, 17] the single valued Conley index theory is used, and the
multivalued enclosure F of the sampled dynamical system f is necessary
to aid the construction of index pairs only. Such an approach, however,
requires the single valued generator to be the selector of the multivalued
one which, in general, is not automatically guaranteed by the technique
of its construction. We only can expect that f lies nearby F . Enlarging
the values of F to ensure the existence of a continuous selector may cause
overestimation and, as a consequence, prevent the isolation. Therefore, we
advocate the qualitative features of the underlying dynamics to be inferred
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directly from the multivalued dynamical system F constructed from the
experimental data. To achieve this, the continuation property of the Conley
index introduced in [2] is needed.

Another potential application of our work concerns combinatorial dynam-
ics. The recent results presented in [14] establish formal ties between the
classical dynamics and the combinatorial dynamics in the sense of Forman
[10]. The definition of the Conley index presented in [2] may enable extend-
ing these ties towards the Conley index theory.

The organization of the paper is as follows. Section 2 presents preliminar-
ies needed in the paper. In Section 3 we recall the definition of an isolating
neighborhood and the construction of the Conley index based on weak index
pairs, following [2]. Section 4 presents the definition of an isolating block
for the discrete multivalued dynamical system. An isolating block allows an
easy construction of a weak index pair (cf. Theorem 4.4) which may be con-
venient from the computational point of view. In Section 5 Ważewski and
the additivity properties are discussed. It turns out that, unlike in the single
valued case, or even in the multivalued case for strongly isolated invariant
sets, the union of two disjoint isolated invariant sets does not need to be
an isolated invariant set (cf. Example 5.2). Even more, if the union of two
disjoint isolated invariant sets is an isolated invariant set, its Conley index
is not necessarily equal to the product of its components (cf. Example 5.4).
The reason is that the definition of an isolating neighborhood does not fully
control the image of an isolated invariant set under F . As a consequence
the sum of two isolated invariant sets may give birth to new trajectories
connecting the summands. However, if the isolated invariant sets are suffi-
ciently well separated from one another, in the sense that the image of any
of them does not intersect the other, then the desired conclusion follows (cf.
Theorem 5.3). In Section 6 we discuss the continuation (homotopy) property
of the Conley index (cf. Theorem 6.1). We also present its straightforward
application to the leading example of [2] showing that the Conley index of
the multivalued dynamical system constructed by sampling the dynamics
coincides with the index of the underlying single valued dynamical system,
as desired (cf. Example 6.7 and Example 6.8). In the last section we deal
with the commutativity property. It seems that this property of the Conley
index for discrete multivalued dynamical systems is undertaken here for the
first time.

2. Preliminaries

Throughout the paper the sets of all integers, non-negative integers, non-
positive integers and real numbers are denoted by Z, Z+, Z− and R, re-
spectively. By an interval in Z we mean a trace of a closed real interval in
Z.
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By clX A, intX A and bdX A we denote the closure, the interior and the
boundary of a subsetA of a given topological spaceX. We drop the subscript
X in this notation if the space is clear from the context.

Let P(Y ) stand for the set of all subsets of a given topological space Y . By
a multivalued map F : X ( Y we mean a function X 3 x 7→ F (x) ∈ P(Y ).
For given multivalued mapping F : X ( Y and B ⊂ Y we define sets

F−1(B) := {x ∈ X | F (x) ∩B 6= ∅},

and

F−1(B) := {x ∈ X | F (x) ⊂ B},
called large counter image and small counter image of B under F , respec-
tively. F is said to be upper semicontinuous (usc for short) if the large
counter image of any closed B in Y is closed in X or, equivalently, if a small
counterimage of any open U in Y is open in X. Given A ⊂ X we define its
image under F to be

F (A) :=
⋃
{F (x) | x ∈ A}.

By imF we denote the image of F , i.e. the set F (X). Recall that any usc
mapping with compact values has a closed graph and it sends compact sets
into compact sets. If F : X ( Y is usc then its effective domain, i.e. the
set dom(F ) := {x ∈ X | F (x) 6= ∅}, is closed.

The inverse of a multivalued map F : X ( Y is a multivalued map
F−1 : Y ( X defined by

x ∈ F−1(y) if and only if y ∈ F (x).

For F : X ( Y and G : Y ( Z one defines the composition G ◦F : X (
Z by

(G ◦ F )(x) :=
⋃
{G(y) | y ∈ F (x)} for x ∈ X.

Finally, if F : X ( X then by F k, for k ∈ Z+ \ {0}, we understand the
composition of k copies of F , if k is positive, or −k copies of the inverse F−1

of F , if k is negative.

Definition 2.1. (cf. [13, Definition 2.1]). An usc mapping F : X ×Z( X
with compact values is called a discrete multivalued dynamical system (dmds)
if the following conditions are satisfied:

(i) for all x ∈ X, F (x, 0) = {x},
(ii) for all n,m ∈ Z with nm ≥ 0 and all x ∈ X, F (F (x, n),m) =

F (x, n+m),
(iii) for all x, y ∈ X, y ∈ F (x,−1)⇔ x ∈ F (y, 1).

Since Fn(x) := F (x, n) coincides with a composition of F 1 : X ( X or
its inverse (F 1)−1, we call F 1 the generator of the dmds F . For simplicity
we denote the generator by F and identify it with the dmds.

From now on we assume that F is a given dmds.
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Definition 2.2. (cf. [13, Definition 2.3]). Let I ⊂ Z be an interval contain-
ing 0. A single valued mapping σ : I → X is called a solution for F through
x ∈ X if σ(0) = x and σ(n+ 1) ∈ F (σ(n)) for all n, n+ 1 ∈ I.

Definition 2.3. Given N ⊂ X we define the following sets

Inv+N := {x ∈ N | ∃σ : Z+ → N a solution for F through x},
Inv−N := {x ∈ N | ∃σ : Z− → N a solution for F through x},

InvN := {x ∈ N | ∃σ : Z→ N a solution for F through x},
called the positive invariant part, negative invariant part and the invariant
part of N , respectively.

Note that, by (i), InvN = Inv+N ∩ Inv−N .
We will frequently consider pairs of topological spaces. For the sake of

simplicity we will denote such pairs by single capital letters and then the
first or the second element of the pair will be denoted by adding to the letter
the subscript 1 or 2, respectively. In other words, if P is a pair of spaces
then P = (P1, P2) where P1, P2 are topological spaces. Consequently, the
rule extends to any relation R between pairs P and Q, i.e. any statement
that pairs P and Q are in a relation R will mean that Pi is in a relation
R with Qi for i = 1, 2. According to our general assumption, whenever we
say that F is a map of pairs P and Q it means that F maps Pi into Qi for
i = 1, 2.

Although most of the considerations in this paper are valid for locally
compact topological spaces satisfying some separation axioms, usually lo-
cally compact Hausdorff spaces, for the sake of simplicity we make a general
assumption that, until explicitely stated otherwise, by a space we mean a
locally compact metrizable space.

3. Definition of the Conley index

In this section, following [2], we summarize briefly the important defini-
tions related to isolating neighborhoods, isolated invariant sets, weak index
pairs and the Conley index.

Assume F : X ( X is a given discrete multivalued dynamical system on
a locally compact metrizable space. Recall that in [13] an isolating neigh-
borhood N in a locally compact metric space was defined as a compact set
satisfying

(3) dist(InvN, bdN) > max{diamF (x) | x ∈ N}.
Slightly relaxed but essentially similar condition

(4) InvN ∪ F (InvN) ⊂ intN

is used in [27]. In [2] the definition of an isolating neighborhood has been
significantly generalized and, to avoid the misunderstanding, isolating neigh-
borhoods in the sense of [13] or [27] have been named strongly isolating
neighborhoods. We follow this convention.



6 BOGDAN BATKO

Definition 3.1. (cf. [2, Definition 4.1, Definition 4.2]). A compact subset
N ⊂ X is an isolating neighborhood for F if InvN ⊂ intN . A compact
set S ⊂ X is said to be invariant with respect to F if S = InvS. It is
called an isolated invariant set if it admits an isolating neighborhood N for
F such that S = intN . If in the above assertion N is a strongly isolating
neighborhood then we call S a strongly isolated invariant set.

The main tool in constructing the Conley index for flows, discrete dy-
namical systems as well as for discrete multivalued dynamical systems is an
index pair. But, invariant sets isolated in the sense of Definition 3.1 do not
necessarily guarantee the existence of index pairs. Therefore, in [2] weak
index pairs are used.

We define an F -boundary of a given set A ⊂ X by

bdF (A) := clA ∩ cl(F (A) \A).

Definition 3.2. A pair P = (P1, P2) of compact sets P2 ⊂ P1 ⊂ N is called
a weak index pair in N if

(a) F (Pi) ∩N ⊂ Pi for i ∈ {1, 2},
(b) bdF P1 ⊂ P2,
(c) InvN ⊂ int(P1 \ P2),
(d) P1 \ P2 ⊂ intN .

One can prove that any isolating neighborhood admits a weak index pair
(cf. [2, Theorem 4.12]). The construction of the Conley index is as follows.

We need the generator F : X ( X of the dmds, restricted to appropriate
pairs of sets, to induce a homomorphism in cohomology. Therefore, we
restrict ourselves to the class of maps determined by a given morphism (for
the details see [11], [12] or [19]). Let us recall that, in particular, any single-
valued continuous map as well as any composition of acyclic maps (i.e. usc
maps with compact acyclic values) belongs to this class.

For a weak index pair P in an isolating neighborhood N we let

(5) T (P ) := TN (P ) := (P1 ∪ (X \ intN), P2 ∪ (X \ intN)).

