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Abstract. We show that the bipartite perfect matching problem is in quasi-NC2. That is,
it has uniform circuits of quasi-polynomial size nO(logn), and O(log2 n) depth. Previously, only
an exponential upper bound was known on the size of such circuits with poly-logarithmic depth.
We obtain our result by an almost complete derandomization of the famous Isolation Lemma when
applied to yield an efficient randomized parallel algorithm for the bipartite perfect matching problem.
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1. Introduction. The perfect matching problem has been widely studied in
complexity theory. It has been of particular interest in the study of derandomization
and parallelization. The perfect matching problem, PM, asks whether a given graph
contains a perfect matching.

The problem has a polynomial-time algorithm due to Edmonds [17]. However, its
parallel complexity is still not completely resolved as of today. The problem can be
solved by randomized efficient parallel algorithms due to Lovász [34]; i.e., it is in RNC,
but it is not known whether randomness is necessary, i.e., whether it is in NC. The
class NC represents the problems which have efficient parallel algorithms; i.e., they
have uniform circuits of polynomial size and poly-logarithmic depth. For the perfect
matching problem, nothing better than an exponential-size circuit was known in the
case of poly-logarithmic depth.

The construction version of the problem, Search-PM, asks to construct a perfect
matching in a graph if one exists. It is in RNC due to Karp, Upfal, and Wigderson [29]
and Mulmuley, Vazirani, and Vazirani [38]. The latter algorithm applies the celebrated
Isolation Lemma. Both algorithms work with a weight assignment on the edges of the
graph. A weight assignment is called isolating for a graph G if the minimum weight
perfect matching in G is unique, if one exists. Mulmuley, Vazirani, and Vazirani [38]
showed that given an isolating weight assignment with polynomially bounded integer
weights for a graph G, a perfect matching in G can be constructed in NC. To get
an isolating weight assignment they use randomization. This is where the Isolation
Lemma comes into play.

Lemma 1.1 (Isolation Lemma [38]). For a graph G(V,E), let w be a random
weight assignment, where edges are assigned weights chosen uniformly and indepen-
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BIPARTITE PERFECT MATCHING IN QUASI-NC STOC16-219

dently at random from {1, 2, . . . , 2|E|}. Then w is isolating with probability at least
1/2.

Also see [44, 18] for alternate proofs and improved probability bounds. Deran-
domizing this lemma means constructing such a weight assignment deterministically
in NC. This remains a challenging open question. A general version of this lemma,
which considers a family of sets and requires a unique minimum weight set, has also
been studied. The general version is related to the polynomial identity testing problem
and circuit lower bounds [5].

The Isolation Lemma has been derandomized for some special classes of graphs,
e.g., planar bipartite graphs [14, 46], strongly chordal graphs [13], and graphs with
a small number of perfect matchings [23, 3]. In this work, we take a significant step
towards the derandomization of the Isolation Lemma for bipartite graphs. In section 3,
we construct an isolating weight assignment for these graphs with quasi-polynomially
large weights. Previously, the only known deterministic construction was the trivial
one that used exponentially large weights. As a consequence we get that for bipartite
graphs, PM and Search-PM are in quasi-NC2. In particular, they can be solved by
uniform Boolean circuits of depth O(log2 n) and size nO(logn) for graphs with n nodes.
Note that the size is just one log n-exponent away from polynomial size.

Our result also gives an RNC algorithm for PM in bipartite graphs which uses
very few random bits. The original RNC algorithm of Lovász [34] uses O(m log n)
random bits. This has been improved by Chari, Rohatgi, and Srinivasan [10] to
O(n log(m/n)) random bits. They actually construct an isolating weight assignment
using this many random bits. To the best of our knowledge, the best upper bound
today on the number of random bits is (n+ n log(m/n)) by Chen and Kao [11]; that
is, the improvement to [10] was only in the multiplicative factor. In section 4, we
achieve an exponential step down to O(log2 n) random bits. Note that this is close
to a complete derandomization which would be achieved when the number of random
bits comes down to O(log n). This improves an earlier version of this work, where we
had an RNC algorithm with O(log3 n) random bits.

Based on the first version of our paper, Goldwasser and Grossman [21] observed
that one can get an RNC algorithm for Search-PM which uses O(log4 n) random
bits. With our improved decision algorithm, we obtain now an RNC algorithm for
Search-PM which uses only O(log2 n) random bits. Later on, Goldwasser and Gross-
man also improved the number of random bits to O(log2 n) in a subsequent version
of their paper [22]. Their RNC algorithm has an additional property: it is pseudo-
deterministic, i.e., it outputs the same perfect matching for almost all choices of
random bits. Our algorithm does not have this property.

In section 5 we show that our approach also gives an alternate NC algorithm for
Search-PM in bipartite planar graphs. This case already has known NC algorithms [37,
36, 14]. Our algorithm is in NC3, while the previous best known upper bound is
NC2 [37, 14].

We give a short outline of the main ideas of our approach. For any two perfect
matchings of a graph G, the edges where they differ form disjoint cycles. For a cycle C,
its circulation is defined to be the difference of weights of two perfect matchings which
differ exactly on the edges of C. Datta, Kulkarni, and Roy [14] showed that a weight
assignment which ensures nonzero circulation for every cycle is isolating. It is not
clear if there exists such a weight assignment with small weights. Instead, we use a
weight function that has nonzero circulations only for small cycles. Then, we consider
the subgraph G′ of G which is the union of minimum weight perfect matchings in G.
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In the bipartite case, graph G′ is significantly smaller than the original graph G. In
particular, we show that G′ does not contain any cycle with a nonzero circulation.
This means that G′ does not contain any small cycles.

