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OPTIMAL COMPRESSIVE IMAGING OF FOURIER DATA

GITTA KUTYNIOK AND WANG-Q LIM

Abstract. Applications such as Magnetic Resonance Tomography acquire imaging data by
point samples of their Fourier transform. This raises the question of balancing the efficiency
of the sampling strategies with the approximation accuracy of an associated reconstruction
procedure. In this paper, we introduce a novel sampling-reconstruction scheme based on a
random anisotropic sampling pattern and a compressed sensing type reconstruction strategy
with a variant of dualizable shearlet frames as sparsifying representation system. For this
scheme, we prove asymptotic optimality in an approximation theoretic sense for cartoon-like
functions as a model class for the imaging data. Finally, we present numerical experiments
showing the superiority of our scheme over other approaches.

1. Introduction

In the age of Big Data, acquiring data is of tremendous importance, but a highly difficult
task. One the one hand, one aims for high subsampling of the original data in the sense of
an efficient sensing process, whereas on the other hand the reconstruction procedure should
be both efficient and reconstruct the original data with high accuracy. A breakthrough
could recently be achieved by the introduction of the quite general applicable methodology
of compressed sensing in the two parallel papers [6] and [11], which allows high subsampling
rates using random measurement matrices alongside efficient reconstruction procedures such
as ℓ1 minimization.

Each new technology requires a sensibly adapted methodology for data acquisition. Par-
ticular attention has recently been paid to the general scenario of data acquisition from the
Fourier transform of the original data. For various applications such as Magnetic Resonance
Imaging (MRI), Electron Microscopy (EM), Fourier Optics, Reflection Seismology, and X-
ray Computed Tomography (see also [4]), the technology in fact only enables access to the
Fourier transform of the imaging data, allowing the acquisition of point samples. Although
lately various suitably adapted sampling-reconstruction schemes have been introduced and
studied and some intriguing results have been derived, the optimality of compressed sensing
based schemes is still an open problem.

Key words and phrases. Anisotropic Features, Compressed Sensing, Frames, Frequency Measurements,
Shearlets, Sparse Approximation, Sparse Sampling.
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1.1. General Approach to Sampling-Reconstruction Schemes for Fourier Data.

For the aforementioned class of applications, the data acquisition process can be modelled
as follows. Letting f ∈ H, where H = L2(R2) or ℓ2(Z2), presumably satisfying additional
regularity assumptions, and given a sampling set ∆ ⊆ Z2, we acquire the point samples

(f̂(n))n∈∆ = (〈f, en〉)n∈∆,
where en := e2πi〈·,n〉, aiming to reconstruct f from knowledge of those efficiently. A very
general concept which most approaches adopt requires the following ingredients:

• Data Acquisition. The sampling is performed by the map

f 7→ (〈f, en〉)n∈∆,
with ∆ being coarsely speaking as small as possible, giving the subsampling rate. We
remark that applications typically put additional constraints on the sampling set ∆
such as sampling along lines or curves (for a first theoretical analysis of such sampling
scenarios, see [13]). However, we will disregard such restrictions in order to derive a
benchmark result, which holds for a whole range of applications.

• Sparse Approximation. Given a class of data, a widely accepted paradigm to date
is the existence of a representation system which provides sparse approximation of
this class, which in the reconstruction process can be used for regularization of the
inverse problem. This requires to first indentify a model situation, C ⊆ H, say, and
second an associated representation system (ψλ)λ∈Λ – which we for now assume to
constitute an orthonormal basis –, providing rapid decay of the error of the best
N -term approximation of each element f ∈ C. Thus, we, in particular, derive an
expansion

f =
∑

λ∈Λ
cλψλ (1)

with (cλ = 〈f, ψλ〉)λ∈Λ being sparse.
• Reconstruction. The reconstruction procedure then consists of solving the linear
system of equations given by

(
〈f, en〉 =

∑

λ∈Λ
〈ψλ, en〉c̃λ

)

n∈∆

7→ (ĉλ)λ∈Λ,

aiming for a small error ‖f −∑λ∈Λ ĉλψλ‖. This problem fits precisely into the com-
pressed sensing framework, which advocates to solve this problem as the convex
optimization problem with sparsity constraint

(ĉλ)λ∈Λ = argmin(c̃λ)λ∈Λ
‖(c̃λ)λ∈Λ‖1 s.t.

(
〈f, en〉 =

∑

λ∈Λ
〈ψλ, en〉c̃λ

)
n∈∆

, (2)

delivering results for the accuracy of reconstruction dependent on the sparse approx-
imation property and the incoherence of the measurement matrix (〈ψλ, en〉)λ∈Λ,n∈∆.
It is well-known that in a (finite) compressed sensing scenario y = Ax with x being
sparsely approximated by a representation system, a random M × N measurement
matrix A such as a Gaussian iid matrix allows for an optimally small number M
of measurement vectors while still recovering x exactly with high probability using
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ℓ1 minimization (for precise statements we refer to [9]). This already indicates the
usefulness of random sampling sets ∆.

1.2. Sparse Sampling Results. Recovery from Fourier samples via this general approach
involving compressed sensing ideas has already been extensively studied and many practi-
cally, but also highly interesting theoretical results are already available. The maybe first
work introducing compressed sensing to this sampling scenario in the setting of MRI is due
to Lustig, Donoho, Santos, and Pauly [22, 23], who used wavelets as sparsifying system and
provided very convincing empirical evidence of the superiority of this approach.

The first rigorous analysis, which might be considered as a theoretical breakthrough, of
this scheme is due to Krahmer and Ward [15]. In their work, they study a finite dimensional
setting, use Haar wavelets as sparsifying system, and solve the inverse problem not by ℓ1
minimization, but by TV-regularization. Intriguingly, by analyzing local coherence proper-
ties between wavelets and Fourier elements, they are able to show that the variable density
sampling, whose roots can be detected in [22, 23], is indeed natural when aiming for a small
incoherence of (〈ψλ, en〉)λ∈Λ,n∈∆.

A quite impressive body of work on Fourier sampling is due to Adcock and Hansen et
al. In the continuum setting, in [2, 1] they are able to in fact prove an optimality result
for a sampling-reconstruction scheme, which is though not based on compressed sensing but
generalized sampling [4]. The sparsifying systems are in this case wavelet bases, first in
L2(R), then in L2(R2). This is however a deterministic strategy, which is typically inferior
to a random sampling-reconstruction scheme. The general theory developed in [3] can be
identified as another fundamental contribution by these authors, in which they show the
power of using the multiscale structure of a sparsifying orthonormal basis for deriving su-
perior recovery guarantees when considering the infinite-dimensional setting in compressed
sensing.

Finally, we wish to mention the paper [26] by Shi, Yin, Sankaranarayanan, and Baraniuk,
in which the ideas from [22, 23] are taken on a new level by considering the true 3D data
of MRI and exploiting the appearing joint sparsity of the wavelet coefficient to develop a
scheme for dynamic MRI.

Certainly, an abundance of further, mostly empirical contributions does exist, and we refer
to [4] for additional references.

1.3. Frames versus Orthonormal Bases. The knowledgable reader will have noticed
that although in the previously described approaches the sparsifying representation system
(ψλ)λ∈Λ always formed an orthonormal basis, sparse approximation results typically require
the more general concept of frames. Indeed, frames provide non-unique expansions due to
their redundancy, thereby allows for much sparse representations and approximations.

A frame for H is a sequence (ψλ)λ∈Λ⊆ H satisfying A‖f‖2 ≤∑λ∈Λ |〈f, ψλ〉|2 ≤ B‖f‖2 for
all f ∈ H with 0 < A ≤ B <∞. If the frame bounds A and B can chosen to be equal, it is
typically called tight frame; in case of A = B = 1, a Parseval frame. Analysis of an element
f ∈ H by a frame (ψλ)λ∈Λ is achieved by application of the analysis operator T given by

T : H → ℓ2(Λ), f 7→ (〈f, ψλ〉)λ∈Λ.
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Reconstruction of f from the sequence of frame coefficients (〈f, ψλ〉)λ∈Λ is possible by utilizing
the adjoint operator T ∗, since it can be shown that

f =
∑

λ∈Λ
〈f, ψλ〉(T ∗T )−1ψλ for all f ∈ H.

The system ((T ∗T )−1ψλ)λ∈Λ, required for this reconstruction formula, forms again a frame,

called the canonical dual frame. In general, a frame (ψ̃λ)λ∈Λ is typically referred to as
(alternate) dual frame, provided that it satisfies

f =
∑

λ∈Λ
〈f, ψλ〉ψ̃λ =

∑

λ∈Λ
〈f, ψ̃λ〉ψλ for all f ∈ H.

For more details on frame theory, we refer to [7].
If the sparsifying system (ψλ)λ∈Λ forms a frame, some difficulties arise in the general

approach described in Subsection 1.1 due to the fact that a dual frame is often not accessible
in closed form and its computation is expensive and typically instable. Since it is most of
the time only known that the sequence of frame coefficients (〈f, ψλ〉)λ∈Λ is sparse, instead of
the expansion (1) the expansion

f =
∑

λ∈Λ
cλψ̃λ

has to be considered. Note that this is satisfied for (cλ = 〈f, ψλ〉)λ∈Λ. This viewpoint is
closely related to the novel framework of co-sparsity [24]. This then leads to the following
replacement of (2):

(ĉλ)λ∈Λ = argmin(c̃λ)λ∈Λ
‖(c̃λ)λ∈Λ‖1 s.t.

(
〈f, en〉 =

∑

λ∈Λ
〈ψ̃λ, en〉c̃λ

)
n∈∆

,

1.4. Notion of Optimality. Aiming for optimality of a sampling-reconstruction scheme
in an approximation theoretic sense, we will now assume a continuum model C ⊆ L2(R2).
Since signals in nature are almost always of continuous type or in other words we live in a
continuous world, this choice seems appropriate. The optimal best N-term approximation
rate is then defined as O(N−α) with α > 0 maximal such that

inf
fN=

∑
λ∈ΛN

cλψλ,#ΛN=N
‖f − fN‖2 . N−α as N → ∞ for all f ∈ C,

and for any frame (ψλ)λ∈Λ for L2(R2).
Let (∆M)M ⊆ Z

2 with #∆M = M and M → ∞ now be a sequence of growing sampling
sets, and let

R : C ×∆ → L2(R2), ∆ :=
⋃

M

{∆M}

be a reconstruction procedure. Then we call a sampling-reconstruction scheme (C,∆,R)
asymptotically optimal, if, for all f ∈ C,

‖f −R(f,∆M )‖2 .M−α as M → ∞.
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1.5. Anisotropic Model and Shearlet Frames. In multivariate situations, anisotropic
features such as edges in images or shock fronts in the solution of certain classes of partial
differential equations are governing features. In fact, this becomes quite apparent if consid-
ering the data which applications such as MRI or EM face. Another interesting aspect is
that in fact neurophysiologists have strong evidence that the neurons in the visual cortex
of humans also react very strongly to those features [12]. A very classical model for this is
the class of cartoon-like functions, consisting of L2-functions which are C2 apart from a C2

discontinuity curve, i.e., in particular, piecewise smooth. It was proven by Donoho in [10]
that the optimal best N -term approximation rate for this model class is α = 1.

