
CONVERGENCE ANALYSIS OF A FAMILY OF ROBUST KALMAN
FILTERS BASED ON THE CONTRACTION PRINCIPLE∗

MATTIA ZORZI †

Abstract. In this paper we analyze the convergence of a family of robust Kalman filters. For
each filter of this family the model uncertainty is tuned according to the so called tolerance parameter.
Assuming that the corresponding state-space model is reachable and observable, we show that the
corresponding Riccati-like mapping is strictly contractive provided that the tolerance is sufficiently
small, accordingly the filter converges.
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1. Introduction. Robust Kalman filtering is a computational tool with widespread
applications in many fields, e.g. [22]. In this paper we consider the parametric family
of robust Kalman filters introduced in [28], see also the former works [17], [16], [9].
The parameter describing this family is denoted by τ . Once τ is fixed, the model
uncertainty is represented by a ball which is about the nominal model and formed
by placing a bound on the τ -divergence, [27], [25], [26], between the actual and the
nominal model. The bound is fixed by the user and represents the tolerance of the
mismatch between the actual and the nominal model. Then, the robust filter is ob-
tained by minimizing the mean square error according to the least favorable model in
this ball. Interestingly, relaxing the assumption that the actual model belongs to the
ball, we obtain a family of risk sensitive filters parametrized by τ wherein the toler-
ance parameter is replaced by the so called risk sensitivity parameter. In particular,
for τ = 0 we obtain the usual risk sensitive filter, see [3, 12,19,21].

In this paper we analyze the convergence of this family of discrete-time robust
Kalman filters. More precisely, we prove that the error covariance, obeying to a
Riccati-like iteration, converges to a unique positive definite solution.

The convergence of Riccati-like iterations can be performed using classical argu-
mentations, [5–7]. Alternatively, the convergence analysis can be performed using the
contraction principle as in the former paper by Bougerol [4]. More precisely, under
reachability and observability assumptions, he proved that the discrete-time Riccati
iteration is a strict contraction for the Riemann metric associated to the cone of posi-
tive definite matrices. Interestingly, the same result holds using the Thompson’s part
metric [8,15]. The latter metric is more effective than the former in the sense that it
gives a tighter bound on the convergence rate of the iteration. It is also worth noting
that the contraction principle has been used also to prove the convergence of different
kinds of nonlinear iterations [13–15].

The convergence analysis that we present here is based on the contraction prin-
ciple. This analysis takes the root from the paper [18]. The latter studies the conver-
gence of the risk sensitive Riccati iteration corresponding to the usual risk sensitive
filter. In particular, placing an upper bound on the risk sensitivity parameter it is
possible to prove that the N -fold composition of the risk sensitive Riccati mapping is

∗This work has been partially supported by the FIRB project “Learning meets time”
(RBFR12M3AC) funded by MIUR.
†M. Zorzi is with the Dipartimento di Ingegneria dell’Informazione, Università di Padova, via
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2 M. ZORZI

strictly contractive for the Thompson’s part metric. Since the robust Kalman filter
with τ = 0 can be understood as the usual risk sensitive filter where the risk sensitiv-
ity parameter is now time-varying, it is possible to characterize an upper bound on
the tolerance of this robust filter in such a way that the time-varying risk sensitivity
parameter is sufficiently small. In this way, the N -fold composition of the mapping is
strictly contractive and thus the robust filter converges, [29]. In this paper we extend
these results for the entire family of robust Kalman filters.

The outline of the paper is as follows. In Section 2 we recall the Thompson’s
part metric for positive definite matrices and the properties of contraction mappings.
In Section 3 we review the robust Kalman filter, we derive the downsampled version
and the corresponding N -fold Riccati iteration. In this way we are able to derive a
condition for which the iteration is strictly contractive. In Section 4 we translate this
condition in terms of upper bound on the tolerance of the robust filter. In Section 5
an illustrative example is provided. In Section 6 deals with the convergence analysis
of the family of τ -risk sensitive filters. Finally, we draw the conclusions in Section 7.

Notation. Given x ∈ Rn, ‖x‖ denotes the Euclidean norm of x, and ‖x‖K denotes
the weighted Euclidean norm with weight matrixK positive definite. The i-th singular
value of P ∈ Rn×n is denoted by σi(P ) and σ1(P ) ≥ σ2(P ) ≥ . . . ≥ σn(P ). ‖P‖
denotes the spectral norm of P , i.e. ‖P‖ = σ1(P ). Qn denotes the vector space of
symmetric matrices of dimension n× n. The cone of positive definite matrices in Qn
is denoted by Qn+, and its closure by Q̄n+. diag(d1 . . . dn) denotes the diagonal matrix
with elements in the main diagonal d1, . . . , dn; similarly blkdiag(P1 . . . Pn) denotes
the block-diagonal matrix with matrices in the main block-diagonal P1, . . . , Pn. Given
P ∈ Qn+ with eigendecomposition P = UDUT such that U is an orthogonal matrix
and D = diag(σ1(P ) . . . σn(P )), the exponentiation of P to a real number τ is defined
as P τ = UDτUT with Dτ = diag(σ1(P )τ . . . σn(P )τ ). Similarly, we define exp(P ) =
U exp(D)UT with exp(D) = diag(eσ1(P ) . . . eσn(P )) and log(P ) = U log(D)UT with
log(D) = diag(log(σ1(P )) . . . log(σn(P ))).

