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REGULARITY OF STATIONARY SOLUTIONS TO THE

LINEARIZED BOLTZMANN EQUATIONS

I-KUN CHEN

Abstract. We consider the regularity of stationary solutions to the
linearized Boltzmann equations in bounded C

1 convex domains in R
3

for gases with cutoff hard potential and cutoff Maxwellian gases. We
prove that the stationary solutions solutions are Hölder continuous with

order 1
2

−
away from the boundary provided the incoming data have the

same regularity. The key idea is to partially transfer the regularity in
velocity obtained by collision to space through transport and collision.

1. introduction

A thermal non-equilibrium stationary solution, a resolution between the
thermal dynamical tendency and boundary effects, reflects the complexity
and richness of the Boltzmann equations. At linear and weakly nonlinear
levels, the existence of such solutions has been studied by Guiraud [10, 11]
for convex domains and by Esposito, Guo, Kim, and Marra [6] for nonconvex
domains in R

3. Regarding the regularity issue, as far as we know, the best
result is that the solution is continuous away from the grazing set also in
[6].

For the corresponding time evolutionary weakly nonlinear problems, it
was studied by Kim, [14], that the discontinuity propagates from the bound-
ary to the interior of a non-convex domain on the tangent direction. The
BV property of solutions in a non-convex domain was studied by Guo, Kim,
Tonon, and Trescases [13]. By the same authors, regularity problem for con-
vex domains was studied in [12]. Especially, they established the weighted
C1 estimate for the specular reflection and diffuse reflection boundary condi-
tions. However, the weighted C1 norm grows severely with time, and there-
fore, could not give information to the stationary solution through large
time behavior. This motivates us to look at the regularity to the stationary
solution directly.

The goal of this paper is to prove the interior regularity of the stationary
linearized Boltzmann equation provided that the incoming data have the
same regularity. After first laying out the problem setting and definitions,
the precise statement of the main theorem will follow.

We consider the stationary linearized Boltzmann equation

(1.1) ζ · ∇f(x, ζ) = L(f),
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where ζ ∈ R
3 and x ∈ Ω, a C1 bounded convex domain in R

3. The linear
collision operator L here is corresponding to the cutoff hard potential gases
or cutoff Maxwellian gases, which are indicated by 0 ≤ γ < 1 ( see (1.2)).
This cutoff was first introduced by Grad [9], and later the analysis was
refined by Caflisch [1]. Furthermore, we assume the cross section is a product
of a function of the length of relative velocity and a function of the deflecting
angle as in [4], i.e., we assume that the cross section is nontrivial and satisfies

B(|ζ∗ − ζ|, θ) = |ζ∗ − ζ|γβ(θ), 0 ≤ β(θ) ≤ C cos θ sin θ.(1.2)

Here, the cross section is for the binary collision operator

Q(F,F ) =

∫

R3

∫ 2π

0

∫ π
2

0
(F ′F ′

∗ − FF∗)B(|ζ∗ − ζ|, θ)dθdǫdξ∗(1.3)

before linearized around the standard Maxwellian π− 3
2 e−|ζ|2 . Under this

assumption, L has the following known properties (See [1, 4, 9]). L can be
decomposed into a multiplication operator and an integral operator:

(1.4) L(f) = −ν(|ζ|)f +K(f),

where

(1.5) K(f)(x, ζ) =

∫

R3

k(ζ, ζ∗)f(x, ζ∗)dζ∗

is symmetric. The explicit expression of ν is

(1.6) ν(|ζ|) = β0

∫

R3

e−|η|2 |η − ζ|γdη,

where β0 =
∫

π
2
0 β(θ)dθ. Let 0 < δ < 1. The collision frequency ν(|ζ|) and

the collision kernel k(ζ, ζ∗) satisfies

ν0(1 + |ζ|)
γ ≤ ν(|ζ|) ≤ ν1(1 + |ζ|)

γ ,

(1.7)

|k(ζ, ζ∗)| ≤ C1|ζ − ζ∗|
−1(1 + |ζ|+ |ζ∗|)

−(1−γ)e
− 1−δ

4

(

|ζ−ζ∗|2+(
|ζ|2−|ζ∗|

2

|ζ−ζ∗|
)2
)

,

(1.8)

| ▽ζ k(ζ, ζ∗)| ≤ C2
1 + |ζ|

|ζ − ζ∗|2
(1 + |ζ|+ |ζ∗|)

−(1−γ)e
− 1−δ

4

(

|ζ−ζ∗|2+(
|ζ|2−|ζ∗|

2

|ζ−ζ∗|
)2
)

.

(1.9)

Here, the constants 0 < ν0 < ν1 may depend on the potential and C1 and
C2 may depend on δ and the potential. Related to the above estimates, the
following proposition from [1] is crucial in our study.
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Proposition 1.1. For any ǫ, a1, a2 > 0,

(1.10)
∣

∣

∣

∫

R3

1

|η − ζ∗|3−ǫ
e
−a1|η−ζ∗|2−a2

(|η|2−|ζ∗|
2)2

|η−ζ∗|2 dζ∗

∣

∣

∣ ≤ C4(1 + |η|)
−1,

where C4 may depend on ǫ, a1, and a2.

Suppose x is a point inside Ω. We define p(x, ζ) to be the boundary
point that the backward trajectory from x with velocity ζ touches. The
corresponding traveling time is denoted by τ−(x, ζ). We view the integral
operator K as the source term:

(1.11) ζ∇f(x, ζ) + ν(|ζ|)f(x, ζ) = K(f).

Using the method of characteristics, we derive the corresponding correspond-
ing integral equation:

f(x, ζ) = f(p(x, ζ), ζ)e−ν(|ζ|)τ−(x,ζ) +

∫ τ−(x,ζ)

0
e−ν(|ζ|)sK(f)(x− ζs, ζ)ds.

(1.12)

In this paper, we say f is a solution to (1.1) if f satisfies (1.12) almost
everywhere.

The boundary of Ω is denoted by ∂Ω, and the outer normal is denoted by
−→n . We define

Γ− := {(x, ζ)|x ∈ ∂Ω, ζ · −→n (x) < 0}.(1.13)

We consider norms as follows:

‖g(ζ)‖L∗
ζ
:=

(∫

R3

|g(ζ)|2ν(|ζ|)dζ

)
1
2

,(1.14)

‖f(x, ζ)‖L∗
x,ζ

:=

(
∫

Ω

∫

R3

|f(x, ζ)|2ν(|ζ|)dζdx

) 1
2

,(1.15)

‖f(x, ζ)‖L∞
x L∗

ζ
:= sup

x∈Ω

(∫

R3

|f(x, ζ)|2ν(|ζ|)dζ

)
1
2

,(1.16)

‖f(x, ζ)‖L∞
x,ζ

:= sup
x∈Ω,ζ∈R3

|f(x, ζ)|.(1.17)

The indices above denote the corresponding functional spaces.
The main conclusion in this paper is as follows.

Theorem 1.2. Let 0 < σ < 1
2 and f ∈ L∗

x,ζ be a stationary solution to the

linearized Boltzmann equations (1.1),

ζ · ∇f(x, ζ) = L(f),

in a C1 bounded convex domain Ω in R
3 for gases with cutoff hard poten-

tial or cutoff Maxwellian gases, i.e., the corresponding cross sections satisfy

(1.2) for 0 ≤ γ < 1. Suppose there exist φ(ζ) ∈ L∗
ζ and M > 0 such that

|f(X, η)| ≤ φ(η),(1.18)
3



|f(X, η) − f(Y, ω)| ≤M
(

|η − ω|2 + |X − Y |2
)

σ
2(1.19)

for any (X, η), (Y, ω) ∈ Γ−.

Then, f ∈ L∞
x,ζ. Furthermore, there exists a constant C0 depending only

on ‖f‖L∞
x,ζ

, σ, M , Ω, and the potential such that, for any x, y ∈ Ω and

ζ, ξ ∈ R
3,

|f(x, ζ)− f(y, ξ)| ≤ C0(1 + d−1
0 )3

(

|ζ − ξ|2 + |x− y|2
)

σ
2 ,(1.20)

where d0 is the distance of x, y to ∂Ω.

Notice that L∗
x,ζ is the very functional space for the existence results in

[6, 10]. Also, notice that the inequality (1.20) breaks down at boundary,
while some observations from the explicit simple example of the thermal
transport problem may suggest so (see [3, 5, 18]). Although the hard sphere
case is barely missed by the theorem, if we know solution is bounded a priori,
we can recover the theorem for γ = 1.