Assuming this model situation, maybe the most widely used representation system is the
multiscale system of shearlets originally introduced in [14] (see also the survey paper [16]).
These form a directional representation system which delivers the optimal approximation
rate up to a log-factor [18], but which – in contrast to the previously advocated system of
curvelets [5] – also allow a faithful implementation by a unified treatment of the continuum
and digital realm [20] and provides compactly supported variants for high spatial localization
[17]. In the compactly supported version, a shearlet system forms a non-tight frame requiring
knowledge of the dual frame for reconstruction.

Very recently, in addition to the “standard shearlet systems”, a novel type of shearlet
systems has been introduced in [19] coined dualizable shearlets, which satisfy the following
key features:

(DS1) Dualizable shearlet systems are composed of orthonormal bases.
(DS2) These systems have compactly supported elements.
(DS3) Dualizable shearlet frames possess one dual frame for which a closed formula exists.
(DS4) They provide optimally sparse approximations of cartoon-like functions.

This construction will be one of the backbones of the sampling-reconstruction scheme we
will introduce in this paper.

1.6. Our Contribution. The main goal in this paper is to introduce a provably optimal
sampling-reconstruction scheme for reconstruction from Fourier measurements. For this, we
follow the very general approach outlined in Subsection 1.1. We consider with the class of
cartoon-like functions a continuum model to not obscure continuum elements of geometry
and to be consistent with the fact that we live in a continuous world. In fact, for this
data acquisition problem, this is the first time that a specifically adapted model has been
analyzed.

As a sparsifying representation system, we introduce and analyze a variant of dualizable
shearlets, which forms a frame, hence requiring the adaption of the general framework of
sampling-reconstruction schemes to frames as discussed in Subsection 1.3. The redundancy
of the reconstruction system causes significant problems when analyzing their performance
within a sampling-reconstruction scheme, which we tackle by carefully exploiting the inner
structure of dualizable shearlets as a union of orthonormal bases. We expect that such an
approach could be useful in general to extend methodologies requiring an orthnormal basis
as sparsifying system to the frame setting.

The sampling sets ∆M – with the asymptotics linked to specific scales – are designed to
provide maximal incoherence of the measurement matrices given by A := (〈ψλ, en〉)λ∈Λ,n∈∆
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measured by the isometry constant δk of the restricted isometry property [9]

(1− δk)‖x‖22 ≤ ‖ASx‖22 ≤ (1 + δk)‖x‖22 for all x,

where S is an index set of size at most k andAS denotes the selection of columns indexed by S.
In fact, we measure it more carefully by considering the local incoherence introduced in [15].
In contrast to the (isotropic) variable density sampling scheme introduced and analyzed in
[15], our construction leads not unexpectedly to a set of highly directional random sampling
schemes ∆M . It is though interesting to notice in which way the directionality appears,
strongly concentrated along the angle bisectors.

We then prove that our novel sampling-reconstruction scheme is indeed asymptotically
optimal (Theorem 3.5) in the sense of Subsection 1.4, which we will make a bit more precise
later (Definition 3.1). To our knowledge this is the first optimality result for sampling-
reconstruction schemes for Fourier data based on compressed sensing in the continuum set-
ting. Besides the previously mentioned ingredients, one further key idea of our analysis is the
approximation of the continuum situation by finite dimensional objects – in particular, at
each level we consider a finite-dimensional shearlet system for reconstruction – in the spirit
of, yet conceptionally different from the finite section method like approach of generalized
sampling [4]. Moreover, our asymptotic analysis relies heavily on the multiscale structure
of shearlets, though in contrast to the multiscale sparsity studied in [3], we also investigate
sparsity patterns for cartoon-like functions with respect to directional parameters in the
shearlet representation.

1.7. Outline. The paper is organized as follows. We start by introducing the main defini-
tions and results for dualizable shearlets in Section 2. Section 3 is then devoted to introduce
and discuss our novel sampling-reconstruction scheme, and state our optimality result. Its
proof is presented in Section 4. Finally, numerical experiments comparing our scheme with
other schemes are discussed in Section 5.

2. Dualizable Shearlets

Dualizable shearlets are one main ingredient in our sampling-reconstruction scheme, as
discussed in the introduction. Hence this section shall serve as a review of the definition and
main properties of dualizable shearlet frames. For further details we refer to [19].

As already indicated in the introduction, the composition of features (DS1)–(DS4) – which
also distinguishes dualizable shearlet systems from “standard” shearlet systems (see [16]) –
will enable us to derive an optimal sampling-reconstruction scheme.

2.1. Definition and Basic Notions. The construction consists of two steps. First, so-
called shearlet-type wavelet systems are defined, which are unions of orthonormal bases,
indexed by a shearing parameter. Second, a particular set of filters is used to cut out certain
parts of those systems, to ensure directionality. Convolving both then leads to dualizable
shearlet systems. In the spirit of the cone-based definition of standard shearlet systems (cf.
[16]), these systems are composed of two parts: a system consisting of functions, for which
the essential supports of their Fourier transforms are horizontally aligned, and a similar
system associated with a vertical cone in Fourier domain – which is typically the rotated
first system. We wish to mention that concerning the dualizable shearlet system we will
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only present the construction for the horizontal Fourier cone in detail, the vertically aligned
system will be derived by switching the variables.

As our first step, aiming to construct a family of orthonormal bases for L2(R2) for each
shearing direction, we choose two univariate functions ϕ1 and ψ1 to satisfy the following
definition. We wish to mention that as in the sequel the symbol . indicates the asymptotics
for J → ∞.

Definition 2.1. Let ϕ1, ψ1 ∈ L2(R) be compactly supported and satisfy the support condition

δϕ1 = inf
ξ∈[− 1

2
, 1
2
]
|ϕ̂1(ξ)| > 0,

as well as, for some ρ ∈ (0, 2
13
), α ≥ 6

ρ
+ 1, and β > α + 1, the decay conditions

∣∣∣
( d
dξ

)ℓ
ψ̂1(ξ)

∣∣∣ . min{1, |ξ|α}
(1 + |ξ|)β and

∣∣∣
( d
dξ

)ℓ
ϕ̂1(ξ)

∣∣∣ . 1

(1 + |ξ|)β for ℓ = 0, 1.

We further assume that the system

{ϕ1(· −m) : m ∈ Z} ∪ {2j/2ψ1(2
j · −m) : j ≥ 0, m ∈ Z}

forms an orthonormal basis for L2(R). Then we refer to the pair (ϕ1, ψ1) as (ρ, α, β)-
admissible.

We remark that the condition to constitute an orthonormal basis can indeed be fulfilled
by [8].

Let now (ϕ1, ψ1) be (ρ, α, β)-admissible. Based on these univariate functions, for each
x = (x1, x2) ∈ R2, we define

ψ0(x) := ψ1(x1)ϕ1(x2) and ψp(x) := 2(p−1)/2ψ1(x1)ψ1(2
p−1x2) for p > 0 (3)

as well as

ϕ0(x) := ϕ1(x1)ϕ1(x2) and ϕp(x) := 2(p−1)/2ϕ1(x1)ψ1(2
p−1x2) for p > 0. (4)

In this construction, the parameter p enables a dyadic substructure in vertical direction. For
a fixed integer j0 ≥ 0, we now consider the system given by

{|det(Aj0)|1/2ϕp(Aj0 · −Dpm), |det(Aj)|1/2ψp(Aj · −Dpm) : j ≥ j0, p ≥ 0},
whereDp = diag(1, 2−max{p−1,0}). By [19], this system forms an orthonormal basis for L2(R2).

We next recall that the shear parameter for a standard shearlet system should equal k
2⌈j/2⌉

for |k| ≤ 2⌈j/2⌉. Aiming to parameterize those quotients we define the injective map

s : {(j, q) : j = 0, q = 0} ∪ {j : j ≥ 0} × {q : |q| ≤ 2j, q ∈ 2Z+ 1} → [−1, 1], s(j, q) :=
q

2j
,

as well as

S = {s(j, q) = 0 : j = 0, q = 0} ∪ {s(j, q) : j ≥ 0, |q| ≤ 2j, q ∈ 2Z+ 1}.
These preparations enable us to now defined shearlet-type wavelet systems.
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Definition 2.2. Let ρ ∈ (0, 1
12
), α ≥ 6

ρ
+1, and β > α+1. Let ϕ1, ψ1 ∈ L2(R) with (ϕ1, ψ1)

being (ρ, α, β)-admissible, and let ϕp, ψp ∈ L2(R2), p ≥ 0 satisfy (3) and (4). Further,
set Dp := diag(1, 2−dp) with dp := max{p − 1, 0}. Then, for each shear parameter s :=
s(⌈j0/2⌉, q0) ∈ S, where j0 is the smallest nonnegative integer such that s = q0

2⌈j0/2⌉
, we define

the shearlet-type wavelet system Ψs(ϕ1, ψ1) by

Ψs(ϕ1, ψ1) := {ϕj0,s,m,p, ψj,s,m,p : j ≥ j0, m ∈ Z
2, p ≥ 0},

where

ϕj,s,m,p := |det(Aj)|1/2ϕp(AjSs · −Dpm) and ψj,s,m,p := |det(Aj)|1/2ψp(AjSs · −Dpm).

The second step now consists in defining a filtering procedure. To be able to easier refer
to properties of a generator and an associated filter, we introduce the following notion.

Definition 2.3. Let ρ ∈ (0, 2
13
), α ≥ 6

ρ
+1, and β > α+1, and let g ∈ L2(R2) be a compactly

supported function satisfying the conic support condition

δg = inf
ξ∈Ωg

|ĝ(ξ)| > 0, where Ωg = {ξ ∈ R
2 : | ξ2

ξ1
| < 1, 1

2
< |ξ1| < 1

}
,

as well as the decay condition
∣∣∣
( ∂

∂ξ2

)ℓ
ĝ(ξ)

∣∣∣ . min{1, |ξ1|α}
(1 + |ξ1|)β(1 + |ξ2|)β

for ℓ = 0, 1.

We then refer to the family of filters Gs, s = s(⌈j0/2⌉, q0) ∈ S defined by

Ĝ0(ξ) = |ϕ̂0(ξ)|2 +
∞∑

j=0

|ĝ(A−1
j ξ)|2 and Ĝs(ξ) =

∞∑

j=j0

|ĝ(A−1
j S−T

s ξ)|2 for s 6= 0 (5)

as a family of (ρ, α, β; g)-filters.

Having introduced the two necessary ingredients, we can now formally define dualizable
shearlet systems as follows. Notice that this definition will indeed require the systems derived

by switching the variable in Ψs(ϕ1, ψ1), i.e., by R =

(
0 1
1 0

)
.