2. Thompson’s part metric and contraction mappings. Let P and Q be-
long to Qn+. The Thompson’s part metric [2] between P and Q is defined as

dT (P,Q) = ‖ log(P−1/2QP−1/2)‖
= max{log(σ1(P−1Q)), log(σ1(Q−1P ))}.

Beside all the traditional properties of a distance, dT has the feature that it is invariant
under matrix inversion and congruence transformations.

Let h(·) be an arbitrary mapping in Qn+. We say that h is strictly contractive if
its contraction coefficient (or Lipschitz constant)

ξ(h) = sup
P,Q∈Q+

n ,P 6=Q

dT (h(P ), h(Q))

dT (P,Q)

is less than one. Since the metric space (Qn+, dT ) is complete [20], if h is a strict
contraction of Qn+ for the distance dT , by the Banach fixed point theorem, [1, p.
244], there exists a unique fixed point P of h in Qn+ satisfying P = h(P ). Moreover,
this fixed point is given by performing the iteration Pk+1 = h(Pk) starting with any
P0 ∈ Qn+. Consider the downsampled iteration P dk+1 = hNk (P dk ) where P dk = PkN and

N is an integer. Here, hNk is the N -fold composition of h at step kN . If hNk is strictly
contractive for k ≥ q̃ with q̃ fixed, then h has a unique fixed point given as before. In
this paper we will need the next Lemma [15, Th. 5.3].
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Lemma 2.1. Let W1,W2 ∈ Qn+. Then, the mapping

h(P ) = M(P−1 +W1)−1MT +W2

is strictly contractive with

ξ(h) ≤


√
σ1(W−1

1 MTW−1
2 M)

1 +
√

1 + σ1(W−1
1 MTW−1

2 M)

2

.

It is worth noting that the results outlined in this Section also hold using the Riemann
metric [4]. On the other hand, the Thompson’s part metric is more effective than the
Riemann one because it provides a tighter bound on the convergence rate of the
previous iteration.

3. Contraction property of the robust Kalman filters. Consider the state-
space model

xk+1 = Axk +Bvk

yk = Cxk +Dvk (3.1)

where xk ∈ Rn is the state process, yk ∈ Rp is the observation process and vk ∈ Rm
is white Gaussian noise with unit variance, i.e. E[vkv

T
k ] = Im. The initial state

x0 is assumed to be independent of vk. Moreover, its nominal probability density
is f0(x0) ∼ N (x̂0, V0). Model (3.1) is completely described by the nominal joint
Gaussian probability density fk(xk+1, yk|Yk−1) of xk+1 and yk conditioned on Yk−1 :=
[ y0 . . . yk−1 ]T . We consider the family of robust Kalman filters [28], [17] parametrized
by τ ∈ [0, 1]:

x̂k+1 = argmin
gk∈Gk

max
f̃k∈Bck,τ

Ef̃k [‖xk+1 − gk(yk)‖2|Yk−1]

where Ef̃k [·|Yk−1] is the conditional expectation taken with respect to f̃k(xk+1, yk|Yk−1)
which is the least-favorable joint Gaussian probability density of xk+1 and yk con-
ditioned on Yk−1. Bck,τ is a ball about the nominal density fk(xk+1, yk|Yk−1) with
radius c:

Bck,τ = {f̃k(zk|Yk−1) s.t. Dτ (f̃k‖fk) ≤ c}

where Dτ is the τ -divergence family with parameter τ ∈ [0, 1] and defined as follows.