Next, we show that for a graph which has no cycles of length < r, the number of
cycles of length < 2r is polynomially bounded. This motivates the following strategy
which works in log n rounds: in the ith round, assign weights that ensure nonzero
circulations for all cycles with length < 2i. Since the graph obtained after (i − 1)th
rounds has no cycles of length < 2i−1, the number of cycles of length < 2i is small.
In log n rounds, we get a unique minimum weight perfect matching.

Subsequent work. In one of the follow-up works, Gurjar and Thierauf [25]
showed that the linear matroid intersection problem is in quasi-NC. The problem is a
generalization of bipartite matching. Given two matroids over the same ground set,
the problem asks if there is a common base. In a subsequent work, Gurjar, Thierauf,
and Vishnoi [26] further generalized the derandomization of the Isolation Lemma
to polytopes with totally unimodular faces. This class of polytopes, in particular,
contains the bipartite perfect matching polytope and the common base polytope of
two matroids. However, their result is not known to imply quasi-NC algorithms for
any new class of problems.

Generalizing our work in another direction, Svensson and Tarnawski [43] proved
that the matching problem for general graphs is in quasi-NC. Benefitting from some
of the ideas in this series of works, Anari and Vazirani [4] gave an NC algorithm for
Search-PM in planar graphs. This generalizes the NC bound for Search-PM in bipartite
planar graphs [37, 36, 14]. In an independent work, Sankowski [41] also gives the same
result.

In a related work, Kallampally and Tewari [27] used techniques similar to the
current work to construct an isolating weight assignment for paths in a directed graph,
where they study the NL versus UL question.

2. Preliminaries.

2.1. Matchings and complexity. By G(V,E) we denote a graph with vertex
set V and edge set E. Throughout the paper, we use n and m to denote the cardinality
of these sets, i.e., |V | = n and |E| = m.

We consider only undirected graphs in this paper. For a vertex v ∈ V , let δ(v) ⊆ E
denote the edges incident on v. A graph is bipartite if there exists a partition V = L∪R
of the vertices such that all edges are between vertices of L and R.

In a graph G(V,E), a matching M ⊆ E is a subset of edges with no two edges
sharing an endpoint. A matching which covers every vertex is called a perfect match-
ing. For any weight assignment w : E → Z on the edges of a graph, the weight
of a matching M is defined to be the sum of weights of all the edges in M , i.e.,
w(M) =

∑
e∈M w(e).

A weight function w is called isolating for G if there is a unique perfect matching
of minimum weight in G.

The perfect matching problem PM is to decide whether a given graph has a per-
fect matching. Its construction version Search-PM is to compute a perfect match-
ing of a given graph, or to determine that no perfect matching exists. A bipartite
graph G(V,E) with vertex partition V = L ∪ R can have a perfect matching only
when |L| = |R| = n/2. Hence, when we consider bipartite graphs, we will always
assume such a partition.

Analogous to NCk, Barrington [6] defined the class quasi-NCk as the class of prob-
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lems which have uniform Boolean circuits of quasi-polynomial size 2log
O(1) n and poly-

logarithmic depth O(logk n). Here, by uniform circuits we mean quasi-polynomial
time uniform circuits. The class quasi-NC is the union of classes quasi-NCk over
all k ≥ 0.

2.2. An RNC algorithm for Search-PM. Let us first recall the RNC algorithm
of Mulmuley, Vazirani, and Vazirani [38] for the construction of a perfect matching
(Search-PM). Though the algorithm works for any graph, we will only consider bi-
partite graphs here.

Let G be a bipartite graph with vertex partitions L = {u1, u2, . . . , un/2} and
R = {v1, v2, . . . , vn/2}, and weight function w. Consider the following n/2 × n/2
matrix A associated with G:

A(i, j) =

{
2w(e) if e = (ui, vj) ∈ E,
0 otherwise.

The algorithm in [38] computes the determinant of A. An easy argument shows
that this determinant is the signed sum over all perfect matchings in G:

det(A) =
∑

π∈Sn/2

sgn(π)

n/2∏
i=1

A(i, π(i))(1)

=
∑

M pm in G

sgn(M) 2w(M).(2)

Equation (2) holds because the product
∏n/2
i=1A(i, π(i)) is nonzero if and only if

the permutation π corresponds to a perfect matching. Here sgn(M) is the sign of
the corresponding permutation. If the graph G does not have a perfect matching,
then clearly det(A) = 0. However, even when the graph has perfect matchings,
there can be cancellations due to sgn(M), and det(A) may become zero. To avoid
such cancellations, one needs to design the weight function w cleverly. In particular,
if G has a perfect matching and w is isolating, then det(A) 6= 0. This is because
the term 2w(M) corresponding to the minimum weight perfect matching cannot be
canceled with other terms, which are strictly higher powers of 2.

Given an isolating weight assignment for G, one can easily construct the mini-
mum weight perfect matching in NC. Let M∗ be the unique minimum weight per-
fect matching in G. First we find out w(M∗) by looking at the highest power of 2
dividing det(A). Then for every edge e ∈ E, compute the determinant of the ma-
trix Ae associated with G− e. If the highest power of 2 that divides det(Ae) is larger
than 2w(M∗), then e ∈ M∗. Doing this in parallel for each edge, we can find all the
edges in M∗.

As already explained in the introduction, the Isolation Lemma delivers the iso-
lating weight assignment with high probability. Moreover, the weights chosen by the
Isolation Lemma are polynomially bounded. Therefore, the entries in the matrix A
have polynomially many bits. This suffices to compute the determinant in NC2 [8, 12].
Hence, the construction is also in NC2. Altogether, this yields an RNC algorithm for
Search-PM.