Definition 2.4 ([19]). Let ρ ∈ (0, 1
12
), α ≥ 6

ρ
+ 1, and β > α + 1. For any s ∈ S, let

Ψs(ϕ1, ψ1) be a shearlet-type wavelet system, and let (Gs)s∈S be a family of (ρ, α, β; g)-filters.
Then the dualizable shearlet system SH(ϕ1, ψ1; g) is defined by

SH(ϕ1, ψ1; g) = {ψℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1}
with index set

Λs = {(j, s,m, p) : j ∈ {−1} ∪ {j0, j0 + 1, . . .}, m ∈ Z
2, p ≥ 0} for s = s(⌈j0/2⌉, q0),

where

ψ0
λ =

{
Gs ∗ ϕj0,s,m,p : λ = (−1, s,m, p) ∈ Λs,
Gs ∗ ψj,s,m,p : λ = (j, s,m, p) ∈ Λs,

and ψ1
λ = ψ0

λ ◦R.
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The following first two results from [19] state the announced properties of orthonormality
(DS1) and compact support (DS2).

Proposition 2.5 ([19]). For each s ∈ S, the shearlet-type wavelet system Ψs(ϕ1, ψ1) is an
orthonormal basis for L2(R2).

Proposition 2.6 ([19]). Each dualizable shearlet system is compactly supported.

The third already mentioned key property, i.e., (DS3), is the explicit form of one of the
associated dual frames, made precise in the following statement.

Theorem 2.7 ([19]). Let ρ ∈ (0, 1
12
), α ≥ 6

ρ
+ 1, and β > α + 1. Let ϕ1, ψ1 ∈ L2(R) with

(ϕ1, ψ1) being (ρ, α, β)-admissible, and let (Gs)s∈S be a family of (ρ, α, β; g)-filters. Further,
let SH(ϕ1, ψ1; g) = {ψℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1} be a dualizable shearlet system, which
constitutes a frame for L2(R2). Then

S̃H(ϕ1, ψ1; g) = {ψ̃ℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1}
is a dual frame for SH(ϕ1, ψ1; g), where, for λ ∈ Λs,

ˆ̃ψ0
λ =

ψ̂0
λ∑

s′∈S |Ĝs′|2 + |Ĝs′ ◦R|2
and ψ̃1

λ = ψ̃0
λ ◦R.

2.2. Sparse Approximation. We will next discuss the optimal sparse approximation prop-
erties dualizable shearlet systems satisfy. This anticipated behavior was before labeled as
(DS4).

Since it is typically assumed that images are governed by anisotropic features, in particular,
edges, a common model is the so-called class of cartoon-like functions. We start by formally
introducing this class, which was first defined in [10].

Definition 2.8. The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},
where B ⊂ [0, 1]2 is a nonempty, simply connected set with C2-boundary, ∂B has bounded
curvature, and fi ∈ C2(R2) satisfies suppfi ⊆ [0, 1]2 and ‖fi‖C2 ≤ 1 for i = 0, 1.

In [10], Donoho proved a benchmark result in the sense of a lower bound for the achievable
decay rate of the error of best N -term approximation. One should mention that he in fact
showed a more general result than the following statement; however this is what we require
for our endeavour.

Theorem 2.9 ([10]). Let (hi)i∈I ⊆ L2(R2) be a frame for L2(R2). Then, for any f ∈ E2(R2),
the L2-error of best N-term approximation by fN with respect to (hi)i∈I satisfies

‖f − fN‖2 & N−1 as N → ∞.

Let us next assume that we are given a dualizable shearlet system

SH(ϕ1, ψ1; g) = {ψℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1}
with associated dual frame

S̃H(ϕ1, ψ1; g) = {ψ̃ℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1}
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as defined in Theorem 2.7. Utilizing the more compact notation

Λ := {0, 1} ×
⋃

s∈S
Λs

for the index sets of those systems, we now consider N -term approximations of f ∈ E2(R2)
of the form

fN =
∑

(ℓ,λ)∈ΛN

〈f, ψℓλ〉ψ̃ℓλ,

where ΛN ⊆ Λ, #ΛN = N . It might be surprising to consider expansions in terms of the
dual frame, but in our case we have – and would like to use – knowledge on the decay of the
frame coefficients (〈f, ψℓλ〉)ℓ,λ.

The following result from [19] shows that the approximation rate of dualizable shearlets
for cartoon-like functions can be arbitrarily close to the optimal rate as the smoothness of
the generators is increased, i.e., as ρ→ 0.

Theorem 2.10 ([19]). Let ρ ∈ (0, 1
12
), α ≥ 6

ρ
+ 1, and β > α + 1. Let ϕ1, ψ1 ∈ L2(R) with

(ϕ1, ψ1) being (ρ, α, β)-admissible, and let (Gs)s∈S be a family of (ρ, α, β; g)-filters. Further,
let SH(ϕ1, ψ1; g) = {ψℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1} be a dualizable shearlet system, which
constitutes a frame for L2(R2), and let f ∈ E2(R2). Then

‖f − fN‖2 . N−1+12ρ · log(N) as N → ∞,

where fN =
∑

(ℓ,λ)∈ΛN
〈f, ψℓλ〉ψ̃ℓλ with ΛN ⊆ Λ, #ΛN = N is the N-term approximation using

the N largest coefficients (〈f, ψℓλ〉)ℓ,λ.
Thus, dualizable shearlets do indeed satisfy (DS1)–(DS4).

3. Optimal Sampling-Reconstruction Scheme

We now turn to introducing our sampling-reconstruction scheme and stating the associ-
ated optimality result. But before, we first give a precise notion of optimality of sampling-
reconstruction schemes, and – due to the technical difficulty of the construction and argu-
ments – we will also provide some intuition on the construction of our scheme.

3.1. A Notion of Optimality. In Subsection 1.4, we already introduced a very general
notion of optimality for general sampling-reconstruction schemes. We now make this precise
in the setting we are considering.

We choose our model to be the model of cartoon-like functions E2(R2) as defined in
Definition 2.8) which, by Theorem 2.9, admits the following optimal decay rate of the best
N -term approximation:

‖f − fN‖2 . N−1 as N → ∞ for all f ∈ E2(R2),

where fN =
∑

λ∈ΛN
cλψλ for some frame (ψλ)λ∈Λ ⊆ L2(R2). Let now J be a positive integer,

and assume that we already constructed a set of sampling schemes

∆J ⊆ Z
2, J > 0, with J 7→ #∆J strictly increasing (6)
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as well as an associated reconstruction scheme

R = R(E2(R2),∆) : E2(R2)×∆ → L2(R2), (7)

where

∆ =
⋃

J>0

{∆J}. (8)

We then introduce the following notion of optimality. We emphasize that we take an
asymptotic viewpoint concerning optimality with J being the parameter which provides the
asymptotics. This is consistent with our continuum model in L2(R2) in the sense that we
aim for an optimal behavior in this limit situation.

Definition 3.1. A sampling-reconstruction scheme R = R(E2(R2),∆) is called asymptoti-
cally optimal, if, for all f ∈ E2(R2),

‖f −R(f,∆J )‖2 . (#∆J)
−1 as J → ∞.

3.2. Intuition of Our Scheme. Before defining the sampling sets ∆J , J > 0, and the
reconstruction system similarly dependent on the scale J , we will provide some first intuition
for their choice. As already discussed in the introduction, we will choose a particular version
of dualizable shearlet systems. In fact, for each limiting scale J , we will choose a finite-
dimensional version, which will turn out to be sufficient to derive an asymptotically optimal
sampling-reconstruction scheme. A key ingredient will be the fact that those reconstruction
systems will form orthonormal bases for each shear s. The associated subset of the shearing
parameters S associated with those finite-dimensional (dualizable) shearlet systems, will be
chosen to be

SJ/2 := {s(j, q) = 0 : j = 0, q = 0}∪{s(⌈j/2⌉, q) : 0 ≤ j ≤ J, |q| ≤ 2⌈j/2⌉, q ∈ 2Z+1}, J > 0.

The sampling sets have then to be constructed such that the associated Fourier elements
are maximally incoherent with the reconstruction system. To choose the sampling points in
a suitable way requires analysis of the sparsity pattern of shearlet expansions of cartoon-like
functions. Two sparsity pattern can be observed and need to be carefully handled:

• Scale Dependence. The first sparsity pattern is the distribution of sparsity with
respect to the scales j. For this, we drive a strategy which is inspired by the vari-
able density sampling strategy from [15], analyzing the local coherence terms of the
shearlet elements and the elements of the Fourier basis. For each s ∈ SJ/2, a suitable
probability density function will then lead to a measurement matrix satisfying the
Restricted Isometry Property with a sufficiently small restricted isometry constant
with high probability. We remark that the orthogonality plays a prominent role in
this analysis. Then, for each s, we will reconstruct via ℓ1 minimization, and finally
patch the solutions together.

• Shear Dependence. The second sparsity pattern we encounter is the distribution of
sparsity with respect to the shear direction s. To keep this under control, we will
later slightly restrict the class of cartoon-like functions to ensure that the significant
shearlet coefficients are almost equally distributed with respect to s, which in a sense
allows the patching of the solutions after the separate ℓ1 minimizations.
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As can be seen from this discussion, each ∆J needs to have a special substructure, namely,
dependent on the shear s ∈ SJ/2. In fact, the sampling sets will be constructed as a union
of sampling sets ∆J,s.

3.3. Sampling Systems. We first define the sampling sets – and with this the sampling
systems – which we choose for (∆J)J in (6). Letting J > 0, the complete sampling set has
the form

ΩJ = {(n1, n2) ∈ Z
2 : max(|n1|, |n2|) . 2J(1+ρ)}

with associated Fourier basis

ΦJ = {en := e2πi〈·,n〉 : n = (n1, n2) ∈ ΩJ}.
Let now j0 be an arbitrarily fixed scale. We then choose a sampling set ∆J,s for each

s = s(⌈j0/2⌉, q0) ∈ SJ/2 of size

mJ,s ∼ 2
J−j0

2 23Jρ,

i.e., dependent of s. The mJ,s sampling points ∆J,s in ΩJ are then chosen randomly according
to the probability density function pJ,s defined by

pJ,s(n) =
cs

J2(1 + |n1|)(1 + |n2 − sn1|)
(9)

over the discrete frequency domain ΩJ , where the constant cs has obviously to be chosen
so that

∑
n∈ΩJ

ps(n) = 1. Note that this condition implies that there exist some positive
constants C1 and C2 such that C1 < cs < C2 for all s ∈ SJ/2.

Thus, the random sampling sets (∆J)J employed in our sampling-reconstruction scheme
are chosen as

∆J :=
⋃

s∈SJ/2

∆J,s (10)

with associated sampling systems – as subsystems of ΦJ – given by

{en : n ∈ ∆J,s, s ∈ SJ/2}.
Concerning the number of elements in each sampling set ∆J , we obtain the following

result.