Our strategy is as follows. We break the theorem down into three parts:
L∗
x,ζ → L∞

x L∗
ζ , L

∞
x L∗

ζ → L∞
x,ζ , and L∞

x,ζ to Hölder continuity.
In one space dimensional case, Golse and Poupaud used a bootstrap strat-

egy to boost the integrability of solutions from L∗
x,ζ to L∞

x L∗
ζ in finite steps

for Milne and Kramers’ problems, [8]. The key ingredient is to convert
an estimate in velocity to a convolution in space, thanks to the transport
and collision nature of Boltzmann equations and the simple geometry of
one space dimension. For the three dimensional problem, we manage to
overcome the obstacle in geometry and extend the method to obtain L∞

x L∗
ζ

regularity. Then, together with the assumption of Hölder continuity for the
incoming data, we can show the solution is a bounded function in Section 5.

It is well known that the integral operator K can improve the regularity in
velocity. For the regularity in space, the Hölder continuity of K(f) in space
for solutions to one space dimensional equations is proved in [2] for hard
sphere gases, again thanks to the simple geometry of one space dimension.
This observation also plays an important role in [4]. More precisely, in one
space dimensional case, any two points can be connected by a trajectory,
either forward or backward, for almost all velocity. This is certainly not true
in a three dimensional space.

To carry out the Hölder continuity for the three space dimensional prob-
lem we consider, we first iterate the integral equation once more:

f(x, ζ) = f(p(x, ζ), ζ)e−ν(|ζ|)τ−(x,ζ)

+

∫ τ−(x,ζ)

0

∫

R3

e−ν(|ζ|)sk(ζ, ζ ′)e−ν(|ζ′|)τ−(x−ζs,ζ′)f
(

p(x− ζs, ζ ′), ζ ′
)

dζ ′ds

+

∫ τ−(x,ζ)

0

∫

R3

∫ τ−(x−ζs,ζ′)

0
e−ν(|ζ|)sk(ζ, ζ ′)e−ν(|ζ′|)tK(f)(x− ζs− ζ ′t, ζ ′)dtdζ ′ds

=: I + II + III.

(1.21)
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The I and II can preserve the regularity of Γ− due to the nature of the
transport equation. The key step is to prove the increasing of regularity in
III.

The smoothing effect of K in velocity has been studied, for example, in
[2, 4, 16]. The key observation in this study is that, in III, the regularity
in velocity of K(f) can be partially transferred to space due to transport
and collision. In order to connect velocity to space, in Section 2, we change
coordinates in the inner integral in III to space over Ω and length of velocity
over R+. Due to singularity of the integrand in that formula, we are not able
to push the regularity in space to differentiable. However, using the fact that
angle difference from an observer toward two different points, the parallax,
becomes smaller when the observer becomes farer away and balance the
contribution from nearby by the smallness of domain of integration, we are
able to obtain local Hölder continuity of III to the order of 1

2 .
Readers familiar to the time evolutionary Boltzmann equations in the

whole Euclidean space may find an analogy to the Mixture Lemma studied
by Liu and Yu [16, 17], and later extend by Kuo, Liu, and Noh [15], and
Wu [19], that is, the regularity in velocity can be transfer to space through
collision and transport. This kind of idea can be traced back to the famous
Averaging Lemma by Golse, Perthame, and Sentis [7]. In the context of
stationary solution in a convex domain, despite of the same spirit, the new
technique to carry out the mixture effect as explained above is quite different.

The plan of this paper is as follows. In Section 2, we study the key mixture
effect. Then, we investigate the geometric properties of a convex domain in
Section 3, where we show the local Hölder continuity of III. In section 4,
we show that the regularity of the boundary data are preserved by first and
second iterations of the transport equation, I and II. Eventually, we return
to increasing of integrability from L∗

x,ζ to L∞
x,ζ in section 5 and complete our

proof.

2. Gaining regularity from collision and transport

We will elaborate the smoothing effect due to the combination of collision
and transport in this section. We first convert the formula by interplaying
between velocity and space. We change ζ ′ to the spherical coordinates so
that

(2.1) ζ ′ = (ρ cos θ, ρ sin θ cosφ, ρ sin θ sinφ).

Also, we change traveling time to the traveling distance:

(2.2) r = ρt.
5



Let ζ̂ ′ = ζ′

|ζ′| . Then,

III =

∫ τ−(x,ζ)

0
e−ν(|ζ|)s

∫ ∞

0

∫ π

0

∫ 2π

0

∫ |xp(x−sζ,ζ′)|

0

k(ζ, ζ ′)e
− ν(ρ)

ρ
r
K(f)(x− ζs− ζ̂ ′r, ζ ′)ρ sin θdrdφdθdρds

= :

∫ τ−(x,ζ)

0
e−ν(|ζ|)sG(x− ζs, ζ)ds.

(2.3)

Notice that we can parametrize Ω by θ, φ, and r, thanks to the convexity.
Therefore, by regrouping the integrals, we can change the formulation to
contain an integral over space. Let x0 = x − ζs and y = x − ζs − ζ̂ ′r. We
have

G(x0, ζ) =
∫ ∞

0

∫

Ω
k(ζ,

(x0 − y)ρ

|x0 − y|
)e

−ν(ρ)
|x0−y|

ρ K(f)(y,
(x0 − y)ρ

|x0 − y|
)

ρ

|x0 − y|2
dydρ.

(2.4)

Notice that if we differentiate the above formula directly respect to x0, it will
become not integrable in y. However, we can still obtain a lower regularity
from this expression. The main purpose of this section is to prove the
following lemma.

Lemma 2.1. Suppose f(x, ζ) ∈ L∞
x,ζ is a solution to (1.1) and x0, x1 ∈ Ω.

Then, there exist C3 only depending on the Ω and the potential such that

(2.5) |G(x0, ζ)−G(x1, ζ)| ≤ C3‖f‖L∞
x,ζ
|x0 − x1|

1
2 .

We will follow the strategy explained in the introduction. As mentioned,
the smoothing effect of K in velocity is a well known fact. It was used
to study Green’s functions of the Boltzmann equations in [16]. In [2], the
locally Hölder continuity of K(f) in velocity has been shown for f ∈ L2

ζ for

hard sphere gases. Here, we will use an estimate appeared in [4].

Proposition 2.2. Suppose 1 ≤ p ≤ ∞ and f ∈ L
p
ζ. Then, there exists Cp

depending only on p and the potential such that

(2.6) ‖ ▽ζ K(f)(ζ)‖Lp
ζ
≤ Cp‖f‖Lp

ζ
.

Using (1.9) and Proposition 1.1 we can conclude that both ‖▽ζk(ζ, ζ∗)‖L∞
ζ L1

ζ∗

and ‖ ▽ζ k(ζ, ζ∗)‖L∞
ζ∗

L1
ζ
are bounded. Therefore, we can prove the Proposi-

tion 2.2 by an argument similar to the proof of Young’s inequality.
In addition to the above formula, we also need an estimate for the parallax

to transfer the regularity from velocity to space.
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θ
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θ
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d
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x0

y

Figure 1.

Proposition 2.3 (Estimate for the parallax). Let x0, x1, and y ∈ R
3 and

0 < a < 1. We denote |x0 − x1| = d and ∠x0yx1 = θ. If |y − x0| > 2da and

d ≤ 1, then

(2.7) θ <
π

4
d1−a.

Proof. We only need to work on the geometry on the plane passing x0, x1,
and y as showing in the Figure 2. On this plane, we draw the two circles
passing x0 and x1 with radius da. We observe that y is outside of the union
of two larger arcs with x0 and x1 as end points. Let A be the intersection
point between x0y and one of the larger arcs. We denote the center of the
circle containing this arc as O. We have

(2.8) θ = ∠x0yx1 < ∠x0Ax1 =: θ′.

On the other hand,

(2.9) 2∠x0Ax1 = ∠x0Ox1 <
π

2
.

We observe

(2.10) sin(θ′)da =
d

2
.

Applying Jordan’s inequality, we have

(2.11) θ < θ′ ≤
π

2
sin θ′ =

π

4
d1−a.