Lemma 3.3. (cf. [2, Lemma 5.1]) If P is a weak index pair for F in N
then

(i) F (P ) ⊂ T (P ),
(ii) the inclusion iP,T (P ) : P → T (P ) induces an isomorphism in the

Alexander-Spanier cohomology.

Denote by FP := FP,T (P ) the restriction of F to the domain P and
codomain T (P ), and iP := iP,T (P ).

Definition 3.4. (cf. [2, Definition 6.2]) The endomorphism H∗(FP ) ◦
H∗(iP )−1 of H∗(P ) is called the index map associated with the index pair
P and denoted by IP .

Several authors have used various concepts to construct the indices of
Conley type: homotopy type (cf. [24]), Leray functor (cf. [19]) and other
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normal functors (cf. [20, 23]), category of objects equipped with a morphism
(cf. [28]) or shift equivalence (cf. [9]).

In our approach we apply the Leray functor L to the pair (H∗(P ), IP ).
Recall that the existence of a weak index pair P in N is guaranteed by [2,
Theorem 4.12]. We obtain a graded module over Z together with its endo-
morphism, called the Leray reduction of the Alexander-Spanier cohomology
of P , which is independent of the choice of an isolating neighborhood N for
S and of a weak index pair P in N (cf. [2, Theorem 5.5]). Its common value
is used to define the Conley index of S.

Definition 3.5. (cf. [2, Definition 6.3]) The module L(H∗(P ), IP ) is called
the cohomological Conley index of S and denoted by C(S, F ), or simply by
C(S) if F is clear from the context.

4. Weak index pairs in isolating blocks

In this section we adapt the well known notion of an isolating block to the
case of discrete multivalued dynamical systems (see Definition 4.1). As one
can expect, any isolating block is an isolating neighborhood; hence it admits
a weak index pair. The goal of this section is to show that an isolating block
admits easier construction of a weak index pair than in general, i.e. in an
arbitrary isolating neighborhood, which may be convenient in applications.

In this section X is a locally compact Hausdorff space and F : X ( X is
a discrete multivalued dynamical system.

Definition 4.1. We say that a compact set N is an isolating block with
respect to F , if

N ∩ F (N) ∩ F−1(N) ⊂ intN,

where F−1(N) stands for the large counterimage of N under F .

The following proposition is straightforward.

Proposition 4.2. Any isolating block is an isolating neighborhood. The
converse is not true.

Proof: The first statement is a straightforward consequence of the prop-
erty InvN ⊂ N ∩ F (N) ∩ F−1(N). The second follows from Example 4.3.

Example 4.3. Consider X = [0, 6] and F : X ( X given by

(6) F (x) :=



{0} for x ∈ [0, 1)
[0, 1] for x = 1
{1} for x ∈ (1, 3)

[1, 5] for x = 3
[3, 5] for x ∈ (3, 4)
[2, 5] for x = 4
{2} for x ∈ (4, 6].

The graph of F is presented in Figure 1. It is easy to see that S = [3, 4] is an
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0 6

6

Figure 1. The graph of the map F given by (6) is marked in
blue. Isolated invariant set S and isolating neighborhood N
are marked in red and green, respectively. The image F (N)
and the counterimage F−1(N), showing that N is not an
isolating block, are marked in brown and gray, respectively.

isolated invariant set with respect to F and N = [2, 5] isolates S, whereas
N is not an isolating block.

Theorem 4.4. Let N be an isolating block with respect to F and let U be
an open neighborhood of F (N) ∩ F−1(N) ∩N with clU ⊂ intN . Then the
sets P1 := (F (N) ∩N) ∪ clU and P2 := F (N) ∩ bdN give raise to a weak
index pair P := (P1, P2) in N .

Proof: Clearly, P1 and P2 are compact, and P2 ⊂ P1 ⊂ N .
The positive invariance of P1 in N is obvious. Thus, in order to prove

property (a) of P , we shall verify that F (P2) ∩ N ⊂ P2. Suppose the
contrary and take x ∈ F (P2) ∩ N \ P2. Clearly, F (P2) ∩ N ⊂ F (N) ∩ N ,
hence x ∈ intN . Since x ∈ F (F (N) ∩ bdN), there exists u ∈ F (N) ∩ bdN
such that x ∈ F (u). This yields u ∈ bdN∩F (N)∩F−1(N), a contradiction.

We shall verify condition (d). Observe that P1 \P2 = (F (N)∩N ∪ clU) \
(F (N)∩ bdN) ⊂ F (N)∩ intN ∪ clU . This, along with clU ⊂ intN , yields
P1 \ P2 ⊂ intN .

Clearly, U ⊂ P1 and U ∩ P2 = ∅, as P2 ⊂ bdN and U ⊂ intN . Con-
sequently, U ⊂ P1 \ P2. Therefore, InvN ⊂ F (N) ∩ F−1(N) ∩ N ⊂ U ⊂
int(P1 \ P2), which means that condition (c) holds.
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It remains to verify property (b). Suppose the contrary and consider
x ∈ bdF (P1) \ P2. Then x ∈ P1 \ P2 and, by property (d), we have x ∈
intN . However, x ∈ bdF (P1) ⊂ cl(F (P1) \P1), thus we can take a sequence
{xn} ⊂ F (P1) \ P1 convergent to x. Observe that F (P1) \ P1 ⊂ F (N) \N ;
hence xn /∈ N for all n ∈ N, which contradicts x ∈ intN . �

Observe that the assertion that P1 contains a compact neighborhood of
F (N) ∩ F−1(N) ∩N is necessary.

Example 4.5. Let X = [0, 7]. Consider F : X ( X given by

(7) F (x) =



{0} for x ∈ [0, 1)
[0, 3] for x = 1
{3} for x ∈ (1, 3)

[3, 4] for x ∈ [3, 4]
{3} for x ∈ (4, 6)

[0, 3] for x = 6
{0} for x ∈ (6, 7].

The graph of F is presented in Figure 2. It is easy to see that N = [2, 5] is an

0 7

7

Figure 2. The graph of the map F given by (7) is marked
in blue. The isolating block N and InvN for F are marked in
green and red, respectively. The image F (N) and the coun-
terimage F−1(N), showing that InvN = F (N)∩F−1(N)∩N ,
are marked in brown and gray, respectively.

isolating block with respect to F . Moreover, InvN = F (N) ∩ F−1(N) ∩N .
If P is a weak index pair with respect to F , then by property (c) of P , we
have F (N) ∩ F−1(N) ∩N ⊂ intP1.
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To conclude this section let us emphasize that once an isolating block N
for a dmds given by a combinatorial multivalued map on a cubical grid is lo-
calized, the algorithmic construction of a weak index pair is straightforward.
This is because a compact neighborhood of F (N)∩F−1(N)∩N required in
Theorem 4.4 may be obtained by subdividing the grid, if necessary.

5. Ważewski and additivity properties of the Conley index

Throughout this section we assume that X is a locally compact metrizable
space and F : X ( X is a discrete multivalued dynamical system.

5.1. Ważewski property.

Theorem 5.1. (Ważewski property) Let S be an isolated invariant set
with respect to F . If C(S, F ) 6= 0, then S 6= ∅.

Proof: The argument is by contradiction. Clearly (∅,∅) is a weak
index pair for S = ∅. Moreover, H∗(∅,∅) = 0 and, by [19, Proposition
4.6], L(0) = 0. Since the index is independent of the choice of an isolat-
ing neighborhood and a weak index pair (cf. [2, Theorem 6.4]), we have
C(∅, F ) = 0. �

5.2. Additivity property. Let us begin this section with an observation
that, unlike in the case of single valued dynamical systems, or discrete mul-
tivalued dynamical systems and strongly isolated invariant sets, the union
of two disjoint isolated invariant sets need not be an isolated invariant set.

Example 5.2. Let

G(x) :=



{0} for x ∈ [0, 1)
[−3, 0] for x = 1
{−3} for x ∈ (1, 3)

[−3, 4] for x = 3
[3, 4] for x ∈ (3, 4)
[3, 6] for x = 4
{6} for x ∈ (4, 7].

Consider X = [−7, 7] and the dmds F : X ( X given by

(8) F (x) :=

{
G(x) for x ∈ [0, 7]

−G(−x) for x ∈ [−7, 0).

The graph of F is presented in Figure 3. It is easy to see that S1 :=
[−4,−3] and S2 := [3, 4] are isolated invariant sets with respect to F , and
N1 := [−5,−2], N2 := [2, 5] isolate S1 and S2, respectively. Observe that
any compact neighborhood N of the union S := S1∪S2 has its invariant part
significantly larger than S, which shows that S is not an isolated invariant
set.

Nevertheless, a suitably reformulated additivity property holds.
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0 7

7

Figure 3. The graph of the map F given by (8), marked in
blue. Isolated invariant sets S1 and S2 are marked in red and
pink, respectively. Isolating neighborhoods N1 and N2 for
S1 and S2 are marked in dark green and green, respectively.
The images F (S1) and F (S2) are marked in gray and brown,
respectively.

Theorem 5.3. (Additivity property) Let an isolated invariant set S for
a discrete multivalued dynamical system F on a locally compact metrizable
space be a disjoint sum of two isolated invariant sets S1 and S2. Assume
that

(9) F (Si) ∩ Sj = ∅ for i, j = 1, 2, i 6= j.

Then C(S, F ) = C(S1, F ) × C(S2, F ) (for the definition of the product ×
see [19, Proposition 4.5]).