Lemma 3.2. Let the sampling sets (∆J )J be defined as in (10). Then

#∆J . J · 2J/2(1+6ρ).

Proof. We have

#∆J =
∑

s∈SJ/2

mJ,s .

J∑

j0=0

2j0/22
J−j0

2 23Jρ . J · 2J/2(1+6ρ).

This proves the claim. �
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3.4. Reconstruction Systems. We continue by describing the representation systems we
will employ for the reconstruction step. For this, we let ρ ∈ (0, 1

12
), α ≥ 6

ρ
+1, and β > α+1.

Further, we choose ϕ1, ψ1 ∈ L2(R) with (ϕ1, ψ1) being (ρ, α, β)-admissible, and (Gs)s∈S to
form a family of (ρ, α, β; g)-filters. Let then SH(ϕ1, ψ1; g) = {ψℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1}
be the associated dualizable shearlet system.

We next define finite-dimensional shearlet systems depending on J and s, which will serve
as sparsifying systems for any fixed J . For this, for each s = s(⌈j0/2⌉, q0) ∈ SJ/2, we define
the index set associated with those shearlets whose support basically intersects the support
of the cartoon-like function f , i.e.,

Λ̃J,s = {λ = (j, s,m, p) ∈ Λs : | supp(ψλ) ∩ [0, 1]2| 6= 0, m ∈ Z
2, p ≤ Jρ

2
, j = j0 − 1, . . . , J}.

(11)
Recall that the support of f is contained in [0, 1]2. As the observant reader will have noticed,
we bounded the parameter p, which will ensure that we now have “only” a finite-dimensional
system to handle. Based on this index set, we next define a system ΨJ,s, with the property
that Gs ∗ΨJ,s is a subsystem of SH(ϕ1, ψ1; g). The reason for this choice will become clear
in the next subsection.

Definition 3.3. Letting ρ ∈ (0, 1
12
), α ≥ 6

ρ
+ 1, and β > α + 1. Further, we choose

ϕ1, ψ1 ∈ L2(R) with (ϕ1, ψ1) being (ρ, α, β)-admissible, and (Gs)s∈S to form a family of
(ρ, α, β; g)-filters. Let also SH(ϕ1, ψ1; g) = {ψℓλ : λ ∈ Λs, s ∈ S, ℓ = 0, 1} denote the
associated dualizable shearlet system. For each J > 0 and s ∈ SJ/2, we then refer to

ΨJ,s = {σλ := F−1(ψ̂λ/Ĝs) : ψλ ∈ SH(ϕ1, ψ1; g), λ ∈ Λ̃J,s},
where Λ̃J,s is defined as in (11), as the dualizable shearlet-reconstruction system for limiting
scale J and for shear direction s.

We can immediately derive some basic properties of these systems.

Lemma 3.4. Let ΨJ,s be a shearlet-reconstruction system for limiting scale J and for shear
direction s. Then all elements in ΨJ,s are compactly supported, ΨJ,s forms an orthonormal
basis for span(ΨJ,s), and dim(span(ΨJ,s)) . 2J/2(3+ρ) as J → ∞
Proof. Compact support immediately follows from Proposition 2.6. Moreover, Proposition
2.5 implies orthogonality, since ΨJ,s ⊂ Ψs(ϕ1, ψ1). The remaining claims follow from the

observation that there exist about 2
3
2
j2p elements σλ ∈ ΨJ,s for each parameter j and p ≥ 0,

hence the bounds j ≤ J and p ≤ Jρ
2

imply ♯(ΨJ,s) . 2
J
2
(3+ρ). �

3.5. Our Sampling-Reconstruction Scheme. We are now in a position to introduce the
reconstruction scheme we choose for R = R(E2(R2),∆) in (7), with ∆ =

⋃
J>0 {∆J} as just

defined. To develop our scheme, for any f ∈ E2(R2) and J > 0, we need to define R(f,∆J ).
We remark that in fact we will define R(f,∆J ) based on reconstructions from ∆J,s for each
s ∈ SJ/2.

Now let f ∈ E2(R2) and fix J . Moreover, let s ∈ SJ/2 be arbitrarily fixed for now. We
first expand some g ∈ L2(R2) in terms of our chosen reconstruction system ΨJ,s. Since this
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system however only spans its closed linear hull and not L2(R2), we only obtain an expansion
of the type

PΨJ,s
(g) =

∑

λ∈Λ̃J,s

〈g, σλ〉σλ, (12)

where PΨJ,s
denotes the orthogonal projection onto span(ΨJ,s). Notice that the form of this

expansion is only possible due to the fact that ΨJ,s forms an orthogonal basis, see Lemma
3.4. Next, we set g := Gs ∗ f and take the inner product of the previous equation with some
element en, n ∈ Z2 of the Fourier basis, leading to

〈PΨJ,s
(Gs ∗ f), en〉 =

∑

λ∈Λ̃J,s

〈Gs ∗ f, σλ〉〈σλ, en〉.

Recalling that by definition σλ := F−1(ψ̂λ/Ĝs) and using Plancherel twice, we obtain

〈PΨJ,s
(Gs ∗ f), en〉 =

∑

λ∈Λ̃J,s

cλ〈σλ, en〉, (13)

where

cλ = 〈Gs ∗ f, σλ〉 = 〈f, ψλ〉. (14)

We now claim that in applications, if we have access to f̂(n), we also have access to
〈PΨJ,s

(Gs ∗ f), en〉. For this, first note that in computations we can only compute up to a
particular scale. Hence the projection up to scale J for J large enough is no restriction.
Second, the filter Gs filters out the part of f which corresponds to span(ΨJ,s), hence can also
be regarded as only causing a small, controllable error. Finally, by Plancherel, we have

〈Gs ∗ f, en〉 = Ĝs(n) · f̂(n),

which we indeed can compute knowing the action of the chosen filter Ĝs(n) as well as f̂(n).
Applying now our choice for the sampling sets ∆J,s from Subsection 3.3, the linear system

of equations (13) becomes

〈PΨJ,s
(Gs ∗ f), en〉 =

∑

λ∈Λ̃J,s

cλ〈σλ, en〉, n ∈ ∆J,s. (15)

Our reconstruction scheme solves this linear system of equations by exploiting the sparse
approximation property of our chosen reconstruction system, i.e., we set

R(f,∆J ) :=
∑

s∈SJ/2

∑

λ∈Λ̃J,s

ĉλψ̃λ, (16)

where

(ĉλ)λ∈Λ̃J,s
= argmin ‖(c̃λ)λ∈Λ̃J,s

‖1 subject to

(
〈PΨJ,s

(Gs ∗ f), en〉 =
∑

λ∈Λ̃J,s

c̃λ〈σλ, en〉
)

n∈∆J,s

. (17)

In the sequel, instead of (15), we will often use the compact notation

yJ,s = AJ,scJ,s (18)
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where yJ,s = (〈PΨJ,s
(Gs ∗ f), en〉)n∈∆J,s

, (AJ,s)n,λ = 〈σλ, en〉, and cJ,s = (cλ)λ∈Λ̃J,s
.

We finally wish to point out that in fact the very specific inner structure of the dualizable
shearlet systems as well as of the associated dualizable shearlet-reconstruction systems only
enabled this form of the linear system of equations. In fact, each of (DS1)–(DS3) have been
exploited. The sparse approximation property (DS4) will then ensure that ℓ1 minimization
recovers an approximation with optimally small asymptotic error.

3.6. Main Result. We now have the sampling scheme ((8) and (10)) and the associated
reconstruction scheme ((16) and (17)) at hand. The following theorem shows that our scheme
is asymptotically optimal in the sense of Definition 3.1 for almost all cartoon-like functions.
In fact, as announced in Subsection 3.2 we slightly restrict the set of cartoon-like functions
to the set

Ẽ2(R2) :=
{
f ∈ E2(R2) : f ∈ C2,r smooth with r ∈ [1/4, 1) everywhere except for points

lying on a C2 curve of non-vanishing curvature
}
.

This condition ensures that the direction of the singularity curve of a cartoon-like function
changes with a certain rate bounded from above, which leads to an almost equal distribution
of the significant shearlet coefficients with respect to the shear s ∈ SJ/2 at a fixed scale J .
One instance of this can be seen in Proposition 4.4(ii).

We now have all ingredients to state the main result of this paper.

Theorem 3.5. Letting ρ ∈ (0, 2
13
), α ≥ 6

ρ
+ 1, and β > α + 1, we further choose ϕ1, ψ1 ∈

L2(R) with (ϕ1, ψ1) being (ρ, α, β)-admissible, and (Gs)s∈S to form a family of (ρ, α, β; g)-
filters. For each J > 0 and s ∈ SJ/2, let also ΨJ,s denote the associated dualizable shearlet-
reconstruction system for limiting scale J and for shear direction s. Finally, let the sampling
scheme ∆ be chosen as in (8) and (10), and let the reconstruction scheme R be defined as in
(16) and (17). Then there exists some universal constant C > 0 (in particular, independent
on ρ), such that, for each f ∈ Ẽ2(R2),

‖f −R(f,∆J )‖2 . (#∆J)
−1+ρC as J → ∞,

i.e., R : Ẽ2(R2)×∆ → L2(R2) is arbitrarily close to being asymptotically optimal.

Thus, our sampling-reconstruction scheme for reconstruction of the model class of cartoon-
like functions from Fourier measurements is indeed asymptotically optimal, since ρ can be
chosen arbitrary small.

4. Proofs

This section is devoted to the proof of Theorem 3.5. We start with the overall structure
and architecture of this proof, and then slowly delve into the details.

4.1. Architecture of the Proof of Theorem 3.5. As could already been predicted from
the description of our sampling-reconstruction scheme in Subsection 3.5, also the proof relies
heavily on the specific inner structure of dualizable shearlets, more precisely, of the dualizable
shearlet-reconstruction systems for limiting scale J and for shear direction s. The proof will
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first estimate the error of the minimization procedure in (17) for each J and s, which will
be subsequently combined mainly using the orthogonality stated in Lemma 3.4.

Given f ∈ Ẽ2(R2), this splitting is performed by the estimate

‖f −R(f,∆J )‖2

.

J∑

j0=0

∑

s∈{s(⌈j′/2⌉,q′ )∈SJ/2:j′=j0}

‖cJ,s − ĉJ,s‖22 +
∑

j≥J

∑

λ∈Λj

|〈f, ψλ〉|2 +
J∑

j=0

∑

λ∈Λj∩(Λ0
j )

c

|〈f, ψλ〉|2,(19)

where Λj is the set of all indices λ = (j, s,m, p) ∈ Λ with scale j fixed and Λ0
j is the subset

of Λj where the oversampling parameters p associated with Dp are bounded by Jρ
2
.

The first term in (19) will be handled by the following proposition.