�

Now, we are ready to prove Lemma 2.1.
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Proof of Lemma 2.1. We add and subtract to obtain

|G(x0, ζ)−G(x1, ζ)| ≤

∣

∣

∣

∣

∫ ∞

0

∫

Ω
k(ζ,

(x0 − y)ρ

|x0 − y|
)
ρe

−ν(ρ)
|x0−y|

ρ

|x0 − y|2

·
[

K(f)(y,
(x0 − y)ρ

|x0 − y|
)−K(f)(y,

(x1 − y)ρ

|x1 − y|
)
]

dydρ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

0

∫

Ω
K(f)(y,

(x1 − y)ρ

|x1 − y|
)

·
[

k(ζ,
(x0 − y)ρ

|x0 − y|
)
ρe

−ν(ρ)
|x0−y|

ρ

|x0 − y|2
− k(ζ,

(x1 − y)ρ

|x1 − y|
)
ρe

−ν(ρ)
|x1−y|

ρ

|x1 − y|2

]

dydρ

∣

∣

∣

∣

=: GK +GO.

(2.12)

We first deal with GK . We use B(x, r) to denote the open ball centered
at x with radius r. We break the domain of integration into two, Ω1 :=
Ω \ B(x0, 2d

a) and Ω2 := Ω ∩ B(x0, 2d
a) for 0 < a < 1 to be determinate

later and name the corresponding integrals as A1 and A2 respectively. For
A1 , we will use the smoothness of K(f) in velocity, while, for A2, we use the
smallness of domain. Notice that, from Proposition 2.2, K(f) is Lipschitz
continuous in velocity.

(2.13) |K(f)(y, ζ1)−K(f)(y, ζ2)| ≤ C‖f‖L∞
x,ζ
|ζ1 − ζ2|.

Together with Proposition 2.3, we have
∣

∣

∣

∣

K(f)(y,
(x0 − y)ρ

|x0 − y|
)−K(f)(y,

(x1 − y)ρ

|x1 − y|
)

∣

∣

∣

∣

≤ C‖f‖L∞
x,ζ

∣

∣

∣

∣

(x0 − y)ρ

|x0 − y|
−

(x1 − y)ρ

|x1 − y|

∣

∣

∣

∣

≤ C‖f‖L∞
x,ζ

ρθ

≤ C‖f‖L∞
x,ζ

ρd1−a.

(2.14)

Therefore,

|A1| ≤ C‖f‖L∞
x,ζ

∫ ∞

0

∫

Ω1

∣

∣k(ζ,
(x0 − y)ρ

|x0 − y|
)
∣

∣

ρe
−ν(ρ)

|x0−y|
ρ

|x0 − y|2
d(1−a)ρdydρ

≤ Cd(1−a)‖f‖L∞
x,ζ

∫ ∞

0

∫ π

0

∫ 2π

0

∫ R

2da

∣

∣k(ζ,
(x0 − y)ρ

|x0 − y|
)
∣

∣ρ2 sin θdrdφdθdρ

≤ Cd(1−a)‖f‖L∞
x,ζ

∫ R

2da

∫

R3

|k(ζ, ζ ′)|dζ ′dr

≤ Cd(1−a)‖f‖L∞
x,ζ

R,

(2.15)

whereR is the diameter of Ω. Notice that we changed back the coordinates in
order to take advantage of the integrability of k(ζ, ζ ′) in the above inequality.
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On the other hand, using (1.8), we have

(2.16) ‖K(f)(x, ζ)‖L∞
x,ζ
≤ C‖f‖L∞

x,ζ
.

Therefore,

|A2| ≤ C‖f‖L∞
x,ζ

∫ ∞

0

∫

B(x0,2da)

∣

∣k(ζ,
(x0 − y)ρ

|x0 − y|
)
∣

∣e
−ν(ρ)

|x0−y|
ρ

ρ

|x0 − y|2
dydρ

≤ C‖f‖L∞
x,ζ

∫ ∞

0

∫ π

0

∫ 2π

0

∫ 2da

0

∣

∣k(ζ,
(x0 − y)ρ

|x0 − y|
)
∣

∣e
−ν(ρ)

|x0−y|
ρ ρ sin θdrdφdθdρ

≤ C‖f‖L∞
x,ζ

∫ 2da

0

∫

R3

|k(ζ, ζ ′)|
1

|ζ ′|
dζ ′dr ≤ C‖f‖L∞

x,ζ
da.

(2.17)

To optimize the estimate, we choose a = 1
2 , which gives the desired estimate

for GK .
Now, we proceed to estimate GO. We divide the domain of integration

into two, Ω3 := Ω \ B(x0, 2d) and Ω4 := Ω ∩ B(x0, 2d), and name the
corresponding integrals as A3 and A4 respectively.

We first deal with A3. Let x̃(u) = x1 + (x0 − x1)u. We have

|A3| =
∣

∣

∣

∣

∣

∣

∫ ∞

0

∫

Ω3

∫ 1

0

d

du
[k(ζ,

(x̃(u)− y)ρ

|x̃(u)− y|
)
ρe

−ν(ρ)
|x̃(u)−y|

ρ

|x̃(u)− y|2
]duK(f)(y,

(x1 − y)ρ

|x1 − y|
)dydρ

∣

∣

∣

∣

∣

∣

.

(2.18)
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By direct calculation and using (1.8), (1.9), (2.16), together with Proposition
1.1, we obtain

|A3|

≤ C|x1 − x0|‖f‖L∞
x,ζ

∫ 1

0

∫ ∞

0

∫

Ω3

e
− 1

8

[

|ζ−
(x̃(u)−y)ρ
|x̃(u)−y|

|2+(
|ζ|2−ρ2

|ζ−ζ′(ρ,x̃(u),y)|
)2
]

·
1

|x̃(u)− y|3





ρ2(1 + ρ)

|ζ − (x̃(u)−y)ρ
|x̃(u)−y| |

2
+

ρ

|ζ − (x̃(u)−y)ρ
|x̃(u)−y| |



 dydρdu

≤ Cd‖f‖L∞
x,ζ

∫ 1

0

∫ R

d

∫ π

0

∫ 2π

0

∫ ∞

0

e
− 1

8

[

|ζ− (x̃(u)−y)ρ
|x̃(u)−y|

|2+( |ζ|2−ρ2

|ζ−ζ′(ρ,x̃(u),y)|
)2
]

r

·





ρ2(1 + ρ)

|ζ − (x̃(u)−y)ρ
|x̃(u)−y| |

2
+

ρ

|ζ − (x̃(u)−y)ρ
|x̃(u)−y| |



 sin θdρdφdθdrdu

≤ Cd‖f‖L∞
x,ζ

∫ 1

0

∫ R

d

∫

R3

e
− 1

8

[

|ζ−ζ′|2+( |ζ|
2−|ζ′|2

|ζ−ζ′|
)2
]

·

[

1 + |ζ|+ |ζ − ζ ′|

|ζ − ζ ′|2
+

1

|ζ − ζ ′||ζ ′|

]

dζ ′
1

r
drdu

≤ Cd(1 + | ln d|)‖f‖L∞
x,ζ

.

(2.19)

Notice that we applied

(2.20) |x̃(u)− y| ≥ |x0 − y| − |x̃(u)− x0| ≥ d

in the above inequality.
On the other hand, notice that Ω4 ⊆ B(x0, 2d) ⊆ B(x1, 3d). We can

obtain

(2.21) |A4| ≤ Cd‖f‖L∞
x,ζ

.

Combining all the estimates above, we conclude the lemma.
�

In the end of this section, we will discuss the regularity of G in velocity.
Notice that

(2.22)

∣

∣

∣

∣

∣

∫ τ−(x0,ζ
′)

0
e−νtK(f)(x0 − ζ ′t, ζ ′)dt

∣

∣

∣

∣

∣

< C‖f‖L∞
x,ζ

.

Applying Proposition 2.2, we can conclude

Proposition 2.4.

(2.23) |G(x0, ζ1)−G(x0, ζ2)| ≤ C5‖f‖L∞
x,ζ
|ζ1 − ζ2|,

where the constant C5 depending only on the potential.
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3. Properties of a convex domain

In this section, we will discuss some properties of a convex domain and
then apply to the proof of the regularity of III. These properties are all
based on the same observation, that is, a line connecting an interior point
and a boundary point can not have too small an angle to the tangent plane
in a convex domain if the point is away from the boundary. The following
proposition and its proof serve as an examples.

