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Abstract

The usual approach to developing and analyzing first-order methods for smooth convex
optimization assumes that the gradient of the objective function is uniformly smooth with
some Lipschitz constant L. However, in many settings the differentiable convex function f(·)
is not uniformly smooth – for example in D-optimal design where f(x) := − ln det(HXHT )
and X := Diag(x), or even the univariate setting with f(x) := − ln(x) + x2. In this paper
we develop a notion of “relative smoothness” and relative strong convexity that is determined
relative to a user-specified “reference function” h(·) (that should be computationally tractable
for algorithms), and we show that many differentiable convex functions are relatively smooth
with respect to a correspondingly fairly-simple reference function h(·). We extend two standard
algorithms – the primal gradient scheme and the dual averaging scheme – to our new setting,
with associated computational guarantees. We apply our new approach to develop a new first-
order method for the D-optimal design problem, with associated computational complexity
analysis. Some of our results have a certain overlap with the recent work [6].

1 Introduction, Definition of “Relative-Smoothness,” and Basic

Properties

1.1 Traditional Set-up for Smooth First-Order Methods

Our optimization problem of interest is:

P : f∗ := minimumx f(x)

s.t. x ∈ Q ,
(1)

where Q ⊆ E is a closed convex set in the finite-dimensional vector space E with inner product
〈· , ·〉, and f(·) : Q→ R is a differentiable convex function.
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There are by now very many first-order methods for tackling the optimization problem (1), see
for example [15], [22], [19]; virtually all such methods are designed to solve (1) when the gradient
of f(·) satisfies a uniform Lipschitz condition on Q, namely there exists a constant Lf < ∞ for
which:

‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖ for all x, y ∈ Q , (2)

where ‖ · ‖ is a given norm on E and ‖ · ‖∗ denotes the usual dual norm. For example, consider
the standard gradient descent scheme, which presumes the norm in (2) is Euclidean, and uses the
following update:

xi+1 ← argmin
x∈Q

{

f(xi) + 〈∇f(xi), x− xi〉+ Lf

2 ‖x− xi‖22
}

. (3)

One can prove for the standard gradient descent scheme that after k iterations it holds for any
x ∈ Q that:

f(xk)− f(x) ≤ Lf‖x− x0‖22
2k

, (4)

which is an O(1/k) sublinear rate of convergence [15], [19]. Furthermore, if f(·) is also uniformly
µf -strongly convex for some µf > 0, namely:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µf
2 ‖y − x‖

2
2 for all x, y ∈ Q , (5)

then one can prove linear convergence for the gradient descent scheme, see [15], [19], i.e., for any
x ∈ Q we have that:

f(xk)− f(x) ≤ Lf
2

(

1− 2µf
Lf + µf

)k

‖x− x0‖22 . (6)

More general versions of first-order methods are not restricted to the Euclidean (‖ · ‖2) norm, and
use a differentiable “prox function” h(·), which is a 1-strongly convex function on Q, to define a
Bregman distance:

Dh(y, x) := h(y) − h(x)− 〈∇h(x), y − x〉 for all x, y ∈ Q (7)

which as a result satisfies
Dh(y, x) ≥ 1

2‖y − x‖
2 .

The standard Primal Gradient Scheme (with Bregman distance), see [22], has the following update
formula:

xi+1 ← argmin
x∈Q

{

f(xi) + 〈∇f(xi), x− xi〉+ LfDh(x, x
i)
}

. (8)

Notice in (8) by construction that the update requires the capability to solve instances of a sub-
problem of the general form:

xnew ← argmin
x∈Q
{〈c, x〉 + h(x)} , (9)

for suitable iteration-specific values of c; indeed, (8) is an instance of the subproblem (9) with
c = 1

Lf
∇f(xi)−∇h(xi) at iteration i. It is especially important to note that the Primal Gradient

Scheme is somewhat meaningless whenever we do not have the capability to efficiently solve (9),
a point which we will return to later on. In a typical design and implementation of a first-order
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method for solving (1), one attempts to specify the norm ‖·‖ and the strongly convex prox function
h(·) in consideration of the shape of the feasible domain Q while also ensuring that the subproblem
(9) is efficiently solvable.

Regarding computational guarantees, one can prove for the Primal Gradient Scheme that after k
iterations it holds for any x ∈ Q that:

f(xk)− f(x) ≤ LfDh(x, x
0)

k
, (10)

which is an exact generalization of (4), see [22], [14].

We emphasize that standard first-order methods as stated above for solving (1) require that f(·)
be uniformly smooth on Q, that is, that there is a finite value of the Lipschitz constant Lf as
defined in (2), in order to ensure associated computational guarantees. However, there are many
differentiable convex functions in practice that do not satisfy a uniform smoothness condition.
Consider f(x) := − ln det(HXHT ) with X := Diag(x) in D-optimal design on the feasible set
Q = {x ∈ R

n : 〈e, x〉 = 1, x ≥ 0}, or f(x) = |x|3 or f(x) = x4 on the feasible set Q = R, or
f(x) = − ln(x) + x2 on Q = R++. Of course, if the algorithm iterates have monotone decreasing
objective function values (which is provably the case for most smooth first-order methods), it then
is sufficient just to ensure that f(·) is smooth on some level set of f(·). Nevertheless, even in this
case the constant Lf may be huge. For instance, let f(x) = − ln(x)+x2 on Q = R++, and consider
the level set {x : f(x) ≤ 10}. Then one still has Lf ≈ exp20 on this level set, which is not reasonable
for practical use.

Notice that unlike quadratic functions, the second-order terms of the functions in the above exam-
ples vary dramatically on Q – and especially as x→ ∂Q (or as x goes to infinity in Q). It therefore
becomes unreasonable to use a uniform bound of the form Lf to upper-bound second-order infor-
mation.

Motivated by the above drawbacks in standard first-order methods, we develop a notion of “relative
smoothness” and relative strong convexity, relative to a given “reference function” h(·) and which
does not require the specification of any particular norm – and indeed h(·) need not be either strictly
or strongly convex. Armed with relative smoothness and relative strong convexity, we demonstrate
the capability to solve a more general class of differentiable convex optimization problems (without
uniform Lipschitz continuous gradients), and we also demonstrate linear convergence results for
both a Primal Gradient Scheme and a Dual Averaging Scheme when the function is both relatively
smooth and relatively strongly convex.

There is a certain overlap of ideas and results herein with the paper [6] by Bolte, Bauschke, and
Teboulle. For starters, the relative smoothness condition definition in the present paper in Defini-
tion 1.1 is equivalent to the (LC) condition in [6] except that [6] also requires the reference function
h(·) to be essentially smooth and strictly convex, which we do not need in this paper. The main
developments in [6] are based on generalizing a key descent lemma and applying this generalization
to tackle (additive) composite optimization problems using the primal gradient scheme (called the
NoLips Algorithm in [6]) with associated complexity analysis involving a symmetry measure of
the Bregman distance Dh(·, ·). These results are then illustrated in the application of composite
optimization to Poisson inverse problems. While the NoLips Algorithm in [6] is structurally the
same as Algorithm 1 herein, they are both instantiations of the standard primal gradient scheme;
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however, as will be seen in Section 3 here, we do not need any symmetry measure in constructing
step-sizes or in the complexity analysis. The paper [28] by Zhou, Liang, and Shen also tackles
composite optimization using the standard primal gradient scheme which therein is called PGA-B,
with a focus on demonstrating equivalence of proximal gradient and proximal point methods more
broadly. Here we develop measures of relative smoothness and also relative strong convexity, which
can improve the computational guarantees of the primal gradient scheme, see Theorem 3.1. We
further present computational guarantees for the dual averaging scheme [17] in Theorem 3.2. In
Section 2 we show that many differentiable convex functions are relatively smooth with respect
to a correspondingly fairly-simple reference function h(·) that is easy to construct and for which
algorithmic computations can be effeciently be performed. In Section 4 we apply our approach
to develop a new first-order method for the D-optimal design problem, with associated computa-
tional complexity analysis. Throughout the current paper, we compare and clarify similarities and
differences between our work and [6] in the context of the specific contributions as they arise.