Proposition 4.1. We retain the same conditions and notations as in Theorem 3.5. Let
cJ,s := (cλ)λ∈Λ̃J,s

= (〈f, ψλ〉)λ∈Λ̃J,s
as in (14) and ĉJ,s := (ĉλ)λ∈Λ̃J,s

be the solution of the ℓ1
minimization problem (17). Then with probability at least 1− 2−J , we have

‖cJ,s − ĉJ,s‖2 .
σnJ,s

(cJ,s)1√
nJ,s

as J → ∞

where

σnJ,s
(cs)1 := inf{‖cs − c̃s‖1 : ‖c̃s‖0 ≤ nJ,s}

and nJ,s ∼ J · 2 J−j0
2 22Jρ for each s = s(⌈j0/2⌉, q0) ∈ SJ/2.

One ingredient of the proof of this proposition, provided in Subsection 4.3.2, is a more or
less classical result from compressed sensing. We state here the version presented in [15].

Theorem 4.2 ([15]). Let A ∈ C
m×N and x ∈ C

N . Suppose that y = Ax where the restricted
isometry constant of A satisfies δ5s <

1
3
. Then the solution to

min
z∈CN

‖z‖1 subject to Az = y

obeys

‖x̂− x‖2 .
σs(x)1√

s
.

To apply this result, it needs to be shown that for the matrix ÃJ,s whose entries are given
by

〈σλ, en〉√
mJ,s · pJ,s(n)

, n ∈ ∆J,s, λ ∈ Λ̃J,s,

(compare the discussions in Subsections 1.1 and 1.3 as well as the definition of the ℓ1 mini-
mization problem (17)), its associated restricted isometry constant

δ̂nJ,s
:= max

♯(S)≤nJ,s

‖Ã∗
SÃS − Id‖2

can be made arbitrarily small. For this, a few ideas from [15] and [25] can be adapted and
used. However, one main difficulty in our setting is to determine the required sampling size
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mJ,s and the sparsity level nJ,s for each shearing parameter s by exploring sparsity patterns
in the shearlet representation.

The second and third term in (19) require careful control of the decay of the shearlet
coefficients. One key condition is that standard shearlets generated by Aj and Sk are sup-
ported in S−1

s A−1
j [−C,C]2 for some C > 0 with s = k

2⌈j/2⌉
. In this area, the C2 curvilinear

singularity of a cartoon-like function is well approximated by its tangent. However, one can
easily check that supp(ψλ) ⊂ S−1

s A−1
j0
[−C,C]2. In fact, supp(ψλ) is essentially the same as

the support of standard shearlets considered in [18] for scale j = j0. However, supp(ψλ) is
much larger when j ≫ j0. To resolve this issue, as already done in proofs in [19], we will
approximate ψλ by more suitable functions of smaller supports comparable to the size of the
supports of standard shearlets with controllable error bound as follows:

For ψλ = Gs ∗ ψj,s,m,p with λ = (j, s,m, p) ∈ Λ, s = s(⌈j0/2⌉, q0) ∈ S and j ≥ j0, define

ψ̂♯λ(ξ) =

∞∑

j′=max(j(1−ρ),j0)

|ĝ(A−∗
j′
S−∗
s ξ)|2ψ̂j,s,m,p(ξ). (20)

Moreover, for ψλ ∈ SH(ϕ1, ψ1; g) of the form ψλ = Gs ∗ ϕj,s,m,p, we define ψ♯λ as in (20)

except for replacing ψ̂j,s,m,p by ϕ̂j,s,m,p. Observe that for sufficiently small ρ > 0, supp(ψ♯λ)
approximates the support of the original shearlet considered in [18] as follows.

Proposition 4.3 ([19]). Let ψ♯λ ∈ L2(R2) as in (20). Then we have

supp(ψ♯λ) ⊂ S−1
s A−1

j

(
[−2jρC, 2jρC]× [−2j/2·ρC, 2j/2·ρC] +Dpm

)
for some C > 0.

Furthermore, we have

|〈f, (ψλ − ψ♯λ)〉| . 2−jρα2−pα‖f‖2 for f ∈ L2(R2).

The decay estimates for the shearlet coefficients |〈f, ψλ〉| stated in the next result with (i)
already being proven in [19] and (ii) in Subsection 4.3.1, will be the essential ingredients for
controlling the first and second terms in (19).

Proposition 4.4 ([19]). Assume that f is a cartoon-like function with C2 discontinuity curve
given by x1 = E(x2). For ψλ ∈ SH(ϕ1, ψ1; g) with λ = (j, s,m, p) ∈ Λ and j ≥ 0, define

ψ♯λ ∈ L2(R2) as in (20). Let x̂2 ∈ R so that (E(x̂2), x̂2) ∈ supp(ψ♯λ) and ŝ = E
′
(x̂2). Also let

ks ∈ Z so that s = ks/2
j/2. Then for λ = (j, s,m, p) ∈ Λ with j ≥ 0, the following hold.

(i) If |ŝ| ≤ 3, then

|〈f, ψλ〉| . min
(
2−

3
4
j ,

2−
3
4
j23ρj

|ks + 2j/2ŝ|3
)
.

(ii) If h ∈ L2(R2) is C2,r smooth in supp(ψ♯λ) with ‖h‖C2,r(supp(ψ♯
λ))

≤ C and r ∈ [1/4, 1)

for some C > 0, then
|〈h, ψλ〉| . 2p/22−(3−4ρ)j .

Comparing with the standard shearlets considered in [18], our dualizable shearlet system
SH(ϕ1, ψ1; g) has an additional parameter p associated with the oversampling matrix Dp. In
addition to decay estimates in Proposition 4.4, we therefore need the decay of the shearlet
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coefficients with respect to p. The following proposition shows how shearlet coefficients
〈f, ψλ〉 with this additional parameter p can be controlled, which will be a crucial ingredient
for controlling the third term in (19).

Proposition 4.5 ([19]). For f ∈ L2(R2), we have

|〈f, ψλ〉| . 2−
α
2
p · ‖f‖2 for all λ = (j, s, p,m) ∈ Λ.

Let us finally mention that in the subsequent proofs, without loss of generality, we will only
consider shearlet elements ψ0

λ ∈ SH(ϕ1, ψ1; g) associated with one frequency cone. Since the
elements ψ1

λ are given by switching the variables with R, they can be dealt with similarly.
Hence, for the sake of brevity, we will often omit the superscript “0”, i.e., we write

ψλ := ψ0
λ and ψ̃λ := ψ̃0

λ.

Moreover, for technical reasons, again without loss of generality, we now rescale each element
σλ ∈ ΨJ,s so that

supp(σλ) ⊂ [0, 1]2, for all λ ∈ Λ̃J,s.

4.2. Useful Lemmata from [25]. For the convenience of the reader, we state two lemmata
both from [25], which will be required for the proof of Proposition 4.1.

Lemma 4.6 ([25]). Assume that X = (Xℓ)
m
ℓ=1 is a sequence of independent random vectors

in CN with ‖Xℓ‖∞ ≤ K for ℓ = 1, . . . , m. Then, for 1 ≤ p <∞ and n ≤ m,

(
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

m∑

ℓ=1

(X∗
iXℓ − EX∗

ℓXℓ)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

n

) 1
p ≤ 2

(
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

m∑

ℓ=1

ǫℓX
∗
ℓXℓ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

n

) 1
p
,

where ǫ = (ǫℓ)
m
ℓ=1 is a Rademacher sequence independent of X. Furthermore, for p ≥ 2,

(
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

m∑

ℓ=1

ǫℓXℓX
∗
ℓ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

n

) 1
p ≤ Cη

1
pK

√
p
√
n log(100n)

√
log(4N) log(10m)

√√√√
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

m∑

ℓ=1

XℓX∗
ℓ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
n

,

where C and η are some positive constants and η < 7.

Lemma 4.7. [25] Suppose that Z is a random variable satisfying

(E|Z|p) 1
p ≤ C1C

1
p

2 p
1
r for all p ≥ p0

for some C1, C2, r, p0 > 0. Then

P(|Z| ≥ e
1
rC1u) ≤ C2e

−ur/r for all u ≥ p
1
r
0 .

4.3. Proof of Preparatory Results.
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4.3.1. Proof of Proposition 4.4(ii). First notice that, by the error estimate in Proposition
4.3, it suffices to show that

|〈h, ψ♯λ〉| . 2p/22−(3−4ρ)j for λ = (j, 0, 0, p) ∈ Λ. (21)

Hence, let λ = (j, 0, 0, p). Again by Proposition 4.3, there exists some L > 0 with

supp(ψ♯λ) ⊂ [−2−j+ρjL, 2−j+ρjL]× [−2−j/2+ρj/2L, 2−j/2+ρj/2L]. (22)

Further, by construction, ψ♯λ satisfies the vanishing moment condition
∫

R

xℓ1 · ψ♯λ(x1, x2)dx1 = 0 for ℓ = 0, 1, 2 and ‖ψ♯λ‖∞ . 2
3
4
j2p/2.

Now let h ∈ C2,r(R2), and observe that we may write h as

h(x1, x2) =

2∑

ℓ=0

( 1
ℓ!

)( ∂

∂x1

)ℓ
h(0, x2)x1

ℓ +R(x1, x2)x
9/4
1 for each (x1, x2) ∈ supp(ψ♯λ) (23)

for some bounded function g with ‖g‖∞ ≤ C for some C > 0. Finally, by (22)–(23), we
obtain

|〈h, ψ♯λ〉| . ‖g‖∞‖ψ♯λ‖∞
∫ 2−j/2(1−ρ)L

−2−j/2(1−ρ)L

∫ 2−j(1−ρ)L

−2−j(1−ρ)L

|x1|9/4dx1dx2

. 2
3
4
j2p/22−j/2(1−ρ)2−j

13
4
(1−ρ) ≤ 2

p
22−(3−4ρ)j

This proves (21), and hence the claim. �

4.3.2. Proof of Proposition 4.1. The main part of this proof will be to show that Proposition
4.2 can be applied in a particular way. For this, let s = s(⌈j0/2⌉, q0) ∈ SJ/2, and set
∆J,s =: {t1, . . . , tmJ,s

}. Moreover, let A be the matrix defined by

(ÃJ,s)i,λ :=
σ̂λ(ti)√

mJ,s · pJ,s(ti)
for λ ∈ Λ̃J,s and i = 1, . . . , mJ,s,

where σ̂λ(ti) = 〈σλ, eti〉 and the ti’s are drawn from the probability density function pJ,s. One
should compare this choice with (18), seeing that it deviates from A by (mJ,s · pJ,s(ti))1/2.
Further, let S be any set of the column indices of Ã with ♯(S) ≤ nJ,s, and ÃS be the column

submatrix of Ã consisting of columns indexed by S. Observe that (BT
S )

T
S is the submatrix

of B consisting of columns and rows indexed by S, when B is a square matrix.
We will now prove that the restricted isometry constant of Ã given by

δ̂nJ,s
:= max

♯(S)≤nJ,s

‖Ã∗
SÃS − Id‖2

can be made arbitrarily small. Applying Proposition 4.2 then proves the claim.
For this, for each i = 1, . . . , mJ,s, first set

Xi :=
( σ̂λ(ti)√

pJ,s(ti)

)
λ∈Λ̃J,s

∈ C
M̃s ,
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where M̃s = ♯(Λ̃J,s) . 2
J
2
(3+ρ). We further require the matrix norm

|||B|||n := sup
z∈D2

n,d

|〈Bz, z〉|, where D2
n,d := {z ∈ C

d : ‖z‖2 ≤ 1, ‖z‖0 ≤ n}, n ≥ 0.