Before going to the technical details of the proof let us briefly describe
its idea. First of all notice that we can not repeat the argument used for
the proof of the additivity property in the single valued case. Namely, for
the proof of [19, Theorem 2.12] it is essential that for any disjoint isolated
invariant sets S1, S2 one can choose isolating neighborhoods, and index pairs
P 1, P 2 so that F (P 1

2 ) and F (P 2
2 ) are disjoint. This means that the pairs of

spaces P 1
i ∪ F (P 1

2 ) and P 2
i ∪ F (P 2

2 ), i = 1, 2, used for the construction of
the index maps, are disjoint. For convenience let us temporarily call such
(index) maps separated from one another. One can observe that this is in
contrast to the multivalued case, even if the underlying disjoint isolated
invariant sets satisfy condition (9).
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In order to overcome this obstacle we shall use the construction of the
extended discrete multivalued dynamical system presented in [2, Section 7],
which we briefly recall.

Let N be an isolating neighborhood for a given dmds F . By [2, Theorem
4.12] we can take a weak index pair P in N , arbitrarily close to InvN ,
i.e. such that P1 \ P2 ⊂ W and W is an open neighborhood of InvN with
clW ⊂ intN . Then the sets cl(P1 \ P2) and X \ intN are disjoint; hence
there exist compact and disjoint sets C,D ⊂ P1 ∪ (X \ intN) satisfying
cl(P1 \ P2) ⊂ C and X \ intN ⊂ D. Now we use the Urysohn’s lemma to
choose a continuous function α : X → [0, 1] =: I such that α|C = 0 and
α|D = 1. Let

X(P ) := ((P1 \ P2)× {0}) ∪ ((P2 ∪ (X \ intN))× I) ∪ (X × {1})

with the Tichonov topology. Consider

µ : X(P ) 3 (x, t) 7→ t+ (1− t)α(x) ∈ I

and define

FP : X(P ) 3 (x, t) 7→ F (x)× {µ(x, t)} ⊂ X(P ).

Then FP is a well-defined, upper semicontinuous, acyclic valued map (cf.
[2, Proposition 7.2]).

For our needs we construct the space X(P ) for an appropriate, sufficiently
small, isolating neighborhood N of the union S1∪S2, and a weak index pair
P in N . Then we consider adequate embedings Si

′ of the underlying isolated
invariant sets Si, i = 1, 2, into X(P ), one of them on level 0 and the second
on level 1. The embedings are defined in such a way that they are iso-
lated invariant sets with respect to FP and we have C(Si

′, FP ) = C(Si, F ),
C(S1

′ ∪ S2
′, FP ) = C(S1 ∪ S2, F ). Clearly, this does not guarantee that the

associated index maps are separated, regardless of the choice of weak index
pairs P i

′
for S′i. Recall that, in general, for the definition of index maps in

the multivalued case we are forced to use pairs of spaces T (P 1′) and T (P 2′),
which are not disjoint (see Definition 3.4). Although index maps themselves
are not separated from one another, nice properties of the extended dynam-
ical system FP facilitate the choice of weak index pairs which enable us to
construct auxiliary maps that are isomorphic to the underlying index maps,
and at the same time separated, as desired. It turns out that this is sufficient
for our purposes.

Proof of Theorem 5.3: By (9) and the upper semicontinuity of F we can
take disjoint isolating neighborhoods N ′1 and N ′2 of S1 and S2, respectively,
such that F (N ′i) ∩ N ′j = ∅ for i, j = 1, 2, i 6= j. Let N ′ be an isolating

neighborhood of S. Put Ni := N ′i ∩N ′. Then N1, N2 and N := N1 ∪N2 are
isolating neighborhoods of S1, S2 and S, respectively. Clearly,

(10) F (Ni) ∩Nj = ∅ for i, j = 1, 2, i 6= j.
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By [2, Theorem 4.12], for arbitrarily small neighborhoods Wi of Si there
exist weak index pairs P i in Ni with P i1 \ P i2 ⊂ Wi ∩ intNi, i = 1, 2. One
can verify that condition (10) guaranties that P := P 1 ∪P 2 is a weak index
pair in N .

Consider the space X(P ) and the dmds FP , and the homeomorphism
(onto its image)

ι0 : P1 ∪ (X \ intN) 3 x 7→ (x, 0) ∈ X(P ).

By [2, Proposition 7.5], S := ι0(S) is an isolated invariant set with respect
to FP and N := ι0((P1 ∪ (X \ intN)) ∩N) is an isolating neighborhood of
S. Moreover, P := ι0(P ) is a weak index pair in N .

Put Si := ι0(Si), N i := ι0((P i1 ∪ (X \ intNi)) ∩Ni) and P i := ι0(P i) for
i = 1, 2. Since N1 ∩N2 = ∅, it is clear that S = S1 ∪ S2, N = N1 ∪N2 and
P = P 1 ∪ P 2. Moreover, by (10) we have

(11) FP (N i) ∩N j = ∅ for i, j = 1, 2, i 6= j.

Thus, it follows that N i is an isolating neighborhood of Si, and P i is a
weak index pair in N i, for i = 1, 2 (see Figure 4). By [2, Lemma 6.1(i)],

X��1�

S1 S2

P1
1 \ P2

1

P2
1�I �X\intN��I

P1
2 \ P2

2

P2
2�I

0

1

P2
1 P2

2

Figure 4. The extended space X(P ) and the embeddings Si
of the isolated invariant sets Si. The isolated invariant sets S1

and S2 are indicated by red line segments. The components
of the associated weak index pairs P 1 and P 2 are indicated
by blue line segments.

F is a map of pairs (P 1
1 , P

1
2 ) and (TN1,1(P 1), TN1,2(P 1)). Set (V1, V2) :=

(TN1,1(P 1)\((intN \P )×{1}), TN1,2(P 1)\((intN \P )×{1})). By [2, Lemma

6.1(i)] and (10), FP maps (P 1
1, P

1
2) into (V1, V2) ⊂ (TN1,1(P 1), TN1,2(P 1)).
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We have the commutative diagram

(P 1
1 , P

1
2 ) (TN1,1(P 1), TN1,2(P 1)) (P 1

1 , P
1
2 )

(P 1
1, P

1
2) (V1, V2) (P 1

1, P
1
2)

(TN1,1(P 1), TN1,2(P 1))

F j1

p1

FP

FP
j4

p2

j2

p1

j3

in which j1, j2, j3 and j4 are inclusions and

p1 : (P 1
1, P

1
2) 3 (x, 0) 7→ x ∈ (P 1

1 , P
1
2 ),

p2 : (V1, V2) 3 (x, t) 7→ x ∈ (TN1,1(P 1), TN1,2(P 1))

are projections. By [2, Lemma 6.1(ii)] inclusions j1 and j3 induce isomor-
phisms in cohomology. Observe that

TN1,1(P 1) \ TN1,2(P 1) = (P 1
1 \ P 1

2) ∩ intN1

and

V1 \ V2 = (TN1,1(P 1) \ ((intN \ P )× {1}))
\(TN1,2(P 1) \ ((intN \ P )× {1}))

= (TN1,1(P 1) \ TN1,2(P 1)) \ ((intN \ P )× {1}))
= (P 1

1 \ P 1
2) ∩ intN1.

Therefore, inclusion j2 induces an isomorphism, as an excision, and so does
j4. Clearly, projection p1 induces an isomorphisms; hence so does p2. Con-
sequently, IP 1 and IP 1 are conjugate; hence

(12) C(S1, F ) = C(S1, F
P ).

Now, consider a weak index pair R in an isolating neighborhoodW := cl(P 1
1 \

P 1
2 ) of S1. It is easy to see that W := ι0(W ) is an isolating neighborhood

of S1 and R := ι0(R) is a weak index pair in W with respect to FP . By the
independence of the Conley index of the choice of an isolating neighborhood
and of a weak index pair (cf. [2, Theorem 6.4]), we have

(13) C(S1, F
P ) = L(H∗(R), IR),

where L stands for the Leray functor.
By [2, Lemma 6.1(i)], FP (R) ⊂ TW (R). Moreover, using [2, Corollary

7.3(i)] and (11), we infer that

(14) FP (R) ⊂ T ,

where T := {(x, 0) ∈ TW (R) \ intN2} (see Figure 5). We have the following



15

X��1�

T

S1

R1 \ R2

P2
1�I

P1
2��0�

�X\intN��I P2
2�I

0

1

R2

Figure 5. The extended space X(P ) and the mutual loca-
tion of isolated invariant set S1, weak index pair R and spaces
T . S1 is marked in red. The weak index pair R is indicated
by blue line segments. Components of the pair of spaces T
lying on level 0 are indicated by brown line segments.

commutative diagram

(T 1, T 2) (R1, R2)

(R1, R2) (TW,1(R), TW,2(R))

i
iR

iR,T

FPR,T

FPR

in which by i (with a subscript) we denote inclusions and by FP with sub-
scripts, the contractions of FP to appropriate pairs of pairs. By [2, Lemma
6.1(i)], inclusion iR induces an isomorphism in the Alexander-Spanier coho-
mology. Observe that

TW,1(R) \ TW,2(R) = (R1 ∪ (X(P ) \ intW )) \ (R2 ∪ (X(P ) \ intW ))

= (R1 \R2) ∩ intW

and

T 1 \ T 2 = {(x, 0) ∈ TW,1(R) \ intN2} \ {(x, 0) ∈ TW,2(R) \ intN2}
= {(x, 0) ∈ (TW,1(R) \ TW,2(R)) \ intN2}
= {(x, 0) ∈ ((R1 \R2) ∩ intW ) \ intN2}
= {(x, 0) ∈ (R1 \R2) ∩ intW}
= (R1 \R2) ∩ intW.