1.2 Relative Smoothness and Relative Strong Convexity

Let h(·) be any given differentiable convex function (it need not be strongly nor even strictly
convex) defined on Q. We will henceforth refer to h(·) as the “reference function.” We define
“relative smoothness” and “relative strong convexity” of f(·) relative to h(·) using the Bregman
distance (7) associated with h(·) as follows.

Definition 1.1. f(·) is L-smooth relative to h(·) on Q if for any x, y ∈ int Q, there is a scalar L
for which

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ LDh(y, x) . (11)

Definition 1.2. f(·) is µ-strongly convex relative to h(·) on Q if for any x, y ∈ int Q, there is a
scalar µ ≥ 0 for which

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µDh(y, x) . (12)

(Here and elsewhere intQ denotes the interior ofQ. In cases whereQ has no interior, one can instead
use the relative interior of Q.) Note that relative smoothness and relative strong convexity of f(·)
are defined relative to the reference function h(·) directly; no norm is involved in the definitions,
so that smoothness/strong convexity does not depend on any norm. Furthermore, h(·) is not
presumed to have any special properties by itself such as strict or (traditional) strong convexity;
rather the key structural properties involve how f(·) behaves relative to h(·). The definition of
relative smoothness above is equivalent to the (LC) condition in [6], but [6] requires the reference
function to be essentially smooth and strictly convex, which we do not need.

The following proposition presents equivalent definitions of relative smoothness and relative strong
convexity. In the case when both f(·) and h(·) are twice differentiable, parts (a-iii) and (b-iii) of
the proposition demonstrate that the above definitions are equivalent to

µ∇2h(x) � ∇2f(x) � L∇2h(x) for all x ∈ int Q ,

which is an intuitively simple condition on the Hessian matrices of the two functions.

Proposition 1.1. The following conditions are equivalent:
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(a-i) f(·) is L-smooth relative to h(·),
(a-ii) Lh(·)− f(·) is a convex function on Q,

(a-iii) Under twice-differentiability ∇2f(x) � L∇2h(x) for any x ∈ int Q,

(a-iv) 〈∇f(x)−∇f(y), x− y〉 ≤ L〈∇h(x)−∇h(y), x− y〉 for all x, y ∈ int Q.

The following conditions are equivalent:

(b-i) f(·) is µ-strongly convex relative to h(·),
(b-ii) f(·)− µh(·) is a convex function on Q,

(b-iii) Under twice-differentiability ∇2f(x) � µ∇2h(x) for any x ∈ int Q,

(b-iv) 〈∇f(x)−∇f(y), x− y〉 ≥ µ〈∇h(x)−∇h(y), x− y〉 for all x, y ∈ int Q.

The first part of Proposition 1.1 is almost equivalent to Proposition 1 of [6].

Proof: For x ∈ Q define φ(x) := Lh(x) − f(x). Using (11) and (7) it follows that (a-i) holds if
and only if φ(x) ≥ φ(y) + 〈∇φ(y), x − y〉 for all x, y ∈ Q, which is equivalent to the convexity of
φ(·) = Lh(·) − f(·) from Theorem 2.1.2 of [15], thus showing that (a-i) ⇔ (a-ii). It follows from
Theorem 2.1.3 of [15] applied to φ(·) that φ(·) is convex if and only if 〈∇φ(x)−∇φ(y), x− y〉 ≥ 0
for all x, y ∈ Q, which shows that (a-ii) ⇔ (a-iv). If f(·) and h(·) are twice differentiable, then it
follows from Theorem 2.1.4 of [15] that (a-ii) ⇔ (a-iii).

Similar proofs can be applied for part (b).

For notational convenience, let us denote by f(·) � h(·) that h(·) − f(·) is a convex function,
whereby this also means f(·) is 1-smooth with respect to h(·) from Proposition 1.1. Similarly
f(·) � h(·) means f(·) − h(·) is a convex function and so f(·) is 1-strongly convex with respect
to h(·). (In the case when both f(·) and h(·) are twice differentiable, the relation “· � ·” on
two functions is consistent with the Löwner partial order on the Hessians of these two functions
from Propositon 1.1.) Then the condition that f(·) is L-smooth with respect to h(·) is equivalent to
f(·) � Lh(·); similarly the condition that f(·) is µ-strongly convex with respect to h(·) is equivalent
to f(·) � µh(·). In addition, relative-smoothness and relative strong convexity are each transitive,
so that f(·) � g(·) and g(·) � h(·) implies that f(·) � h(·).
We can also work with sums and linear transformations of relatively smooth and/or relatively
strongly convex functions, as the next proposition states.

Proposition 1.2.

1. If f1(·) � L1h(·) and f2(·) � L2h2(·), then for all α, β ≥ 0 it holds that f(·) := αf1(·)+βf2(·) �
h(·) := αL1h1(·) + βL2h2(·).

2. If f1(·) � µ1h1(·) and f2(·) � µ2h2(·), then for all α, β ≥ 0 it holds that f(·) := αf1(·)+βf2(·) �
h(·) := αµ1h1(·) + βµ2h2(·).

3. If f(·) � h(·), and A is a linear transformation of appropriate dimension, then φf (x) := f(Ax) �
φh(x) := h(Ax).
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4. If f(·) � h(·), and A is a linear transformation of appropriate dimension, then φf (x) := f(Ax) �
φh(x) := h(Ax).

Proof: The proofs of the first two arguments follow directly from the definitions of relative smooth-
ness and relative strong convexity in Definitions 1.1 and 1.2. The proofs of the last two arguments
follow from the equivalent definition (a-iv) and (b-iv) in Proposition 1.1.

1.3 Constructive Algorithmic Set-up

Let us now discuss criteria for choosing the reference function h(·) in the context of computational
schemes for solving the optimization problem (1). To be concrete, consider a simple Primal Gradient
Scheme as shown in Algorithm 1. Note that this scheme is essentially as described in the update
formula (8), except that the uniform smoothness constant Lf is replaced by the relative smoothness
parameter L of f(·) with respect to the reference function h(·) as defined in Definition 1.1, and the
only formal requirement for h(·) is that the pair (f(·), h(·)) must satisfy the conditions of Definition
1.1.

Algorithm 1 Primal Gradient Scheme with reference function h(·)

Initialize. Initialize with x0 ∈ Q. Let L, h(·) satisfying Definition 1.1 be given.
At iteration i :
Perform Updates. Compute ∇f(xi) ,

xi+1 ← argminx∈Q{f(xi) + 〈∇f(xi), x− xi〉+ LDh(x, x
i)} .

In order to efficiently execute the update step in Algorithm 1 we also require of h(·) that the
subproblem (9) is efficiently solvable for any given c. In summary, to solve the optimization problem
(1) using Algorithm 1, we need to specify a reference function h(·) that has the following two
properties:

(i) f(·) is L-smooth relative to h(·) on Q, and

(ii) the subproblem (9) always has a solution, and the solution is efficiently computable.

In Section 2 we will see how this can be done for several useful classes of problems that are not
otherwise solvable by traditional first-order methods that require uniform Lipschitz continuity of
the gradient. In Section 3 we analyze the computational guarantees associated with the Primal
Gradient Scheme (Algorithm 1) as well as a Dual Averaging Scheme. In Section 4, we apply the
computational guarantees of Section 3 to the D-optimal design problem.