With this, we can estimate δ̂nJ,s
by

δ̂nJ,s
=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

mJ,s

mJ,s∑

i=1

XiX
∗
i − Id

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
nJ,s

≤ 1

mJ,s

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

mJ,s∑

i=1

(XiX
∗
i − EXiX

∗
i )

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
nJ,s

+ |||EXiX
∗
i − Id|||nJ,s

=: T1 + T2. (24)

We now show that both T1 and T2 can be made arbitrarily small. We start with T2, and
bound each entry in the matrix Id− EXiX

∗
i by

∣∣∣
(
Id− EXiX

∗
i

)
λ,λ′∈Λ̃J,s

∣∣∣ =
∣∣∣
∑

n∈Ωc
J

σ̂λ(n)σ̂λ′ (n)
∣∣∣ ≤

(∑

n∈Ωc
J

|σ̂λ(n)|2
)1/2(∑

n∈Ωc
J

|σ̂λ′ (n)|2
)1/2

, (25)

where ΩcJ = Ω1 ∪ Ω2 ∪ Ω3 with

Ω1 = {n ∈ ΩcJ : |n1| > 2J(1+ρ)},
Ω2 = {n ∈ ΩcJ : |n2| > 2J(1+ρ) and |n1| ≤ 2J(1+ρ/2)}, and
Ω3 = {n ∈ ΩcJ : |n2| > 2J(1+ρ) and |n1| > 2J(1+ρ/2)}.

Next, for each λ = (j, s,m, p) ∈ Λ̃J,s, the decay conditions in Definition 2.3 imply

∑

n∈Ωc
J

|σ̂λ(n)|2 .
∑

n/∈ΩJ

2−
3
2
j−p

(1 + |2−jn1|)2β(1 + |2−j/2−p(n2 − sn1)|)2β
. (26)

Using the decomposition of ΩcJ , we first observe that, since |n2−sn1| ≥ ||n2|−|n1|| ≥ 2J(1+ρ/2)

for all n ∈ Ω2, we have

∑

n∈Ω2

2−
3
2
j−p

(1 + |2−jn1|)2β(1 + |2−j/2−p(n2 − sn1)|)2β
.

∑

|m|≥2J(1+ρ/2)

2−j/2−p

(1 + |2−j/2−pm|)2β

. 2
J
2
(1−2β).

Moreover, we have

∑

n∈Ω1∪Ω3

2−
3
2
j−p

(1 + |2−jn1|)2β(1 + |2−j/2−p(n2 − sn1)|)2β
.

∑

|n1|>2J(1+ρ/2)

2−j

(1 + |2−jn1|)2β
. 2Jρ(1−2β).

Applying the last two estimates to (26) and inserting into (25), we obtain
∣∣∣
(
Id− EXℓX

∗
ℓ

)
λ,λ′

∣∣∣ . 2
Jρ
2
(1−2β).
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If β ≥ 1
2
(2
ρ
+ 1), then

sup
λ,λ′∈Λ̃J,s

∣∣∣
(
Id− EXℓX

∗
ℓ

)
λ,λ′

∣∣∣ . 2−J ,

which in turn implies that

T2 = |||EXiX
∗
i − Id|||nJ,s

≤ max
♯(S)≤nJ,s

‖((EXiX
∗
i − Id)TS )

T
S‖2

≤ max
♯(S)≤nJ,s

√
‖((EXiX

∗
i − Id)TS )

T
S‖∞‖((EXiX

∗
i − Id)TS )

T
S‖1

.
√
2−J2J/2(1+5ρ) = 2−J/4(1−5ρ). (27)

For the last inequality, we used nJ,s . 2J/2(1+5ρ).
Next, we estimate T1 in (24). For this, let n = (n1, n2) ∈ ΩJ , and first consider

sup
λ∈Λ̃J,s

|σ̂λ(n)|2
|pJ,s(n)|

.

(
sup
j≥0

2−j

(1 + |2−jn1|)2β
sup
j,p≥0

2−j/2−p

(1 + |2−j/2−p(n2 − sn1)|)2β

)(
1

|pJ,s(n)|

)

.

(
1

(1 + |n1|)(1 + |n2 − sn1|)

)(
J2(1 + |n1|)(1 + |n2 − sn1|)

)

. J2. (28)

Thus, by definition of Xi we conclude that there exists some K > 0 with

‖Xi‖∞ ≤ K · J for i = 1, . . . , mJ,s.

For the sake of brevity, for p ≥ 2, we set

Ep := (ET p1 )
1
p and Dp,nJ,s,mJ,s

:= C ·K · η 1
pJ

√
p
√
nJ,s log(100nJ,s)

√
log(4M̃s) log(10mJ,s),

where η is some constant in the second claim of Lemma 4.6, and J is chosen sufficiently large
so that T2 ≤ 1, which is possible by (27). Then, by Lemma 4.6, (27), and (28),

Ep
p ≤

(2Dp,nJ,s,mJ,s√
mJ,s

)p
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

mJ,s

mJ,s∑

ℓ=1

XℓX
∗
ℓ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p
2

nJ,s

≤
(2Dp,nJ,s,mJ,s√

mJ,s

)p
E

(∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

mJ,s

mJ,s∑

ℓ=1

XℓX
∗
ℓ − Id

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
nJ,s

+ 1
) p

2

≤
(2Dp,nJ,s,mJ,s√

mJ,s

)p
E

(∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

mJ,s

mJ,s∑

ℓ=1

(XℓX
∗
ℓ − EXℓX

∗
ℓ )

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
nJ,s

+ T2 + 1
)p

2

≤
(2Dp,nJ,s,mJ,s√

mJ,s

)p
E

(∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

mJ,s

mJ,s∑

ℓ=1

(XℓX
∗
ℓ − EXℓX

∗
ℓ )

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
nJ,s

+ 2
)p

2
.
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From this, we have

Ep ≤
2Dp,nJ,s,mJ,s√

mJ,s

√√√√E
1

mJ,s

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

mJ,s∑

ℓ=1

(XℓX∗
ℓ − EXℓX∗

ℓ )

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
nJ,s

+ 2 ≤ 2Dp,nJ,s,mJ,s√
mJ,s

√
Ep + 2.

This yields

E2
p ≤

(
2Dp,nJ,s,mJ,s√

mJ,s

)2

Ep +

(
2Dp,nJ,s,mJ,s√

mJ,s

)2

2

and also
(
Ep −

1

2

(
2Dp,nJ,s,mJ,s√

mJ,s

)2)2

≤
(
2Dp,nJ,s,mJ,s√

mJ,s

)2(
2 +

1

4

(
2Dp,nJ,s,mJ,s√

mJ,s

)2)
,

implying that

Ep ≤
2Dp,nJ,s,mJ,s√

mJ,s

(
2 +

1

4

(
2Dp,nJ,s,mJ,s√

mJ,s

)2)1/2

+
1

2

(
2Dp,nJ,s,mJ,s√

mJ,s

)2

.

Assuming
2Dp,nJ,s,mJ,s√

mJ,s
≤ 1

2
, we conclude that

Ep ≤ κ
2Dp,nJ,s,mJ,s√

mJ,s
with κ =

√
33 + 1

4
.

This implies

(Emin(1/2, T p1 ))
1
p ≤ (min((1/2)p,ET p1 ))

1
p ≤ min((1/2), Ep) ≤ κ

2Dp,nJ,s,mJ,s√
mJ,s

.

Now, by Lemma 4.7 (with r = 2, p0 = 2) and using that η < 7, for all u ≥ 2, we obtain

P

(
min(1/2, T1) ≥ e

1
2 (2κ)C ·KJ

√
nJ,s
mJ,s

log(100nJ,s)

√
log(4M̃s) log(10mJ,s)u

)
< 7e−

u2

2 .

This implies that if
mJ,s

log(mJ,s)
≥ 2nJ,s(e

1
22κC)2δ−2K2J2 log2(100nJ,s) log(7ǫ

−1) log(4M̃s) =: T3, (29)

then, with probability at least 1− ǫ,

T1 ≤ δ ≤ 1

2
(30)

Let now ǫ = 2−J and note that M̃s . 2
J
2
(3+ρ). Since nJ,s ∼ J · 2 J−j0

2 22Jρ and mJ,s ∼
2

J−j0
2

23Jρ
, we have

1

T3
· mJ,s

log(mJ,s)
≥ C̃

( δ2
J8

)
2Jρ =: T4 (31)

with some constant C̃ > 0. Therefore, for any δ > 0 and C̃ > 0 in (31), one may choose a
sufficiently large J > 0 such that T4 ≥ 1. This proves (29), and hence (30).



OPTIMAL COMPRESSIVE IMAGING OF FOURIER DATA 23

Estimating (24) by (27) and (30), implies that the restricted isometry constant of Ã can
indeed be made arbitrary small by choosing J sufficiently large. As discussed before, by
Theorem 4.2, the proposition is proved. �

4.4. Proof of Theorem 3.5. We start by defining dyadic cubes Qj,ℓ as

Qj,ℓ := 2−j/2[0, 1]2 + 2−j/2ℓ for ℓ ∈ Z
2.

Those cubes intersecting the discontinuity curve Γ are of particular interest, hence we set

Qj := {Qj,ℓ : int(Qj,ℓ) ∩ Γ 6= ∅},
where int(Qj,ℓ) is the interior set of Qj,ℓ. We assume that the discontinuity curve Γ is given
by x1 = E(x2) with E ∈ C2([0, 1]) and only consider this case. In fact, for sufficiently large
j, the discontinuity curve Γ can be expressed as either x1 = E(x2) or x2 = Ẽ(x1) in Qj,ℓ ∈ Qj

and the same arguments can be applied for x2 = Ẽ(x1) except for switching the order of
variables.

For each Qj,ℓ ∈ Qj , let Ej,ℓ be a C2 function such that

Γ ∩ int(Qj,ℓ) = {(x1, x2) ∈ int(Qj,ℓ) : x1 = Ej,ℓ(x2)}.
Again, for sufficiently large j and each Qj,ℓ ∈ Qj , we may assume either

‖E ′

j,ℓ‖∞ ≤ 3 or inf
(x1,x2)∈int(Qj,ℓ)

|E ′

j,ℓ(x2)| > 3/2.