Thus, by the strong excision property, inclusion iR,T induces an isomorphism
in the Aleksander-Spanier cohomology, and so does i. Therefore, we have a
well-defined endomorphism H∗(FPR,T ) ◦H∗(iR,T )−1 of H∗(R). Moreover, by
the commutativity of the above diagram

(15) IR = H∗(FPR,T ) ◦H∗(iR,T )−1.
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Consider the homeomorphism (onto its image)

ι1 : X 3 x 7→ (x, 1) ∈ X(P )

and define Si := ι1(Si), N i := ι1(Ni), and P i := ι1(P i), for i = 1, 2. One
can verify, using [2, Proposition 7.1], that Si is an isolated invariant set with

respect to FP , N i is an isolating neighborhood, and P i is a weak index pair
in N i.

By [2, Lemma 6.1(i)], F is a map of pairs (P 2
1 , P

2
2 ) and

(TN2,1(P 2), TN2,2(P 2)). Moreover, by [2, Lemma 6.1(i)], (10) and [2, Propo-
sition 7.1.3], we have

(16) FP (P 2) ⊂ T ,

where (T 1, T 2) := (ι1(P 2
1 ∪ (X \ intN)), ι1(P 2

2 ∪ (X \ intN))) (see Figure 6).

X��1�

T

T

S1

S2

R1 \ R2

P2
1�I �X\intN��I

P1
2 \ P2

2

P2
2�I

0

1

R2

P2
2

Figure 6. The extended space X(P ) and the mutual loca-
tion of isolated invariant sets S1 and S2, weak index pairs R

and P 2, and pairs of spaces T and T . The sets S1 and S2

on level 0 and level 1, respectively, are marked in red. The
associated weak index pairs R and P 2 are indicated by blue
line segments. Brown and gray line segments indicate loca-
tion of components of the pairs of spaces T on level 0 and T
on level 1, respectively.
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Clearly, (T 1, T 2) ⊂ (TN2,1
(P

2
), TN2,2

(P
2
)). We have the following com-

mutative diagram

(P 2
1 , P

2
2 ) (TN2,1(P 2), TN2,2(P 2)) (P 2

1 , P
2
2 )

(P
2
1, P

2
2) (TN2,1

(P
2
), TN2,2

(P
2
)) (P

2
1, P

2
2)

(T 1, T 2)

F j5

p3

FP
P2

FP
P2,T

p4

j6

p3

i
P2,T

j7

in which j5, j6, j7 and i
P 2,T

are inclusions and

p3 : (P
2
1, P

2
2) 3 (x, 1) 7→ x ∈ (P 2

1 , P
2
2 ),

p4 : (TN2,1
(P

2
), TN2,2

(P
2
)) 3 (x, t) 7→ x ∈ (TN2,1(P 2), TN2,2(P 2))

are projections. [2, Lemma 6.1 (ii)] guaranties that inclusions j5 and j6
induce isomorphisms in cohomology. It is evident that projection p3 induces
an isomormphism, therefore, p4 induces an isomorphisms too. Thus IP 2 and
I
P

2 are conjugate and we have

(17) C(S2, F ) = C(S2, F
P ).

Since T 1 \ T 2 = TN2,1
(P

2
) \ TN2,2

(P
2
) = (P

2
1 \ P

2
2) ∩ intN2, inclusions j7

and i
P 2,T

are excisions; hence, they induce isomorphisms in cohomology.

Consequently

(18) I
P 2 = H∗(FP

P 2,T
) ◦H∗(i

P 2,T
)−1.

Now, put K := S1 ∪ S2, Q := P 1 ∪ P 2
and M := N1 ∪N2. By (10) we

have

(19) FP (N1) ∩N2 = ∅ and FP (N2) ∩N1 = ∅.

This guaranties that M is an isolating neighborhood of K with respect to
FP , and Q is a weak index pair in M .

Again we use [2, Lemma 6.1(i)] to infer that F is a map of pairs (P1, P2)
and (TN,1(P ), TN,2(P )), and FP maps (Q1, Q2) into (TM,1(Q), TM,2(Q)). In

fact, as a consequence of (19), FP (Q) ⊂ TM (Q) \ ((intN1 \ P 1
1 ) × {1}) \
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((intN2 \ P 2
1 )× {0}) =: Y . Consider the following commutative diagram

(P1, P2) (TN,1(P ), TN,2(P )) (P1, P2)

(Q1, Q2) (Y1, Y2) (Q1, Q2)

(TM,1(Q), TM,2(Q))

F j9

p5

FP

FP

p6

j12

j10

j11

p5

in which j9, j10, j11 and j12 are inclusions,

p5 := p1 ∪ p3 : (Q1, Q2) 3 (x, t) 7→ x ∈ (P1, P2),
p6 : (Y1, Y2) 3 (x, t) 7→ x ∈ (TN,1(P ), TN,2(P )).

are projections, and the contractions of FP to appropriate pairs are denoted
simply by FP . Inclusions j9 and j11 induce isomorphisms in cohomology,
by [2, Lemma 6.1(ii)]. Inclusions j10 and j12 also induce isomorphisms, as
excisions, because Y1 \ Y2 = TM,1(Q) \ TM,2(Q) = (Q1 \Q2) ∩ intM . Since

P 1 and P 2 are disjoint, and so are P 1 and P
2
, projection p5 is well defined

and it induces an isomorphism in cohomology. Consequently, so does p6.
Therefore, IP and IQ are conjugate, and we have

(20) C(S, F ) = C(K,FP ).

Observe, that M := W ∪N2 is an isolating neighborhood of K with respect

to FP , and Q := R ∪ P 2 is a weak index pair in M . Now, using (14) and
(16), and arguing similarly as for the index maps IR and I

P 2 , one can show
that

(21) IQ = H∗(FP
Q,T∪T ) ◦H∗(iQ,T∪T )−1,

where iQ,T∪T : Q → T ∪ T is the inclusion and FP
Q,T∪T stands for the

contraction of FP to the domain Q and codomain T ∪ T .

Taking into account that R and P 2 are disjoint pairs of spaces, we have

H∗(M) = H∗(R ∪ P 2
) = H∗(R) × H∗(P

2
). Furthermore, T and T are

disjoint, as desired. Therefore, H∗(T ∪ T ) = H∗(T ) ×H∗(T ) and, by (21),
we have

IQ = H∗(FP
Q,T∪T ) ◦H∗(iQ,T∪T )−1

=
(
H∗(FPR,T )×H∗(FP

P 2,T
)
)
◦
(
H∗(iR,T )−1 ×H∗(i

P 2,T
)−1
)

=
(
H∗(FPR,T ) ◦H∗(iR,T )−1

)
×
(
H∗(FP

P 2,T
) ◦H∗(i

P 2,T
)−1
)
,

which, along with (15) and (18), yields

IQ = IR × IP 2 .
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Consequently, by [19, Proposition 4.5] and (13), we have

C(K,FP ) = L(H∗(Q), IQ)

= L(H∗(R), IR)× L(H∗(P 2), I
P 2)

= C(S1, F
P )× C(S2, F

P ).

This, along with (20), (12) and (17), completes the proof. �
Notice that, if F is single valued, then the disjointness of isolated invariant

sets S1 and S2 implies condition (9). It is straightforward to see that this
is also the case for multivalued dynamical systems and strongly isolated
invariant sets.

However, the following example shows that in general the assertion (9) is
essential for the additivity property of the Conley index.

Example 5.4. Let X = [0, 8] and let F : X ( X be given by

(22) F (x) =



{0} for x ∈ [0, 1)
[0, 1] for x = 1
{1} for x ∈ (1, 2)

[1, 6] for x = 2
[2, 6] for x ∈ (2, 3)
2, 7 for x = 3
{7} for x ∈ (3, 4)

[4, 7] for x = 4
{4} for x ∈ (4, 5)

[4, 6] for x = 5
[5, 6] for x ∈ (5, 6)
[5, 7] for x = 6
{7} for x ∈ (6, 7)

[7, 8] for x = 7
{8} for x ∈ (7, 8].

The graph of F is presented in Figure 7. Consider isolated invariant sets
S1 := [2, 3] and S2 := [5, 6], and isolating neighborhoods N1 := [1.5, 3.5] and
N2 := [4.5, 6.5], respectively. Then S := S1 ∪ S2 is an isolated invariant set
with respect to F and N := N1 ∪N2 isolates S.

Put P i1 := Ni for i = 1, 2, P 1
2 := {1.5, 3.5} and P 2

2 := {4.5, 6.5}. One can
observe that P i := (P i1, P

i
2) is a weak index pair in Ni, i = 1, 2.

It is easy to see that Hk(P i) is trivial for k 6= 1 and that it has one
generator for k = 1. Moreover, IP i = id. We have

Ck(Si, F ) =

{
(Z, id) for k = 1

0 otherwise.

Observe that P := P 1 ∪ P 2 is a weak index pair in N . Now, Hk(P ) is
trivial for k 6= 1 and it has two generators for k = 1. The index map is the
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0 8

8

Figure 7. The graph of the map F given by (22), marked
in blue. Isolated invariant sets S1 and S2 are marked in red
and pink, respectively. Isolating neighborhoods N1 and N2

for S1 and S2 are marked in green and gray, respectively.
The image F (S1), showing that F (S1) ∩ S2 6= ∅, is marked
in brown.

isomorphism of the form (up to the order of generators)

IP =

[
1 0
1 1

]
.