Notation. For a vector x, X = Diag(x) denotes the diagonal matrix with the coefficients of x along
the diagonal. For a symmetric matrix A, diag(A) denotes the vector of the diagonal coefficients
of A, and Mdiag(A) denotes the diagonal matrix whose diagonal coefficients correspond to the
diagonal coefficients of A. Unless otherwise specified, the norm of a matrix is the operator norm
using ℓ2 norms. The ℓp norm of a vector x is denoted by ‖x‖p. For symmetric matrices, “�”
denotes the Löwner partial order. In a mild double use of notation, f(·) � h(·) denotes f(·)− h(·)
is a convex function, and the appropriate meaning of “�” will be obvious in context. Let e denote
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the vector of 1’s whose dimension is dictated by context. Let ∆n := {x ∈ R
n : 〈e, x〉 = 1, x ≥ 0}

denote the standard unit simplex in R
n. Given two matrices A and B of the same order, let A ◦B

denote the Hadamard (i.e., component-wise) product of A and B, see for example Anstreicher [2].
Let exp denote the base of the natural logarithm.

2 Examples of Relatively Smooth Optimization Problems

Here we show several classes of optimization problems (1) for which one can easily construct a
reference function h(·) with the two properties mentioned above, namely (i) f(·) is L-smooth relative
to h(·) for an easily determined value L, and (ii) the subproblem (9) is efficiently solvable.

2.1 Optimization over R
n with ‖∇2f(x)‖ growing as a polynomial in ‖x‖2

Suppose that f(·) is a twice-differentiable convex function on Q := R
n and let ‖∇2f(x)‖ denote the

operator norm of ∇2f(x) with respect to the ℓ2-norm on R
n. Suppose that ‖∇2f(x)‖ ≤ pr(‖x‖2),

where pr(α) =
∑r

i=0 aiα
i is an r-degree polynomial of α. Let

h(x) := 1
r+2‖x‖

r+2
2 + 1

2‖x‖
2
2 . (13)

Then the following proposition states that f(·) is L-smooth relative to h(·) for an easily computable
value L. This implies that no matter how fast the Hessian of f(·) grows as ‖x‖2 → ∞, f(·) can
still be smooth relative to the simple reference function h(·), even though ∇f(·) need not exhibit
uniform Lipschitz continuity.

Proposition 2.1. Suppose f(·) is twice differentiable and satisfies ‖∇2f(x)‖ ≤ pr(‖x‖2) where
pr(α) is an r-degree polynomial of α. Let L be such that pr(α) ≤ L(1 + αr) for α ≥ 0. Then f(·)
is L-smooth relative to h(x) = 1

r+2‖x‖
r+2
2 + 1

2‖x‖22.
Proof: It follows from elementary rules of differentiation that

∇2h(x) = (1 + ‖x‖r2)I + (r + 1)‖x‖r−2
2 xxT � (1 + ‖x‖r2)I � 1

Lpr(‖x‖2)I � 1
L∇

2f(x) ,

and so f(·) is L-smooth relative to h(·) by part (iii) of Proposition 1.1.

Utilizing the additivity property in Proposition 1.2 together with Proposition 2.1, one concludes
that virtually every twice-differentiable convex function on R

n is L-smooth relative to some simple
polynomial function of ‖x‖2.

Remark 2.1. Suppose pr(α) =
∑r

i=0 aiα
i. In Proposition 2.1, one simple way to set L is to use

L =
∑r

i=0 |ai|. Then

pr(α) ≤







∑r
i=0 |ai| for 0 ≤ α ≤ 1

∑r
i=0 |ai|αr for α ≥ 1 ,

(14)

whereby pr(α) ≤ max{L,Lαr} ≤ L(1 + αr) for α ≥ 0.
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Solving the subproblem (9). Let us see how we can solve the subproblem (9) for this class of
optimization problems. The subproblem (9) can be written as

min
x∈Rn

〈c, x〉 + 1
r+2‖x‖

r+2
2 + 1

2‖x‖
2 , (15)

and the first-order optimality conditions are simply:

c+ (1 + ‖x‖r2)x = 0 ,

whereby x = −θc for some θ ≥ 0, and it remains to simply determine the value of the nonnegative
scalar θ. If c = 0, then x = 0 satisfies the optimality conditions. For c 6= 0, notice from above that
θ must satisfy:

1− θ − ‖c‖r2 · θr+1 = 0 ,

which is a univariate polynomial in θ with a unique positive root. For r = 1, 2, 3, this root can be
computed in closed form. Otherwise, the root can be computed (up to machine precision) using
any scalar root-finding method.

Remark 2.2. We can incorporate in problem (15) a simple set constraint x ∈ Q provided that
we can easily compute the Euclidean projection on Q. In the case when h(·) is a convex function
of ‖x‖22, the subproblem (9) can be converted to a 1-dimensional convex optimization problem, see
Appendix A.1 for details.

A more specific example. Let f(x) := 1
4‖Ax−b‖44+ 1

2‖Cx−d‖22. Then ∇2f(x) = 3ATD2(x)A+
CTC, where D(x) = Diag(Ax− b). Let us show that f(x) is L-smooth relative to

h(x) := 1
4‖x‖42 + 1

2‖x‖22

on Q = R
n for L = 3‖A‖4 + 6‖A‖3‖b‖2 + 3‖A‖2‖b‖22 + ‖C‖2. To see this, notice first that:

‖∇2f(x)‖ ≤ 3‖A‖2(‖b‖2 + ‖A‖‖x‖2)2 + ‖C‖2

=
(

3‖A‖2‖b‖22 + ‖C‖2
)

+ 6‖A‖3‖b‖2‖x‖2 + 3‖A‖4‖x‖22 ,

which is 2-degree polynomial in ‖x‖2 with coefficients a0 = 3‖A‖2‖b‖22 + ‖C‖2, a1 = 6‖A‖3‖b‖2,
and a2 = 3‖A‖4. Therefore following Remark 2.1 it suffices to set

L =
2
∑

i=0

ai = 3‖A‖4 + 6‖A‖3‖b‖2 + 3‖A‖2‖b‖22 + ‖C‖2 .

An example with Non-Lipschitz µ-strong convexity. Let f(x) := 1
4‖Ex‖42 + 1

4‖Ax − b‖44 +
1
2‖Cx−d‖22, and let σE and σC denote the smallest singular values of E and C, respectively, and let
us suppose that σE > 0 and σC > 0. Then ∇2f(x) = ‖Ex‖22ETE+2ETExxTETE+3ATD2(x)A+
CTC, where D(x) = Diag(Ax − b). Let us show that f(x) is L-smooth and µ-strongly convex
relative to

h(x) := 1
4‖x‖

4
2 +

1
2‖x‖

2
2
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on Q = R
n for L = 3‖E‖4+3‖A‖4+6‖A‖3‖b‖2+3‖A‖2‖b‖22+‖C‖2 and µ = min{σ

4
E

3 , σ
2
C}. Similar

to what we have above,

‖∇2f(x)‖ ≤ ‖E‖4‖x‖22 + 2‖E‖4‖x‖22 + 3‖A‖2(‖b‖2 + ‖A‖‖x‖2)2 + ‖C‖2

=
(

3‖A‖2‖b‖22 + ‖C‖2
)

+ 6‖A‖3‖b‖2‖x‖2 +
(

3‖E‖4 + 3‖A‖4
)

‖x‖22 ,

which is 2-degree polynomial in ‖x‖2 with coefficients a0 = 3‖A‖2‖b‖22 + ‖C‖2, a1 = 6‖A‖3‖b‖2,
and a2 = 3‖E‖4 + 3‖A‖4. Therefore following Remark 2.1 it suffices to set

L =
2
∑

i=0

ai = 3‖E‖4 + 3‖A‖4 + 6‖A‖3‖b‖2 + 3‖A‖2‖b‖22 + ‖C‖2 .

On the other hand,

∇2f(x) � ‖Ex‖22ETE+CTC � σ4E‖x‖22I+σ2CI � µ
(

1 + 3‖x‖22
)

I � µ
(

(1 + ‖x‖22)I + 2xxT
)

= µ∇2h(x)

(where the last matrix inequality follows since ‖x‖22I � xxT ), and thus f(x) is µ-strongly convex
relative to h(x).