Let f̃ and f be two q-dimensional Gaussian probability densities with mean vector
m̃z,mz and covariance matrix K̃z,Kz, respectively. Then, the τ -divergence family is
defined as

Dτ (f̃‖f) =
‖∆mz‖2K−1

Z

+ tr
(
− log(K̃zK

−1
z ) + K̃zK

−1
z − Iq

)
, τ = 0

1
1−τ ‖∆mz‖2K−1

Z

+ tr
(

1
τ(τ−1)

(L−1
z K̃zL

−T
z )τ + 1

1−τ K̃zK
−1
z + 1

τ
Iq
)
, 0 < τ < 1

δ(∆mz) + tr
(
L−1
z K̃zL

−T
z log(L−1

z K̃zL
−T
z )− K̃zK

−1
z + Iq

)
, τ = 1

where ∆mz = mz − m̃z and Lz is such that Kz = LzL
T
z . Note that, Dτ (f̃‖f)

coincides with the Kullback-Leibler divergence for τ = 0, [24]. To understand the role
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of parameter τ in Bck,τ consider the ball Bcτ := {f̃ : Dτ (f̃‖f) ≤ c}. In [27], it has
been shown that, increasing τ and choosing c in such a way that the measure of Bcτ
remains constant, then the uncertainty described by Bcτ increases for the covariance
matrix while it decreases for the mean vector. Accordingly, τ tunes how to allocate the
mismodeling budget between the mean vector and the covariance matrix. c is referred
to as tolerance and measures the model uncertainty. Gk is the class of estimators with
finite second-order moments with respect to all densities f̃k(xk+1, yk|Yk−1) ∈ Bck,τ .
The resulting estimator obeys the recursion:

x̂k+1 = Ax̂k +Gk(yk − Cx̂k) (3.2)

where Gk is the gain matrix

Gk = (AVkC
T +BDT )(CVkC

T +DDT )−1. (3.3)

If xk − x̂k denotes the state prediction error at time k, its pseudo-nominal and least-
favorable covariance matrix is denoted by Pk and Vk, respectively. Then, the latter
obey to the Riccati-like iteration:

Pk+1 = AVkA
T −Gk(CVkC

T +DDT )GTk +BBT (3.4)

Vk+1 =

 LPk+1

(
In − θk(1− τ)LTPk+1

LPk+1

) 1
τ−1

LTPk+1
, 0 ≤ τ < 1

LPk+1
exp

(
θkL

T
Pk+1

LPk+1

)
LTPk+1

, τ = 1
(3.5)

where LPk+1
is such that Pk+1 = LPk+1

LTPk+1
and θ−1

k > (1− τ)‖Pk+1‖ is the unique
solution to

c = γτ (Pk+1, θk) (3.6)

where γτ is defined as:

γτ (P, θ) =


− log det(In − θP )−1 + tr((In − θP )−1 − In), τ = 0

tr(− 1
τ(1−τ) (In − θ(1− τ)LTPLP )

τ
τ−1

+ 1
1−τ (In − θ(1− τ)LTPLP )

1
τ−1 + 1

τ In), 0 < τ < 1

tr(exp(θLTPLP )(θLTPLP − In) + In), τ = 1.

(3.7)

θk is called risk sensitivity parameter and it is time-varying. In the case that c = 0, i.e.
no uncertainty in the nominal model, we obtain the usual Kalman filter. Regarding the
performance analysis of this family of robust Kalman filters with respect to parameter
τ we refer to [28]. It is worth noting, in view of (3.5), we have that Pk+1 < Vk+1.
To study the asymptotic behavior of this robust Kalman filter, the matrices A, B,
C, D and the tolerance c are assumed to be constant. Without loss of generality
we assume that BDT = 0. Otherwise, we can rewrite the filter (3.2)-(3.7) with
Ã = A − BDT (DDT )−1C, B̃ such that B̃B̃T = B(I − DT (DDT )−1D)BT , C̃ = C
and D̃ = D. In this way B̃D̃T = 0. Substituting (3.3) in (3.4) and using the
Woodbury formula, we obtain the Riccati-like iteration

Pk+1 = rτ,c(Pk) := A(V −1
k + CT (DDT )−1C)−1AT +BBT . (3.8)

Defining the positive definite matrix

Φk = P−1
k+1 − V

−1
k+1
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we have

rτ,c(Pk) = A(P−1
k − Φk−1 + CT (DDT )−1C)−1AT +BBT . (3.9)

The mapping in (3.9) has the same structure of the risk sensitive Riccati mapping,
[21]. Accordingly, the robust filter (3.2)-(3.7) can be interpreted as solving a standard
least-square filtering problem with time-varying parameters in Krein space, [10, 11].
The Krein state-space model consists of dynamics and observations in (3.1), to which
we must adjoin the new observations 0 = xk + uk. The components of noise vectors
vk and uk now belong to a Krein space and have the inner product

〈[
vk
uk

]
,

[
vs
us

]〉
=

[
Im 0
0 −Φ−1

k−1

]
δk−s

where δk denotes the Kronecker delta function. Since xk is Gauss-Markov, the down-
sampled process xdk := xkN , with N integer, is also Gauss-Markov with state-space
model

xdk+1 = ANxdk +RNvNk

yNk = ONxdk +DNvNk +HNvNk

0 = ORNxdk + uNk + LNvNk (3.10)

where

vNk =
[
vTkN+N−1 vTkN+N−2 . . . vTkN

]T
uNk =

[
uTkN+N−1 uTkN+N−2 . . . uTkN

]T
yNk =

[
yTkN+N−1 yTkN+N−2 . . . yTkN

]T
.