We have

Ck(S, F ) =

{
(Z2, IP ) for k = 1

0 otherwise.

Evidently, C(S, F ) 6= C(S1, F )× C(S2, F ).

6. Homotopy property of the Conley Index

As mentioned in the introduction we want the theory we develop to be
useful for the reconstruction of the dynamics from a finite number of samples.
For the details concerning the procedure of sampling the dynamics we refer
to [2]. Let us just recall that the technique of sampling a given (usually
unknown) dynamical system f provides us with a generator F of a discrete
multivalued dynamical system. The procedure itself does not guarantee that
f is a selector of F . Even worse, F does not have to contain any continuous
selector, however we can expect that f lies nearby F . We do not intend
to artificially enlarge the values of F in order to ensure that F covers f ,
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as it may result in loosing the isolation property. Our concept is to apply
the Conley index theory directly to the multivalued dynamical system F
constructed by sampling the dynamics f , and then try to extend the results
to the underlying unknown f . For this purpose the homotopy (continuation)
property of the Conley index is crucial.

Let X be a locally compact metrizable space, let Λ ⊂ R be a compact
interval, and let an upper semicontinuous mapping F : Λ × X ( X with
compact values be determined by a given morphism. Assume that, for each
λ ∈ Λ, Fλ : X ( X, given by Fλ(x) := F (λ, x), is a discrete multivalued
dynamical system. The family {Fλ} will be referred to as a parameterized
family of discrete multivalued dynamical systems.

We will simply write λ instead of Fλ whenever Fλ appears as a parameter.
According to this assumption, given a compact subset N ⊂ X and λ ∈ Λ,
the sets Inv(±)N with respect to Fλ are denoted by Inv(±)(N,λ).

The main result of this section is the following theorem.

Theorem 6.1. (Homotopy (continuation) property) Let Λ ⊂ R be a
compact interval and let Fλ : X ( X be a parameterized family of dmds. If
N is an isolating neighborhood for each λ ∈ Λ then C(Inv(N,λ)) does not
depend on λ ∈ Λ.

We postpone the proof of the theorem to the end of this section.
Let us recall that, for any compactN ⊂ X, the mappings λ 7→ Inv+(N,λ),

λ 7→ Inv−(N,λ) and λ 7→ Inv(N,λ) are upper semicontinuous on Λ (cf. [13,
Lemma 4.2]).

Using exactly the same arguments as in the single valued case (cf. [19,
Corollary 7.3]) one can prove the following lemma.

Lemma 6.2. Suppose N ⊂ X is an isolating neighborhood for Fλ0. Then
N is an isolating neighborhood for Fλ, for λ ∈ Λ sufficiently close to λ0.

[2, Theorem 4.12] states that any isolating neighborhood N admits a weak
index pair. Since we will use it frequently, for convenience we quote it here
in a slightly modified, adapted to our needs form. We use the following
notation. Given N ⊂ X and an interval I in Z set

Sol(N,Fλ, I) := {σ : I → N a solution for Fλ }
and for x ∈ N and n ∈ Z+ define

Fλ,N,n(x) := {y ∈ N | ∃σ ∈ Sol(N,Fλ, [0, n]) : σ(0) = x, σ(n) = y},
Fλ,N,−n(x) := {y ∈ N | ∃σ ∈ Sol(N,Fλ, [−n, 0]) : σ(−n) = y, σ(0) = x},

F+
λ,N (x) :=

⋃
n∈Z+

Fλ,N,n(x),

F−λ,N (x) :=
⋃
n∈Z+

Fλ,N,−n(x).

Theorem 6.3. Let N be an isolating neighborhood for F and let U and V
be open neighborhoods of Inv+N and Inv−N , respectively, with U ∩ V ⊂
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intN . Then, there exists a compact neighborhood A of Inv−N such that
P1 := F+

N (A) ⊂ V . Moreover, P := (P1, P2) where P2 := F+
N (P1 \ U) is

a weak index pair in N and P1 \ P2 ⊂ U . (see [2, Theorem 4.12] and its
proof).

We need the following lemma.

Lemma 6.4. If N is an isolating neighborhood with respect to F then, for
any n ∈ N, there exist weak index pairs P 1, . . . , Pn in N such that P i ⊂
intN P

i+1 for i = 1, . . . , n− 1.

Proof: Take open neighborhoods U and V of Inv+N and Inv−N , respec-
tively, with U ∩ V ⊂ intN . By Theorem 6.3 there exists a compact neigh-
borhood A of Inv−N such that the sets P1 := F+

N (A) and P2 := F+
N (Pn1 \U)

form a weak index pair (P1, P2) in N . Moreover, P1 ⊂ V and P1 \ P2 ⊂ U .
We shall define, recurrently, a sequence of compact sets Qi2 and a cor-

responding descending sequence Ui of open neighborhoods of Inv+N , for
i = 1, 2 . . . , n, such that

(23)


(i) Qi2 = F+

N (P1 \ Ui) for i = 1, 2, . . . , n,

(ii) Qi−1
2 ⊂ intP1 Q

i
2 for i = 2, . . . , n,

(iii) (P1, Q
i
2) is a weak index pair in N for i = 1, 2, . . . , n.

Put U1 := U and Q1
2 := P2 and observe that (23) is satisfied for i = 1. Next,

fix k ∈ {1, 2, . . . , n−1} and suppose that the sequences Qi2 and Ui satisfying
(23) are defined for i = 1, 2, . . . , k. Observe that there exists a neighborhood
Wk of Qk2 open in N such that

Qk2 ⊂Wk ⊂ clWk ⊂ N \ Inv+N

and
N \ Uk ⊂ clWk.

We set Uk+1 := N \ clWk. Then Uk+1 is an open neighborhood of Inv+N ,
and Uk+1 ⊂ Uk. We have Uk+1 ∩ V ⊂ Uk ∩ V ⊂ U ∩ V ⊂ intN . We define

Qk+1
2 := F+

N (P1 \ Uk+1). Then, by Theorem 6.3, (P1, Q
k+1
2 ) is a weak index

pair in N . It remains to verify that inclusion (23)(ii) holds for i = k + 1.
Indeed, we have

Qk2 ⊂Wk ∩ P1 ⊂ clWk ∩ P1 ⊂ Qk+1
2 ;

hence, inclusion (23) for i = k + 1 follows.
We shall prove that there exists a sequence (P i1, R

i
2), for i = 1, 2, . . . , n,

of weak index pairs such that

(24) P i1 ⊂ intN P
i+1
1 for i = 1, 2 . . . , n− 1,

and

(25) Ri2 = F+
N (P i1 \ U).

Indeed, we define (Pn1 , R
n
2 ) := (P1, Q

1
2). Choose Vn, an open set such that

Vn ∩ N = intN P
n
1 . Without loss of generality we may assume that (Vn ∩
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U) \N = ∅. Observe that then Vn is an open neighborhood of Inv−N , and
Vn ∩ U ⊂ V ∩ U ⊂ intN . Therefore, applying Theorem 6.3 we construct
a weak index pair (Pn−1

1 , Rn−1
2 ) such that Pn−1

1 ⊂ Vn ∩ N = intN P
n
1 and

Rn−1
2 = F+

N (Pn−1
1 \ U). By the reverse recurrence we are done.

Finally we put

P i2 := Qi2 ∩ P i1 for i = 1, 2, . . . , n.

By (25) and (23), for each i = 1, 2, . . . , n, we have Ri2 = F+
N (P i1 \ U) ⊂

F+
N (P1 \ U) = Q1

2 ⊂ Qi2; hence, according to (24), we have the inclusion

(P i1, R
i
2) ⊂ (Pn1 , Q

i
2) of weak index pairs. Therefore, by [2, Lemma 5.4], we

infer that (P i1, P
i
2) is a weak index pair.

By (23) and (24), for each i = 1, 2, . . . , n, we have the following inclusions

P i2 = Qi2 ∩ P i1 ⊂ intPn1 Q
i+1
2 ∩ intN P

i+1
1 ⊂ Qi+1

2 ∩ P i+1
1 = P i+1

2 ,

showing that P i2 ⊂ intN P
i+1
2 . This, along with (24), completes the proof.

�

Lemma 6.5. Assume that N is an isolating neighborhood with respect to
Fµ for some µ ∈ Λ and P,Q,R are weak index pairs with respect to Fµ such
that P ⊂ intN Q, Q ⊂ intN R. Then there exists Λ0, a neighborhood of µ
in Λ, such that for every λ ∈ Λ0 there exists a weak index pair P (λ) with
respect to Fλ satisfying P ⊂ P (λ) ⊂ R.

Proof: Put P ′1(λ) := F+
λ,N (P1), P2(λ) := F+

λ,N (Q2) and P1(λ) := P ′1(λ)∪
P2(λ). We will prove that for λ sufficiently close to µ the pair P (λ) :=
(P1(λ), P2(λ)) satisfies the assertions of the lemma.

Using similar reasoning as in the proof of [19, Lemma 7.4], which we
present here for the sake of completeness, one can show that there exists Λ1,
a neighborhood of µ in Λ such that for every λ ∈ Λ1 we have

(26) Inv−(N,λ) ⊂ P1,

(27) Inv+(N,λ) ∩Q2 = ∅,

(28) P ′1(λ) ⊂ Q1 and P2(λ) ⊂ R2.

Put Z := N \ intN Q1. By [13, Lemma 4.2] and Lemma 6.2 one can find
a compact neighborhood ∆ of µ in Λ such that, for any λ ∈ ∆, N is an
isolating neighborhood with respect to Fλ and properties (26), (27) hold.
Since P ⊂ intN Q, we have

(29) Inv−(N,λ) ∩ Z = ∅ and Inv+(N,λ) ∩ P2 = ∅ for λ ∈ ∆.