2.3. The matching polytope. Matchings are also one of the well-studied ob-
jects in polyhedral combinatorics. Matchings have an associated polytope, called the
perfect matching polytope. We use some properties of this polytope to construct an
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isolating weight assignment. The perfect matching polytope also forms the basis of
one of the NC algorithms for bipartite planar matching [36].

The perfect matching polytope PM(G) of a graph G(V,E) with |E| = m edges is
a polytope in the (real) edge space, i.e., PM(G) ⊆ Rm. For any perfect matching M
of G, consider its incidence vector xM = (xMe )e∈E ∈ Rm given by

xMe =

{
1 if e ∈M,

0 otherwise.

This vector is referred to as a perfect matching point for any perfect matching M .
The perfect matching polytope of a graph G is defined to be the convex hull of all its
perfect matching points:

PM(G) = conv{xM |M is a perfect matching in G }.

Any weight function w : E → R on the edges of a graph G can be naturally
extended to Rm as follows: for any x = (xe)e∈E ∈ Rm, define

w(x) =
∑
e∈E

w(e)xe.

Clearly, for any perfect matching M , we have w(M) = w(xM ). In particular, let M∗

be a perfect matching in G of minimum weight. Then

w(M∗) = min{w(x) | x ∈ PM(G) }.

The following lemma gives a simple, well-known description of the perfect matching
polytope of a bipartite graph G; see, for example, [35]. Recall that δ(v) denotes the
set of edges incident on vertex v.

Lemma 2.1. Let G(V,E) be a bipartite graph and x = (xe)e∈E ∈ Rm. Then
x ∈ PM(G) if and only if ∑

e∈δ(v)

xe = 1, v ∈ V,(3)

xe ≥ 0, e ∈ E.(4)

It is easy to see that any perfect matching point will satisfy these two conditions.
In fact, all perfect matching points are vertices of this polytope. The nontrivial part
is to show that any point satisfying these two conditions is in the perfect matching
polytope (see [35, Chapter 7]). For general graphs, the polytope described by (3)
and (4) can have vertices which are not perfect matchings. Thus, the description
does not capture the perfect matching polytope for general graphs. One has to add
exponentially many odd cut constraints (see [35, Chapter 7]).

2.4. Nice cycles and circulation. Let G(V,E) be a graph with a perfect
matching. A cycle C in G is a nice cycle if after removing the vertices of C the
graph still has a perfect matching. In other words, a nice cycle can be obtained from
the symmetric difference of two perfect matchings. Note that a nice cycle is always
an even cycle.

For a weight assignment w on the edges, the circulation cw(C) of an even length
cycle C = (v1, v2, . . . , vk) is defined as the alternating sum of the edge weights of C:

cw(C) = |w(v1, v2)− w(v2, v3) + w(v3, v4)− · · · − w(vk, v1)|.
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The definition is independent of the edge we start with because we take the absolute
value of the alternating sum.

The circulation of nice cycles was one crucial ingredient of the isolation in bipartite
planar graphs given by Datta, Kulkarni, and Roy [14].

Lemma 2.2 ([14]). Let G be a graph with a perfect matching, and let w be a
weight function such that all nice cycles in G have nonzero circulation. Then the
minimum perfect matching is unique. That is, w is isolating.

Proof. Assume that there are two perfect matchings M1,M2 of minimum weight
in G. Their symmetric difference M1 4M2 consists of nice cycles. Let C be a nice
cycle in M1 4M2. By the assumption of the lemma, we have cw(C) 6= 0. Hence, one
can decrease the weight of either M1 or M2 by altering it on C. As M1 and M2 are
minimal, we get a contradiction.

We will construct an isolating weight function for bipartite graphs. However, our
weight function will not necessarily have nonzero circulation on all nice cycles. We
start out with a weight assignment which ensures nonzero circulations for a small set
of cycles in a black-box way, i.e., without being able to compute the set efficiently.
The following lemma describes a standard trick for this (see [20, 10]).

Lemma 2.3. Let G be a graph with n nodes. Then, for any number s, one can
construct a set of O(n2s) weight functions with weights bounded by O(n2s), such that
for any set of s cycles, one of the weight functions gives nonzero circulation to each
of the s cycles.

Proof. Let us first assign exponentially large weights. Let e1, e2, . . . , em be some
enumeration of the edges of G. Define a weight function w by w(ei) = 2i−1 for
i = 1, 2, . . . ,m. Then clearly every cycle has a nonzero circulation. However, we want
to achieve this with small weights.

We consider the weight assignment modulo small numbers, i.e., the weight func-
tions {w mod j | 2 ≤ j ≤ t } for some appropriately chosen t. We want to show
that for any fixed set of s cycles {C1, C2, . . . , Cs}, one of these assignments will work
when t is chosen large enough. That is, we want

∃j ≤ t ∀i ≤ s : cw mod j(Ci) 6= 0.

This will be true provided

∃j ≤ t :

s∏
i=1

cw(Ci) 6≡ 0 (mod j).

In other words,

lcm(2, 3, . . . , t) -
s∏
i=1

cw(Ci).

This can be achieved by setting lcm(2, 3, . . . , t) >
∏s
i=1 cw(Ci). Since cw(Ci) ≤ 2n

2

,

we have
∏s
i=1 cw(Ci) ≤ 2n

2s. Furthermore, we have lcm(2, 3, . . . , t) > 2t for t ≥ 7
(see [39]). Thus choosing t = n2s suffices. Clearly, the weights are bounded by
t = n2s.

3. Isolation in bipartite graphs. In this section we present our main result—
an almost efficient parallel algorithm for the perfect matching problem.