Proposition 3.1. Suppose Ω is a bounded C1 convex domain in R
3 and

x, y ∈ Ω. Then, there exists a constant C6 only depending on Ω such that

|p(x, ζ)− p(y, ζ)| ≤ C6(1 + d−1
0 )|x− y|,(3.1)

|τ−(x, ζ)− τ−(y, ζ)| ≤ C6(1 + d−1
0 )
|x− y|

|ζ|
.(3.2)

Proof. We will work on the geometry of the plane passing two points x

and y and containing the vector ζ as showing in Figure 2. Without lost of
generlity, we may assume τ−(y, ζ) ≥ τ−(x, ζ). We note X0 = p(x, ζ) and

Y0 = p(y, ζ). If y−x ‖ ζ, then X0 = Y0 and |τ−(x, ζ)− τ−(y, ζ)| =
|x−y|
|ζ| and

the lemma holds. Otherwise, let ζ⊥ be the projection of the vector x − y

on the subspace perpendicular to ζ. The line passing x with direction ζ⊥
11



is denoted by L⊥, which intersects the line
←→
yY0 at a point A. Suppose L⊥

intersects the tangent plane of Ω passing X0 at a point B. Then, the line

segment xB intersects ∂Ω at a point H, because of the convexity.
←−→
BX0 and

←→
yY0 intersect at D. Let E = X0 + (y − x) and F = X0 + (A − x). Define

θ := ∠ADB = ∠xX0B. Notice that 0 < θ ≤ π
2 because

←→
Ax ⊥

←→
AD. We

observe 0 < θ′ := ∠xX0H < θ because of the convexity. Notice that

(3.3) sin θ′ =
|xH|

|X0H|
≥

d0

R
.

Therefore,

(3.4) |X0D| =
|X0F |

sin θ
≤

R

d0
|X0F | ≤

R

d0
|x− y|.

Notice that |ζ| · |τ−(x, ζ)− τ−(y, ζ)| = |EY0| < |ED|. Then, applying trian-
gular inequality for △EDX0, we can conclude (3.2). Again, using triangular
inequality for △EY0X0, we obtain (3.1). Therefore, we proved the propo-
sition for the case L⊥ intersects with the tangent plane passing x. For the
other case, i.e., if L⊥ is parallel to the tangent plane passing X0, we can
easily see that the proposition holds. �

We use d(z, ∂Ω) to denote the distance from z to ∂Ω. By a similar argu-
ment, we have the following Proposition to be used the next section

Proposition 3.2. With the same assumption in Proposition 3.1. Suppose

z ∈ xX0. Then,

(3.5) |zX | ≤
R

d0
d(z, ∂Ω).

For two trajectories passing the same point, we have the following propo-
sition.

Proposition 3.3. Suppose Ω is a bounded C1 convex domain and ζ1, ζ2 ∈ R
3

and x ∈ Ω. Let P1 = p(x, ζ1) and P2 = p(x, ζ2). Let d0 be the distance

between x and ∂Ω and θ be the angle between ζ1 and ζ2. Then, there exists

a constant C7 depending only on Ω such that

|P1 − P2| ≤ C7(1 + d−1
0 )θ,(3.6)

∣

∣|xP1| − |xP2|
∣

∣ ≤ C7(1 + d−1
0 )θ.(3.7)

Proof. When θ is big, the lemma is true because Ω is bounded. Thus, we
only need to deal with the case θ < 1. We are going to work on the plane
geometry of the plane passing x, P1, and P2. Without lost of generality, we
can assume |xP2| ≥ |xP1| . Let A′ be the projection of P1 on xP2. Notice
that

(3.8) |P1A′| ≤ R sin θ ≤ Rθ.
12



On the plane we considered, the line passing x and perpendicular to xP2

intersects Ω at two points. The one at the same side with P1 is denoted by
B′. Because of the convexity, we observe

(3.9)
d0

R
≤ sin∠B′P2x ≤ sin∠P1P2x.

Therefore,

(3.10) |P1P2| =
|P1A′|

sin∠P1P2x
≤

R2

d0
θ.

Also,

(3.11)
∣

∣|xP1| − |xP2|
∣

∣ ≤ |A′P2| ≤ |P1P2| ≤
R2

d0
θ.

Hence, we complete the proof. �

Now we are ready to discuss the regularity of III.

Proposition 3.4. Let Ω be a bounded C1 domain in R
3. III is defined in

(1.21) for f ∈ L∞
x,ζ that solves (1.1). Suppose x and y are interior points

of Ω and ζ1, ζ2 ∈ R
3. Then, there exists C8 depending only on Ω and the

potential of the gases, such that

(3.12) |III(x, ζ1)−III(y, ζ2)| ≤ C8(1+d−1
0 )3‖f‖L∞

x,ζ
(|x−y|2+ |ζ1−ζ2|

2)
1
4 ,

where d0 is the distance of x and y to ∂Ω.

Proof. Since III is bounded, the cases for |x − y| > 1 or |ζ1 − ζ2| > 1 are

trivial. We only consider the case |x−y| ≤ 1 and |ζ1−ζ2| ≤ 1. Let ζ̄1 =
|ζ2|
|ζ1|

ζ1

and ζ ∈ R
3. We break the estimate into three parts:

|III(x, ζ)− III(y, ζ)| ≤ C(1 + d−1
0 )2‖f‖L∞

x,ζ
|x0 − x1|

1
2 ,(3.13)

|III(x, ζ̄1)− III(x, ζ2)| ≤ C(1 + d−1
0 )3‖f‖L∞

x,ζ
|ζ1 − ζ2|

1
2 ,(3.14)

|III(x, ζ̄1)− III(x, ζ1)| ≤ C(1 + d−1
0 )‖f‖L∞

x,ζ
|ζ1 − ζ2|

1
2 .(3.15)

We start with (3.13). We will assume τ−(y, ζ) ≥ τ−(x, ζ) and use Proposition

3.1 and the notations in its proof. When |x− y| < d0
2 ,

|III(x, ζ)− III(y, ζ)| ≤
∣

∣

∣

∣

∣

∫
|x−X0|

|ζ|

0
e−νs

[

G(x− sζ, ζ)−G(y − sζ, ζ)
]

ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ τ−(y,ζ)

τ−(x,ζ)
e−νsG(y − sζ, ζ)ds

∣

∣

∣

∣

∣

≤ C‖f‖L∞
x,ζ
|x− y|

1
2 + C(1 + d−1

0 )
|x− y|

|ζ|
e
−ν0

d0
2|ζ| ‖f‖L∞

x,ζ

≤ C(1 + d−1
0 )2‖f‖L∞

x,ζ
|x0 − x1|

1
2 .

(3.16)
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Notice that we used the fact 1
|ζ|e

−ν0
d0
2|ζ| ≤ C

ν0d0
and |x − y| ≤ 1 in the last

inequality above. When |x− y| ≥ d0
2|ζ| ,

|III| ≤ C‖f‖L∞
x,ζ

≤ C‖f‖L∞
x,ζ

|x− y|
1
2

d
1
2
0

≤ C(1 + d−1
0 )2‖f‖L∞

x,ζ
|x0 − x1|

1
2 .

(3.17)

As for (3.14), we may assume τ−(x, ζ̄1) ≤ τ−(x, ζ2) without lost of gener-
ality and adopt the notations in the proof of Proposition 3.3 after replacing
ζ1 by ζ̄1 in the expression. Then,

|III(x, ζ̄1)− III(x, ζ2)| ≤
∣

∣

∣

∣

∣

∣

∫
|P1x|
|ζ2|

0
e−ν(|ζ2|)s

[

G(x− sζ̄1, ζ̄1)−G(x− sζ2, ζ2)
]

ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ τ−(x,ζ2)

τ−(x,ζ̄1)
e−ν(|ζ2|)sG(x− sζ2, ζ)ds

∣

∣

∣

∣

∣

=: Dd +Rm.

(3.18)

When |x − y| ≥ d0
2 , the desired estimate for Rm holds similar to (3.17).

When |x− y| < d0
2 , we use Proposition 3.3 and obtain

|Rm| ≤ C‖f‖L∞
x,ζ

(1 + d−1
0 )θ|ζ2|

−1e
−ν0

d0
2|ζ2|

≤ C‖f‖L∞
x,ζ

(1 + d−1
0 )|ζ̄1 − ζ2||ζ2|

−2e
−ν0

d0
2|ζ2|

≤ C‖f‖L∞
x,ζ

(1 + d−1
0 )3|ζ̄1 − ζ2|

≤ C‖f‖L∞
x,ζ

(1 + d−1
0 )3

(

|ζ̄1 − ζ1|+ |ζ1 − ζ2|
)

≤ C‖f‖L∞
x,ζ

(1 + d−1
0 )3|ζ1 − ζ2|.