Define G : ∆×X 3 (λ, x) 7→ (λ, F (λ, x)) ⊂ ∆×X and M := N ×∆. One
can verify that M is an isolating neighborhood with respect to G and

Inv−(M,G) ∩ (Z ×∆) =
⋃
{Inv−(N,λ) ∩ (Z × {λ}) | λ ∈ Λ} = ∅,

Inv+(M,G) ∩ (P2 ×∆) =
⋃
{Inv+(N,λ) ∩ (P2 × {λ}) | λ ∈ Λ} = ∅.
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Let x ∈ Z. Then F−µ,N (x)∩P1 = ∅ and (x, µ) ∈ Z×∆, i.e. G−M (x, µ)∩(P1×
∆) = ∅. By [13, Lemma 2.10 (b)], G−M is upper semicontinuous. Hence,
there exist an open neighborhood Vx of x in N and ∆x of µ in ∆ such that

G−M (y, λ) ∩ (P1 ×∆) = ∅ for y ∈ Vx, λ ∈ ∆x,

i.e.

F−λ,N (y) ∩ P1 = ∅ for y ∈ Vx, λ ∈ ∆x.

Since Z is compact, there exists a finite subset Z0 ⊂ Z such that Z ⊂⋃
{Vx | x ∈ Z0}. Put ∆0 :=

⋂
{∆x | x ∈ Z0}. Then ∆0 is a neighborhood

of µ and F−λ,N (y) ∩ P1 = ∅ for y ∈ Z and λ ∈ ∆0. This shows that

P ′1(λ) = F+
λ,N (P1) ⊂ N \ Z = intN Q1 ⊂ Q1 for λ ∈ ∆0.

Now take x ∈ Q2. Then F+
µ,N (x) ⊂ Q2 ⊂ intR2. Similar reasoning using

compactness of Q2 and the mapping G shows that there exists a neighbor-
hood ∆1 of µ such that F+

λ,N (y) ⊂ intR2 for y ∈ Q2 and λ ∈ ∆1. Thus

P2(λ) = F+
λ,N (Q2) ⊂ R2 for λ ∈ ∆1.

In conclusion, conditions (26), (27) and (28) hold for every λ ∈ Λ1 :=
∆ ∩∆0 ∩∆1.

By [2, Lemma 5.4], (P1 ∪R2, R2) is a weak index pair in N with respect
to Fµ, hence Inv(N,µ) ⊂ int(P1 \ R2). By the upper semicontinuity of
λ 7→ Inv(N,λ), there exists Λ2, a neighborhood of µ in Λ such that for every
λ ∈ Λ2 we have

(30) Inv(N,λ) ⊂ int(P1 \R2).

We shall prove that P (λ) is a weak index pair in N with respect to Fλ
for every λ ∈ Λ0 := Λ1 ∩ Λ2 .

The compactness of P2(λ) follows from (27) and [13, Lemma 2.10]. By
(26) and [13, Lemma 2.9], P ′1(λ) is compact, hence so is P1(λ). The inclusion
P2(λ) ⊂ P1(λ) is obvious.

The positive invariance of P (λ) in N (property (a)) with respect to Fλ is
straightforward.

By (30) we have Inv(N,λ) ⊂ int(P1 \ R2) ⊂ int(P1(λ) \ P2(λ)) which
means that condition (c) holds.

We have P1(λ) \ P2(λ) = P ′1(λ) \ P2(λ) ⊂ Q1 \ P2(λ) ⊂ Q1 \Q2 ⊂ intN ,
thus condition (d) is verified.

We need to verify condition (b). Suppose the contrary and consider x ∈
bdFλ P1(λ) \ P2(λ). By property (d) of P (λ) we have x ∈ intN . Since
x ∈ cl(Fλ(P1(λ)) \ P1(λ)), there exists y ∈ (Fλ(P1(λ)) \ P1(λ)) ∩ intN .
Take u ∈ P1(λ) such that y ∈ Fλ(u). If u ∈ P ′1(λ) = F+

λ,N (P1) then there

exists a solution σλ : [0, n] → N with respect to Fλ such that σλ(0) ∈ P1

and σλ(n) = u. Since y ∈ Fλ(u) ∩ N , we can put σλ(n + 1) := y to infer
that y ∈ P ′1(λ). This yields y ∈ P1(λ), a contradiction. In the case where
u ∈ P2(λ) = F+

λ,N (Q2), there exists a solution σλ : [0, n] → N such that

σλ(0) ∈ Q2 and σλ(n) = u. We can extend σλ putting σλ(n + 1) := y.
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Since y ∈ Fλ(u) ∩ N , we obtain y ∈ P2(λ) and, consequently, y ∈ P1(λ), a
contradiction.

Finally, inclusions (28) guarantee that P ⊂ P (λ) ⊂ R for λ ∈ Λ0. �

Lemma 6.6. Assume that N is an isolating neighborhood with respect to
Fµ for some µ ∈ Λ and P 1, . . . , P 7 are weak index pairs with respect to Fµ
such that P i ⊂ intP i+1, i = 1, . . . , 6. Then there exists Λ0, a neighborhood
of µ in Λ, such that for every κ ∈ Λ0 there exists a weak index pair P (κ)
with respect to Fκ satisfying P 1 ⊂ P (κ) ⊂ P 7 and such that the inclusions

i : P 1 → P (λ), j : P (λ)→ P 7

induce morphisms in the category of endomorphisms

i∗ : H∗(P (κ), IP (κ))→ H∗(P 1, IP 1),

j∗ : H∗(P 7, IP 7)→ H∗(P (κ), IP (κ)).

Proof: By Lemma 6.5 we can find a neighborhood Λ0 of µ in Λ such
that for each λ ∈ Λ0 there exist weak index pairs Q(λ), P (λ) and R(λ) with
respect to Fλ such that

P 1 ⊂ Q(λ) ⊂ P 3 ⊂ P (λ) ⊂ P 5 ⊂ R(λ) ⊂ P 7.

Now, using the same arguments as in the proof of [19, Lemma 7.5], one can
show that for arbitrarily fixed λ ∈ Λ0, the weak index pair P (λ) satisfies the
assertion of the lemma.

Indeed, fix κ ∈ Λ0 and consider the following, generally noncommutative
diagram

P 1 TN (P 1)

P (κ) TN (P (κ))

P 7 TN (P 7)

Fµ

Fκ

Fµ

in which horizontal arrows denote inclusions. By Lemma 3.3, for any λ ∈ Λ0,
we have

Fλ(P 1) ⊂ Fλ(Q(λ)) ⊂ TN (Q(λ)) ⊂ TN (P 3) ⊂ TN (P (λ)),

Fλ(P (λ)) ⊂ Fλ(P 5) ⊂ Fλ(R(λ)) ⊂ TN (R(λ)) ⊂ TN (P 7)
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and µ and λ are joined in Λ0 by an arc. Therefore, we get the commutative
diagram in the Alexander–Spanier cohomology

H∗(P 1) H∗(TN (P 1)) H∗(P 1)

H∗(P (κ)) H∗(TN (P (κ))) H∗(P (κ))

H∗(P 7) H∗(TN (P 7)) H∗(P 7)

H∗(Fµ,P1 ) H∗(iP1 )

i∗

H∗(Fκ,P (κ)) H∗(iP (κ))

i∗

j∗

H∗(Fµ,P7 ) H∗(iP7 )

j∗

which, according to the definition of an index map, completes the proof. �

Proof of Theorem 6.1: For the proof we use Lemma 6.4, Lemma 6.5
and Lemma 6.6, and argue similarly as in the proof of [19, Theorem 2.11].
We present this reasoning here for the sake of completeness.

It suffices to show that for any given µ ∈ Λ there exists its neighbourhood
Λ0, such that for all ν ∈ Λ0

C(Inv(N,µ)) = C(Inv(N, ν)).

Thus, fix µ ∈ Λ. By Lemma 6.4 we can take weak index pairs P 1, . . . , P 13

with respect to Fµ such that P i ⊂ intP i+1, i = 1, . . . , 12. Using Lemma
6.6 for P 1, . . . , P 7 and again for P 7, . . . , P 13, we infer that there exists a
neighborhood Λ0 of µ such that for every λ ∈ Λ0 there exist weak index
pairs P (λ), Q(λ) with respect to Fλ, with P 1 ⊂ P (λ) ⊂ P 7 ⊂ Q(λ) and
such that we have the following commutative diagram of maps induced by
inclusions

(H∗(P (λ)), IP (λ)) (H∗(P 7), IP 7)

(H∗(P 1), IP 1) (H∗(Q(λ)), IQ(λ)).

j0

j1

j

j2

Applying the Leray functor to the above diagram we get from [2, Theo-
rem 6.4] that L(j0) ◦ L(j1) = L(j0 ◦ j1) and L(j1) ◦ L(j2) = L(j1 ◦ j2) are
isomorphisms; hence, so is L(j). Therefore,

C(Inv(N,µ)) = L(H∗(P 1), IP 1) = L(H∗(Q(λ)), IQ(λ)) = C(Inv(N,λ)),

which completes the proof. �
At the end of this section we revisit the leading example of [8] and [2] in

order to illustrate the homotopy property of the Conley index.
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Example 6.7. Take S1 = R/Z. For simplicity we will identify a real number
x ∈ R with its equivalence class [x] ∈ R/Z. Consider the self-map

(31) f : S1 3 x 7→ 2x ∈ S1.