Theorem 3.1. For bipartite graphs, PM and Search-PM are in quasi-NC2.
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Let G(V,E) be the given bipartite graph. In the following discussion, we will
assume that G has perfect matchings. Our major challenge is to isolate one of the
perfect matchings in G by an appropriate weight function. As we will see later, if G
does not have any perfect matchings, then our algorithm will detect this.

Our starting point is Lemma 2.2, which requires nonzero circulations for all nice
cycles. Recall from subsection 2.2 that the construction algorithm requires the weights
to be polynomially bounded. As the number of nice cycles can be exponential in the
number of nodes, even the existence of such a weight assignment is not immediately
clear. Nonetheless, Datta, Kulkarni, and Roy [14] give a construction of such a weight
assignment for bipartite planar graphs. For general bipartite graphs, this is still an
open question.

We start with a weight function which gives nonzero circulation only to small
cycles (not necessarily nice cycles), say of length 4. There are ≤ n4 many such cycles,
i.e., polynomially many. Lemma 2.3 describes a way to find such weights. The cost of
this weight assignment is proportional to the number of small cycles. Further, it is a
black-box construction in the sense that one does not need to know the set of cycles.
It just gives a set of weight assignments such that at least one of them has the desired
property.

3.1. The union of minimum weight perfect matchings. Let us assign a
weight function for bipartite graph G which gives nonzero circulation to a small set
of cycles in G. Consider a new graph G1 obtained by the union of minimum weight
perfect matchings in G. Our hope is that G1 is significantly smaller than the original
graph G. Note that it is not clear if one can efficiently construct G1 from G. This is
because the determinant of the bi-adjacency matrix with weights in (1) from subsec-
tion 2.2 can still be zero. As we will see, we do not need to construct G1; it is just
used in the argument. Our final weight assignment will be completely black-box in
this sense.

Our next lemma is the main reason why our technique is restricted to bipartite
graphs. It shows that the graph G1 constructed from the minimum weight perfect
matchings in G contains no other perfect matchings than these. This lemma was
independently proven by Vishwanathan [48]. In Figure 1, we give an example showing
that this does not hold in general graphs.

Lemma 3.2. Let G(V,E) be a bipartite graph with weight function w. Let E1

be the union of all minimum weight perfect matchings in G. Then every perfect
matching in the graph G1(V,E1) has the same weight—the minimum weight of any
perfect matching in G.

Proof. Consider the description of the perfect matching polytope PM(G) given
in Lemma 2.1. As the weight function is linear, the points of minimum weight form a
face F in PM(G). A face of a polytope is obtained by replacing some of the inequalities
in the polytope description by equalities. The only inequalities of the perfect matching
polytope for bipartite graphs are of the form (4): xe ≥ 0. Thus, for the face F there
exists a set S ⊆ E such that for any x = (xe)e∈E , we have x ∈ F if and only if∑

e∈δ(v)

xe = 1, v ∈ V,(5)

xe ≥ 0, e ∈ E − S,(6)

xe = 0, e ∈ S.(7)

For e ∈ S, the equality xe = 0 means that edge e does not participate in any
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0

1

1

1

0
0

0
0

0

Fig. 1. A nonbipartite weighted graph where every edge is contained in a minimum perfect
matching of weight 1. However, the graph also has a perfect matching of weight 3. That is, Lemma
3.2 does not hold for nonbipartite graphs.

minimal perfect matching of G. Therefore, we have G1 = G−S. The perfect matching
polytope PM(G − S) is given by (5) and (6). Hence, face F is the perfect matching
polytope of graph G − S, i.e., F = PM(G − S) = PM(G1). Since all points in F
have the same weight, it follows that all perfect matchings in G1 have the same
weight. Therefore, the minimum weight perfect matchings of G are precisely the
perfect matchings in G1.

Next, we show thatG1 is significantly smaller thanG. As all the perfect matchings
in G1 have the same weight, every nice cycle in G1 has zero circulation. However,
we need a stronger statement, which the following lemma proves: every cycle in G1

has zero circulation. It is true because one can show that all cycles are in the linear
span of nice cycles. In the lemma below, we give a proof using the perfect matching
polytope. Note that by definition, every edge of G1 belongs to some perfect matching.

Lemma 3.3. Let H(V,E) be a bipartite graph where every edge belongs to some
perfect matching. Let w be a weight function such that every perfect matching in H
has the same weight. Then for each cycle C in H, we have cw(C) = 0.

Proof. Let the weight of each perfect matching be q. Any point x in the perfect
matching polytope PM(H) is a convex combination of perfect matchings. Therefore,
we also have w(x) = q.

Let x1,x2, . . . ,xt be all the perfect matching points of H, that is, the corners
of PM(H). Consider the average point x ∈ PM(H) of the matching points,

x =
x1 + x2 + · · ·+ xt

t
.

Since each edge participates in a perfect matching, every coordinate of x = (xe)e∈E is
nonzero; in fact, xe ≥ 1/t. Now consider a cycle C in H with edges (e1, e2, . . . , ep) in
cyclic order. We show that when we move from point x along the cycle C, we remain
inside PM(H). This technique of moving along the cycle has been used by Mahajan
and Varadarajan [36]. To elaborate, we define a new point y = (ye)e∈E as follows.
For e ∈ E and ε = 1/t, let

ye =

{
xe + (−1)i ε if e = ei for some 1 ≤ i ≤ p,
xe otherwise,

By the choice of ε, we have ye ≥ 0 for all e ∈ E. Observe that y also satisfies (3) and,
therefore, by Lemma 2.1, also lies in the perfect matching polytope PM(H). Hence,
w(y) = q.