(3.19)

For Dd, we will subtract and add one term and then apply Lemma 2.1 and
Proposition 2.4:

14



Dd ≤

∣

∣

∣

∣

∣

∣

∫
|P1x|
|ζ2|

0
e−ν(|ζ2|)s

(

G(x− sζ̄1, ζ̄1)−G(x− sζ2, ζ̄1)
)

ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫
|P1x|
|ζ2|

0
e−ν(|ζ2|)s

(

G(x− sζ2, ζ̄1)−G(x− sζ2, ζ2)
)

ds

∣

∣

∣

∣

∣

∣

≤C‖f‖L∞
x,ζ

∣

∣

∣

∣

∣

∣

∫
|P1x|
|ζ2|

0
e−ν(|ζ2|s

(

(|ζ̄1 − ζ2|s)
1
2 + |ζ̄1 − ζ2|

)

ds

∣

∣

∣

∣

∣

∣

≤C‖f‖L∞
x,ζ
|ζ1 − ζ2|

1
2 .

(3.20)

Now, we proceed to proving (3.15). we assume |ζ̄1| ≤ |ζ1|. We write

|III(x, ζ̄1)− III(x, ζ1)| ≤
∣

∣

∣

∣

∣

∫ τ−(x,ζ1)

0
e−ν(|ζ2|)sG(x− sζ̄1, ζ̄1)− e−ν(|ζ1|)sG(x− sζ1, ζ1)ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ τ−(x,ζ̄1)

τ−(x,ζ1)
e−ν(|ζ2|)sG(x− sζ̄1, ζ̄1)ds

∣

∣

∣

∣

∣

=: Dv +Rv.

(3.21)

We discuss Rv in two cases. When |ζ1| > 2|ζ1 − ζ2|
1
2 , we notice that |ζ2| >

|ζ1 − ζ2|
1
2 . Then,

Rv ≤ C‖f‖L∞
x,ζ

|ζ1| − |ζ2|

|ζ1||ζ2|
e
−

ν0d0
|ζ1|

≤ Cd−1
0 ‖f‖L∞

x,ζ

|ζ1| − |ζ2|

|ζ2|

≤ Cd−1
0 ‖f‖L∞

x,ζ
|ζ1 − ζ2|

1
2 .

(3.22)

When |ζ1| ≤ 2|ζ1 − ζ2|
1
2 , |ζ2| ≤ 2|ζ1 − ζ2|

1
2 because we assume |ζ2| ≤ |ζ1|.

Therefore,

Rv ≤ C‖f‖L∞
x,ζ

∫ τ−(x,ζ̄1)

τ−(x,ζ1)
e−ν0sds

≤ C‖f‖L∞
x,ζ

(

e
−

ν0d0
|ζ1| + e

−
ν0d0
|ζ2|

)

≤ C‖f‖L∞
x,ζ

(

|ζ1|

ν0d0
+
|ζ2|

ν0d0

)

≤ Cd−1
0 ‖f‖L∞

x,ζ
|ζ1 − ζ2|

1
2 .

(3.23)
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As for Dv,

|Dv| ≤

∫
|xP1|
|ζ1|

0

∣

∣

∣
e−ν(|ζ2|)s − e−ν(|ζ1|)s

∣

∣

∣
|G(x− sζ̄1, ζ̄1)|ds

+

∫
|xP1|
|ζ1|

0
e−ν(|ζ1|)s

∣

∣G(x− sζ̄1, ζ̄1)−G(x− sζ1, ζ̄1)
∣

∣ ds

+

∫
|xP1|
|ζ1|

0
e−ν(|ζ1|)s

∣

∣G(x− sζ1, ζ̄1)−G(x− sζ1, ζ1)
∣

∣ ds

=: D1
v +D2

v +D3
v .

(3.24)

We can deal with D2
v and D3

v similar to (3.20). To deal with D1
v , we need

to discuss the derivative of ν:

| ▽ νγ(|ζ|)| =

∣

∣

∣

∣

β0

∫

R3

e−|η|2 |η − ζ|γ−1 η − ζ

|η − ζ|
dη

∣

∣

∣

∣

≤ C(1 + |ζ|)γ−1.

(3.25)

Applying the Mean Value Theorem, there exists z between |ζ1| and |ζ2|
such that

D1
v ≤ C

∫
|xP1|
|ζ1|

0
||ζ2| − |ζ1|| e

−ν(z)s(1 + z)γ−1|G(x− sζ̄1, ζ̄1)|ds

≤ C‖f‖L∞
x,ζ
|ζ1 − ζ2|.

(3.26)

Therefore, we prove the regularity of the III. �

4. Preservation of the regularity from the boundary

In this section, we will prove that the damped transport equation pre-
serves the regularity of the boundary data and so does II.

Proposition 4.1. Let 0 < σ < 1
2 and Ω be a bounded C1 convex domain.

Suppose f ∈ L∞
x,ζ satisfies

(4.1) |f(X, ζ)− f(Y, ζ ′)| ≤M(|X − Y |2 + |ζ − ζ ′|2)
σ
2

for any (X, ζ), (Y, ζ ′) ∈ Γ−. Then, there exists a constant C9 depending

only on ‖f‖L∞
x,ζ

, M , Ω, and the potential such that, I from (1.21) satisfies

|I(x, ζ)− I(y, ζ)| ≤ C9(1 + d−1
0 )2σ |x− y|σ,(4.2)

|I(x, ζ1)− I(x, ζ2)| ≤ C9(1 + d−1
0 )2|ζ1 − ζ2|

σ.(4.3)

As a consequence,

(4.4) |I(x, ζ1)− I(y, ζ2)| ≤ 2C9(1 + d−1
0 )2(|x− y|2 + |ζ1 − ζ2|

2)
σ
2 .
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Proof. We can see that I is bounded and therefore the proposition holds if
|x− y| > 1 or |ζ1 − ζ2| > 1. We only need to discuss when |x− y| ≤ 1 and
|ζ1 − ζ2| ≤ 1.

We start with (4.2). Notice that here we are picky about the growth rate
with respect to d0 because that it is needed for the proof of regularity of II.
Notice that if d0 < |x− y|, then 1 < d−1

0 |x− y| and therefore the inequality
holds. Hence, we only need to discuss the case |x− y| < d0.

|I(x, ζ)− I(y, ζ)| =
∣

∣

∣f(p(x, ζ), ζ)e−ν(|ζ|)τ−(x,ζ) − f(p(y, ζ), ζ)e−ν(|ζ|)τ−(y,ζ)
∣

∣

∣

≤ |f(p(x, ζ), ζ)− f(p(y, ζ), ζ)| e−ν(|ζ|)τ−(x,ζ)

+ |f(p(y, ζ), ζ)|
∣

∣

∣e−ν(|ζ|)τ−(x,ζ) − e−ν(|ζ|)τ−(y,ζ)
∣

∣

∣

=: Ia + Ib.

(4.5)

From (3.1) and our assumption, we have

(4.6) |Ia| ≤ CM(1 + d−1
0 )σ |x− y|σ.

To deal with Ib, we need to discuss the following two cases. If |ζ| ≥
(1 + d−1

0 )1−2σ |x− y|1−σ, then

|e−ν(|ζ|)τ−(x,ζ) − e−ν(|ζ|)τ−(y,ζ)| ≤ C(1 + |ζ|)γ |τ−(x, ζ)− τ−(y, ζ)|

≤ C((1 + d−1
0 )(1 + |ζ|)γ

|x− y|

|ζ|
≤ C

{

(1 + d−1
0 )|x− y|, |ζ| > 1

(1 + d−1
0 )2σ |x− y|σ, |ζ| ≤ 1

≤ C(1 + d−1
0 )2σ|x− y|σ.

(4.7)

Notice that 0 ≤ γ < 1 and |x− y| < d0 were used in the above inequalities.
For the case |ζ| < (1 + d−1

0 )1−2σ |x− y|1−σ ,

|e−ντ−(x,ζ) − e−ντ−(y,ζ)| ≤ 2e
−ν0

d0
|ζ|

≤ 2

(

|ζ|

ν0d0

)
σ

1−σ
(

ν0d0

|ζ|

)
σ

1−σ

e
−ν0

d0
|ζ|

≤ C

(

|ζ|

ν0d0

) σ
1−σ

≤ C(1 + d−1
0 )2σ|x− y|σ.