Let xi := i
16 . We take A := {xi | i = 0, 1, 2, . . . , 15 } ⊂ S1 as the finite

sample. Since f(A) ⊂ A, the restriction g := f|A is an exact sample of f on

A. Consider the grid A on S1 consisting of intervals [xi − 1
32 , xi + 1

32 ]. The
graph of the multivalued map F obtained from the smallest combinatorial
enclosure G of g on A is presented in Figure 8. Note that F does not admit
a continuous selector.

0 1�0

1�0

Figure 8. The graph of the map f given by (31), marked in
black, and its sampling. The 16 sampled points are marked
with green dots. The grid consisting of 16 intervals is marked
in orange. The graph of F constructed from the sampling
points is marked in blue. A candidate for an isolated invari-
ant set S is marked in red. Its image F (S), showing that S
is not a strongly isolated invariant set, is marked in brown.
An isolating neighborhood N for S is marked in green.

Observe that 0 is a hyperbolic fixed point of f . Thus, {0} is an isolated
invariant set of f . It belongs to S := [31

32 ,
1
32 ] ∈ A. It is straightforward to

observe that S is an invariant set for F .
Consider

(32) Fλ(x) := λF (x) + (1− λ)f(x) for x ∈ S1, λ ∈ [0, 1] := Λ
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and N := [15
16 ,

1
16 ] in order to see that {0} = Inv(N,F0) and S = Inv(N,F1)

are related by continuation (cf. e.g. [4, 24]). Therefore, by the homotopy
property of the Conley index, it follows that the Conley index of S for F is
the same as the Conley index of {0} for f .

Recall, that in [2, Example 8.1] the same conclusion was obtained by the
direct computation of the indices.

Example 6.8. Le us consider dynamical systems f , F and Fλ defined in
the preceding example. Note that {1

3 ,
2
3} is a hyperbolic periodic trajectory

of f . In particular, it is an isolated invariant set for f . Consider the cover
of this set by elements of the grid A and set S := [ 9

32 ,
13
32 ] ∪ [19

32 ,
23
32 ]. It is

easy to see that S is an invariant set for F , each point of which belongs to
a 2-periodic trajectory of F in S.

Considering the dmds Fλ given by (32) and N := [17
64 ,

27
64 ]∪ [37

64 ,
47
64 ] one can

observe that {1
3 ,

2
3} and S are related by continuation. Thus, the homotopy

property of the Conley index guaranties that the Conley index of S for F
coincides with the Conley index of {1

3 ,
2
3} for f .

For the direct verification of the mentioned coincidence resulting with

Ck(S, F ) = Ck({
1

3
,
2

3
}, f) =

{
(Z2, τ) for k = 1

0 otherwise,

where τ is a transposition τ : Z2 3 (x, y) 7→ (y, x) ∈ Z2, we refer to [2,
Example 8.2]).

7. Commutativity property of the Conley index

In this section we discuss another intrinsic property of the indices of Con-
ley type, namely the commutativity property. It seems that this issue, in
the context of discrete multivalued dynamical systems, appears here for the
first time.

Our goal in this section is to prove a multivalued counterpart of [23,
Theorem 1.12].

Throughout this section X and Y are assumed to be locally compact
metrizable spaces.

Theorem 7.1. (Commutativity property) Let F : X ( X and G : Y (
Y be given discrete multivalued dynamical systems and let ϕ : X → Y and
Ψ : Y ( X be partial maps such that ϕ is continuous and injective, domϕ
is compact, Ψ is upper semicontinuous, F = Ψϕ and G = ϕΨ. Assume that
S ⊂ X is an isolated invariant set with respect to F , and the domains of ϕ
and Ψ contain neighborhoods of S and ϕ(S), respectively. Then ϕ(S) is an
isolated invariant set with respect to G and C(S, F ) = C(ϕ(S), G).

Before we proceed with the proof, let us remark that the assertion that
ϕ is injective, is essential. Namely, unlike in the single valued case, the
image of an isolated invariant set S under a noninjective ϕ need not be an
isolated invariant set, as presented in Example 7.2. Moreover, even if the
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image ϕ(S) is an isolated invariant set, its Conley index may differ from the
Conley index of S (see Example 7.3). However, if the underlying isolated
invariant set S is strongly isolated, then the commutativity property holds
true for an arbitrary continuous ϕ, not necessarily injective (see Theorem
7.5).

Proof of Theorem 7.1: First we observe that ϕ(S) is invariant with
respect to G. Indeed, consider y ∈ ϕ(S) and take x ∈ S such that ϕ(x) = y.
Since S is invariant with respect to F , there exists a solution σ : Z → S
with σ(0) = x. Define τ(k) := ϕ(σ(k)) for k ∈ Z. We have τ(0) = y and
τ(k) = ϕ(σ(k)) ∈ ϕ(F (σ(k − 1)) = ϕ(Ψ(ϕ(σ(k − 1))) = ϕ(Ψ(τ(k − 1)) =
G(τ(k − 1)), for an arbitrary k ∈ Z. This means that τ is a solution with
respect to G through y in ϕ(S). We have proved that ϕ(S) ⊂ InvG(ϕ(S)).
The opposite inclusion is obvious.

Let M ′ ⊂ domϕ be an isolating neighborhood of S.
Since ϕ(S) and ϕ(domϕ \ intM ′) are closed and disjoint, we can take a

compact neighborhood N of ϕ(S) such that

(33) N ∩ imϕ ⊂ N ∩ ϕ(M ′).

Assume without loss of generality that N ⊂ dom Ψ.
We shall prove that N is an isolating neighborhood of ϕ(S) with respect

to G. Since ϕ(S) is invariant with respect to G and ϕ(S) ⊂ intN , it
suffices to verify that InvGN ⊂ ϕ(S). To this end consider y ∈ InvGN
and τ : Z → N , a solution with respect to G through y, i.e. τ(0) = y
and τ(k) ∈ G(τ(k − 1)), for k ∈ Z. Without loss of generality one can
assume that τ(Z) ⊂ N ∩ imϕ, as G = ϕΨ. Put σ := ϕ−1τ and observe that
σ(k) = ϕ−1(τ(k)) ∈ ϕ−1(G(τ(k − 1))) = F (σ(k − 1)), for k ∈ Z. Moreover,
by (33), σ(Z) ⊂ M ′, which means that σ is a solution with respect to F
in M ′. But M ′ is an isolating neighborhood of S with respect to F , hence
σ(Z) ⊂ S and, as a consequence, τ(Z) ⊂ ϕ(S). In particular y ∈ ϕ(S).

It is straightforward to observe that M := ϕ−1(N) ⊂ M ′ is an isolating
neighborhood of S with respect to F . Take a weak index pair Q = (Q1, Q2)
in N and define Pi := ϕ−1(Qi), i = 1, 2. We will prove that P := (P1, P2)
is a weak index pair in M . Compactness of P1 and P2 as well as inclusions
P2 ⊂ P1 ⊂M are obvious. For the proof of property (a) take x ∈ F (Pi)∩M .
Then ϕ(x) ∈ ϕ(F (Pi) ∩M) = G(Qi) ∩N . By the positive invariance of Qi
in N with respect to G we have ϕ(x) ∈ Qi, hence x ∈ Pi. For the proof of
(b) take x ∈ bdF (P1). Then ϕ(x) ∈ Q1∩cl(ϕ(F (P1))\Q1), as ϕ is injective.
Consequently, ϕ(x) ∈ Q1 ∩ cl(G(Q1) \ Q1) = bdG(Q1). By property (b)
of Q we have ϕ(x) ∈ Q2. We infer that x ∈ P2, which means that P
satisfies (b). By property (c) of Q we have ϕ(S) ⊂ int(Q1 \ Q2). Thus,
S ⊂ ϕ−1(int(Q1 \ Q2)) ⊂ int(ϕ−1(Q1) \ ϕ−1(Q2)), which proves property
(c) of P . It remains to verify (d). Let x ∈ P1 \ P2. Then ϕ(x) ∈ Q1 \ Q2

and property (d) of Q yields ϕ(x) ∈ intN . Consequently, x ∈ ϕ−1(intN) ⊂
intM , and we have property (d) for P .
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By Lemma 3.3(i) restrictions FP,TM (P )(x) := F (x) and GQ,TN (Q)(x) :=
G(x) are maps of pairs FP,TM (P ) : P ( TM (P ) and GQ,TN (Q) : Q( TN (Q),
respectively. Furthermore, we can treat the restriction of Ψ as a map of
pairs ΨQ,TM (P ) : Q( TM (P ), because Ψ(Q) = Ψ(ϕ(P )) = F (P ) ⊂ TM (P ).
We have the following commutative diagram

(34)

(P1, P2) (TM,1(P ), TM,2(P )) (P1, P2)

(Q1, Q2) (TN,1(Q), TN,2(Q)) (Q1, Q2)

ϕ

F

ϕ

j1

ϕ

G

Ψ

j2

in which j1, j2 are inclusions. According to Lemma 3.3(ii) inclusions j1, j2
induce isomorphisms in cohomology and we have well defined index maps
IP := H∗(FP,TM (P )) ◦H∗(j1)−1, IQ := H∗(GQ,TN (Q)) ◦H∗(j2)−1 and IQP :=

H∗(ΨQ,TM (P )) ◦H∗(j1)−1. Consequently, diagram (34) results in the follow-
ing commutative diagram in cohomology

H∗(P ) H∗(P )

H∗(Q) H∗(Q)

IQP

IP

ϕ∗

IQ

ϕ∗

which means that (H∗(P ), IP ) and (H∗(Q), IQ) are linked in the sense of
[19]; hence L(H∗(P ), IP ) and L(H∗(Q), IQ) are isomorphic. �

Now we provide examples showing that the conclusion of Theorem 7.1
does not hold for an arbitrary continuous map ϕ.