For this, we only consider the case when ‖E ′

j,ℓ‖∞ ≤ 3 for any Qj,ℓ ∈ Qj and a similar
argument can be applied for the latter case. Moreover, we define the orientation of the
discontinuity curve Γ in each dyadic cube Qj,ℓ by

ŝj,ℓ = E
′

j,ℓ(x̂2) for some (Ej,ℓ(x̂1), x̂2) ∈ int(Qj,ℓ) ∩ Γ. (32)

We now aim to show that Proposition 4.1 can be applied, which will provide one ingredient
to the estimate for the error ‖f−f̂‖2. For this, let J > 0 be fixed. For each s = s(⌈j0/2⌉, q0) ∈
SJ/2 and j ≥ j0, we choose kj,s ∈ Z so that s =

kj,s
2j/2

. Next, for each ℓ2 ∈ {0, . . . , 2j/2 − 1}
with j ≥ j0, there exists some point ξℓ2 ∈ [0, 1] such that

E
′

(ℓ2/2
j/2) = E

′

(0) + E
′′

(ξℓ2)
ℓ2
2j/2

.

Notice that we may assume ŝj,ℓ = E
′
(ℓ2/2

j/2) with ℓ = (ℓ1, ℓ2), where ŝj,ℓ is the orientation

of Γ in Qj,ℓ ∈ Qj defined as in (32) with ℓ = (ℓ1, ℓ2). Letting k̂j,s(ℓ) := kj,s + 2j/2ŝj,ℓ and
using the relation kj,s = 2j/2s, we conclude that, for each Qj,ℓ ∈ Qj ,

k̂j,s(ℓ) = 2j/2
(
s+ E

′

(0) + E
′′

(ξℓ2)
ℓ2
2j/2

)
.

From this, for each s = s(⌈j0/2⌉, q0) ∈ SJ/2, in the case j0 ≥ J/4 we define

Λ̃0
J,s = {λ = (−1, s,m, p) or (j, s,m, p) ∈ Λ̃J,s : int(supp(ψ

♯
λ)) ∩ Γ ∩ int(Qj,ℓ) 6= ∅ and

|k̂j,s(ℓ)| ≤ 2
J−j
4 for Qj,ℓ ∈ Qj , j = j0, . . . , J},
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and in the case j0 < J/4, we set

Λ̃0
J,s = {λ = (j, s,m, p) ∈ Λ̃J,s : j = −1, j0, . . . ,

J

4
− 1}

∪ {λ = (j, s,m, p) ∈ Λ̃J,s : int(supp(ψ
♯
λ)) ∩ Γ ∩ int(Qj,ℓ) 6= ∅ and |k̂j,s(ℓ)| ≤ 2

J−j
4

for Qj,ℓ ∈ Qj , j =
J

4
, . . . , J}.

This can be regarded as the set of estimated indices for the nJ,s largest shearlet coefficients.
Hence sparsity patterns in the shearlet coefficients are encoded here.

We next estimate the sizes of those sets. For this, note that, for s ∈ SJ/2, j ≥ 0, p ∈ N0

fixed and each Qj,ℓ ∈ Qj , we have

♯
(
{λ = (j, s,m, p) ∈ Λ̃J,s : int(supp(ψ

♯
λ)) ∩ int(Qj,ℓ) ∩ Γ 6= ∅}

)
. 22Jρ(1 + |k̂j,s(ℓ)|). (33)

To show estimate (33), we first consider the simple case, namely when ŝj,ℓ = 0 with ℓ = (0, 0)

and s = 0. This implies k̂j,s(ℓ) = 0 in (33). From Proposition 4.3, we have

int(supp(ψ♯λ)) ⊂ A−1
j (Ajρ[−L, L]2 +Dpm) for some L > 0. (34)

Also, since the discontinuity curve x1 = E(x2) is C2 smooth, there exists some positive
constant K > 0 such that

int(Qj,ℓ) ∩ Γ ⊂ A−1
j ([0, K]2).

Therefore,

LHS in (33) ≤ ♯
(
{m ∈ Z

2 : A−1
j (Ajρ[−L, L]2 +Dpm) ∩ A−1

j ([0, K]2) 6= ∅}
)

≤ ♯
(
{m ∈ Z

2 : (Ajρ[−L, L]2 +Dpm) ∩ [0, K]2 6= ∅}
)

. |Ajρ| · |D−1
p | = 2

3
2
jρ2p.

This yields (33) with k̂j,s(ℓ) = 0, since j ≤ J and p ≤ Jρ
2

for λ = (j, s,m, p) ∈ Λ̃J,s. For
the general case, we note that (34) is precisely the form of standard shearlets considered in
[18] except for an additional scaling matrix Ajρ and oversampling matrix Dp. This allows us
to use the same argument as in [18](page 19) to show (33). And the additional factor 22Jρ

comes from the oversampling parameter p associated with sampling matrix Dp and Ajρ in
(34). In addition, we will use the observation that each monotonic function h ∈ L1([a, b])
satisfies ∑

{ℓ:k̂j,s(ℓ)∈[a,b],Qj,ℓ∈Qj}

h(k̂j,s(ℓ)) .
1

inft∈[0,1] |E ′′(t)|

∫

[a,b]

|h(x)|dx (35)

Now, let CE := 1
inft∈[0,1] |E′′(t)| . Notice that this is a positive constant, since the discontinuity

curve Γ given by x1 = E(x2) is a C
2 smooth curve of non-vanishing curvature. By (33) and

(35), in the case j0 ≥ J/4, we then have

♯(Λ̃0
J,s) .

J∑

j=j0

∑

{ℓ:|k̂j,s(ℓ)|≤2
J−j
4 ,Qj,ℓ∈Qj}

22Jρ(1 + |k̂j,s(ℓ)|)
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. CE ·
J∑

j=j0

22Jρ2
J−j
2

. CE · 2
J−j0

2 22Jρ.

Also, in the case j0 < J/4, we can compute

♯(Λ̃0
J,s) .

J/4−1∑

j=j0

♯({λ = (j, s,m, p) ∈ Λ̃J,s : p ≤
Jρ

2
}) +

J∑

j=J/4

∑

{ℓ:|k̂j,s(ℓ)|≤2
J−j
4 ,Qj,ℓ∈Qj}

2
Jρ
2 (1 + |k̂j,s(ℓ)|)

.

J/4−1∑

j=j0

22Jρ2
3
2
j + CE ·

J∑

j=J/4

22Jρ2
J−j
2

. CE · 2 3
8
J22Jρ

≤ CE · 2
J−j0

2 22Jρ.

Proposition 4.1 then implies

‖cJ,s − ĉJ,s‖22 . (J−1)2−2Jρ2
−J+j0

2

( ∑

λ∈Λ̃J,s∩(Λ̃0
J,s)

c

|〈f, ψλ〉|
)2
. (36)

with nJ,s ∼ J2
J−j0

2 22Jρ and mJ,s ∼ 2
J−j0

2 23Jρ. Notice that we here used the fact that
cJ,s = (〈f, ψλ〉)λ∈Λ̃J,s

.

In a second step, we now estimate the error ‖f − f̂‖2, thereby finishing the proof. We
begin by estimating this error by the three terms

‖f − f̂‖22 .

J∑

j0=0

∑

s∈{s(⌈j′/2⌉,q′ )∈SJ/2:j′=j0}

‖cJ,s − ĉJ,s‖22 +
∑

j≥J

∑

λ∈Λj

|〈f, ψλ〉|2 +
J∑

j=0

∑

λ∈Λj∩(Λ0
j )

c

|〈f, ψλ〉|2

=: (I) + (II) + (III), (37)

where

Λj = {λ = (j
′

, s,m, p) ∈ Λ : j
′

= j} and Λ0
j = {λ = (j, s,m, p) ∈ Λj : p ≤ max(

jρ

2
,
Jρ

2
)}.

We now turn to analyzing (I), (II), and (III). Starting with (I), we let s = s(⌈j0/2⌉, q0) ∈
SJ/2 and consider two cases:
Case 1: j0 ≥ J/4. First,

Λ̃J,s ∩ (Λ̃0
J,s)

c

= {λ = (−1, s,m, p) or (j, s,m, p) ∈ Λ̃J,s : int(supp(ψ
♯
λ)) ∩ Γ ∩ int(Qj,ℓ) 6= ∅ and

for |k̂j,s(ℓ)| > 2
J−j
4 Qj,ℓ ∈ Qj , j = j0, . . . , J} ∪ {λ ∈ Λ̃J,s : int(supp(ψ

♯
λ)) ∩ Γ = ∅}

=: I0 ∪ I1.
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By (36), we obtain

‖cJ,s − ĉJ,s‖22 . (J−1)2
j0
2 2−

J
2 2−2Jρ

(∑

λ∈I0

|〈f, ψλ〉|+
∑

λ∈I1

|〈f, ψλ〉|
)2
. (38)

Setting

Lj := {ℓ : |k̂j,s(ℓ)| > 2
J−j
4 , Qj,ℓ ∈ Qj},

by Proposition 4.4(i), (33) and (35), for sufficiently large J > 0 we have

2
j0
2 2−

J
2 2−2Jρ

(∑

λ∈I0

|〈f, ψλ〉|
)2

. 2
j0
2 2−

J
2 2−2Jρ

( J∑

j=j0

22Jρ
∑

ℓ∈Lj

(1 + |k̂j,s(ℓ)|)
2−

3
4
j23ρj

|k̂j,s(ℓ)|3
)2

. CE · 2
j0
2 2−

J
2 2−2Jρ

( J∑

j=j0

22Jρ2−
3
4
j23ρj2−

J−j
4

)2

. 2−
j0
2 2−J28Jρ. (39)

Using that, for each j ∈ {j0 − 1, . . . , J},
♯({λ = (j

′

, s,m, p) ∈ I1 : j
′

= j}) . 2
3
2
j+Jρ

2 ,

Proposition 4.4(ii) implies that

2
j0
2 2−

J
2 2−2Jρ

(∑

λ∈I1

|〈f, ψλ〉|
)2

. 2
j0
2 2−

J
2 2−2Jρ

( J∑

j=j0

2
3
2
j+Jρ

2 (24ρj2−3j2
Jρ
4 )
)2

. 2−
j0
2 2−J28Jρ. (40)

By (38), (39) and (40), we have

‖cJ,s − ĉJ,s‖22 . (J−1)2−
j0
2 2−J28Jρ. (41)

Case 2: j0 < J/4. First, in analogy with the previous case, we observe that

Λ̃J,s ∩ (Λ̃0
J,s)

c

= {λ = (j, s,m, p) ∈ Λ̃J,s : int(supp(ψ
♯
λ)) ∩ Γ ∩ int(Qj,ℓ) 6= ∅ and |k̂j,s(ℓ)| > 2

J−j
4

for Qj,ℓ ∈ Qj , j = J/4, . . . , J}
∪ {λ = (j, s,m, p) ∈ Λ̃J,s : int(supp(ψ

♯
λ)) ∩ Γ = ∅, j = J/4, . . . , J}

=: Ĩ1 ∪ Ĩ2.