Remark 2.3. In place of the simple reference function h(·) in (13) one can instead consider a
“re-centered” version of the form:

h(x) = hxc(x) :=
1
r+2‖x− x

c‖r+2
2 + 1

2‖x− x
c‖22 ,

where the “center” value xc is suitably chosen to align f(·) with h(·) and possibly attain better
values of L and µ. Note that introducing the given center value xc does not increase the difficulty of
solving the subproblem (9). We illustrate this idea with a simple univariate example. Suppose that
our objective function is f(x) = x4 − 4x3 + 7x2 − 5x+ 3. From the results in Section 2.1 we know
we can use the reference function h1(x) :=

1
4x

4 + 1
2x

2. We can also translate x by the center point
xc := 1 and use the reference function h2(x) :=

1
4(x− 1)4 + 1

2(x− 1)2. Straightforward calculation

yields values of L = L1 = 9 +
√
73 ≈ 17.5440 for h1(·) and L = L2 = 4 for h2(·), whereby h2(·)

yields a better value of L than h1(·) for this example.

2.2 D-Optimal Design Problem

Given a matrix H ∈ R
m×n of rank m where n ≥ m+ 1, the D-optimal design problem is:

D : f∗ = minx f(x) := − ln det
(

HXHT
)

s.t. 〈e, x〉 = 1
x ≥ 0 ,

(16)

where recall X := Diag(x). In statistics, the D-optimal design problem corresponds to maximiz-
ing the determinant of the Fisher information matrix E(hhT ), see [12], [4]. And in computational

9



geometry, D-optimal design arises as a Lagrangian dual problem of the minimum volume covering
ellipsoid (MVCE) problem, which dates back at least 60 years to [9], see Todd [21] for a modern
treatment. Indeed, (16) is useful in a variety of different application areas, for example, computa-
tional statistics [7] and data mining [13]. In terms of algorithms for solving (16), Khachiyan and
Todd [11] proposed a theory-oriented scheme based on interior-point methods, see also Zhang [27]
as well as [20] for more practical treatments using interior-point methods. Khachiyan [10] later
proposed and analyzed a first-order method (equivalent to the Frank-Wolfe method) to solve (16),
which led to other works along this line including Yildirim [25] and Ahipasaoglu, Sun, and Todd
[1]. The complexity analysis in these papers is very specialized for the D-optimal design problem.
In contrast, we will show how the Primal Gradient Scheme (Algorithm 1) can be applied to the D-
optimal design problem; furthermore, in Section 4 we will apply the complexity analysis of Section
3 for the Primal Gradient Scheme to the set-up of D-optimal design, along with a comparison of
our convergence guarantees with the guarantees from prior literature.

Notice that (16) is an instance of (1) with Q = ∆n := {x ∈ R
n : 〈e, x〉 = 1, x ≥ 0}. Although

strictly speaking, f(·) in (16) is not defined everywhere on the relative boundary of Q and hence
does not have gradients or Hessians everywhere on the relative boundary of Q, this will not be of
concern. For f(·) in (16) let us choose the reference function h(·) to be the logarithmic barrier
function, namely

h(x) := −
n
∑

j=1

ln(xj) ,

which is defined on the positive orthant Rn++. The following proposition states that f(·) is 1-smooth
relative to h(·).

Proposition 2.2. Suppose f(x) = − ln det
(

HXHT
)

, where X = Diag(x). Then f(·) is 1-smooth
relative to h(x) = −∑n

j=1 ln(xj) on R
n
++.

Proof: The gradient of f(·) is ∇f(x) = diag(−C) and the Hessian of f(·) is ∇2f(x) = C ◦ C,

where C := HT (HXHT )−1H. Let U = HX
1

2 ; then UT (UUT )−1U � I since the left side of this

matrix inequality is a projection operator, whereby X
1

2HT (HXHT )−1HX
1

2 � I. Multiplying this

matrix inequality on the left and right by X− 1

2 then shows that C � X−1 . Therefore,

∇2f(x) = C ◦ C � C ◦X−1 � X−1 ◦X−1 = X−2 = ∇2h(x) , (17)

where the first and the second matrix inequality above each follows from the fact that C � X−1 and
the Hadamard product of two symmetric positive semidefinite matrices is also a symmetric positive
semidefinite matrix. The result then follows using property (a-iii) of Proposition 1.1.

Solving the subproblem (9). Let us see how we can solve the subproblem (9) for Q and h(·)
given above. The subproblem (9) can be written as

min
x∈∆n

〈c, x〉 −
n
∑

j=1

ln(xj) ,

and the first-order optimality conditions are simply:

x > 0, 〈e, x〉 = 1, and c−X−1e = −θe

10



for some scalar multiplier θ. Given θ, it then follows that xj = 1/(cj + θ) for j = 1, . . . , n, and it
remains to simply determine the value of the scalar θ. Now notice that θ must satisfy:

d(θ) :=

n
∑

j=1

1

cj + θ
− 1 = 0 (18)

for some θ in the interval F := (−minj{cj},∞). Notice that d(·) is strictly decreasing on F , and
d(θ)→ +∞ as θ ց −minj{cj} and d(θ)→ −1 as θ →∞, whereby (18) has a unique solution in F .
Furthermore, as suggested by results in Ye [24] or [8], one can use Newton’s method (or any other
suitable scalar solution-finding method) to efficiently compute the solution of (18) (up to machine
precision) on the interval F .

2.3 Generalized Volumetric Function Optimization

For a given integer parameter p > 0, let us also study optimization on the simplex of the following
generalization of the volumetric barrier function:

minx fp(x) = ln det
(

HX−pHT
)

s.t. 〈e, x〉 = 1
x ≥ 0 ,

(19)

where the integer p is the parameter of the volumetric function fp(·), and H ∈ R
m×n is a rank-m

matrix where n ≥ m+ 1. Here the feasible region is Q = ∆n. Note that fp(·) is a convex function
when p ≥ 0 (and fp(·) is a concave function when p = −1).
Similar to the D-optimal design problem, fp(·) is not defined everywhere on the boundary of Rn+,
but this will not be a concern. The reference function h(·) we choose is the logarithmic barrier
function, namely

h(x) := −
n
∑

j=1

ln(xj) ,

which is defined on R
n
++. The following proposition states that fp(·) is p(p+ 1)-smooth relative to

h(·).

Proposition 2.3. fp(·) is p(p+ 1)-smooth relative to h(x) = −∑n
j=1 ln(xj) on R

n
++.

Proof: By elementary calculus, the gradient of fp(·) is

∇fp(x) = −p · diag
(

X−1/2−p/2CX−1/2−p/2
)

,

and the Hessian of fp(·) is

∇2fp(x) = p(p+ 1)Mdiag
(

X−1−p/2CX−1−p/2
)

− p2X−1−p/2 (C ◦ C)X−1−p/2 ,

where C := HT (HX−pHT )−1H, and Mdiag(M) denotes the diagonal matrix whose entries are
the diagonal components of the matrix M . Let U = HX−p/2; then UT (UUT )−1U � I since the
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left side of this matrix inequality is a projection operator. Therefore each diagonal component of
UT (UUT )−1U does not exceed 1, whereby we have Mdiag

(

UT (UUT )−1U
)

� I. Therefore,

∇2fp(x) � p(p+ 1)Mdiag
(

X−1−p/2CX−1−p/2
)

= p(p+ 1)X−1Mdiag
(

UT (UUT )−1U
)

X−1

� p(p+ 1)X−2

= p(p+ 1)∇2h(x) ,

where the first inequality follows from the fact that the Hadamard product of two symmetric
positive semidefinite matrices is also a symmetric positive semidefinite matrix and C is a positive
semidefinite matrix, and the first equation follows since X is itself a diagonal matrix. The result
then follows by property (iii) of Proposition 1.1.

Solving the subproblem (9). Using h(x) = −∑n
j=1 ln(xj), the subproblem (9) here is identical

to that for the D-optimal design problem, since the reference function h(·) and the feasible domain
Q are the same. Therefore the methodology discussed in Section 2.2 applies here as well.