Consider the vector x− y. We have w(x− y) = w(x)− w(y) = q − q = 0. The
coordinates of x− y are nonzero only on cycle C, where its entries are alternating ε
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and −ε. Hence,

w(x− y) = ε · cw(C) = 0.

We conclude that cw(C) = 0.

After the first version of this paper, Rao, Shpilka, and Wigderson (see [22, Lemma
2.4]) came up with an alternate proof of Lemma 3.3, which is based on Hall’s theorem
instead of the matching polytope.

We apply Lemma 3.3 to graph G1. Recall that we chose the weight function such
that all small cycles in G have a nonzero circulation. From Lemma 3.3 we conclude
that G1 contains no small cycles.

Corollary 3.4. Let G(V,E) be a bipartite graph with weight function w, and
let C be a cycle in G such that cw(C) 6= 0. Let E1 be the union of all minimum weight
perfect matchings in G. Then graph G1(V,E1) does not contain cycle C.

Now, we want to repeat this procedure with graph G1 with a new weight function.
However, in G1, there are no more small cycles. Hence, we look at slightly larger
cycles. We argue that their number remains polynomially bounded.

Teo and Koh [45] showed that the number of shortest cycles in a graph with m
edges is bounded by m2. In the following lemma, we extend their argument and give
a bound on the number of cycles that have length at most twice the length of shortest
cycles.

Lemma 3.5. Let H be a graph with n nodes that has no cycles of length ≤ r for
some even r ≥ 4. Then H has at most n4 cycles of length ≤ 2r.

Proof. Let C = (v0, v1, . . . , v`−1) be a cycle of length ` ≤ 2r in G. Let f = `/4.
We successively choose four nodes on C with distance at most dfe ≤ r/2 and associate
them with C. We start with u0 = v0 and define ui = vdife for i = 1, 2, 3. Note that
the distance between u3 and u0 is also at most dfe. Since we could choose any node
of C as starting point u0, the four nodes (u0, u1, u2, u3) associated with C are not
uniquely defined. However, they uniquely describe C.

Claim 3.6. Cycle C is the only cycle in H of length ≤ 2r that is associated with
(u0, u1, u2, u3).

Proof. Suppose C ′ 6= C would be another such cycle. Let p 6= p′ be paths of C
and C ′, respectively, that connect the same u-nodes. Note that p and p′ create a cycle
in H of length at most

|p|+ |p′| ≤ r

2
+
r

2
≤ r,

which is a contradiction. This proves the claim.

There are at most n4 ways to choose 4 nodes and their order. By Claim 3.6, this
gives a bound on the number of cycles of length ≤ 2r.

Lemma 3.5 suggests the following strategy for continuing from G1: in each suc-
cessive round, we double the length of the cycles and adapt the weight function to
give nonzero circulations to these slightly longer cycles. By Lemma 3.3, we have that
any cycle with nonzero circulation disappears from the new graph obtained by taking
only the minimum perfect matchings from the previous graph. Thus in log n rounds
we reach a graph with no cycles, i.e., with a unique perfect matching. Now we put all
the ingredients together and formally define our weight assignment.
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3.2. Constructing the weight assignment. Let G(V,E) = G0 be a bipartite
graph with n nodes that has perfect matchings. Define k = dlog ne − 1, which is the
number of rounds we will need. We define subgraphs Gi and weight assignments wi
for i = 0, 1, 2, . . . , k − 1:

wi: A weight function such that all cycles in Gi of length ≤ 2i+2 have nonzero
circulations.

Gi+1: The union of minimum weight perfect matchings in Gi according to weight wi.
By the definition of Gi, any two perfect matchings in Gi have the same weight,

not only according to wi, but also to wj for all j < i, for any 1 ≤ i ≤ k.
By Lemma 3.3, graph Gi does not contain any cycles of length ≤ 2i+1 for each

1 ≤ i ≤ k. In particular, Gk does not have any cycles, since 2k+1 ≥ n. Therefore, Gk
has a unique perfect matching.

Our final weight function w will be a combination of w0, w1, . . . , wk−1. We com-
bine them in a way that the weight assignment in a later round does not interfere
with the order of perfect matchings given by earlier round weights. Let B be a
number greater than the weight of any perfect matching under any of these weight
assignments. Then, define

(8) w = w0B
k−1 + w1B

k−2 + · · ·+ wk−1B
0.

In the definition of w, the precedence decreases from w0 to wk−1. That is, for
any two perfect matchings M1 and M2 in G0, we have w(M1) < w(M2) if and only if
there exists an 0 ≤ i ≤ k − 1 such that

wj(M1) = wj(M2) for j < i,

wi(M1) < wi(M2).

As a consequence, the perfect matchings left in Gi have a strictly smaller weight
with respect to w than the ones in Gi−1 that did not make it to Gi.

Lemma 3.7. For any 1 ≤ i ≤ k, let M1 be a perfect matching in Gi and M2 be a
perfect matching in Gi−1 which is not in Gi. Then w(M1) < w(M2).

Proof. Since M1 and M2 are perfect matchings in Gi−1, we have wj(M1) =
wj(M2) for all j < i−1, as observed above. From the definition of Gi and Lemma 3.2,
it follows that wi−1(M1) < wi−1(M2). Hence we get that w(M1) < w(M2).

It follows that the unique perfect matching in Gk has a strictly smaller weight
with respect to w than all other perfect matchings.

Corollary 3.8. The weight assignment w defined in (8) is isolating for G0.

It remains to bound the values of the weights assigned. By Lemma 3.5, the number
of cycles that we handle in each round does not exceed n4. Therefore, each wi needs
to give nonzero circulations to at most n4 cycles for 0 ≤ i < k. By Lemma 2.3 with
s = n4, this yields a set of O(n6) weight assignments with weights bounded by O(n6).