In model (3.10) we have

RN =
[
B AB . . . AN−1B

]
ON =

[
(CAN−1)T . . . (CA)T CT

]T
ORN =

[
(AN−1)T . . . (A)T I

]T
DN = IN ⊗D.

Note that, RN and ON denote, respectively, the N -block reachability and observabil-
ity matrices of model (3.1), where the blocks forming ON are written from bottom to
top instead of the usual top to bottom convention. In (3.10), if

Hk =

{
CAk−1B k ≥ 1

0 otherwise

Lk =

{
Ak−1B k ≥ 1

0 otherwise
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HN and LN are block Toeplitz matrices defined as follows

HN =



0 H1 H2 · · · HN−2 HN−1

0 0 H1 H2 · · · HN−2

0 0 0 H1 · · · HN−3

...
...

...
...

...
0 0 · · · · · · 0 H1

0 0 · · · · · · · · · 0



LN =



0 L1 L2 · · · LN−2 LN−1

0 0 L1 L2 · · · LN−2

0 0 0 L1 · · · LN−3

...
...

...
...

...
0 0 0 · · · · · · L1

0 0 0 · · · · · · 0


.

We define

JN = ORN − LNHTN [DNDTN +HNHTN ]−1ON
ΩN = OTN (DNDTN +HNHTN )−1ON .

Along similar lines used in [29], it is not difficult to see that the time-varying Riccati it-
eration associated to the downsampled model (3.10) takes the form P dk+1 = rdτ,c,k(P dk )
where

rdτ,c,k(P dk ) := αN,k[(P dk )−1 + ΩΦ̄N,k ]−1αTN,k +WΦ̄N,k (3.11)

ΩΦ̄N,k = ΩN + J TNS−1
Φ̄N,k
JN

WΦ̄N,k = RNQΦ̄N,kR
T
N

with

SΦ̄N,k = −Φ̄−1
N,k + LN (INm +HTN (DNDTN )−1HN )−1LTN

QΦ̄N,k = [INm +HTN (DNDTN )−1HN − LTN Φ̄N,kLN ]−1

Φ̄N,k = blockdiag(ΦkN+N−2,ΦkN+N−3, . . . ,ΦkN−1).

αN,k = AN −RN (HTNK−1
Φ̄N,k
ON + LTNK−1

Φ̄N,k
ORN )

KΦ̄N,k =

[
DNDTN +HNHTN HNLTN

LNHT −Φ̄−1
N,k + LNLNN

]
where we exploited the fact that DNHTN = 0 and DNLTN = 0 because BDT = 0.

Proposition 3.1. Let

φ̃N =
1

σ1(LN (INm +HTN (DNDTN )−1HN )−1LTN )
> 0.

Assume that the pairs (A,B) and (A,C) are reachable and observable, respectively.
Then, there exits φN , with 0 < φN < φ̃N and N ≥ n, such that if 0 ≤ Φ̄ ≤ φNInN
then ΩΦ̄ and WΦ̄ are positive definite.

Proof. It is not difficult to see that QΦ̄ is positive definite and SΦ̄ negative definite
for 0 ≤ Φ̄ < φ̃NInN . The mapping Φ̄ 7→ WΦ̄ is nondecreasing with respect to the



CONVERGENCE OF ROBUST KALMAN FILTERS 7

partial order of symmetric matrices over 0 < Φ̄ < φ̃nInN because its first variation
along a direction δΦ̄ ∈ Q̄Nn+ is

δ(WΦ̄; δΦ̄) = RNQΦ̄LTNδΦ̄LNQΦ̄RTN ≥ 0.

Note that, WΦ̄=0 = RN (INm + HTN (DNDTN )−1HN )−1RTN which is positive definite
for N ≥ n because the pair (A,B) is reachable and thus RN has full row rank.
Accordingly, WΦ̄ is positive definite for 0 < Φ̄ < φ̃NInN . The mapping Φ̄ 7→ ΩΦ̄ is
nonincreasing for 0 < Φ̄ < φ̃NInN because its first variation along δΦ̄ ∈ Q̄Nn+ is

δ(ΩΦ̄; δΦ̄) = −J TNS−1
Φ̄

Φ̄−1δΦ̄Φ̄−1S−1
Φ̄
JN ≤ 0.