Remark. By setting H = AT and using Proposition 1.2, it can also be shown that f̂(x) :=
ln det

(

ATDiag (Ax− b)−pA
)

is p(p+1)-smooth relative to h(x) := −∑i ln(Aix− bi). When p = 2
this is the volumetric barrier function on the set Q = {x ∈ R

n : Ax ≥ b}, see [23], [3].

2.4 Optimization over Q ⊂ (0, u]n with ‖∇2f(x)‖ growing as a polynomial in
∑n

i=1
1
xi

Suppose that f(·) is a twice-differentiable convex function on Q ⊂ (0, u]n and that ‖∇2f(x)‖ ≤
qs

(

∑n
i=1

1
xi

)

, where qs(α) =
∑s

i=0 aiα
i is an s-degree polynomial in α. (Recall ‖∇2f(x)‖ denotes

the operator norm of ∇2f(x) with respect to the ℓ2-norm on R
n.) Let

h(x) :=
u3

2(s + 1)

(

n
∑

i=1

1
xi

)s+1

.

Then the following proposition states that f(·) is L-smooth relative to h(·) for an easily computable
value L. This implies that no matter how fast ∇f(x) grows as x approaches the open boundary of
the region (0, u]n, f(·) is smooth relative to the simple reference function h(·), even though ∇f(·)
need not exhibit uniform Lipschitz continuity on Q.

Proposition 2.4. Suppose f(·) is twice differentiable on Q and satisfies ‖∇2f(x)‖ ≤ qs
(

∑n
i=1

1
xi

)

where qs(α) is an s-degree polynomial in α. Let L be such that qs(α) ≤ Lαs for all α ≥ n
u . Then

f(·) is L-smooth relative to h(x) = u3

2(s+1)(
∑n

i=1
1
xi
)s+1.

12



Proof: Let X := Diag(x), and it follows from elementary rules of differentiation that

∇2h(x) = u3

(

n
∑

i=1

1
xi

)s

X−3 +
u3s

2

(

n
∑

i=1

1
xi

)s−1

X−2eeTX−2 . (20)

Therefore

∇2h(x) � u3
(

n
∑

i=1

1
xi

)s

X−3 �
(

n
∑

i=1

1
xi

)s

I � 1
Lqs

(

n
∑

i=1

1
xi

)

I � 1
L∇

2f(x) , (21)

where the second matrix inequality uses u ≥ xi and the third matrix inequality is due to
∑n

i=1
1
xi
≥

∑n
i=1

1
u = n

u . Therefore f(·) is L-smooth relative to h(·) by part (iii) of Proposition 1.1.

Remark 2.4. Suppose qs(α) =
∑s

i=0 aiα
i. In Proposition 2.4, one simple way to set L is to use

L =
∑s

i=0 |ai|
(

u
n

)i−s
. This implies for α ≥ n

u that

qs(α) ≤
s
∑

i=0

|ai|αi ≤
(

s
∑

i=0

|ai|
(

u
n

)i−s

)

αs = Lαs . (22)

Solving the subproblem (9). Let us see how we can solve the subproblem (9) for this class of
optimization problems. After rescaling c by u3/2, the subproblem (9) can be equivalently written
as

min
x∈(0,u]n

〈c, x〉 + 1
s+1

(

n
∑

i=1

1
xi

)s+1

. (23)

Let θ =
(

∑n
i=1

1
xi

)s
, then the optimality conditions for (23) can be written as:

xi =











u if ci ≤ θ
u2

√

θ
ci

for ci >
θ
u2 ,

(24)

for i = 1, . . . , n. For a given θ > 0, define xi(θ) using the above rule (24), and it remains to simply
determine the value of the positive scalar θ in the interval F := [

(

n
u

)s
,∞) that satisfies

d(θ) := θ −
(

n
∑

i=1

1

xi(θ)

)s

= 0 . (25)

Notice that d(·) is strictly increasing on F , and d
((

n
u

)s) ≤ 0 (since xi(θ) ≤ u for any θ) and
d(θ) → ∞ as θ → ∞. Therefore (25) has a unique solution in F , which can be solved with
high accuracy using any suitable root-finding method, for example binary search combined with
1-dimensional Newton’s method.
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Remark 2.5. In a sense, there are basically two ways that a twice-differentiable convex function can
fail to have a uniformly Lipschitz gradient: (i) when the Hessian grows without limit as ‖x‖ → ∞,
and/or (ii) when the Hessian grows without limit as x → x0 ∈ ∂Q. Section 2.1 has provided a
mechanism for constructing a reference function h(·) for case (i) when the growth is polynomial,
and Section 2.4 has provided such a mechanism for case (ii) when the growth is polynomial. By
utilizing the additivity and linear transformation properties of relative smoothness in Proposition
1.2, it should be possible to construct suitable reference functions for many convex functions of
interest.

3 Computational Analysis for the Primal Gradient Scheme and
the Dual Averaging Scheme

In this section we present computational guarantees for two algorithms: the Primal Gradient
Scheme (Algorithm 1) as well as a Dual Averaging Scheme (Algorithm 2).

3.1 Analysis of Primal Gradient Scheme (Algorithm 1)

Our main result for the Primal Gradient Scheme is the following sublinear and linear convergence
bounds.

Theorem 3.1. Consider the Primal Gradient Scheme (Algorithm 1). If f(·) is L-smooth and µ-
strongly convex relative to h(·) for some L > 0 and µ ≥ 0, then for all k ≥ 1 and x ∈ Q, sequence
{f(xk)} is monotonically decreasing, and the following inequality holds:

f(xk)− f(x) ≤ µDh(x, x
0)

(

1 + µ
L−µ

)k
− 1

≤ L− µ
k

Dh(x, x
0) , (26)

where, in the case when µ = 0, the middle expression is defined in the limit as µ→ 0+.

The first inequality in (26) shows linear convergence when µ > 0; indeed, in this case it holds
that

µDh(x, x
0)

(

1 + µ
L−µ

)k
− 1

≤ L
(

1− µ
L

)k
Dh(x, x

0) . (27)

(This inequality holds trivially for k = 1, and induction on k establishes the result for k ≥ 2.)
Furthermore, when k is large the −1 term in the denominator of the left-hand side can be ignored

which yields the asymptotic bound µ
(

1− µ
L

)k
Dh(x, x

0). The second inequality in (26) shows an

O(1/k) sublinear convergence rate. In particular, the convergence rate in (26) is L
kDh(x, x

0) when
µ = 0.

Note that Algorithm 1 herein and the NoLips algorithm in [6] as well as algorithm PGA-B in [28]
are structurally identical (they are all instantiations of the primal gradient methodology). However,
the step-size rule in [6] as well as the complexity analysis in [6] depends on a symmetry measure of
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Dh(·, ·), namely α := minx,y 6=xDh(x, y)/Dh(y, x), whereas there is no such dependence here. The
instantiation of Algorithm 1 in [6] uses a smaller “step-size” of (1 + α)/2L as opposed to 1/L in
the update computation in Algorithm 1 (since it must always hold that α ≤ 1), and [6] proves a
computational guarantee of f(xk) − f(x) ≤ 2L

(1+α)kDh(x, x
0). The bound in Theorem 3.1 is better

than this symmetry-based bound, but only by a multiplicative constant factor (1+α)/2 when µ = 0;
it is of course far better (linear convergence rather than sublinear convergence) when µ > 0.

The proof of the bound in Theorem 3.1 relies on the following standard Three-Point Property:

Lemma 3.1. (Three-Point Property of Tseng [22]) Let φ(x) be a convex function, and let
Dh(·, ·) be the Bregman distance for h(·). For a given vector z, let

z+ := argmin
x∈Q
{φ(x) +Dh(x, z)} .

Then
φ(x) +Dh(x, z) ≥ φ(z+) +Dh(z

+, z) +Dh(x, z
+) for all x ∈ Q .