Example 7.2. Take X := [−5, 5] and define F : X ( X by

(35) F (x) :=



{−5} for x ∈ [−5,−3)
[−5, 3] for x = −3
[−3, 3] for x ∈ (−3,−2]

[2, 3] for x ∈ (−2,−1)
[2, 5] for x = −1
{5} for x ∈ (−1, 1)

[2, 5] for x = 1
[2, 3] for x ∈ (1, 2)

[−3, 3] for x ∈ [2, 3)
[−5, 3] for x = 3
{−5} for x ∈ (3, 5].

Consider Y := [0, 5] and let G : Y ( Y be given by

(36) G(y) := |F (y)| for y ∈ Y.
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0 5

5

(a) The graph of F given by (35) is
marked in blue. The isolated invariant
set S and its isolating neighborhood M
are indicated by line segments in red
and green, respectively.

0 5

5

(b) The graph of G given by (36) is
marked in blue. The image ϕ(S) is in-
dicated by a red line segment.

Figure 9. Discrete multivalued dynamical systems F and
G, given by (35) and (36), respectively

The graphs of F and G are presented in Figure 9 (A) and (B), respectively.
Take ϕ : X 3 x 7→ |x| ∈ Y and Ψ := F |Y , and observe that Ψϕ = F and
ϕΨ = G. Moreover, S := [−3,−2] is an isolated invariant set with respect
to F , isolated, for instance, by M := [−4,−1], whereas ϕ(S) = [2, 3] is not
an isolated invariant set with respect to G, as the invariant part of any its
compact neighborhood is significantly larger that ϕ(S).

Example 7.3. We slightly modify the preceding example. Let X := [−5, 5]
and define F : X ( X by

(37) F (x) :=



{−5} for x ∈ [−5,−3)
[−5, 3] for x = −3
[−3, 3] for x ∈ (−3,−2)

[3, 5] for x = −2
{5} for x ∈ (−2, 2)

[−3, 5] for x = 2
[−3, 3] for x ∈ (2, 3)
[−5, 3] for x = 3
{−5} for x ∈ (3, 5]

Again we consider Y := [0, 5] and G : Y ( Y given by (36). The graphs of
F and G are presented in Figure 10 (A) and (B), respectively. As before,
ϕ : X 3 x 7→ |x| ∈ Y and Ψ := F |Y satisfy Ψϕ = F and ϕΨ = G.

Consider S := [−3,−2], an isolated invariant set with respect to F , iso-
lated by M := [−4,−1], and observe that the pair P , with P1 := M and
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P2 := {−4} ∪ {−1} is a weak index pair with respect to F in M . Then

Hk(P ) =

{
Z for k = 1
0 for k 6= 1

and the index map is the identity; hence

Ck(S, F ) =

{
(Z, id) for k = 1

0 for k 6= 1.

0 5

5

(a) The graph of F given by (37) is
marked in blue. The red and green line
segments indicate the isolated invariant
set S and its isolating neighborhoodM ,
respectively.

0 5

5

(b) The graph of G given by (36) is
marked in blue. The red and green line
segments indicate the the isolated in-
variant set ϕ(S) and its isolating neigh-
borhood N , respectively.

Figure 10. Isolated invariant sets with respect to discrete
multivalued dynamical systems F and G

Now we take under consideration ϕ(S) = [2, 3], which is an isolated in-
variant set with respect to G. One easily verifies that N := [1, 4] isolates
ϕ(S) and Q = (Q1, Q2), where Q1 := N , Q2 := {1} ∪ {4}, is a weak index
pair in N . We have

Hk(Q) =

{
Z for k = 1
0 for k 6= 1

and IQ = 0. Thus, C(ϕ(S), G) is trivial, showing that C(S, F ) 6= C(ϕ(S), G).

Similarly as in the single valued case, we are able to apply Theorem 7.1 for
an inclusion in order to treat the restriction of a given discrete multivalued
dynamical system to an invariant subspace.

Theorem 7.4. Let A ⊂ X be a locally compact subset of X such that
F (X) ⊂ A. If S is an isolated invariant set with respect to F then S is an
isolated invariant set with respect to F|A and C(S, F ) = C(S, F|A).
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Proof: For the proof we apply Theorem 7.1 with the inclusion iA : A→
X and F in the role of ϕ and Ψ, respectively. �

If an isolated invariant set S is actually strongly isolated, then the con-
clusion of Theorem 7.1 holds for any continuous ϕ, not necessarily injective.

Theorem 7.5. Let F : X ( X and G : Y ( Y be given discrete multival-
ued dynamical systems and let ϕ : X → Y and Ψ : Y ( X be partial maps
such that ϕ is continuous, domϕ is compact, Ψ is upper semicontinuous,
F = Ψϕ and G = ϕΨ. Assume that S ⊂ X is a strongly isolated invari-
ant set with respect to F , with some its strongly isolating neighborhood M
contained in the domain of ϕ, and the domain of Ψ contains a neighbor-
hood of ϕ(S). Then ϕ(S) is an isolated invariant set with respect to G, and
C(S, F ) = C(ϕ(S), G).

Proof: Since M is a strongly isolating neighborhood of S, we have
F (S) = Ψ(ϕ(S)) ⊂ intM . By the upper semicontinuity of Ψ, there exists
an open neighborhood V of ϕ(S) such that Ψ(V ) ⊂ intM . Thus, we can
take N , a compact neighborhood of ϕ(S) such that

(38) Ψ(N) ⊂ intM.

Without loss of generality we can assume that N ⊂ dom Ψ.
We will show that N is an isolating neighborhood of ϕ(S). Take y ∈

InvGN and consider a solution τ with respect to G in N through y, i.e.
τ : Z → N with τ(0) = y and τ(k) ∈ G(τ(k − 1)) for k ∈ Z. We have
τ(k) ∈ ϕΨ(τ(k − 1)) ∩ N , hence we can take x ∈ Ψ(τ(k − 1)) such that
τ(k) = ϕ(x) and define σ by setting σ(k) := x, for any k ∈ Z. Then we
have σ(k) ∈ Ψ(τ(k − 1)) = Ψ(ϕ(σ(k − 1))) = F (σ(k − 1)). This along with
(38) means that we have defined a solution with respect to F in M . Thus
σ(Z) ⊂ S, as M is an isolating neighborhood for S. Consequently, τ(Z) ⊂
ϕ(σ(Z)) ⊂ ϕ(S). In particular, y ∈ ϕ(S), which shows that InvGN ⊂ ϕ(S).
For the proof of the opposite inclusion consider y ∈ ϕ(S) and x ∈ S with
y = ϕ(x). Let σ be a solution with respect to F through x in S, i.e.
σ : Z → S, σ(0) = x and σ(k) ∈ F (σ(k − 1)) for k ∈ Z. Define τ := ϕ ◦ σ.
One can verify that τ is a solution with respect to G in ϕ(S) through y,
which yields ϕ(S) ⊂ InvGN .

Now we observe that ϕ−1(N) is an isolating neighborhood of S with
respect to F . We have InvF (S) = S and S ⊂ intϕ−1(N), therefore, it
suffices to show that InvF ϕ

−1(N) ⊂ S. Take x ∈ InvF ϕ
−1(N) and consider

a solution σ with respect to F in ϕ−1(N) through x. By (38), for any k ∈ Z,
we have σ(k) ∈ F (σ(k − 1)) = Ψ(ϕ(σ(k − 1)) ⊂ M . Thus, σ is a solution
with respect to F in M . But M is an isolating neighborhood of S, hence
σ(Z) ⊂ S follows. In particular x ∈ S.

Let Q = (Q1, Q2) be a weak index pair in N . Define Pi := ϕ−1(Qi),
i = 1, 2. We show that P := (P1, P2) is a weak index pair in ϕ−1(N).
Clearly P1 and P2 are compact, and P2 ⊂ P1 ⊂ ϕ−1(N). Using the same
reasoning as in the proof of Theorem 7.1 one can show that P satisfies
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conditions (a), (c) and (d). It remains to verify (b). To this end consider
x ∈ bdF (P1). Since x ∈ cl(F (P1) \ P1), we can take a sequence {xn} ⊂
F (P1) \P1 convergent to x. Clearly ϕ(xn) converges to ϕ(x). Moreover, for
any n we have ϕ(xn) ∈ ϕ(F (P1)) = G(Q1) and ϕ(xn) /∈ Q1. Thus, we have
ϕ(xn) ∈ G(Q1)\Q1 and, consequently, ϕ(x) ∈ cl(G(Q1)\Q1). We also have
ϕ(x) ∈ Q1, as x ∈ bdF (P1) ⊂ P1. This means that ϕ(x) ∈ bdG(Q1) which,
according to property (b) of Q, implies ϕ(x) ∈ Q2 and x ∈ P2.

The remaining part of the proof runs along the lines of an appropriate
part of the proof of Theorem 7.1. �
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[8] H. Edelsbrunner, G. Jab loński, M. Mrozek. The Persistent Homology of a Self-
map, Foundations of Computational Mathematics, 15(2015), 1213—1244. DOI:
10.1007/s10208-014-9223-y.

[9] J. Franks, D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math.
Soc., 352(7)(2000), 3305–3322.

[10] R. Forman, Combinatorial vector fields and dynamical systems, Math. Z. 228(1998),
629–681.
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