Moreover, ΩΦ̄=0 = ΩN which is positive definite for N ≥ n because the pair (A,C)
is observable. Accordingly, there exists a constant φN such that 0 < φN < φ̃N and
both WΦ̄ and ΩΦ̄ are positive definite for 0 < Φ̄ ≤ φNINn.

Remark 3.1. By the proof of Proposition 3.1, one can see that φN can be com-
puted as follows: set φN = φ̃N and check whether ΩφNINn is positive definite or not.
If not, we decrease φN until ΩφNINn becomes positive definite.

By Lemma 2.1, the mapping rdτ,c,k(·) is strictly contractive provided that the
matrices ΩΦ̄N,k and WΦ̄N,k are positive definite. In view of Proposition 3.1, if for
some fixed q̃ > 0 the following condition holds

Φ̄N,k ≤ φNInN , k ≥ q̃, (3.12)

then the N -fold composition rdτ,c,k(·) is strictly contractive for k ≥ q̃ and thus rτ,c(·)
is strictly contractive as well.

4. Characterization of the range of the tolerance. In this Section, we
characterize a range of c for which condition (3.12) holds. The proofs of this Section
only consider the case 0 < τ < 1 because the results for the case τ = 1 can be proved
along similar lines, and the case τ = 0 has been already proved in [29]. Condition
(3.12) is equivalent to the condition

Φk ≤ φNIn, k ≥ q + 1 (4.1)

for some q > 0 fixed. Through the next two Lemmas we will be able to derive a
condition on θk which implies condition (4.1).

Lemma 4.1. Let P̄k+1 = r(P̄k), with P0 = BBT , be the convergent iteration
generated by the usual Riccati mapping

r(Pk) := A(P−1
k + CT (DDT )−1C)AT +BBT .

Consider the sequence generated by (3.8). Then, Pk ≥ P̄q, with k ≥ q + 1 for any
q ≥ 0.

Proof. It is well known that the sequence {P̄k} is nondecreasing with respect to
the partial order of the symmetric matrices. Accordingly, it is sufficient to prove that
Pk+1 ≥ P̄k, k ≥ 0. For this aim, we define the risk sensitive Riccati mapping, [21],

rRSΦ (Pk) := A(P−1
k − Φ + CT (DDT )−1C)AT +BBT
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where Φ is a positive semidefinite matrix. For k = 0, we have P1 = rτ,c(P0) ≥ BBT =
P̄0. Assume that Pk ≥ P̄k−1, then

Pk+1 = rτ,c(Pk) = rRSΦk−1
(Pk) ≥ r(Pk) ≥ r(P̄k−1) = P̄k

where we exploited the fact that rRSΦ (P ) ≥ r(P ) for any Φ positive semidefinite and
P such that 0 < P < Φ−1, [21], and the fact that r(·) is a nondecreasing mapping
with respect to the partial order of the symmetric matrices.

Lemma 4.2. Let d̄ be such that Pk+1 ≥ d̄In > 0, then

Φk ≤

{
1−(1−θk(1−τ)d̄)

1
1−τ

d̄
In 0 ≤ τ < 1

1−exp(−θkd̄)

d̄
In τ = 1.

Proof. Consider the function

fθ(d̄) =
1− (1− θ(1− τ)d̄)

1
1−τ

d̄

defined over the set S = {d̄ s.t 0 < d̄ < (θ(1− τ))−1} and θ > 0. Then,

d

dd̄
fθ(d̄) =

−1 + gθ(d̄)

d̄2
(4.2)

where

gθ(d̄) = (1− θ(1− τ)d̄)
1

1−τ−1(1 + θτ d̄).

It is not difficult to see that

d

dd̄
gθ(d̄) = −θ2d̄τ(1− θ(1− τ)d̄)

1
1−τ−2

which is nonpositive for d̄ ∈ S. Accordingly, g is a nonincreasing function over S and

gθ(d̄) ≤ lim
d̄→0+

gθ(d̄) = 1.

Accordingly, the first derivative of fθ in (4.2) is nonpositive over S, i.e. fθ is nonin-
creasing over S.

Let LPk+1
= Ũk+1D

1
2

k+1U
T
k+1 be the singular value decomposition of LPk+1

, hence

Ũk+1Ũ
T
k+1 = In, Uk+1U

T
k+1 = In and D

1
2

k+1 = diag(. . . d
1
2

i,k+1 . . .) positive definite.
Therefore, we have

V −1
k+1 = L−TPk+1

(
In − θk(1− τ)Uk+1Dk+1U

T
k+1

) 1
1−τ L−1

Pk+1

= L−TPk+1

(
Uk+1U

T
k+1 − θk(1− τ)Uk+1Dk+1U

T
k+1

) 1
1−τ L−1

Pk+1

= L−TPk+1
Uk+1 (In − θk(1− τ)Dk+1)

1
1−τ UTk+1L

−1
Pk+1

= Ũk+1diag

(
. . . ,

(1− θk(1− τ)di,k+1)
1

1−τ

di,k+1
, . . .