Proof of Theorem 3.1: Define a parameter sequence

Ck :=
1

∑k
i=1

(

L
L−µ

)i

(·)
=

µ

L

(

(

1 + µ
L−µ

)k
− 1

) ,

where the second equality “(·)” follows from elementary geometric series’ analysis, and holds only
when µ > 0. In particular, Ck =

1
k if µ = 0. For any x ∈ Q and i ≥ 1 we have:

f(xi) ≤ f(xi−1) + 〈∇f(xi−1), xi − xi−1〉+ LDh(x
i, xi−1)

≤ f(xi−1) + 〈∇f(xi−1), x− xi−1〉+ LDh(x, x
i−1)− LDh(x, x

i)

≤ f(x) + (L− µ)Dh(x, x
i−1)− LDh(x, x

i) ,

(28)

where the first inequality follows from the definition of L-smoothness relative to h(·), the second
inequality is due to the Three-Point Property with φ(x) = 1

L

〈

∇f(xi−1), x− xi−1
〉

and z = xi−1,
z+ = xi, and the last inequality uses the µ-strong convexity of f(·) relative to h(·), which implies
〈∇f(xi−1), x − xi−1〉 ≤ f(x) − f(xi−1) − µDh(x, x

i−1). Substituting x = xi−1 in (28) shows in
particular that f(xi) ≤ f(xi−1) which proves monotonicity of the sequence {f(xi)}.
It then follows using induction and (28) that

k
∑

i=1

(

L

L− µ

)i

f(xi) ≤
k
∑

i=1

(

L

L− µ

)i

f(x) + LDh(x, x
0)−

(

L

L− µ

)k

LDh(x, x
k) . (29)

Using the monotonicity of f(xi) and the nonnegativity of Dh(x, x
k), this implies that

(

k
∑

i=1

(

L

L− µ

)i
)

(

f(xk)− f(x)
)

≤ LDh(x, x
0)−

(

L

L− µ

)k

LDh(x, x
k) ≤ LDh(x, x

0) . (30)
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By substituting in the equality
k
∑

i=1

(

L

L− µ

)i

=
1

Ck

in (30) and rearranging, we obtain

f(xk)− f(x) ≤ CkLDh(x, x
0) =

µDh(x, x
0)

(

1 + µ
L−µ

)k
− 1

. (31)

The proof of the second inequality in (26) follows by noting that
(

1 + µ
L−µ

)k
≥ 1+ kµ

L−µ .

3.2 Dual Averaging Scheme and Analysis

Another algorithm for solving our optimization problem (1) is the Dual Averaging Scheme [17],
which we present here in Algorithm 2. Somewhat akin to the Primal Gradient Scheme, the update
step in the Dual Averaging Scheme also requires the solution of a subproblem exactly of the form
(9). Notice that we need the coefficient µ of strong convexity in order to implement Algorithm 2, in
contrast to the Primal Gradient Scheme (Algorithm 1). One can always conservatively set µ ← 0
in Algorithm 2 if no reasonable lower bound on best value of µ is known.

Algorithm 2 Dual Averaging Scheme with reference function h(·)

Initialize. Let L, µ and h(·) satisfying Definitions 1.1 and 1.2 be given.
Let x0 be the “h(·)-center” of Q, namely x0 ← argminx∈Q{h(x)}, satisfying h(x0) = 0.

At iteration k :

Perform Updates. Compute f(xk), ∇f(xk) , ak+1 =
1

L−µ

(

L
L−µ

)k
, and

xk+1 ← argminx∈Q

{

h(x) +
∑k

i=0 ai+1

(

f(xi) + 〈∇f(xi), x− xi〉+ µDh(x, x
i)
)

}

.

We have the following result regarding computational guarantees for the Dual Averaging Scheme.

Theorem 3.2. Consider the Dual Averaging Scheme (Algorithm 2). If f(·) is L-smooth and µ-
strongly convex relative to h(·) with L > µ, then for all k ≥ 1 and x ∈ Q, the following inequality
holds:

min
i=1,...,k

{f(xi)} − f(x) ≤ µh(x)
(

1 + µ
L−µ

)k
− 1

≤ L− µ
k

h(x) , (32)

where in the case µ = 0, the middle expression is defined as the limits as µ→ 0+.

Similar to the result in Theorem 3.1, the first inequality in (32) shows linear convergence when
µ > 0, since

µh(x)
(

1 + µ
L−µ

)k
− 1

≤ L
(

1− µ
L

)k
h(x) ; (33)
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this follows using identical logic as in (27).

Proof of Theorem 3.2: Define ψk(x) := h(x) +
k−1
∑

i=0
ai+1

(

f(xi) + 〈∇f(xi), x− xi〉+ µDh(x, x
i)
)

for k ≥ 0 and ψ∗
k := min

x∈Q
ψk(x), whereby x

k = argminx∈Q ψk(x) and ψk(x
k) = ψ∗

k. It follows from

the definition of relative strongly convexity (Definition 1.2) that for any x ∈ Q:

ψ∗
k ≤ h(x) +Akf(x) , (34)

where

Ak :=
k−1
∑

i=0

ai+1
(·)
=

1

µ

[

(

1 +
µ

L− µ

)k

− 1

]

for all k ≥ 0, and where the second equality “(·)” above follows from elementary geometric series’
analysis and holds only when µ > 0; note that Ak = k

L when µ = 0.

The function ψk(·) is a sum of a linear function and the reference function h(·) multiplied by the
coefficient 1+µAk. Therefore (1+µAk)h(·) and ψk(·) define the same Bregman distance, whereby
for any x ∈ Q it holds that:

(1 + µAk)Dh(x, x
k) = Dψk

(x, xk) = ψk(x)− ψk(xk)− 〈∇ψk(xk), x− xk〉 ≤ ψk(x)− ψ∗
k , (35)

where the last inequality utilizes ψk(x
k) = ψ∗

k as well as the first order optimality condition of
xk = argminx∈Q ψk(x). Therefore:

ψ∗
k+1 = ψk+1(x

k+1)

= ψk(x
k+1) + ak+1

(

f(xk) + 〈∇f(xk), xk+1 − xk〉+ µDh(x
k+1, xk)

)

≥ ψ∗
k + ak+1

(

f(xk) + 〈∇f(xk), xk+1 − xk〉+
(

µ+ 1
ak+1

(1 + µAk)
)

Dh(x
k+1, xk)

)

,

where the last inequality uses (35) with x = xk+1. Taking into account that µ + 1
ak+1

(1 + µAk) =

1+µAk+1

ak+1
= 1

ak+1

(

L
L−µ

)k+1
= L, and using the relative smoothness of f(·) (Definition 1.1), we

obtain:
ψ∗
k+1 ≥ ψ∗

k + ak+1f(x
k+1) .

It then follows by induction that:

k−1
∑

i=0

ai+1f(x
i+1) ≤ ψ∗

k ≤ h(x) +Akf(x) , (36)

where the second inequality is from (34). The proof is completed by rearranging (36) and taking
the minimum over i.
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3.3 On Optimization Problems with a Composite Function

Sometimes we are interested in solving the composite optimization problem [18]:

P : f∗ := minimumx f(x) + P (x)

s.t. x ∈ Q ,
(37)

under the same assumptions on f(·) and Q as in (1), but now the objective function includes
another function P (·) that is assumed to be convex but not necessarily differentiable, and for which
the following subproblem is efficiently solvable:

xnew ← argmin
x∈Q
{〈c, x〉 + P (x) + h(x)} , (38)

for any given c. Under this assumption it is straightforward to show that Algorithm 1 naturally
extends to cover the case of the composite optimization problem (37) (see [6] and [28]) and that
the computational guarantee in Theorem 3.1 extends to composite optimization as well. (Indeed,
when µ = 0 this extension is implied in principle from [28].) It turns out that one can actually view
composite optimization as working with the objective function f̄(·) that is 1-smooth relative to the
reference function h̄(·) := Lh(·) + P (·). However, the definition of the reference function h(·) has
been premised on h(·) being differentiable on Q, which might not hold for h̄(·) as just defined. This
can all be taken care of by a suitable modification of the theory, see Appendix A.2 for details.