(4.8)

For (4.3), we adopt the notation in the proof of Proposition 3.3. We

introduce ζ̄1 =
|ζ2|
|ζ1|

ζ1 and write

|I(x, ζ1)− I(x, ζ2)| ≤
∣

∣I(x, ζ1)− I(x, ζ̄1)
∣

∣+
∣

∣I(x, ζ̄1)− I(x, ζ2)
∣

∣

=: ∆Ir +∆Iθ.
(4.9)

For the former part,
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∆Ir =

∣

∣

∣

∣

f(P1, ζ1)e
−ν(|ζ1|)

|xP1|
|ζ1| − f(P1, ζ̄1)e

−ν(|ζ2|)
|xP1|
|ζ2|

∣

∣

∣

∣

≤

∣

∣

∣

∣

[f(P1, ζ1)− f(P1, ζ̄1)]e
−ν(|ζ1|)

|xP1|
|ζ1|

∣

∣

∣

∣

+

∣

∣

∣

∣

f(P1, ζ̄1)

[

e
−ν(|ζ1|)

|xP1|

|ζ1| − e
−ν(|ζ2|)

|xP1|

|ζ2|

]∣

∣

∣

∣

=: ∆I1r +∆I2r .

(4.10)

We can obtain the desired bound for ∆I1r directly from the assumption. For
∆I2r , we need to discuss in two cases. First, we consider the case |ζ1| ≤

2
∣

∣|ζ1| − |ζ2|
∣

∣

1−σ
2 . Notice that |ζ2| ≤ 3

∣

∣|ζ1| − |ζ2|
∣

∣

1−σ
2 . Similar to (4.8), we

have

|e
−ν(|ζ1|)

|xP1|
|ζ1| |+ |e

−ν(|ζ2|)
|xP1|
|ζ2| | ≤ e

−
ν0d0
|ζ1| + e

−
ν0d0
|ζ2|

≤ C

(

∣

∣

∣

∣

|ζ1|

ν0d0

∣

∣

∣

∣

2σ
1−σ

+

∣

∣

∣

∣

|ζ2|

ν0d0

∣

∣

∣

∣

2σ
1−σ

)

≤ C(
1

ν0d0
)

2σ
1−σ

∣

∣|ζ1| − |ζ2|
∣

∣

σ

≤ C(1 + d−1
0 )2|ζ1 − ζ2|

σ.

(4.11)

When |ζ1| > 2
∣

∣|ζ1| − |ζ2||
∣

∣

1−σ
2 , we have |ζ2| >

∣

∣|ζ1| − |ζ2||
∣

∣

1−σ
2 . By the

Mean Value Theorem, there exists η′ between |ζ1| and |ζ2|, therefore η′ >
∣

∣|ζ1| − |ζ2||
∣

∣

1−σ
2 , such that,

|∆I2r | =

∣

∣

∣

∣

∣

f(P1, ζ̄1)|xP1|(|ζ1| − |ζ2|) e
−ν(η′)

|xP1|

η′
d

dη

(ν(η)

η

)

∣

∣

∣

∣

η=η′

∣

∣

∣

∣

∣

≤
∣

∣|ζ1| − |ζ2|
∣

∣

{

1
η′2

, 0 < η′ < 1,
1

η′2−γ , η′ ≥ 1

≤ C
∣

∣|ζ1| − |ζ2|
∣

∣

σ
≤ C|ζ1 − ζ2|

σ.

(4.12)

Notice that we used the estimate (3.25) and the fact |ζ1 − ζ2| ≤ 1.
Now, we proceed to ∆Iθ.

|∆Iθ| =

∣

∣

∣

∣

f(P1, ζ̄1)e
−ν(|ζ2|)

|xP1|
|ζ2| − f(P2, ζ2)e

−ν(|ζ2|)
|xP2|
|ζ2|

∣

∣

∣

∣

≤
∣

∣f(P1, ζ̄1)− f(P2, ζ2)
∣

∣e
−ν(|ζ2|)

|xP1|
|ζ2|

+ |f(P2, ζ2)|

∣

∣

∣

∣

e
−ν(|ζ2|)

|xP1|

|ζ2| − e
−ν(|ζ2|)

|xP2|

|ζ2|

∣

∣

∣

∣

=: ∆I1θ +∆I2θ .

(4.13)
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Applying Proposition 3.3 and our assumption, we have

|∆I1θ | ≤ C
[

(1 + d−1
0 )σ|θ|σe

−ν0
d0
|ζ2| + |ζ̄1 − ζ2|

σ
]

≤ C
[

(1 + d−1
0 )σ

∣

∣

∣

∣

|ζ̄1 − ζ2|

|ζ2|

∣

∣

∣

∣

σ

e
−ν0

d0
|ζ2| + |ζ̄1 − ζ2|

σ
]

≤ C(1 + d−1
0 )2σ|ζ1 − ζ2|

σ.

(4.14)

For ∆I2θ , we again break it into two cases: |ζ2| ≤ |ζ̄1 − ζ2|
1−σ
2 and |ζ2| >

|ζ̄1 − ζ2|
1−σ
2 . We mimic (4.11) and obtain the desired bound for the former

case. For the latter one, applying the Mean Value Theorem and Proposition
3.3, we have

|e
−ν(|ζ2|)

|xP1|
|ζ2| − e

−ν(|ζ2|)
|xP2|
|ζ2| | ≤

ν(|ζ2|)

|ζ2|

∣

∣|xP1| − |xP2|
∣

∣

≤ C(1 + d−1
0 )

ν(|ζ2|)

|ζ2|

|ζ̄1 − ζ2|

|ζ2|
≤ C(1 + d−1

0 )

{

|ζ̄1 − ζ2|
σ, |ζ2| < 1

|ζ̄1 − ζ2|, |ζ2| ≥ 1

≤ C(1 + d−1
0 )|ζ1 − ζ2|

σ.

(4.15)

Notice that the last inequality above holds because we are now discussing
the case when |ζ1 − ζ2| ≤ 1. Hence, we complete the proof.

�

Now we only have II left.

Proposition 4.2. With the same assumption as Proposition 4.1 above, there

exists a constant C10 only depending on ‖f‖L∞
x,ζ

, M , σ, Ω, and the potential

such that,

(4.16) |II(x, ζ1)− II(y, ζ2)| ≤ C10(1 + d−1
0 )3(|x− y|2 + |ζ1 − ζ2|

2)
σ
2 .

Proof. Notice that the inequality holds when |x − y| or |ζ1 − ζ2| are large
compare with d0. We only need the deal the case when both of them are
small. We can break the proof into the following three estimates:

|II(x, ζ)− II(y, ζ)| ≤ C(1 + d−1
0 )2|x− y|σ,(4.17)

|II(x, ζ̄1)− II(x, ζ2)| ≤ C(1 + d−1
0 )3|ζ1 − ζ2|

σ,(4.18)

|II(x, ζ̄1)− II(x, ζ1)| ≤ C(1 + d−1
0 )2|ζ1 − ζ2|

σ.(4.19)

In the proof of (4.17), we may assume τ−(y, ζ) ≥ τ−(x, ζ). We will apply
estimate (4.2) in Proposition 4.1 in our proof. Notice that (4.2) depends on
the distance and breaks down at boundary. However, thank to the help of
the integration over s in II, we still can have the desired estimate. To carry
out the analysis, we fist dyadically decompose Ω as fallows. Let Mn = {x ∈
Ω|d(x, ∂Ω) ≤ d02

−n} for integer n ≥ 1. Let D0 = Ω \M1 and Dn = Mn \
Mn+1 for n ≥ 1. Let N be the integer such that 8|x−y| > 2−Nd0 ≥ 4|x−y|.
Dn for 0 ≤ n ≤ N together with MN+1 form a decomposition of Ω. Let
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X0 = p(x, ζ) and Y0 = p(y, ζ). Let Zn be the intersection of xX0 with
∂Mn \ ∂Ω for n ≥ 1 and Z0 = x. Applying Proposition 3.2, we have

(4.20) |XZn| ≤ Rd−1
0 2−nd0 ≤ R2−n.

For n ≥ 1,

∆IInd :=

∣

∣

∣

∣

∣

∣

∫

|Zn+1x|

|ζ|

|Znx|
|ζ|

e−νs

∫

R3

k(ζ, ζ ′)[I(x− sζ, ζ ′)− I(y − sζ, ζ ′)]dζ ′ds

∣

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

∣

∫

|Zn+1x|

|ζ|

|Znx|
|ζ|

e−νs

∫

R3

k(ζ, ζ ′)(1 + 2n+2d−1
0 )2σ|x− y|σdζ ′ds

∣

∣

∣

∣

∣

∣

≤ C(1 + 2n+2d−1
0 )2σ |x− y|σ

∣

∣

∣

∣

∣

∣

∫

|Zn+1x|

|ζ|

|Znx|
|ζ|

e−νsds

∣

∣

∣

∣

∣

∣

≤ C(1 + 2n+2d−1
0 )2σ |x− y|σR2−n|ζ|−1e

−
ν0d0
2|ζ|

≤ C2−(1−2σ)n(1 + d−1
0 )1+2σ |x− y|σ.