)
ŨTk+1.
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Since the singular value decomposition of Pk+1 is Pk+1 = Ũk+1diag (. . . , di,k+1, . . .) Ũ
T
k+1,

we have

Φk = P−1
k+1 − V

−1
k+1

= Ũk+1diag

(
. . .

1− (1− θk(1− τ)di,k+1)
1

1−τ

di,k+1
. . .

)
ŨTk+1

= Ũk+1diag(. . . , fθk(di,k+1), . . .)ŨTk+1.

By assumption, d̄ ≤ di,k+1, i = 1 . . . n, therefore we have fθk(di,k+1) ≤ fθk(d̄),

i = 1 . . . n. Accordingly, Φk ≤ Ũk+1diag(. . . , fθk(d̄), . . .)ŨTk+1 = fθk(d̄)In which con-
cludes the proof.

Fixed q > 0, by Lemma 4.1, for the sequence generated by (3.8) we have Pk ≥
P̄q ≥ σn(P̄q)In, ∀ k ≥ q + 1, and by Lemma 4.2 we have

Φk ≤
1− (1− θk(1− τ)σn(P̄q))

1
1−τ

σn(P̄q)
In, ∀ k ≥ q + 1.

Therefore, the condition

1− (1− θk(1− τ)σn(P̄q))
1

1−τ

σn(P̄q)
≤ φN ,

or equivalently

θk ≤
1− (1− σn(P̄q)φN )1−τ

(1− τ)σn(P̄q)
, (4.3)

implies (4.1). In particular, for τ = 1 we obtain

θk ≤
− log(1− σn(P̄q)φN )

σn(P̄q)
.

The next Lemma is needed to derive a condition on c which implies condition
(4.3), and thus also condition (4.1).

Lemma 4.3. Assuming that 0 < θ < ((1− τ)‖P‖)−1, the following facts hold:
1. γτ (P, ·) is monotone increasing over R+

2. If P ≥ Q then γτ (P, θ) ≥ γτ (Q, θ)
3. γτ (P, θ) > 0 for any P ∈ Q̄+

n with P 6= 0.
Proof. 1) The statement has been proved in [27].

2) First, note that

γτ (P, θ) = tr

(
− 1

τ(1− τ)
(In − θ(1− τ)P )

τ
τ−1 +

1

1− τ
(In − θ(1− τ)P )

1
τ−1 +

1

τ
In

)
.

To prove the statement, we show that the first variation of γτ (P, θ) with respect to P
in any direction Q ∈ Q̄+

n is nonnegative:

δγτ (P, θ;Q) =
θ

1− τ
tr(−(I − θ(1− τ)P )

1
τ−1Q+ (I − θ(1− τ)P )

2−τ
τ−1Q)

= θ2 tr(P (I − θ(1− τ)P )
2−τ
τ−1Q)

= θ2 tr(P
1
2 (I − θ(1− τ)P )

2−τ
2(τ−1)Q(I − θ(1− τ)P )

2−τ
2(τ−1)P

1
2 ) ≥ 0
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where we exploited the fact that (I − θ(1− τ)P )
2−τ
τ−1 and P commutes.

3) γτ (P, θ) is equal to the β-divergence between the covariance matrices (In − θ(1 −
τ)P )

1
τ−1 and In, [23]. Since (In − θ(1− τ)P )

1
τ−1 6= In, we get γτ (P, θ) > 0.

We know that Pk+1 ≥ P̄q ∀ k ≥ q, which is equivalent to say Pk ≥ P̄q ∀ k ≥ q+ 1.
Then, by Lemma 4.3, condition γτ (Pk+1, θk) = γτ (P̄q, θ̄) implies that

θk ≤ θ̄, ∀ k ≥ q.

Figure 4.1 shows this situation. Thus, (4.1) holds if we choose c in a such way that

θ̄ ≤ 1−(1−σn(P̄q)φN )1−τ

(1−τ)σn(P̄q)
.

0 0.5 1 1.5 2 2.5

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

 

 

γτ (P̄q, θ)

γτ (Pk+1, θ)

θk θ̄

γτ (P̄q, θ̄)

Fig. 4.1. Function γτ with Pk+1 ≥ P̄q.

Theorem 4.1. Let model (3.1) be such that (A,B) and (A,C) are reachable and
observable, respectively. Let c be such that 0 < c ≤ cMAX with

cMAX =

 γτ

(
P̄q,

1−(1−σn(P̄q)φN )1−τ

(1−τ)σn(P̄q)

)
0 ≤ τ < 1

γ1

(
P̄q,

− log(1−σn(P̄q)φN )

σn(P̄q)

)
τ = 1

N ≥ n and q > 0 are fixed. Then, for any V0 ∈ Qn+, the sequence Pk generated by
iteration (3.8) converges to a unique solution P . Moreover, the limit G of the filtering
gain Gk as k →∞ has the property that A−GC is stable.