3.4 Questions: Accelerated Methods, Conjugate Duality, Choosing the Refer-
ence Function

We have shown here in Section 3 that the computational guarantees of two standard first-order
methods for smooth optimization – the Primal Gradient Scheme and the Dual Averaging Scheme
– extend in precise ways to the case when f(·) is L-smooth relative to the reference function h(·).
The proof techniques used here suggest that very many other first-order algorithms for smooth
optimization should extend similarly with analogous computational guarantees. However, we have
not been able to extend any accelerated methods, i.e., methods that attain an O(1/k2) convergence
guarantee such as [16], [15], [22], to the relatively smooth case. One avenue for further research
is to answer the question whether one can develop computational guarantees for an accelerated
method in the case when f(·) is L-smooth relative to the reference function h(·)?
Another question that arises concerns conjugate (duality) theory for the setting of relatively smooth
convex functions. One simple result in conjugate duality theory is that when f(·) is L-smooth
(relative to h(·) := 1

2‖ · ‖2) the conjugate function f∗(·) is 1/L-strongly convex (relative to h∗(·) :=
1
2‖ · ‖2∗), see [26]. Is there a way to develop a more general conjugate duality theory that yields an
analogous result when f(·) is L-smooth relative to a general convex function h(·)?
A third question is how can we choose the reference function h(·) in order to lower the value of
the bounds in Theorems 3.1 and 3.2? Several ways to think about this question are discussed in
Appendix A.3.
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4 D-Optimal Design Revisited: Computational Guarantees using

the Primal Gradient or Dual Averaging Scheme

Let us now apply the computational guarantees for the Primal Gradient Scheme (Theorem 3.1)
and the Dual Averaging Scheme (Theorem 3.2) to the D-optimal design optimization problem
(16) discussed in Section 2.2. Recall from the exposition in Section 2.2 that Q = ∆n and f(x) =
− ln det(HXHT ) is 1-smooth relative to the logarithmic barrier function

h(x) = −
n
∑

j=1

ln(xj) , (39)

and that the subproblem (9) is efficiently solvable. The following theorem presents a computational
guarantee for using the Primal Gradient Scheme to approximately solve the D-optimal design
optimization problem (16).

Theorem 4.1. Consider using the Primal Gradient Scheme (Algorithm 1) with the reference func-
tion (39) to solve the D-optimal design problem (16) using the initial point x0 = 1

ne, and suppose
that ε ≤ f(x0)− f∗. If

k ≥
2n ln

(

2(f(x0)−f∗)
ε

)

ε
,

then f(xk)− f∗ ≤ ε.
Proof: Let δ = ε

2(f(x0)−f∗)
. Then δ ≤ 1

2 since ε ≤ f(x0)− f∗. Let x̂ := (1 − δ)x∗ + δx0. It follows

from the convexity of f(·) that

f(x̂) ≤ (1− δ)f∗ + δf(x0) ,

whereby
f(x̂)− f∗ ≤ δ(f(x0)− f∗) . (40)

Meanwhile,

Dh(x̂, x
0) = h(x̂)−h(x0)−〈∇h(x0), x̂−x0〉 = h(x̂)−h(x0) ≤ −n ln

(

δ
n

)

+n ln
(

1
n

)

= n ln(1/δ) , (41)

where the second equality uses ∇h(x0) = −n · e which then implies 〈∇h(x0), x̂− x0〉 = 0, and the
inequality follows since x̂ ≥ (δ/n)e. Therefore, for k satisfying the inequality in the statement of
the theorem, we have:

f(xk)− f∗ = f(xk)− f(x̂) + f(x̂)− f∗

≤ Dh(x̂, x
0)

k
+ δ(f(x0)− f∗)

≤ n ln(1/δ)

k
+
ε

2

≤ ε ,

(42)
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where the first inequality follows from Theorem 3.1 using x = x̂, as well as (40), the second inequality
is from (41) and the definition of δ, and the third inequality follows since k ≥ [2n ln(1/δ)]/ε.

Remark 4.1. For the Dual Averaging Scheme (Algorithm 2), one obtains the identical bound as in
Theorem 4.1. This is proved by following virtually the same logic as above, except we use Theorem
3.2 which bounds the smallest optimality gap using h(x) − h(x0) instead of Dh(x, x

0). However,
it follows from (41) that these two quantities are the same in this case. Also, in the case of the
Dual Averaging Scheme, the relevant final quantity of interest is mini=1,...,k f(x

i) − f∗ instead of
f(xk)− f∗.

It is instructive to compare the computational guarantees in Theorem 4.1/Remark 4.1 to those
of the Frank-Wolfe method applied to D-optimal design (first analyzed by Khachiyan [10] and
re-evaluated in [1] based in part on work by Yildirim [25]). Table 1 shows such a comparison,
where absolute constants have been suppressed in order to highlight the dependencies on particular
quantities of interest. The second column of Table 1 compares the iteration bound of the methods
using the starting point x0 = (1/n)e, where we emphasize that ε is the target optimality gap for the
D-optimal design problem. While it follows from observations in [10] that f(x0)− f∗ ≤ m ln(n/m)
for x0 = (1/n)e, we do not show this in Table 1, as we wish to highlight where the dependence on the
initial iterate arises. Examining the first column of Table 1, note that the number of iterations of
the Primal Gradient Scheme (or Dual Averaging Scheme) can be less than that of the Frank-Wolfe
method, especially when ε is not too small and when n ≪ m2. However, as the second column of
Table 1 shows, the Frank-Wolfe method requires onlymn operations per iteration in the worst – i.e.,
dense matrix – case, as it does a rank-1 update of a matrix inverse in the computation of ∇f(xk)),
whereas the Primal Gradient Scheme (or Dual Averaging Scheme) requires m2n operations per
iteration in the dense case (it must re-compute a matrix inverse in order to work with ∇f(xk)).
Therefore the total bound on operations of the Frank-Wolfe method (shown in the last column of
Table 1) is superior.

The bound for the Frank-Wolfe method applied to the D-optimal design problem is based on
analysis that is uniquely designed for evaluating the D-optimal design problem, and is not part of
the general theory for the Frank-Wolfe method (that we are aware of). Even though the Primal
Gradient Scheme and the Dual Averaging Scheme have inferior computational guarantees to the
Frank-Wolfe method applied to the D-optimal design problem, they are the first (that we are
aware of) first-order methods for which one has a general theory (Theorems 3.1 and 3.2) that can
be meaningfully applied to yield computational guarantees for the D-optimal design problem. We
hope that this analysis will spur further interest in developing improved algorithms for D-optimal
design and its dual problem – the minimum volume enclosing ellipsoid problem.
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Operations
Iteration Per Iteration Total Operations

Method Bound (dense case) Bound

Frank-Wolfe Method m ln(f(x0)− f∗) +
m2

ε
mn m2n ln(f(x0)− f∗) +

m3n

ε

Primal Gradient Scheme
n ln(f(x0)− f∗)

ε
+
n ln

(

1

ε

)

ε
m2n

m2n2 ln(f(x0)− f∗)

ε
+
m2n2 ln

(

1

ε

)

ε
or Dual Averaging Scheme

Table 1: Comparison of the order of computational guarantees for the Frank-Wolfe Method [10], [1] and
the Primal Gradient and Dual Averaging Schemes (Theorem 4.1 and Remark 4.1) for D-optimal design. All
constants have been suppressed in order to highlight the dependencies on particular quantities of interest.
It also follows from [10] that f(x0) − f∗ ≤ m ln(n/m) for x0 = (1/n)e, which can be inserted in the above
bounds as well.