(4.21)

Notice that 1− 2σ > 0 and therefore

(4.22)

N
∑

n=1

IInd ≤ C(1 + d−1
0 )1+2σ|x− y|σ.

For the segment within D0,

∆II0d :=

∣

∣

∣

∣

∣

∣

∫
|Z1x|
|ζ|

0
e−ν(|ζ|)s

∫

R3

k(ζ, ζ ′)[I(x− sζ, ζ ′)− I(y − sζ, ζ ′)]dζ ′ds

∣

∣

∣

∣

∣

∣

≤ C(1 + 4d−1
0 )2σ|x− y|σ

∫
|Z1x|
|ζ|

0
e−ν(|ζ|)s

∫

R3

|k(ζ, ζ ′)|dζ ′ds

≤ C(1 + d−1
0 )2σ |x− y|σ

(

1

ν(|ζ|)
−

1

ν(|ζ|)
e
−ν(|ζ|)

|Z1x|
|ζ|

)

≤ C(1 + d−1
0 )2σ |x− y|σ.

(4.23)
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For the remaining part, we have

∣

∣

∣

∣

∣

∫ τ−(x,ζ)

|ZN+1x|

|ζ|

e−νs

∫

R3

k(ζ, ζ ′)I(x− sζ, ζ ′)dζ ′ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ τ−(y,ζ)

|ZN+1x|

|ζ|

e−νs

∫

R3

k(ζ, ζ ′)I(y − sζ, ζ ′)dζ ′ds

∣

∣

∣

∣

∣

≤ C(1 + d−1
0 )
|x− y|

|ζ|
e
−

ν0d0
2|ζ|

≤ C(1 + d−1
0 )2|x− y|,

(4.24)

where the definition of N and Proposition 3.1 were used. Hence, we proved
(4.17).

Now, we proceed to (4.18). Let θ be the angle between ζ̄1 and ζ2. Without
lost of generality, we may assume τ−(x, ζ̄1) ≤ τ−(x, ζ2). Let P1 = p(x, ζ̄1)
and P2 = p(x, ζ2). Again, we only need to prove the case when |ζ̄1− ζ2| ≤ 1.
Let θ be the angle between ζ1 and ζ2. We adopt the same dyadic decompo-
sition above and stop at N ′ such that 8|P1x|θ > 2−N ′

d0 ≥ 4|P1x|θ. Let Sn

be the intersection between P1x and ∂Mn \ ∂Ω.

∆IIn :=

∣

∣

∣

∣

∣

∣

∫

|xSn+1|

|ζ2|

|xSn|
|ζ2|

e−νs

∫

R3

k(ζ̄1, ζ
′)I(x− sζ̄1, ζ

′)− k(ζ2, ζ
′)I(x− sζ2, ζ

′)dζ ′ds

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∫

|xSn+1|

|ζ2|

|xSn|
|ζ2|

e−νs

∫

R3

k(ζ̄1, ζ
′)[I(x− sζ̄1, ζ

′)− I(x− sζ2, ζ
′)]dζ ′ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

|xSn+1|

|ζ2|

|xSn|
|ζ2|

e−νs

∫

R3

[k(ζ̄1, ζ
′)− k(ζ2, ζ

′)]I(x− sζ2, ζ
′)dζ ′ds

∣

∣

∣

∣

∣

∣

=: DIn +DKn.

(4.25)

DIn can be bounded by a similar argument:
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DIn ≤ C

∣

∣

∣

∣

∣

∣

∫

|xSn+1|

|ζ2|

|xSn|
|ζ2|

e−νs

∫

R3

k(ζ̄1, ζ
′)(1 + 2n+2d−1

0 )2σ(
|ζ̄1 − ζ2|

|ζ2|
)σdζ ′ds

∣

∣

∣

∣

∣

∣

≤ C(1 + 2n+2d−1
0 )2σ(

|ζ̄1 − ζ2|

|ζ2|
)σ

∣

∣

∣

∣

∣

∣

∫

|xSn+1|

|ζ2|

|xSn|
|ζ2|

e−νsds

∣

∣

∣

∣

∣

∣

≤ C(1 + 2n+2d−1
0 )2σ(

|ζ̄1 − ζ2|

|ζ2|
)σR2−n|ζ2|

−1e
−

ν0d0
2|ζ2|

≤ C2−(1−2σ)n(1 + d−1
0 )1+3σ |ζ̄1 − ζ2|

σ .

(4.26)

Therefore,

(4.27)
N ′
∑

1

DIn ≤ C(1 + d−1
0 )

5
2 |ζ̄1 − ζ2|

σ.

For DKn part, from the assumption, we observe that I(x, ζ) is bounded.
Therefore, we have

(4.28)

∣

∣

∣

∣

∫

R3

[k(ζ̄1, ζ
′)− k(ζ2, ζ

′)]I(x− sζ2, ζ
′)dζ ′

∣

∣

∣

∣

≤ C|ζ̄1 − ζ2|.

Hence,

DKn ≤ C|ζ̄1 − ζ2|

∣

∣

∣

∣

∣

∣

∫

|xSn+1|

|ζ2|

|xSn|
|ζ2|

e−νsds

∣

∣

∣

∣

∣

∣

≤ C|ζ̄1 − ζ2|
R2−n

|ζ2|
e
−

ν0d0
2|ζ2|

≤ C(1 + d−1
0 )2−n|ζ̄1 − ζ2|.

(4.29)

As a result,

(4.30)

N ′
∑

n=1

DKn ≤ C(1 + d−1
0 )|ζ̄1 − ζ2|.

For the segment within D0,

∆II0 :=

∣

∣

∣

∣

∣

∣

∫
|xS1|
|ζ2|

0
e−νs

∫

R3

k(ζ̄1, ζ
′)I(x− sζ̄1, ζ

′)− k(ζ2, ζ
′)I(x− sζ2, ζ

′)dζ ′ds

∣

∣

∣

∣

∣

∣

≤ C

∫
|xS1|
|ζ2|

0
e−νs

[

(1 + d−1
0 )2σ(s|ζ̄1 − ζ2|)

σ + |ζ̄1 − ζ2|
]

ds

≤ C(1 + d−1
0 )2σ|ζ̄1 − ζ2|

σ.

(4.31)
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Similarly, we can also establish bounds for the remaining part because the
domain of integration is small and distance from x is big. Hence, we proved
(4.18).

Finally we are going to prove (4.19). We also need the dyadic decompo-
sition used above. Let N̄ be the integer such that

(4.32) 4|ζ2 − ζ1| ≥ 2−N̄d0 ≥ 2|ζ2 − ζ1|.

Without lost generality, we may assume |ζ̄1| ≤ |ζ1|. Let S0 = x. For
1 ≤ n ≤ N̄ ,

DV n :=
∣

∣

∣

∣

∣

∣

∫

|Sn+1x|

|ζ1|

|Snx|
|ζ1|

∫

R3

e−ν(|ζ2|)sk(ζ̄1, ζ
′)I(x− sζ̄1, ζ

′)− e−ν(|ζ1|)sk(ζ1, ζ
′)I(x− sζ1, ζ

′)dζ ′ds

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∫

|Sn+1x|

|ζ1|

|Snx|
|ζ1|

∫

R3

[

e−ν(|ζ2|)s − e−ν(|ζ1|)s
]

k(ζ̄1, ζ
′)I(x− sζ̄1, ζ

′)

+ e−ν(|ζ1|)s
[

k(ζ̄1, ζ
′)− k(ζ1, ζ

′)
]

I(x− sζ̄1, ζ
′)

+ e−ν(|ζ1|)sk(ζ1, ζ
′)
[

I(x− sζ̄1, ζ
′)− I(x− sζ1, ζ

′)
]

dζ ′ds
∣

∣

∣

≤ C
[

(1 + d−1
0 )|ζ2 − ζ1|2

−n + (1 + d−1
0 )1+2σ |ζ2 − ζ1|

σ2−(1−2σ)n
]

.

(4.33)

Hence,

(4.34)
N̄
∑

n=1

DV n ≤ C(1 + d−1
0 )1+2σ ||ζ2 − ζ1|

σ.

We can bound the contribution from the segment within D0 similar to (4.23)
and (4.31).