Proof. Since

c ≤ γτ
(
P̄q,

1− (1− σn(P̄q)φN )1−τ

(1− τ)σn(P̄q)

)
,

by Lemma 4.3 we have that (4.3) holds for k ≥ q and therefore Φ̄N,k ≤ φNInN for
k ≥ q̃ = d qN e. Accordingly, the mapping rdτ,c,k(·) is strictly contractive for k ≥ q̃.
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Since rdτ,c,k(·) is the N -fold composition of rc,τ (·), it follows that the sequence Pk
generated by (3.8) converges. By (3.6) the convergence of Pk implies the convergence
of θk to a unique value θ. Thus, (3.5) implies the convergence of Vk to a unique
solution V . Finally, the stability of A−GC can be proved by applying the Lyapunov
stability theory to the algebraic Riccati-like equation

P = (A−GC)V (A−GC)T +BBT +GGT .

Finally, it is not difficult to show that the mapping

q 7→ γτ

(
P̄q,

1− (1− σn(P̄q)φN )1−τ

(1− τ)σn(P̄q)

)
is nondecreasing. Thus, we have to choose q sufficiently large in order to find a bigger
cMAX .

5. Example. We consider the constant state space model (3.1) used in [18],

A =

[
0.1 1
0 1.2

]
, B =

[
1 0 0
0 1 0

]
C =

[
1 −1

]
, D =

[
0 0 1

]
.

The error covariance matrix at time k = 0 is chosen as V0 = I2. We study the
convergence of filter (3.2)-(3.7) with three different values for τ : τ = 0, τ = 0.5 and
τ = 1. Fixing q = 40, N = 50 we found that

P̄q = 102 ·
[

1.2568 1.3641
1.3641 1.5025

]
, φ̃N = 1.3335 · 10−3, φN = 1.3328 · 10−3.

Moreover, the robust Kalman filter (3.2)-(3.7) converges with tolerance in the range
[0, cMAX ] where

cMAX = 1.22 · 10−1 for τ = 0

cMAX = 1.01 · 10−1 for τ = 0.5

cMAX = 8.62 · 10−2 for τ = 1.

Now, we compare the performances of the following three filters:
• KF: the standard Kalman filter
• RKF0: the robust Kalman filter with τ = 0 and c = 1.22 · 10−1

• RKF05: the robust Kalman filter with τ = 0.5 and c = 1.01 · 10−1

• RKF1: the robust Kalman filter with τ = 1 and c = 8.62 · 10−2

that is we consider the robust Kalman filter with τ = 0, τ = 0.5, τ = 1 with the
corresponding maximum tolerance for which we know that it converges. In Figure
5.1 we show the pseudo-nominal variance of the state estimation error of the first
component of the state, that is the entry of Pk in position (1,1). In Figure 5.2 we show
the pseudo-nominal variance of the state estimation error of the second component
of xk, that is the entry in position (2,2) of Pk. Roughly speaking these quantities
represent the error variance computed using the nominal density fk but propagating
the previous least favorable density f̃k−1. The previous figures show that the Riccati-
like iteration converges after 20 steps for τ = 0, τ = 0.5 and τ = 1. In Figure 5.3,
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Fig. 5.1. Pseudo-nominal variance of the state estimation error of the first component of xk.
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Fig. 5.2. Pseudo-nominal variance of the state estimation error of the second component of xk.

we show the time-varying risk-sensitivity parameter θk which after 20 steps is already
constant. In Figure 5.4 and Figure 5.5 we consider the corresponding least-favorable
error variance, i.e. the error variance is computed by using the least-favorable density
f̃k and propagating the previous least favorable density f̃k−1. It is clear that RKF0,
RKF05 and RKF1 are very conservative with respect to the KF, i.e. their error
variances are larger than the ones given by KF. This means that, although the upper
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Fig. 5.3. Time-varying risk-sensitivity parameter θk in logarithmic scale.
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Fig. 5.4. Least-favorable variance of the state estimation error of the first component of xk.

bound cMAX we found is not tight, the range [0, cMAX ] contains a sufficiently large
class of robust estimators. In other words, with c close to zero we have robust Kalman
filters with performance similar to KF, while with c close to cMAX we have robust
Kalman filters very different than KF.