A Appendix

A.1 Solving the subproblem (9) when h(x) is a convex function of ‖x‖22 and Q

has simple constraints

We consider the following subproblem:

min
x∈Q

〈c, x〉+ h(x) , (43)

where h(x) = g(‖x‖22) and g(·) is a (univariate) closed convex function of ‖x‖22. Let y := ‖x‖22
and define D := {‖x‖22 : x ∈ Q} ⊂ R, which is the domain of g(·). Let g∗(·) denote the conjugate
function of g(·), namely

g∗(t) := sup
y∈D
{ty − g(y)} ,

whose domain we denote by D∗. Since g(·) is a convex function, we know from conjugacy theory
[5] that g(y) = supt∈D∗{ty − g∗(t)}. Therefore (43) becomes

minx∈Q
{

〈c, x〉 + g(‖x‖22)
}

= minx∈Q
{

supt∈D∗

{

〈c, x〉 + t‖x‖22 − g∗(t)
}}

= supt∈D∗

{

−g∗(t) + minx∈Q
{

〈c, x〉 + t‖x‖22
}}

,

where the second equality above holds whenever the min and the sup operators can be exchanged
(which is akin to strong duality). Notice that minx∈Q{〈c, x〉 + t‖x‖22} is a Euclidean projection
problem. Therefore the subproblem (9) becomes a 1-dimensional concave maximization problem
if the Euclidean projection problem can be easily solved and one can conveniently form and work
with the univariate convex conjugate function g∗(·).

A.2 Extension to Composite Optimization

Here we discuss some details of the extension of the ideas and results of this paper to composite
optimization as described in Section 3.3, using the definitions f̄(·) := f(·) + P (·), and h̄(·) =
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Lh(·) + P (·) as defined in Section 3.3. Note that f̄(·) and h̄(·) are not necessarily differentiable on
Q since they include the function P (·). However, we can use the equivalent condition from (a-ii)
of Proposition 1.1 to define relative smoothness. Let us now show how convergence results for the
Primal Gradient Scheme still hold in this more general setting using an extension of the proof of
Theorem 3.1.

Let gP (x) ∈ ∂P (x) be a specific subgradient of P (·) at x, and we will use the same subgradient of
P (·) at x when constructing a subgradient of f̄(·) and/or h̄(·), namely gf̄ (x) := ∇f(x)+ gP (x) and
gh̄(x) := L∇h(x) + gP (x). Then Algorithm 1 has the following update:

xi+1 = argminx∈Q{f̄(xi) + 〈gf̄ (xi), x− xi〉+Dh̄(x, x
i)}

= argminx∈Q{f̄(xi) + 〈∇f(xi) + gP (x
i), x− xi〉+DLh(x, x

i) + P (x)− P (xi)− 〈gP (xi), x− xi〉}

= argminx∈Q{f(xi) + 〈∇f(xi), x− xi〉+ LDh(x, x
i) + P (x)} ,

(44)
where in the third equality above the term involving gP (x

i) arising in ∂f̄(xi) cancels out the
corresponding term involving gP (x

i) arising in ∂h̄(xi) as part of the expansion of Dh̄(x, x
i). There

is therefore no actual need to compute gP (x
i) ∈ ∂P (xi) in the update. Indeed, this update (44)

corresponds exactly to the update in the NoLips algorithm [6] (up to the step-size) and the PGA-B
algorithm in [28] (up to the step-size) for composite optimization.

The proof of the computational guarantee in Theorem 3.1 can be generalized directly to the com-
posite optimization setting as follows. Let us denote

si(x) := f̄(xi) + 〈gf̄ (xi), x− xi〉+Dh̄(x, x
i) = f(xi) + 〈∇f(xi), x− xi〉+ LDh(x, x

i) + P (x) .

Notice that xi+1 = argminx∈Q si(x); therefore from the first-order optimality conditions there is
a subgradient gsi(x

i+1) ∈ ∂si(x
i+1) for which 〈gsi(xi+1), x − xi+1〉 ≥ 0 for all x ∈ Q. From the

additivity property of subgradients, we can write gsi(x
i+1) = ∇f(xi) + L∇h(xi+1) − L∇h(xi) + ḡ

for some ḡ ∈ ∂P (xi+1), and let us assign gP (x
i+1) := ḡ = gsi(x

i+1) − ∇f(xi) − L∇h(xi+1) +
L∇h(xi), which then is used to define the subgradient gf̄ (x

i+1), gh̄(x
i+1), and the Bregman distance

Dh̄(x, x
i+1) in the proof. Recall that the Primal Gradient Scheme does not rely on the choice

of subgradient of P (xi+1), thus the choice of gP (x
i+1) is only used in the proof and it is well-

defined.

Utilizing the above method for specifying the subgradients of P (·) at each of the iterates xi of
the Primal Gradient Scheme, we can prove the following more specialized form of the Three Point
Property which we can use in the proof of Theorem 3.1 for the setting composite optimization.

Lemma A.1. For any x ∈ Q, we have for any i ≥ 0,

f(xi)+ 〈gf̄ (xi), xi+1−xi〉+Dh̄(x
i+1, xi) ≤ f(xi)+ 〈gf̄ (xi), x−xi〉+Dh̄(x, x

i)−Dh̄(x, x
i+1) . (45)

Proof: Notice that si(x)− h̄(x) = f(xi) + 〈∇f(xi)− L∇h(xi), x− xi〉 − Lh(xi) and so is a linear
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function of x, whereby it holds that

(si(x)− h̄(x)) − (si(x
i+1)− h̄(xi+1)) = 〈∇(si − h̄)(xi+1), x− xi+1〉

= 〈gsi(xi+1), x− xi+1〉 − 〈gh̄(xi+1), x− xi+1〉

≥ −〈gh̄(xi+1), x− xi+1〉 ,

where the inequality follows from the choice of gsi(x
i+1). Rearranging the above and recalling the

definition of si(x) then completes the proof.

The proof of Theorem 3.1 in the setting of composite optimization follows directly by replacing
h(·), ∇h(·), f(·) and ∇f(·) by h̄(·), gh̄(·), f̄(·) and gf̄ (·), respectively, and utilizing (45) to deduce
the second inequality in (28).

A.3 Criteria for choosing the reference function h(·)

One natural question is how can we choose h(·) in order to lower the value of the bound in Theorem
3.1? Let us consider the simple case when f(·) is twice differentiable and is not strongly convex,
namely µ = 0, and f(·) attains its optimum at some point x∗. Then the convergence bound (26)
can be re-written as:

f(xk)− f(x∗) ≤ 1
kDLh(x

∗, x0)

= 1
kDf (x

∗, x0) + 1
k

(

∫ 1
0

∫ t
0 (x

∗ − x0)T
[

∇2(Lh− f)(x0 + s(x∗ − x0))
]

(x∗ − x0) ds dt
)

,

where ∇2(Lh− f)(y) is the Hessian of the “gap function” Lh(·)− f(·) at the point y ∈ Q. Notice
that the first term above is fixed independent of the choice of h(·) and L. It follows from Proposition
1.1 that if f(·) is L-smooth relative to h(·) then ∇2(Lh− f)(y) � 0 for any y ∈ int Q, whereby the
second term above is always nonnegative. Since we do not know x∗ in most cases, in order to make
the bound smaller we want the Hessian ∇2(Lh− f)(y) to be smaller for all y ∈ int Q.

There is a trade-off between how small the Hessian ∇2(Lh−f)(y) is and how hard it will be to solve
the subproblem (9). If we choose Lh(·) = f(·), the Hessian of the gap function is 0, but solving
the subproblem (9) is as hard as solving the original problem (1). On the other hand, in standard
gradient descent we use h(·) = 1

2‖ · ‖22 in which case the subproblem (9) can be easily solved,
while the Hessian of the gap function can be huge – thus implying a poorer convergence bound.
There are a number of ways to try to manage this trade-off. For example, in gradient descent
with preconditioning we can use h(·) = 1

2‖ · ‖2B :=
√

〈·, B·〉, where B is a computationally-friendly
positive definite matrix – typically a diagonal matrix. The criteria for designing B usually involves
(i) ensuring that solving equations with B is easy (so that the subproblem (9) can be easily solved),
and (ii) B is “close to” the Hessian of f(·) (so that the Hessian of the gap function is small).
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