For the remaining part, we define

RV :=
∣

∣

∣

∣

∣

∣

∫
|P1x|
|ζ2|

|S
N̄+1

x|

|ζ1|

∫

R3

e−ν(|ζ2|)sk(ζ̄1, ζ
′)I(x− sζ̄1, ζ

′)− e−ν(|ζ1|)sk(ζ2, ζ
′)I(x− sζ2, ζ

′)dζ ′ds

∣

∣

∣

∣

∣

∣

.

(4.35)

When |ζ1| > 2
√

|ζ1 − ζ2|, |ζ2| >
√

|ζ1 − ζ2|. Therefore,
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RV ≤ C

∫
|P1x|
|ζ2|

|S
N̄+1x|

|ζ1|

e−ν0sds ≤ Ce
−

ν0d0
2|ζ1|

[

|P1SN̄+1|

|ζ2|
+ |SN̄+1x|(

1

|ζ2|
−

1

|ζ1|
)

]

≤ Ce
−

ν0d0
2|ζ1|

[

(1 + d−1
0 )
|ζ1 − ζ2|

|ζ2|
+

∣

∣|ζ1| − |ζ2|
∣

∣

|ζ2||ζ1|

]

≤ C(1 + d−1
0 )
|ζ1 − ζ2|

|ζ2|
≤ C(1 + d−1

0 )|ζ1 − ζ2|
1
2 .

(4.36)

For the other case, 2
√

|ζ1 − ζ2| ≥ |ζ1| ≥ |ζ2|.

RV ≤ C

∫
|P1x|
|ζ2|

|S
N̄+1x|

|ζ1|

e−ν0sds ≤ C(e
−ν0

|S
N̄+1x|

|ζ1| + e
−ν0

|P1x|
|ζ2| )

≤ Cd−1
0 (|ζ1|+ |ζ2|) ≤ Cd−1

0

√

|ζ1 − ζ2|.

(4.37)

Hence, we finished the proof. �

5. Gaining of integrability

We devote this final section to the proof of the following proposition.

Proposition 5.1. Suppose f ∈ L∗
x,ζ solves the stationary linearized Boltz-

mann equation (1.1) for gases with cutoff hard potential or cutoff Maxwellian

gases, (1.2), and there exists φ(ζ) ∈ L∗
ζ such that

(5.1) |f(X, η)| < φ(ζ),

for any (X, η) ∈ Γ−. Then, f ∈ L∞
x L∗

ζ .

Moreover, if we further assume that for a fix 0 < α < 1
2 there exist M

such that

(5.2) f(X, η)− f(Y, ω)| ≤M
(

|η − ω|2 + |X − Y |2
)

σ
2

for any (X, η), (Y, ω) ∈ Γ−, then f ∈ L∞
x,ζ.

To prove f ∈ L∞
x L∗

ζ , we first use the integral equation (1.12) and name

the former term on the right hand side as g̃(x, ζ) and the latter as f̃(x, ζ).
From the assumption, we know that both ‖g̃‖L1

xL
∗
ζ
and ‖g̃‖L∞

x L∗
ζ
are bounded,

therefore, through interpolation, so is ‖g̃‖Lp
xL

∗
ζ
for any p ∈ [1,∞]. We per-

form zero extension for f(x, ζ) outside Ω and, with abuse of notation, still
call it f . We use ∗ to denote the convolution in space. The following estimate
is to be proved.

Lemma 5.2. Let 0 < α < 1. f and f̃ are as defined above. Then, there

exists a constant C11 only depending on the potential such that

(5.3) ‖f̃(x, ·)‖2L∗
ζ
≤ C11(

χ(0,R)(|x|)

|x|2−α
) ∗ ‖f(x, ·)‖2L∗

ζ
,
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where R is the diameter of Ω and χ(0,R) is the characteristic function of

(0, R).

Let 1 < p < 3
2−α

, q, r ∈ [0,∞]. Applying Young’s inequality to the
convolution above, we can conclude that, if

(5.4)
2

r
+ 1 =

1

p
+

2

q
,

then f ∈ L
q
xL

∗
ζ implies f̃ ∈ Lr

xL
∗
ζ . Starting from q = 2, through finite times

of iteration, we can obtain that f ∈ L∞
x L∗

ζ . Notice that the hard sphere case
is barely missed.

The fact f ∈ L∞
x L∗

ζ together with Hölder continuity assumption on the
boundary data implies

(5.5) |f(X, ζ)| ≤ C12M
3

3+2σ ‖f‖
2σ

3+2σ

L∞
x L∗

ζ
,

where C12 = 2( 3
4πν0

)
σ

3+2σ for any (X, ζ) ∈ Γ−. Then, from the integral

equation (1.12), we can conclude f ∈ L∞
x,ζ .

In order to prove Lemma 5.2, we shall first estimate the decay of K(f):

Proposition 5.3. For any 0 ≤ γ ≤ 1,

(5.6) |K(f)| ≤ C‖f‖L∗
ζ
(1 + |ζ|)−

3−γ
2 .

The constant C above may depend on the potential.

Proof.

|K(f)(ζ)| =

∣

∣

∣

∣

∫

R3

k(ζ, ζ∗)f(ζ∗)dζ∗

∣

∣

∣

∣

=

(
∫

R3

|k(ζ, ζ∗)|
2 1

|ν(ζ∗)|
dζ∗

) 1
2
(
∫

R3

|ν(ζ∗)||f(ζ∗)|
2dζ∗

) 1
2

≤‖f‖L∗
ζ







∫

R3

e
− 1

4

(

|ζ−ζ∗|2+( |ζ|
2−|ζ∗|

2

|ζ−ζ∗|
)2
)

|ζ − ζ∗|2(1 + |ζ|+ |ζ∗|)2(1−γ)(1 + |ζ∗|)γ
dζ∗







1
2

≤C‖f‖L∗
ζ







∫

|ζ−ζ∗|≤
|ζ|
2

e
− 1

4

(

|ζ−ζ∗|2+( |ζ|
2−|ζ∗|

2

|ζ−ζ∗|
)2
)

|ζ − ζ∗|2(1 + |ζ|)2(1−γ)(1 + |ζ|
2 )

γ
dζ∗

+

∫

|ζ−ζ∗|>
|ζ|
2

e−
1
4
|ζ−ζ∗|2

|ζ − ζ∗|2(1 + |ζ|)2(1−γ)
dζ∗

)
1
2

≤C‖f‖L∗
ζ

[

(|1 + |ζ|)−(3−γ) + |ζ|−2(1 + |ζ|)−(2−2γ)
]

1
2
.

(5.7)
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Notice that K(f) is also bounded. Therefore, we conclude the proposition.
�

We are ready to prove Lemma 5.2

proof of Lemma 5.2. We will use the spherical coordinate such that

(5.8) ζ ′ = (ρ cos θ, ρ sin θ cosφ, ρ sin θ sinφ)

and also r = s|ζ| as we did in Section 2. We have

‖f̃(x, ·)‖2L∗
ζ
=

∫

R3

|ν(ζ)|

∣

∣

∣

∣

∣

∫ τ−(x,ζ)

0
e−νsK(f)(x− ζs, ζ)ds

∣

∣

∣

∣

∣

2

dζ

≤

∫

R3

|ν(ζ)|

∣

∣

∣

∣

∣

∫ τ−(x,ζ)

0
e−2νss−αds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ τ−(x,ζ)

0
|K(f)(x− ζs, ζ)|2sαds

∣

∣

∣

∣

∣

dζ

≤ C

∫

R3

(1 + |ζ|)γα
∫ |p(x,ζ)x|

0
‖f(x− rζ̂, ·)‖2L∗

ζ
(1 + |ζ|)−(3−γ)rα

1

|ζ|1+α
drdζ

≤ C

∫ ∞

0
(1 + ρ)γ(1+α)−3ρ1−α

·

∫ π

0

∫ 2π

0

∫ |p(x,ζ)x|

0
‖f(x− rζ̂, ·)‖2L∗

ζ
rαdr sin θdφdθdρ

≤ C

∫

Ω

‖f(y, ·)‖2L∗
ζ

|x− y|2−α
dy

∫ ∞

0
(1 + ρ)γ(1+α)−3ρ1−αdρ

≤ C

∫

Ω

‖f(y, ·)‖2L∗
ζ

|x− y|2−α
dy.

(5.9)

Notice that the hard sphere case, γ = 1, is barely missed. We make an zero
extension of f outside Ω, and, with abuse of notation, still call it f . Then,
we conclude the lemma. �
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