6. Convergence analysis of the τ-risk sensitive filters. Consider the state-
space model (3.1) and the corresponding nominal joint Gaussian probability density
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Fig. 5.5. Least-favorable variance of the state estimation error of the second component of xk.

fk(xk+1, yk|Yk−1). The family of risk sensitive filters [28] parametrized by τ ∈ [0, 1]
is given by

x̂k+1 = argmin
gk∈Gk

max
f̃k∈Bk,τ

Ef̃k [‖xk+1 − gk(yk)‖2 |Yk−1]− θ−1Dτ (f̃k‖fk) (6.1)

where f̃k is Gaussian, Bk,τ = {f̃k s.t. Dτ (f̃k‖fk) <∞} and Gk is the set of estimators
for which the objective function in (6.1) is finite. θ > 0 is the risk sensitivity parame-
ter. The second term in the objective function in (6.1) is always nonpositive because
Dτ (f̃k‖fk) ≥ 0. Therefore, for large values of θ the maximizer has the possibility to
take a probability density far from the nominal one. The τ -risk sensitive filter (6.1)
thus represents a relaxed version of the robust Kalman filter (3.2)-(3.7) where θ now
is constant and fixed by the user. For the case τ = 0 we obtain the usual risk sensitive
filter [3]. The resulting estimator obeys the recursion (3.2)-(3.4) with

Vk+1 =

 LPk+1

(
In − θ(1− τ)LTPk+1

LPk+1

) 1
τ−1

LTPk+1
, 0 < τ < 1

LPk+1
exp

(
θLTPk+1

LPk+1

)
LTPk+1

, τ = 1.

The study of the asymptotic behavior of the τ -risk sensitive filter requires to consider
two different cases: the case 0 < τ < 1 and the case τ = 1.

In the former case, the Riccati-like iteration has the same form of (3.8) but the
image of Qn+ under this mapping is not entirely contained in Qn+. The reason is that
condition Vk > 0 holds only if Pk is such that 0 < Pk < (θ(1 − τ))−1In and this
condition could be not satisfied. Following similar arguments used in [18] for the case
τ = 0, it is possible to find conditions on V0 and θ for which the trajectory of iteration
(3.8) satisfies Vk > 0 for any k > 0. However, these conditions on V0 and θ are rather
intricate and require to design a gain matrix and a scaling factor ρ2.
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For the case τ = 1, Vk is positive definite, and thus well defined, whenever Pk
is positive definite. Accordingly, the image of Qn+ under the corresponding mapping,
denoted by rτ=1,θ(·), is Qn+. Thus, the convergence of the iteration is guaranteed by
only imposing conditions on the risk sensitivity parameter θ.

Theorem 6.1. Let model (3.1) be such that (A,B) and (A,C) are reachable and
observable, respectively. Let θ be such that

θ ≤ − log(1− σn(P̄q)φN )

σn(P̄q)
, (6.2)

N ≥ n and q > 0 are fixed. Then, for any V0 ∈ Qn+, the sequence Pk generated by the
risk-sensitive filter with τ = 1 converges to a unique solution P . Moreover, the limit
G of the filtering gain Gk as k →∞ has the property that A−GC is stable.

Proof. We consider the downsampled process xdk with xdk = xkN and the corre-
sponding time-varying Riccati-iteration is P dk+1 = rdτ,θ,k(P dk ) where rdτ,θ,k(·) has the

same structure of (3.11). Let Φk = P−1
k+1−V

−1
k+1. Proposition 3.1 still holds. In partic-

ular, there exists φN such that if (4.1) holds then the matrices ΩΦ̄N,k and WΦ̄N,k are

positive definite. Accordingly, by Lemma 2.1 the N -fold mapping rdτ,θ,k(·) is strictly
contractive and thus also rτ=1,θ(·) is strictly contractive. Lemma 4.1 and Lemma 4.2
still hold, in particular

Φk ≤
1− e−σn(P̄q)θ

σn(P̄q)
In, ∀ k ≥ q + 1.

Finally, by imposing

1− e−σn(P̄q)θ

σn(P̄q)
≤ φN ,

which coincides with (6.2), then condition (4.1) holds. Thus, the sequence Pk con-
verges to a unique P as k →∞. The stability of A−GC follows as before.

It is clear that condition (6.2) on the risk sensitivity parameter is easy to check.
Accordingly, this filter is preferable than the risk-sensitive filter with 0 ≤ τ < 1.

7. Conclusions. A convergence analysis of a family of robust Kalman filters
has been presented. This analysis exploited the fact that the N -fold Riccati mapping,
which is given by downsampling these filters, is strictly contractive provided that
the time-varying risk-sensitive parameter is sufficiently small. This condition is then
guaranteed by placing an upper bound on the tolerance parameter of the robust filters.
Finally, we have studied the convergence property of a family of risk-sensitive filters
which can be understood as a relaxed version of the previous robust Kalman filters.
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