Hence,

‖cJ,s − ĉJ,s‖22 . (J−1)2
j0
2 2−

J
2 2−2Jρ

(∑

λ∈Ĩ1

|〈f, ψλ〉|+
∑

λ∈Ĩ2

|〈f, ψλ〉|
)2

For each term
∑

λ∈Ĩr |〈f, ψλ〉| with r = 1, 2, we next apply the same argument as in Case 1
except for replacing j0 by J/4, which similarly yields

‖cJ,s − ĉJ,s‖22 . (J−1)2−
j0
2 2−J28Jρ. (42)
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This shows that this estimate actually holds for each s ∈ SJ/2.
Concluding this part, since

♯({s(⌈j ′/2⌉, q′

) ∈ SJ/2 : j
′

= j0}) . 2j0/2,

(41) and (42) imply

(I) .
J∑

j0=0

(2
j0
2 )(J−1)(2−

j0
2 2−J2

13Jρ
2 ) . 2−J(1−8ρ). (43)

Also, (II) can be estimated to show
∑

j≥J

∑

λ∈Λj

|〈f, ψλ〉|2 . 2−J(1−8ρ) (44)

in the same way as in the proof of Theorem 2.10 in [19]. For (III), note that there exist
about 22j+p shearlets ψλ with λ = (j, s,m, p) ∈ Λ for each fixed j and p ≥ 0, since |s| . 2j/2.

Moreover, there exist about |Aj| · |D−1
p | = 2

3
2
j2p translates for each shear parameter s. In

particular, this implies

♯
(
{λ = (j, s,m, p

′

) ∈ Λj : p
′

= p}
)
. 22j+p. (45)

Here, we only need to count the number of shearlets ψλ with int(supp(ψλ))∩int(supp(f)) 6= ∅.
Now using Proposition 4.5 and (45), we obtain

J∑

j=0

∑

λ∈Λj∩(Λ0
j )

c

|〈f, ψλ〉|2 .

J∑

j=0

∑

p>J
2
ρ

22j+p2−αp

. 2−( (α−1)ρ
2

−2)J ≤ 2−J . (46)

For the last inequality, we used α ≥ 6
ρ
+ 1.

Inserting the estimates for (I), (II), and (III), namely (43), (44), and (46), respectively,
into (37) and using Lemma 3.2 completes the proof. �

5. Numerical Results

In this section, we provide numerical results for our directional sampling scheme de-
scribed in Subsection 3.5. We first provide details on the implementation of our sampling-
reconstruction scheme, which we will in this section also refer to as directional sampling-
reconstruction scheme, or, if only the sampling part is meant, as directional sampling scheme.
This part will be followed be numerical experiments on comparison of our scheme with other
previously developed schemes.

5.1. Implementation of our Sampling-Reconstruction Scheme. We start by recalling
the notion of the discrete Fourier transform F of a sequence {a(n)}n∈Zd, which is defined by

F(a)(ξ) =
∑

n∈Zd

e−2πin·ξ.
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5.1.1. Discretization of the Filters Gd
s. We first describe the discretization of the filters G̃d

s

from (5) and their duals. In [20], we developed digital shearlet filters ψdj and φd, which can

be used to discretize ĝ(A−1
j ξ) and ϕ̂0(ξ) in (5) by taking the discrete Fourier transform F .

Utilizing those, we obtain a discrete version of Ĝ0 defined in (5) given as

F(Gd
0)(ξ) = |F(φd)(ξ)|2 +

J∑

j=0

|F(ψdj )(ξ)|2.

Notice that we only take scales j up to j = J with some finite scale J for a given N×N digital
image u with N ∼ 2J . Later we will choose J = 2 and 4 so that the shearing parameters
s ∈ SJ/2 for the directional filters Gs are given as s = −1/2, 0, 1/2 and s = −3/4, . . . , 3/4,
respectively.

Continuing, for each s ∈ SJ/2, we then apply a linear operator Sds faithfully discretizing
Ss to obtain the digital directional filters

F(Gd
s)(ξ) = F(Sds (G

d
0))(ξ),

which now discretizes Ĝs(ξ) in (5). We refer to [20] for more details on the digital shear
operator Sds . Note that, for all s ∈ SJ/2, we have fixed j0 in (5) as j0 = 0 for our directional
filters Gd

s to simplify our implementation. For an illustration of F(Gd
s), we refer to Figure 1.

(a) (b)

Figure 1. (a) 2D plot of F(Gd
s) with s = 1. (b) F(Gd

s) with s = 0.

In addition to those filters, we also need directional filters for Gs ◦ R. These filters are
obtained by simply switching the variables. To simplify our presentation, we only consider
Gd
s associated with Aj and Ss.

We can now define dual filters G̃d
s for G

d
s by

F(G̃d
s) =

F(Gd
s)∑

s∈SJ/2
|F(Gd

s)|2
,

where the bar denotes the complex conjugate. As in [20], one can ensure
∑

s∈SJ/2
|F(Gd

s)|2 >
C for some C > 0 with a suitable choice for digital shearlet filters ψj . From this, we have
the following reconstruction formula:

u =
∑

s∈SJ/2

G̃d
s ⋆ G

d
s ⋆ u
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where ⋆ is a discrete circular convolution.

5.1.2. Discretization of our Sampling Scheme ∆J . For the probability density function pJ,s,
in the implementation we use

pJ,s(n) =
cs

(1 + |n1|)5(1 + |2J/2n2 − sn1|)5
(47)

for s ∈ SJ/2 rather than the one defined in (9) to incorporate the sparsity and anisotropy
of shearlets. The reason being that we found this choice to in fact provide even better
performance. From this, we define ∆J,s by the set of Fourier sampling points randomly
drawn according to the probability density function (47) and let

∆J =
⋃

s∈SJ/2

∆J,s.

Notice that for ∆J,s, we simply take the same number of sampling points for each s ∈ SJ/2,
and the total number of Fourier samples to be given as

♯(∆J) =
∑

s∈SJ/2

♯(∆J,s).

With this set ∆J , we can now define our random mask operator P∆J
such that P∆J

(u)(n)
equals u(n) if n ∈ ∆J and 0 otherwise. The Fourier sampling points ∆J obtained by our
directional sampling scheme, are illustrated in Figure 2(a).

(a) (b)

Figure 2. Subsampling maps for Fourier measurements with 5% subsam-
pling with sampling set ∆J : (a) Subsampling map for our directional sampling
scheme – for this, we take a union of all directional subsampling maps ∆J,s.
(b) Subsampling map obtained with variable density sampling for wavelets –
see [23] and [15].
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5.1.3. Discretization of the Reconstruction Scheme R(f,∆J). Having defined the directional
filters Gd

s, we now turn to derive a discretization for implementing our reconstruction scheme
(16) and (17). For this, we first let WJ be the discrete wavelet transform associated with
the anisotropic scale matrix Aj up to the finest scale j = J . For more details on WJ , we
refer to [21].

Next, note that PΨJ,s
in (17) is given as (12), where the basis elements σλ are obtained by

applying the shear operator Ss for anisotropic wavelets associated with Aj for each s ∈ S.
Therefore, for a given finite sequence of coefficients c = (cλ)λ∈Λ̃J,s

, the wavelet expansion∑
λ∈Λ̃J,s

cλσλ can be discretized by Sds (W∗
J(c)), where W∗

J is the conjugate transpose of WJ

and WJW∗
J = W∗

JWJ = I.
We are now ready to derive our discrete implementation for (17) as follows. For this, we

let u be a target image we want to recover from Fourier samples given by y = P∆J
F(u).

This is then achieved by first applying the discretization of (17) given by

ĉs = argmin ‖cs‖1 subject to F(Gd
s)⊙ y = P∆J

F(Sds (W∗
J (cs))) (48)

for each s ∈ SJ/2, where ⊙ is entry-wise multiplication between two vectors. After obtaining
coefficient vectors ĉs from (48), we then combine those coefficient sequences by the discrete
version of (16) given as

û =
∑

s∈SJ/2

G̃d
s ⋆ S

d
s (W∗

J(ĉs)),

to obtain the reconstructed image û.

5.2. Comparison with other Schemes. We now compare our directional sampling scheme
with the wavelet based sampling scheme in [23] as well as a shearlet based sampling scheme.
For the second scheme, we take a standard shearlet system as implemented in ShearLab [20]
with the same Fourier measurements we used for our directional sampling scheme, i.e., we
solve

min
g

‖ΨJg‖1 subject to P∆J
(F(u− g)) = 0,

where ΨJ is the shearlet transform up to scale J . To be more precise, we consider the
following sampling schemes:

• shear08: Our directional sampling scheme with 8 directional filters. The redundancy
of the associated shearlet system is 8.

• shear16: Our directional sampling scheme with 16 directional filters. The redun-
dancy of the associated shearlet system is 16.

• shear: Shearlet based sampling scheme with a usual shearlet system and the same
subsamplng map as one used for our directional sampling scheme. For this, we used
a shearlet system with 4 4 8 8 directions across scales, which leads to a redundancy
of 25.

• wave01: Wavelet based sampling scheme with a subsampling map obtained by vari-
able density sampling – see [23] and [15].

• wave02: Wavelet based sampling scheme with the same subsampling map as the one
used for our directional sampling scheme.
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All schemes are implemented in MATLAB and tested on a CPU 2.7GHz with 4.00GB mem-
ory. Figure 2 illustrates each of the subsampling maps for directional sampling and variable
density sampling. The directionality becomes very evident in Figure 2(a) as compared to
(b).

Figure 3 shows PSNR values and running times for each of the sampling schemes for
two test images. It is evident that our directional sampling schemes shear08 and shear16

consistently outperform the wavelet based sampling schemes wave01 and wave02 in terms
of PSNR, while the running time of one of our directional sampling schemes, shear08 is
comparable with wavelet based sampling schemes. Moreover, with respect to PNSR our
new sampling scheme shear16 slightly outperforms the sampling scheme using the standard
shearlets shear, but its running time is significantly faster, in fact about 4–10 times faster
depending on sampling rate.

A visual comparison of the reconstruction accuracy is provided in Figure 4. As expected
from the previous observations, the shearlet based schemes outperform the wavelet based
schemes. In particular, Figure 4 (e)–(f) show that curvilinear edges are much better preserved
by using an anisotropic system for reconstruction.
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Figure 3. (a) 512 × 512 test image A. (b) 512 × 512 test image B. (c) PSNR
values for various sampling schemes for image A. (d) PSNR values for various
sampling schemes for image B. (e) Running time of each of the sampling
schemes for image A. (f) Running time of each of the sampling schemes for
image B.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Reconstructed images with wavelets and shearlets with our direc-
tional sampling using 5% Fourier coefficients for test image A: (a) Original
image. (b) wave01: Reconstructed image with wavelets with 27.02dB. (c)
shear16: Reconstructed image with our directional sampling scheme with
32.31dB. (d) Original image (Zoom in). (e) wave01: Zoomed image for (b).
(f) shear16: Zoomed image for (c).
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