Recall that the number B used in (8) is greater than the weight of any perfect
matching with respect to any wi. Hence, we have B = O(n7). Therefore, the weights
in the assignment w in (8) are bounded by Bk = nO(logn). That is, the weights
have O(log2 n) bits.

For each wi we have O(n6) possibilities, and we do not know which one will work.
Therefore, we try all of them in parallel. In total, we need to try O(n6k) = nO(logn)

weight assignments.
Clearly, every weight assignment can be constructed in quasi-NC1 with circuit

size 2O(log2 n).
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Lemma 3.9. In quasi-NC1, one can construct a set of nO(logn) integer weight
functions on [n/2] × [n/2], where the weights have O(log2 n) bits, such that for any
given bipartite graph with n nodes, one of the weight functions is isolating.

With the above weight functions, we can decide the existence of a perfect match-
ing in a bipartite graph in quasi-NC2 as follows: Recall the bi-adjacency matrix A from
subsection 2.2 which has entry 2w(e) for edge e. We test nonzeroness of det(A) for each
of the constructed weight functions in parallel. If the given graph has a perfect match-
ing, then one of the weight functions isolates a perfect matching. As we discussed
in subsection 2.2, for this weight function det(A) will be nonzero. When there is no
perfect matching, then det(A) will be zero for any weight function. As our weights
have O(log2 n) bits, the determinant entries have quasi-polynomially many bits. The
determinant can still be computed in parallel using the Berkowitz algorithm [8] with

Chinese remaindering, but it requires circuits of quasi-polynomial size 2O(log2 n), as
we explain next.

Beame, Cook, and Hoover [7] have shown that Chinese remaindering with n-bit
numbers is in NC1.

Lemma 3.10 ([7]). Given (i) prime numbers p1, p2, . . . , pn ≤ n2, (ii) their product
p1p2 · · · pn, and (iii) for some number D ≤ p1p2 · · · pn, the remainders D mod pi, for
i = 1, 2, . . . , n, then D can be computed in NC1.

In our case, the number D = det(A) has 2O(log2 n) bits. Hence we take the

first 2O(log2 n) prime numbers. Then their product exceeds D. The primes will not
be computed by the circuit, but instead are hardwired into it. Similarly, all values
2w mod p for all w ≤ 2O(log2 n) and p ≤ 2O(log2 n) will be hardwired into the circuit.
Now, to compute det(A) mod p for some weight function w, we first pick the matrix
entries modulo these primes from the hardwired values, and then compute det(A) mod
p in NC2 [8, 9]. Finally, we compute det(A) by Lemma 3.10, which yields a quasi-NC2

circuit in our case.
To construct a perfect matching, we follow the algorithm of Mulmuley, Vazirani,

and Vazirani [38] from subsection 2.2 with each of our weight functions. For a weight
function w which is isolating, the algorithm outputs the unique minimum weight
perfect matching M . If we have a weight function w′ which is not isolating, det(A)
might still be nonzero with respect to w′. In this case, the algorithm computes a set
of edges M ′ that might or might not be a perfect matching. However, it is easy to
verify whether M ′ is indeed a perfect matching, and in this case, we will output M ′.
This finishes the proof of Theorem 3.1.

4. An RNC algorithm with a few random bits. We can also present our
result for bipartite perfect matching in an alternate way. Instead of quasi-NC, we
can get an RNC-circuit, but with only poly-logarithmically many, namely O(log2 n)
random bits. Note that for a complete derandomization, it would suffice to bring the
number of random bits down to O(log n). Then there are only polynomially many
random strings which can all be tested in NC. Hence we are only one log-factor away
from a complete derandomization.

4.1. Decision version. First, let us look at the decision version.

Theorem 4.1. For bipartite graphs, there is an RNC2 algorithm for PM which
uses O(log2 n) random bits and succeeds with a high probability.

To prove Theorem 4.1, consider our algorithm from section 3. There are two
reasons that we need quasi-polynomially large circuits: (i) we need to try quasi-
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polynomially many different weight assignments, and (ii) each weight assignment has
quasi-polynomially large weights. We show how to come down to polynomial bounds
in both cases by using randomization.

To solve the first problem, we modify Lemma 2.3 to get a random weight assign-
ment which works with high probability (see [10, 32]).

Lemma 4.2. Let G be a graph with n nodes and s ≥ 1. There is a random
weight assignment w which uses O(log(ns)) random bits and assigns weights bounded
by O(n3s log ns), i.e., with O(log ns) bits, such that for any set of s cycles, w gives
nonzero circulation to each of the s cycles with probability at least 1− 1/n.

Proof. We follow the construction of Lemma 2.3 and give exponential weights
modulo small numbers. Here, we use only prime numbers as moduli. Let w(ei) = 2i−1.
Choose a random number p among the first t prime numbers. We take our random
weight assignment to be w mod p.

We want to show that, with high probability, this weight function gives nonzero
circulation to every cycle in {C1, C2, . . . , Cs}. In other words,

∏s
i=1 cw(Ci) 6≡ 0

(mod p). As the product is bounded by 2n
2s, it has at most n2s prime factors.

Choose t = n3s. Then a random prime works with probability at least 1 − 1/n. As
the tth prime number is bounded by 2t log t, the weights are bounded by 2t log t =
O(n3s log ns). Hence, the weights haveO(log ns) bits. A random prime withO(log ns)
bits can be constructed using O(log ns) random bits (see [32]).

Recall from subsection 3.2 that for a bipartite graph G with n nodes, we had
k = dlog ne − 1 rounds and constructed one weight function in each round. We
do the same here; however, we use the random scheme from Lemma 4.2 to choose
each of the weight functions w0, w1, . . . , wk−1 independently. The probability that
all of them provide nonzero circulation on their respective set of cycles is at least
1− k/n ≥ 1− log n/n using the union bound.

Now, instead of combining them to form a single weight assignment, we use a
different variable for each weight assignment. We modify the construction of matrix A
from subsection 2.2. Let L = {u1, u2, . . . , un/2} and R = {v1, v2, . . . , vn/2} be the
vertex bipartition of G. For variables x0, x1, . . . , xk−1, define an n/2× n/2 matrix A
by

A(i, j) =

{
x
w0(e)
0 x

w1(e)
1 · · ·xwk−1(e)

k−1 if e = (ui, vj) ∈ E,
0 otherwise.

From arguments similar to those in subsection 2.2, one can write

det(A) =
∑

M pm in G

sgn(M)x
w0(M)
0 x

w1(M)
1 · · ·xwk−1(M)

k−1 .

From the construction of the weight assignments it follows that if the graph has a
perfect matching, then the lexicographically minimum term in det(A), with respect
to the exponents of variables x0, x1, . . . , xk−1 in this precedence order, comes from a
unique perfect matching. Thus, we get the following lemma.

Lemma 4.3. If the combined weight function (w0, w1, . . . , wk−1) is isolating, then
det(A) 6= 0 if and only if G has a perfect matching.

Recall that each wi needs to give nonzero circulations to n4 cycles. Thus, the
weights obtained by the scheme of Lemma 4.2 will be bounded by O(n7 log n). There-
fore, the weight of a matching will be bounded by O(n8 log n). Hence, det(A) is a
polynomial of individual degree O(n8 log n) with log n variables. To test if det(A) is
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nonzero one can apply the standard randomized polynomial identity test [42, 49, 16].
That is, plug in random values for variables xi independently from {1, 2, . . . , n9}. If
det(A) 6= 0, then the evaluation is nonzero with high probability.

We bound the number of random bits. For each weight assignment wi, we
need O(log ns) random bits from Lemma 4.2, where s = n4. Thus, the number of
random bits required for all wi’s together is O(k log n) = O(log2 n). Finally, we need
to plug in O(log n) random bits for each xi. This again requires O(log2 n) random
bits.

We bound the circuit size. The weight construction involves taking exponential
weights modulo small primes by Lemma 4.2. Primality testing can be done by the
brute force algorithm in NC2, as the numbers involved have O(log n) bits. Thus,
the weight assignments can be constructed in NC2. Moreover, the determinant with
polynomially bounded entries can be computed in NC2 [8].

In summary, we get an RNC2 algorithm that uses O(log2 n) random bits as claimed
in Theorem 4.1.

4.2. Search version. We get a similar algorithm for Search-PM using again
only O(log2 n) random bits.

Theorem 4.4. For bipartite graphs, there is an RNC3 algorithm for Search-PM
which uses O(log2 n) random bits and has a high success probability.

Let again G(V,E) be the given bipartite graph with vertex bipartition L =
{u1, u2, . . . , un/2} and R = {v1, v2, . . . , vn/2}. We construct the weight assignments
w0, w1, . . . , wk−1 as in Lemma 4.2 in the randomized decision version. Let M∗ be the
unique minimum weight perfect matching in G with respect to the combined weight
function w. Let wr(M

∗) = w∗r for 0 ≤ r < k.
Recall from subsection 3.2 the sequence of subgraphs G1, G2, . . . , Gk of G =

G0, where Gr+1 consists of the minimum perfect matchings of Gr according to
weight wr. In order to compute M∗, we would like to actually construct all the
graphs G1, G2, . . . , Gk. However, it is not clear how to achieve this with O(log2 n)
random bits. Instead, we will construct a sequence of graphs H1, H2, . . . ,Hk such
that Hr will be a subgraph of Gr for each 1 ≤ r ≤ k.

The reason that we get subgraphs Hr instead of all of Gr will become clear below.
Very roughly, it is because here we work with the final weight function w already in
the rth round instead of just wr. Therefore, only the edges in M∗ are guaranteed to
survive in Hr. But this suffices for our purpose: Recall that Gk consists of the unique
perfect matching M∗. Hence, once we have Hk = Gk, we are done.

Let H0 = G and 0 ≤ r < k. We describe the rth round. Suppose we have
constructed the graph Hr(V,Er) and want to compute Hr+1. An edge will appear
in Hr+1 only if it participates in a matching M with wr(M) = w∗r . Thus, we will
have that Hr+1 is a subgraph of Gr+1. For an edge e and a perfect matching M , we
define the products

Xw(e)
r = xwr(e)

r x
wr+1(e)
r+1 · · · xwk−1(e)

k−1 ,

Xw(M)
r = xwr(M)

r x
wr+1(M)
r+1 · · · xwk−1(M)

k−1 .

Let N(e) denote the set of edges which are neighbors of an edge e in Gr, i.e., all
edges e′ 6= e that share an endpoint with e. For an edge e ∈ Er, define the n/2× n/2
matrix Ae as

Ae(i, j) =

{
Xw(e′)
r if e′ = (ui, vj) ∈ Er −N(e),

0 otherwise.
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Note that the matrix Ae has a zero entry for each neighboring edge of e. Thus, its
determinant is a sum over all perfect matchings which contain e. That is,

det(Ae) =
∑

M pm in Hr

e∈M

sgn(M)Xw(M)
r .

Consider the coefficient ce of x
w∗r
r in det(Ae),

ce =
∑

M pm in Hr

e∈M
wr(M)=w∗r

sgn(M)X
w(M)
r+1 .

Define the graph Hr+1 to be the union of all the edges e for which the polynomial ce
is nonzero. We claim that ce is nonzero for each e ∈M∗, and thus these edges appear

in Hr+1: For any edge e ∈M∗, the polynomial ce will contain the term X
w(M∗)
r+1 . As

the matching M∗ is isolated in Hr with respect to the weight vector (wr+1, . . . , wk−1),
the polynomial ce is nonzero. Note that the polynomial ce can be zero for an edge e
which participates in a matching M with wr(M) = w∗r . Therefore, Hr+1 is a subgraph
of Gr+1.

For the construction of Hr+1, we need to test whether ce is nonzero for each
edge e in Hr. As argued above in the decision part, the degree of ce is O(n8 log2 n).
We apply the standard zero-test; i.e., we plug in random values for the variables
xr+1, . . . , xk−1 independently from {1, 2, . . . , n11}. The probability that the evalua-
tion will be nonzero is at least 1−O(log2 n/n3). To compute this evaluation, we plug

in values of xr+1, . . . , xk−1 in det(Ae) and find the coefficient of x
w∗r
r . This can be

done in NC2 [9, Corollary 4.4]. For all the edges, we use the same random values
for variables xr+1, . . . , xk−1 in each identity test. The probability that the test works
successfully for each edge is at least 1−O(log2 n/n) by the union bound. We continue
this for k rounds to find Hk, which is a perfect matching.

We need again O(log2 n) random bits for the weight assignments w0, w1, . . . , wk−1
and the values for the xi’s. Note that we use the same random bits for xi in all k
rounds. This decreases the success probability, which is now at least 1−O(log3 n)/n
by the union bound.

In NC2, we can construct the weight assignments and compute the determinants
in each round. As we have k = O(log n) rounds, the overall complexity becomes NC3.

5. Extensions and related problems. There are many problems related to
perfect matching (see, for example, [30, Chapter 14 and 15]). The problems that have
an NC-reduction to bipartite perfect matching include subtree isomorphism [33], max-
imum flow with polynomially bounded capacities [29], minimum cut and minimum
s-t-cut for directed/undirected graphs (reduces to maximum flow [40]), and construct-
ing a depth-first search tree in a graph [2, 1]. As a corollary to our result, we get
them all in quasi-NC. Note that the minimum cut problem is easier for undirected
graphs, and it already has an NC algorithm in that case [28].

A generalization of perfect matchings are b-factors in a graph. The bipartite b-
factor problem also falls in quasi-NC via a reduction to perfect matching (see, for
example, [35, section 10.1]). We can also find an isolating weight assignment for
bipartite b-factors directly, using the same construction from subsection 3.2. There
are other versions of the matching problem where our techniques apply. We elaborate
on some of them below.
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5.1. Bipartite planar graphs. The Search-PM problem already has some known
NC algorithms in the case of bipartite planar graphs [37, 36, 14]. The one by Mahajan
and Varadarajan [36] is in NC3, while the other two are in NC2. Our approach from
the previous section can be modified to give an alternate NC3 algorithm for this case.

The weights in our scheme in subsection 3.2 become quasi-polynomial because
we need to combine the different weight functions from log n rounds using a different
scale. To solve this problem, we use the fact that in planar graphs, one can count
the number of perfect matchings of a given weight in NC2 by the Pfaffian orientation
technique [31, 47]. As a consequence, we can actually construct the graphs Gi in
each round in NC2. Thereby we avoid having to combine the weight functions from
different rounds.

In more detail, in the ith round, we need to compute the union of minimum weight
perfect matchings in Gi−1 according to wi−1. For each edge e, we decide in parallel if
deleting e reduces the count of minimum weight perfect matchings. If yes, then edge e
should be present in Gi. We have to do this for each of the O(n6) possibilities of wi−1.
We know there is at least one choice of wi−1 which ensures Gi does not contain any
cycles of length ≤ 2i+1. We can test this in NC2 for each Gi via the shortest path
algorithm (see, for example, [15]). In the (i+1)th round, we work with that Gi which
has this property.

As it takes log n rounds to reach a single perfect matching, the overall algorithm
is in NC3.

5.2. Weighted perfect matchings and maximum matchings. A general-
ization of the perfect matching problem is the weighted perfect matching problem
(weight-PM), where we are given a weighted graph, and we want to compute a perfect
matching of minimum weight. There is no NC-reduction known from weight-PM to the
perfect matching problem. However, the isolation technique works for this problem as
well when the weights are small integers. We put the given weights on a higher scale
and put the weights constructed by our scheme in section 3 on a lower scale. This
ensures that a minimum weight perfect matching according to the combined weight
function also has minimum weight according to the given weight assignment. Our
scheme ensures that there is a unique minimum weight perfect matching. One can
construct this perfect matching following the algorithm of Mulmuley, Vazirani, and
Vazirani [38] (subsection 2.2).

Corollary 5.1. For bipartite graphs, weight-PM is in quasi-NC2 when the given
weights are quasi-polynomially bounded integers.

The maximum matching problem asks to find a maximum size matching in a given
graph. It is well known that the maximum matching problem (MM) is NC-equivalent
to the perfect matching problem (see, for example, [24]). The equivalence holds for
both decision versions and the construction versions. The reductions also preserve
bipartiteness of the graph. Thus, we get the following corollary.

Corollary 5.2. For bipartite graphs, MM is in quasi-NC2.

Discussion. The major open question remains whether one can do isolation with
polynomially bounded weights. Then we would have bipartite perfect matching in NC.
Our construction requires quasi-polynomial weights because it takes log n rounds to
reach a unique perfect matching, and the graphs obtained in the successive rounds
cannot be constructed. To get polynomially bounded weights one needs to circumvent
this.
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